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Recognising that surfactants can impede the drag reduction resulting from superhy-
drophobic surfaces (SHSs), we investigate the impact of spatio–temporal fluctuations
in surfactant concentration on the drag-reduction properties of SHSs. We model the
unsteady transport of soluble surfactant in a channel flow bounded by two SHSs. The
flow is laminar, pressure-driven, and the SHSs are periodic in the streamwise and spanwise
directions. We assume that the channel length is much longer than the streamwise period,
the streamwise period is much longer than the channel height and spanwise period, and
bulk diffusion is sufficiently strong for cross-channel concentration gradients to be small.
By combining long-wave and homogenisation theories, we derive an unsteady advection–
diffusion equation for surfactant-flux transport over the length of the channel, which
is coupled to a quasi-steady advection–diffusion equation for surfactant transport over
individual plastrons. As diffusion over the length of the channel is typically small, the
surfactant flux is governed by a nonlinear wave equation. In the fundamental case of
the transport of a bolus of surfactant, we predict its propagation speed and describe its
nonlinear evolution via interaction with the SHS. The propagation speed can fall below
the average streamwise velocity as the surfactant adsorbs and rigidifies the plastrons.
Smaller concentrations of surfactant are advected faster than larger ones, so that wave-
steepening effects can lead to shock formation in the surfactant-flux distribution. Our
asymptotic results reveal how unsteady surfactant transport can affect the spatio–
temporal evolution of the slip velocity, drag reduction and effective slip length in SHS
channels.
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1. Introduction

Surfactants are chemical compounds that are advected and diffuse throughout a fluid,
where they adsorb onto liquid–liquid or liquid–gas interfaces (Manikantan & Squires
2020). They have been shown to impair the effective slip length and drag reduction
in superhydrophobic microchannels (Peaudecerf et al. 2017). Surfactants that have
been adsorbed onto the liquid–gas interfaces of SHSs are advected downstream by the
flow and accumulate at stagnation points (i.e. liquid–solid contact lines), generating
an adverse Marangoni force that may negate any drag-reducing effects in laminar
(Kim & Hidrovo 2012; Bolognesi et al. 2014; Peaudecerf et al. 2017; Song et al. 2018)
or turbulent (Tomlinson et al. 2023b) flows. Superhydrophobic surfaces (SHSs) use
chemically-coated microscopic structures to suspend a fluid over a series of gas pockets
(Lee et al. 2016). The combination of no-slip structures and shear-free liquid–gas
interfaces generates the drag reduction in surface flows. Hence, SHSs have been
considered for applications in biofluidics (Darmanin & Guittard 2015), heat transfer
(Lam et al. 2015) and marine hydrodynamics (Xu et al. 2020), both in laminar and
turbulent flows. Field studies have shown that surfactant is present in the ocean and
that the surfactant concentration can vary significantly in space and time (Pereira et al.
2018; Frossard et al. 2019). Traces of surfactant have been measured in rivers, estuaries
and fog (Lewis 1991; Facchini et al. 2000). They are also present in most industrial and
laboratory environments (Manikantan & Squires 2020). In all these natural, industrial
and laboratory environments, the surfactant concentration can fluctuate in space and
time. Motivated by this observation, we study an idealised scenario representative of
some of these complicated engineering applications. From a fundamental view, we seek
to understand how variations in time and space in surfactant transport can affect the
drag-reducing properties of SHSs in a canonical channel flow. Our simplified scenario
considers the unsteady transport of surfactant in a laminar pressure-driven channel flow
bounded between streamwise- and spanwise-periodic SHSs. We model how surfactant is
advected and diffuses over length scales and time scales that are large compared to the
dimensions of the SHS texture.

Experimental studies first suggested that naturally-occurring surfactants could affect
channel flows bounded by SHSs comprising spanwise ridges (Kim & Hidrovo 2012), as
well as finite-length streamwise ridges (Bolognesi et al. 2014). They found that the
flow rate and wall shear stress closely resembled a channel with solid walls, and thus
their SHSs offered only a modest drag reduction (Kim & Hidrovo 2012; Bolognesi et al.
2014). Schäffel et al. (2016) showed that experimentally-measured slip lengths on SHSs
consisting of pillars were much smaller than predicted by surfactant-free simulations;
this was true whether surfactant was explicitly added or not, suggesting that naturally-
occurring surfactants played a key role. As noted earlier, a requirement for surfactant
effects to manifest on SHSs is the presence of stagnation points perpendicular to the
flow, at which point surfactant can accumulate to generate a surface tension gradient.
Song et al. (2018) showed that surface tension gradients emerged in their experiments
for finite streamwise ridges, increasing the drag compared to those configurations with
concentric ridges that lack stagnation points in the flow.

To investigate the effect of weak surfactant concentrations, Peaudecerf et al. (2017)
introduced simulations inclusive of surfactant dynamics; they showed that a plastron
could be immobilised by concentrations below levels commonly occurring in the environ-
ment and in engineered systems. The simulations of Peaudecerf et al. (2017) predicted
that surfactant impairment would decrease as the streamwise plastron interface length
increased. This was confirmed by their experiments (Peaudecerf et al. 2017), which
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showed that if the driving pressure was suddenly removed, a reverse flow was established
at the interface, decaying with time as 1/t at intermediate times. This time scaling was
predicted by a similarity solution driven by surfactant relaxation, assuming advection-
dominated flow. In contrast to these plastron-scale findings, there is presently no theory
that includes the combined effects of solubility, advection and diffusion, that describes
inhomogeneous surfactant transport across multiple plastrons, or that can model the
effects of unsteady surfactant concentration at the inflow.
Steady scaling theories were constructed for a pressure-driven channel flow with

two-dimensional gratings (approximating long, spanwise-oriented gratings Landel et al.
2020), as well as for long gratings with finite spanwise extent, assuming spatially peri-
odic flow (Temprano-Coleto et al. 2023). Both theories are in agreement with the slip
velocity and drag predicted in full numerical simulations. Temprano-Coleto et al. (2023)
further validated their theory by performing experiments with SHS gratings of various
lengths, finding that surfactant effects decrease with the square of the interface length.
Landel et al. (2020) and Temprano-Coleto et al. (2023) assume that the surfactant con-
centration is small (as may be expected when surfactant is not explicitly added) and that
the shear stress is approximately uniform at the liquid-gas interface. They do not consider
the stagnant cap regime, first reported for air bubbles rising in surfactant-contaminated
water (Bond & Newton 1928; Frumkin & Levich 1947).
To provide a more comprehensive theory that accommodates non-uniform shear

stresses at the liquid–gas interface, Tomlinson et al. (2023a) assumed that bulk
diffusion was strong enough to suppress cross-channel concentration gradients, allowing
systematic asymptotic approximations to be developed. They considered gratings
of finite spanwise extent and small surfactant concentrations (allowing linearisation
of physicochemical relations). The surfactant flux was assumed to be uniform and
was prescribed along the length of the channel. Several dimensionless groups were
identified by Temprano-Coleto et al. (2023) and Tomlinson et al. (2023a) that influence
the drag in superhydrophobic channels. Temprano-Coleto et al. (2023) showed that
surfactant impairment in their simulations and experiments was well predicted by a
single dimensionless group, when the surfactant properties, SHS dimensions and flow
velocities are constrained within physically realizable ranges. Using these physical
constraints, scaling analysis identified the dimensionless group as the ratio between
the streamwise length of the interface and a surfactant-determined lengthscale,
labelled “mobilization length”. Without these physical constraints on surfactant or
flow properties, Tomlinson et al. (2023a) found several other relevant dimensionless
groups by calculating asymptotic solutions for the concentration field and drag across
the whole parameter space; these depend on a velocity scale generated by interfacial
Marangoni effects, the surfactant diffusivity and the flow rate. Another dimensionless
group found by Tomlinson et al. (2023a) can be used to predict whether the surfactant
concentration field is in the stagnant-cap regime. This dimensionless group was also
identified in the numerical simulations performed by Sundin & Bagheri (2022) in a
two-dimensional channel with liquid-infused surfaces (LIS) when the applied shear
stress is high. Sundin & Bagheri (2022) found that LISs may be more susceptible to
surfactant effects than SHSs and derived a scaling theory for LISs when the applied
shear stress is small. The stagnant cap regime in a two-dimensional shear flow with
insoluble surfactant has been investigated with a linear (Baier & Hardt 2021, 2022) and
non-linear (Mayer & Crowdy 2022) equation of state. Assuming a linear equation of
state, our unsteady model allows us to investigate how these stagnant cap distributions
evolve as the bulk and interfacial surfactant concentration field varies in time.
Both Temprano-Coleto et al. (2023) and Tomlinson et al. (2023a) assumed that the
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velocity and bulk concentration fields are steady and spatially periodic. That is, they did
not allow surfactant to enter the channel with a non-uniform distribution that varies in
space and time over multiple periods, as arises in various environments (Frossard et al.
2019). Below, we use multiscale homogenisation techniques (such as those outlined in
Bottaro 2019) and a long-wave approximation to study the time- and space-varying effects
of surfactant over the whole SHS. These theoretical techniques provide mathematical
and physical understanding, without the need for expensive numerical simulations which
would have to numerically resolve the small details over each texture period. We show how
a time-dependent one-dimensional asymptotic theory, derived from the three-dimensional
Stokes and surfactant transport equations, can be adapted to describe the unsteady
evolution of slip and drag in a laminar pressure-driven channel flow with streamwise-
and spanwise-periodic grooves, allowing for time-dependent distributions of surfactant
flux at the channel inlet. The problem exhibits multiple length and time scales, which
we exploit to derive and solve a quasi-steady advection–diffusion problem for surfactant
concentration over moderate length scales (i.e. the streamwise period of the SHS) and
an unsteady advection–diffusion problem for surfactant flux over long length scales (i.e.
the streamwise length of the channel), whilst assuming that bulk diffusion is strong
enough for cross-channel concentration gradients to be small (Tomlinson et al. 2023a).
The surfactant concentration transport equations are nonlinear and of mixed hyperbolic-
parabolic type; the unsteady evolution of the surfactant flux over the length of the channel
is predominantly hyperbolic, allowing the formation of shocks. The problem possesses a
number of distinct asymptotic regimes, which we exploit to reveal how the shocks forming
in the space- and time-dependent surfactant-flux distribution affect the slip length and
drag reduction. The slip length and drag reduction are key quantities of interest for
practical applications that can be shown to satisfy their own unsteady partial differential
equations over long length scales. We predict the propagation speed of a disturbance
to the surfactant flux and investigate how excess surfactant can be advected out of a
channel to maximise the space- and time-averaged drag reduction.
The paper is arranged as follows. In §2, the problem is formulated and homogenised

to derive an unsteady advection–diffusion equation for surfactant flux transport through
the channel. At leading order, we derive a purely advective transport equation for the
surfactant flux, valid at the channel scale. In §3, results are presented for the surfactant
flux, drag reduction, propagation speed, slip velocity and concentration field. We describe
the parameter space and identify regions of high and low drag reduction. We detail
results for two (bell-shaped) canonical distributions of surfactant flux. In particular,
one profile induces a transition between the high and low drag reduction regions of
the parameter space, giving rise to shock formation. We study these cases using both
theoretical and numerical methods, providing closed-form asymptotic predictions of drag
reduction. In §4, we summarise and discuss our main results. We provide a table with
closed-form asymptotic predictions for the flux propagation speed in the different parts of
the parameter space. These predictions are expressed both using relevant non-dimensional
and dimensional parameters, and are intended as a useful guide for applications.

2. Formulation

2.1. Governing equations

We consider a laminar pressure-driven fluid flow, contaminated with soluble surfactant,
in a channel bounded between two SHSs that are periodic in the streamwise and spanwise
directions, as illustrated in figure 1. We use hats to indicate dimensional quantities. The
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Figure 1. A schematic illustrating the multiple length scales present in a channel flow
bounded by streamwise and spanwise-periodic SHSs. Top figure: the surfactant flux varies in the
streamwise direction, χ̂, and time, τ̂ , over the length of the channel, 2L̂x. Middle figure: over
each period, the concentration of surfactant varies quasi-steadily in the streamwise direction, x̂.
Multiple periodic cells are shown, each with a varying concentration of surfactant. The origin of
the Cartesian coordinate system, x̂ = 0, is placed in the middle of the interface of the central
period, at a distance L̂x along the channel. Bottom figure: a periodic cell, identifying domains 1
and 2 and, at the SHS, the ridge, solid wall and liquid–gas interface. For each periodic cell, the
half channel height is Ĥ, the streamwise (spanwise) gas fraction is φz (φz) and the streamwise
(spanwise) period length is 2P̂x (2P̂z).

streamwise, wall-normal and spanwise directions are denoted by x̂-, ŷ- and ẑ-coordinates,
where x̂ = (x̂, ŷ, ẑ) is the space vector and t̂ is time. Assuming that the fluid is incom-
pressible and Newtonian, we introduce the velocity vector û = (û(x̂, t̂), v̂(x̂, t̂), ŵ(x̂, t̂)),
pressure field p̂(x̂, t̂), bulk surfactant concentration field ĉ(x̂, t̂) and interfacial surfactant
concentration field Γ̂ (x̂, ẑ, t̂). The streamwise length of the channel is 2L̂x and the
periodic cell has streamwise (spanwise) period length 2P̂x (2P̂z), liquid–gas interface
length (width) 2φxP̂x (2φzP̂z) and gas fraction φx (φz). The channel height is 2Ĥ.
The liquid–gas interfaces (plastrons) can protrude into or out of the gas cavities by
an amount that varies along the channel with the liquid and gas pressures (see Lee et
al. 2016); however, for the sake of simplicity, we assume here that all the plastrons are
flat. The SHSs are made up of 2N + 1 periodic cells in the streamwise direction. For
n → {−N, ..., N}, the nth periodic cell is split into two subdomains along the streamwise
direction, similarly to Temprano-Coleto et al. (2023),

D̂n
1 = {x̂− 2nP̂x → [−φxP̂x, φxP̂x]}× {ŷ → [0, 2Ĥ]}× {ẑ → [−P̂z , P̂z ]}, (2.1a)

D̂n
2 = {x̂− 2nP̂x → [φxP̂x, (2− φx)P̂x]}× {ŷ → [0, 2Ĥ]}× {ẑ → [−P̂z , P̂z ]}. (2.1b)
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At the SHS, ŷ = 0 and ŷ = 2Ĥ, we define the nth interface, ridge and solid region, as

În = {x̂− 2nP̂x → [−φxP̂x, φxP̂x]}× {ẑ → [−φzP̂z, φzP̂z]}, (2.2a)

R̂n = {x̂− 2nP̂x → [−φxP̂x, φxP̂x]}× {ẑ → [−P̂z, −φzP̂z ] ∪ [φzP̂z , P̂z ]}, (2.2b)

Ŝn = {x̂− 2nP̂x → [φxP̂x, (2− φx)P̂x]}× {ẑ → [−P̂z, P̂z ]}. (2.2c)

The steady equations that govern the fluid and surfactant in each periodic cell are
described in detail by Tomlinson et al. (2023a). Here, we highlight differences due to
the unsteady transport of surfactant, whilst allowing the total flux of surfactant to vary
over the long length scale and slow time scale associated with the channel. The bulk
surfactant is coupled to the steady incompressible flow through an unsteady advection–
diffusion equation. In D̂n

1 and D̂n
2 ,

∇̂ · û = 0, µ̂∇̂2û− ∇̂p̂ = 0, D̂∇̂2ĉ− û · ∇̂ĉ− ĉt̂ = 0, (2.3a–c)

where µ̂ is dynamic viscosity and D̂ is the surfactant bulk diffusivity. The interfacial
surfactant is coupled to the flow through an unsteady advection–diffusion equation
and a linear equation of state and adsorption–desorption kinetics, such that
(σ̂x̂, σ̂ẑ) = (−ÂΓ̂x̂, −ÂΓ̂ẑ), where σ̂ is the surface tension and Â is the surface activity
(Manikantan & Squires 2020). We linearise the equation of state and adsorption–
desorption kinetics, as surfactant concentrations are generally small when surfactant is
not artificially added (Manikantan & Squires 2020). At ŷ = 0 (ŷ = 2Ĥ) and along În,
the boundary and bulk–interface coupling conditions for surfactant and flow and the
interfacial surfactant transport equation are

µ̂n · ∇̂û− ÂΓ̂x̂ = 0, v̂ = 0, µ̂n · ∇̂ŵ − ÂΓ̂ẑ = 0, D̂n · ∇̂ĉ− K̂aĉ+ K̂dΓ̂ = 0,

D̂I(Γ̂x̂x̂ + Γ̂ẑẑ) + K̂aĉ− K̂dΓ̂ − (ûΓ̂ )x̂ − (ŵΓ̂ )ẑ − Γ̂t̂ = 0, (2.4a–e)

where n is the unit normal to the interface (pointing into the channel), D̂I is the
surfactant interfacial diffusivity, K̂a is the adsorption rate coefficient and K̂d is the
desorption rate coefficient. At ŷ = 0 (ŷ = 2Ĥ) on ∂În, there is no flux of surfactant

ûΓ̂ − D̂I Γ̂x̂ = 0 at x̂ = ±φxP̂x, ŵΓ̂ − D̂I Γ̂ẑ = 0 at ẑ = ±φzP̂z. (2.5a, b)

At ŷ = 0 (ŷ = 2Ĥ) along R̂n ∪ Ŝn, the flow and surfactant boundary conditions are

û = 0, v̂ = 0, ŵ = 0, ĉŷ = 0. (2.6a–d)

Next, we define q̂(x̂, t̂) = (û, v̂, ŵ, p̂x̂, ĉ). Throughout D̂n
1 and D̂n

2 , we assume that the
flow and concentration fields are periodic in the spanwise directions,

q̂(x̂, ŷ, −P̂z, t̂) = q̂(x̂, ŷ, P̂z , t̂). (2.7)

Across interfaces between D̂n
1 , D̂

n
2 and D̂n+1

1 the flow and concentration fields are assumed
to be continuous between subdomains,

q̂(((2n+ φx)P̂x)
−, ŷ, ẑ, t̂) = q̂(((2n+ φx)P̂x)

+, ŷ, ẑ, t̂), (2.8a)

q̂(((2(n+ 1)− φx)P̂x)
−, ŷ, ẑ, t̂) = q̂(((2(n+ 1)− φx)P̂x)

+, ŷ, ẑ, t̂). (2.8b)

In addition to (2.7)–(2.8), derivatives of q̂ should be continuous across subdomains and
spanwise periods.
We can integrate (2.3)–(2.7) across the channel to derive equations relating the bulk
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and interfacial flux of fluid and surfactant
∫

Ân

ĉt̂ dÂ+
d

dx̂

∫

Ân

(ûĉ− D̂ĉx̂) dÂ− 2

∫

În

(K̂dΓ̂ − K̂aĉ) dẑ = 0 in Dn
1 , (2.9a)

∫

În

Γ̂t̂ dẑ +
d

dx̂

∫

În

(ûΓ̂ − D̂I Γ̂x̂) dẑ +

∫

În

(K̂dΓ̂ − K̂aĉ) dẑ = 0 in Dn
1 , (2.9b)

∫

Ân

ĉt̂ dÂ+
d

dx̂

∫

Ân

(ûĉ− D̂ĉx̂) dÂ = 0 in Dn
2 , (2.9c)

where
∫

Ân

· dÂ ≡
∫ P̂z

ẑ=−P̂z

∫ 2Ĥ
ŷ=0 · dŷ dẑ and

∫

În

· dẑ ≡
∫ P̂z

ẑ=−P̂z

· dẑ for x̂ − 2nP̂x →

[−φxP̂x, (2 − φx)P̂x]. The unsteady surfactant transport equations, (2.9), model how
the bulk and interfacial surfactant fluxes (second term in 2.9a–c) change as surfactants
adsorb and desorb at the liquid–gas interface (third term in 2.9a, b) and the concentration
field evolves in time (first term in 2.9a–c). For a flow driven in the streamwise direction,
the cross-channel integrated streamwise velocity field, referred to hereafter as the flux of
fluid, Q̂, is uniform along the length of the channel,

Q̂ =

∫

Ân

û dÂ. (2.10)

In contrast, the cross-channel integrated total flux of surfactant, referred to hereafter as
the flux of surfactant, K̂ = K̂(x̂, t̂), can vary along the length of the channel due to
unsteady effects, according to
∫

Ân

ĉt̂ dÂ+ 2

∫

În

Γ̂t̂ dẑ + K̂x̂ = 0 in D̂n
1 ,

∫

Ân

ĉt̂ dÂ+ K̂x̂ = 0 in D̂n
2 , (2.11a, b)

where we have reformulated (2.9) and defined

K̂ =

∫

Ân

(ûĉ− D̂ĉx̂) dÂ+ 2

∫

În

(ûΓ̂ − D̂IΓ̂x̂) dẑ in D̂n
1 , (2.12a)

K̂ =

∫

Ân

(ûĉ− D̂ĉx̂) dÂ in D̂n
2 . (2.12b)

We also define K̂m = max(K̂(x̂, 0)) to be the maximum initial surfactant flux along the
length of the channel.
Defining the cross-channel-averaged pressure drop per period ∆np̂(t̂) ≡ 〈p̂〉((2n −

φx)P̂x) − 〈p̂〉((2(n + 1) − φx)P̂x) > 0 where 〈·〉 ≡
∫ P̂z

ẑ=−P̂z

∫ 2Ĥ
ŷ=0 · dŷ dẑ/(4P̂zĤ) is the

cross-channel average, we can define the normalised drag reduction over the nth cell as

DRn(t̂) =
∆np̂I −∆np̂

∆np̂I −∆np̂U
, (2.13)

where ∆np̂ = ∆np̂I when the liquid–gas interface is immobilised by surfactant and is
no-slip (DRn = 0) and ∆np̂ = ∆np̂U when the liquid–gas interface is unaffected by
surfactant and is shear-free (DRn = 1).

2.2. Non-dimensionalisation and scalings

In table 1, we summarise the different length, time and velocity scales of interest in the
transport problem described in (2.1)–(2.12) and figure 1, assuming that the channel has
an order-one cross-channel aspect ratio Ĥ ∼ P̂z , but small channel-height-to-streamwise-
period ratio ε = Ĥ/P̂x * 1 and small streamwise-period-to-channel-length ratio E =
P̂x/L̂x * 1. Our aim is to explore a limit that exhibits a balance of dominant physical
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Length scale Time scale Velocity scale Interpretation

εP̂x
εP̂x

Û
Û Spanwise flow across a unit cell

P̂x
P̂x

εÛ
εÛ Streamwise flow along a unit cell

P̂x

E
P̂x

εEÛ
εÛ Streamwise flow over multiple cells

Table 1. Summary of the length, time and velocity scales of interest involved in the problem
described in (2.1)–(2.12) and figure 1, where εÛ is the moderate streamwise velocity scale at the
scale of individual cells (owing to continuity of flux), ε = Ĥ/P̂x is the ratio of channel height
to streamwise period length and E = P̂x/L̂x = λε2 is the ratio of streamwise period length to
channel length.

effects, is relevant to applications, and which leads to a tractable mathematical and
numerical problem, avoiding intensive computations of the whole channel and every cell
of the SHS. Defining εÛ = Q̂/(Ĥ2) as a velocity scale, Ĉ = K̂m/Q̂ as a bulk concentration
scale and Ĝ = K̂aĈ/K̂d as an interfacial concentration scale, we non-dimensionalise
(2.1)–(2.13) using multiple time and spatial scales:

t =
t̂

εP̂x/Û
, T =

t̂

P̂x/εÛ
, τ =

t̂

P̂x/(εEÛ)
, x⊥ =

(ŷ, ẑ)

εP̂x

, x =
x̂

P̂x

, χ =
x̂

P̂x/E
,

u⊥ =
(v̂, ŵ)

Û
, u =

û

εÛ
, p =

p̂

µ̂Û/Ĥ
, c =

ĉ

Ĉ
, Γ =

Γ̂

Ĝ
, K =

K̂

K̂m

, (2.14a–l)

where x⊥ ≡ (y⊥, z⊥) and u⊥ ≡ (v⊥, w⊥). In this paper, we focus on the distin-
guished limit in which E = λε2 as ε → 0, where λ is an O(1) constant (this scaling
clarifies the asymptotics and is reasonable from an applications point of view). This
non-dimensionalisation yields a long-wave theory with rapid cross-channel transport
of surfactant over each periodic cell, which will be homogenised to describe the slow
transport of surfactant over multiple periods. The cross-channel flow decays exponentially
fast (Mcnair et al. 2022), but it must be formally retained to develop a consistent
asymptotic model. For n → {−N, ..., N}, the nth periodic cell becomes, in dimensionless
form (using quantities without hats),

Dn
1 = {x− 2n → [−φx, φx]}× {y⊥ → [0, 2]}× {z⊥ → [−Pz, Pz ]}, (2.15a)

Dn
2 = {x− 2n → [φx, 2− φx]}× {y⊥ → [0, 2]}× {z⊥ → [−Pz, Pz ]}, (2.15b)

where Pz = P̂z/Ĥ . At y = 0 (y = 2), the regions of the SHS are given by

In = {x− 2n → [−φx, φx]}× {z⊥ → [−φzPz , φzPz ]}, (2.16a)

Rn = {x− 2n → [−φx, φx]}× {z⊥ → [−Pz, −φzPz ] ∪ [φzPz, Pz ]}, (2.16b)

Sn = {x− 2n → [φx, 2− φx]}× {z⊥ → [−Pz , Pz ]}. (2.16c)

The length of the channel becomes 2L̂x/P̂x = 2/E = 2/(λε2).
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We then assume that the flow and surfactant variables are functions of the short length
scale and rapid time scale (x⊥ = (y⊥, z⊥) and t, respectively), moderate length scale and
intermediate time scale (x and T , respectively) and long length scale and slow time scale
(χ and τ , respectively), where these six variables are treated as independent of each
other. In Dn

1 and Dn
2 , the incompressible Stokes and surfactant transport equations in

(2.3) become

ε2(ux + λε2uχ) +∇⊥ · u⊥ = 0, (2.17a)

ε2(uxx + 2λε2uxχ + λ2ε4uχχ) +∇2
⊥u− px − λε2pχ = 0, (2.17b)

ε2(u⊥xx + 2λε2u⊥xχ + λ2ε4u⊥χχ) +∇2
⊥u⊥ −∇⊥p = 0, (2.17c)

(ε2(cxx + 2λε2cxχ + λ2ε4cχχ) +∇2
⊥c)/Pe − ε2u(cx + λε2cχ)− u⊥ ·∇⊥c

−ct − ε2(cT + λε2cτ ) = 0, (2.17d)

with Pe = ÛĤ/D̂ the bulk Péclet number, ∇⊥ ≡ (∂y⊥
, ∂z⊥) and ∇2

⊥ ≡ ∂y⊥y⊥
+ ∂z⊥z⊥ .

At y⊥ = 0 (y⊥ = 2) and along In, the boundary conditions for flow and surfactant, the
coupling conditions, and the interfacial surfactant transport equations in (2.4) give

n ·∇u−Ma(Γx + λε2Γχ) = 0, (2.18a)

v⊥ = 0, (2.18b)

n ·∇w⊥ −MaΓz⊥ = 0, (2.18c)

n ·∇c−Da(c− Γ ) = 0, (2.18d)

(ε2(Γxx + 2λε2Γxχ + λ2ε4Γχχ) + Γz⊥z⊥)/PeI − ε2(uΓ )x − λε4(uΓ )χ

−(w⊥Γ )z⊥ − Γt − ε2(ΓT + λε2Γτ )− Bi(c− Γ ) = 0, (2.18e)

with Ma = ÂĜ/µ̂Û the Marangoni number, Da = K̂aĤ/D̂ the Damköhler number,
PeI = ĤÛ/D̂I the interfacial Péclet number and Bi = K̂dĤ/Û the Biot number. At
y⊥ = 0 (y⊥ = 2) on ∂In, the no-flux interfacial surfactant boundary conditions in (2.5)
become

uΓ − (Γx + λε2Γχ)/PeI = 0 at x = ±φx, (2.19a)

w⊥Γ − Γz⊥/PeI = 0 at z⊥ = ±φzPz. (2.19b)

At y⊥ = 0 (y⊥ = 2) along Rn ∪ Sn, the no-flux bulk flow and bulk surfactant boundary
conditions in (2.6) give

u = 0, v⊥ = 0, w⊥ = 0, cy⊥
= 0. (2.20a–d)

Defining q = (u, v⊥, w⊥, px, c), across Dn
1 and Dn

2 , the spanwise (2.7) and streamwise
(2.8a) continuity conditions for the flow and surfactant become

q(x, y⊥, −Pz, t, T, χ, τ) = q(x, y⊥, Pz, t, T, χ, τ), (2.21a)

q((2n+ φx)
−, y⊥, z⊥, t, T, χ, τ) = q((2n+ φx)

+, y⊥, z⊥, t, T, χ, τ). (2.21b)

The streamwise flow and surfactant continuity condition for q between one cell and the
next, i.e. between Dn

2 and Dn+1
1 , in (2.8b) is replaced by a stronger assumption to allow

the use of homogenisation theory (Bottaro 2019), namely that q is a periodic function of
the moderate length scale x, such that

q(2n− φx, y⊥, z⊥, t, T, χ, τ) = q(2(n+ 1)− φx, y⊥, z⊥, t, T, χ, τ). (2.22)

Slow variations of flow properties from cell to cell will be accommodated via dependence
of the flow and surfactant variables on the long length scale χ and slow time scale τ .
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The bulk and interfacial surfactant fluxes (2.9) satisfy
∫

An

(ct + ε2(cT + λε2cτ )) dA+ ε2
d

dx

∫

An

(

uc−
cx
Pe

− λε2
cχ
Pe

)

dA

+λε4
d

dχ

∫

An

(

uc−
cx
Pe

− λε2
cχ
Pe

)

dA−
2Da

Pe

∫

In

(Γ − c) dz⊥ = 0 in D1, (2.23a)

∫

In

(Γt + ε2(ΓT + λε2Γτ )) dz⊥ + ε2
d

dx

∫

In

(

uΓ −
Γx

PeI
− λε2

Γχ

PeI

)

dz⊥

+λε4
d

dχ

∫

In

(

uΓ −
Γx

PeI
− λε2

Γχ

PeI

)

dz⊥ + Bi

∫

In

(Γ − c) dz⊥ = 0 in D1, (2.23b)

∫

An

(ct + ε2(cT + λε2cτ )) dA+ ε2
d

dx

∫

An

(

uc−
cx
Pe

− λε2
cχ
Pe

)

dA

+λε4
d

dχ

∫

An

(

uc−
cx
Pe

− λε2
cχ
Pe

)

dA = 0 in D2, (2.23c)

where
∫

An

· dA ≡
∫ Pz

z⊥=−Pz

∫ 2H
y⊥=0 · dy⊥ dz⊥ and

∫

In

· dz⊥ ≡
∫ Pz

z⊥=−Pz

· dz⊥ for x − 2n →

[φx, 2− φx]. In Dn
1 and Dn

2 , the flux of fluid (2.10) is given by
∫

An

u dA = 1. (2.24)

The flux of surfactant, K = K(x, t, T, χ, τ), is related to changes in the bulk and surface
concentration via (2.11), which becomes
∫

An

(ct + ε2(cT + λε2cτ )) dA+
2Da

BiPe

∫

In

(Γt + ε2(ΓT + λε2Γτ )) dz⊥

+ε2(Kx + λε2Kχ) = 0 in Dn
1 , (2.25a)

∫

An

(ct + ε2(cT + λε2cτ )) dA+ ε2(Kx + λε2Kχ) = 0 in Dn
2 , (2.25b)

where the flux of surfactant (2.12) is given by

K =

∫

An

(

uc−
cx
Pe

− λε2
cχ
Pe

)

dA

+
2Da

BiPe

∫

In

(

uΓ −
Γx

PeI
− λε2

Γχ

PeI

)

dz⊥ in Dn
1 , (2.26a)

K =

∫

An

(

uc−
cx
Pe

− λε2
cχ
Pe

)

dA in Dn
2 , (2.26b)

and max(K(x, t, T, χ, τ)) = 1 at t = T = τ = 0.
The normalised drag reduction (2.13) over the nth periodic cell becomes

DRn(t, T, χ, τ) =
∆npI −∆np

∆npI −∆npU
, (2.27)

where ∆np ≡ 〈p〉(2n−φx)−〈p〉(2(n+1)−φx) and 〈·〉 ≡
∫ Pz

z⊥=−Pz

∫ 2
y⊥=0 · dy⊥dz⊥/(4Pz).

2.3. Asymptotic homogenisation

We assume that Pe ∼ PeI ∼ Ma ∼ O(1) and Bi ∼ Da ∼ O(ε2) in the limit ε * 1, so
that bulk–surface exchange is comparable to advection, diffusion and Marangoni effects
in Dn

1 and Dn
2 for n → {−N, ..., N}. As discussed in Tomlinson et al. (2023a), this scaling
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means that we arrive at the most general form of the surfactant transport equations with
moderate exchange, whereas, if we had assumed that Bi ∼ Da ∼ O(1), then we would
arrive at a sublimit with strong exchange. In the limit ε → 0, we rescale Bi = ε2B
and Da = ε2D , where B and D are positive O(1) constants. We then substitute the
asymptotic expansion





















u
v⊥
w⊥

p
c
Γ
K





















=





















u0

v0⊥
w0⊥

p0
c0
Γ0

K0





















+ ε2





















u1

v1⊥
w1⊥

p1
c1
Γ1

K1





















+ ε4





















u2

v2⊥
w2⊥

p2
c2
Γ2

K2





















+ ..., (2.28)

into (2.17)–(2.26). The leading-order, first-order and second-order problems are addressed
in §2.3.1–2.3.3 respectively. At the start of each subsection, we direct the reader who is
not interested in the details towards the main equations and results derived in each
subsection.

2.3.1. Leading-order problem

First, we simplify the dependence of the velocity, pressure and concentration fields
on the space and time variables. The streamwise velocity and volume flux are written
(in (2.35)–(2.36) below) in terms of the interfacial concentration and pressure gradient,
which are independent cross-plane variables (y⊥ and z⊥).
In Dn

1 and Dn
2 , streamwise gradients of the velocity and bulk concentration are small

compared to cross-channel gradients. Hence, cross-channel diffusion balances advection
and unsteady effects in the bulk equation, through the two-dimensional problem

∇⊥ · u0⊥ = 0, ∇2
⊥u0 −∇p0 = 0, ∇2

⊥c0/Pe − u0⊥ ·∇⊥c0 − c0t = 0. (2.29a–c)

At y⊥ = 0 (y⊥ = 2) and along In, streamwise gradients of the streamwise velocity
and surface concentration are small compared to spanwise gradients. Hence, spanwise
diffusion balances advection and unsteady effects in the interfacial equation, via

n ·∇u0 −MaΓ0x = 0, v0⊥ = 0, n ·∇w0⊥ −MaΓ0z⊥ = 0,

n ·∇c0 = 0, Γ0z⊥z⊥/PeI − (w0⊥Γ0)z⊥ − Γ0t = 0. (2.30a–e)

At y⊥ = 0 (y⊥ = 2) and on ∂In,

u0Γ0 − Γ0x/PeI = 0 at x = ±φx, (2.31a)

w0⊥Γ0 − Γ0z⊥/PeI = 0 at z⊥ = ±φzPz. (2.31b)

At y⊥ = 0 (y⊥ = 2) and along Rn ∪ Sn,

u0 = 0, v0⊥ = 0, w0⊥ = 0, c0y⊥
= 0. (2.32a–d)

As there are no streamwise gradients of u0 in (2.29)–(2.30), the two-dimensional problem
does not capture inner regions near the stagnation points x = 2n±φx. These inner regions
are governed by the three-dimensional Stokes equations and guarantee continuity of u0

across domains Dn
1 and Dn

2 .
In Dn

1 and Dn
2 , the surfactant field evolves faster in time t than any changes to the flux

of surfactant and bulk–surface exchange at leading-order, so that (2.23)–(2.24) give
∫

An

c0t dA = 0,

∫

In

Γ0t dz⊥ = 0,

∫

An

u0 dA = 1. (2.33a–c)
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According to (2.26), the flux of surfactant, K0 = K0(x, t, T, χ, τ), is given by,

K0 =

∫

An

(

u0c0 −
c0x
Pe

)

dA+
2D

BPe

∫

In

(

u0Γ0 −
Γ0x

PeI

)

dz⊥ in Dn
1 , (2.34a)

K0 =

∫

An

(

u0c0 −
c0x
Pe

)

dA in Dn
2 . (2.34b)

The leading-order solution can be expected to decay exponentially fast in t to Γ0 =
Γ0(x, T, χ, τ), c0 = c0(x, T, χ, τ), p0 = p0(x, T, χ, τ), v0⊥ = w0⊥ = 0 and K0 =
K0(x, T, χ, τ) (Mcnair et al. 2022), satisfying (2.33). That is, at intermediate (T ) and
slow (τ) time scales, the concentration field does not vary in the spanwise direction
and there are no concentration gradients associated with velocities in the cross-plane.
Using linear superposition, we can decompose u0 into a contribution from the streamwise
pressure gradient p0x which drives the flow and the streamwise interfacial concentration
gradient Γ0x which inhibits it owing to adverse Marangoni forces, via

u0 = Ũp0x +MaŪΓ0x in Dn
1 and u0 = Ŭp0x in Dn

2 , (2.35a, b)

where the steady velocity profiles Ũ(y⊥, z⊥), Ū(y⊥, z⊥) and Ŭ(y⊥, z⊥) are given in
Appendix A. Substituting (2.35) into (2.33c), we obtain relations between the volume
flux, pressure gradient and interfacial surfactant gradient in D1 and D2,

Q̃p0x +MaQ̄Γ0x = 1, q = q̃p0x +Ma q̄Γ0x in Dn
1 , Q̆p0x = 1 in Dn

2 , (2.36a–c)

where the fluxes Q̃, Q̄, Q̆, q̃, q̄ and q are given in Appendix A. Briefly, Q̃ and q̃ are bulk
volume and surface fluxes, respectively, of the flow Ũ driven by the pressure gradient in
D1; Q̄ and q̄ are bulk volume and surface fluxes, respectively, of the flow Ū driven by
the surfactant-induced Marangoni shear stress gradient in D1; and Q̆ is the bulk volume
flux of the flow Ŭ driven by the pressure gradient in D2.

2.3.2. First-order problem

Next, we relate the x-distributions of the leading-order surfactant concentrations (c0
and Γ0) at the scale of the periodic cell to the surfactant-flux distribution K0(χ, τ) that
varies over long length and slow time scales. Assuming the periodic-cell problem is quasi-
steady, we derive advection–diffusion equations for c0(x) and Γ0(x) (see (2.44) below),
parameterised by K0 (via (2.45) below) and physical parameters given in (2.43).
Solvability conditions are imposed on the first-order problem to constrain u0, c0 and Γ0.

These conditions are provided by the conservation arguments that result in the surfactant
transport equations at O(ε2). Hence, (2.23) gives

∫

An

c1t dA = −

∫

An

c0T dA−
d

dx

∫

An

(

u0c0 −
c0x
Pe

)

dA

+
2D

Pe

∫

In

(Γ0 − c0) dz⊥ in D1, (2.37a)

∫

In

Γ1t dz⊥ = −

∫

In

Γ0T dz⊥ −
d

dx

∫

In

(

u0Γ0 −
Γ0x

PeI

)

dz⊥

− B

∫

In

(Γ0 − c0) dz⊥ in D1, (2.37b)

∫

An

c1t dA = −

∫

An

c0T dA−
d

dx

∫

An

(

u0c0 −
c0x
Pe

)

dA in D2, (2.37c)
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and (2.26) becomes

K1 =

∫

An

(

u0c1 + u1c0 −
c1x
Pe

− λ
c0χ
Pe

)

dA

+
2D

BPe

∫

In

(

u0Γ1 + u1Γ0 −
Γ1x

PeI
− λ

Γ0χ

PeI

)

dz⊥ in Dn
1 , (2.38a)

K1 =

∫

An

(

u0c1 + u1c0 −
c1x
Pe

− λ
c0χ
Pe

)

dA in Dn
2 . (2.38b)

To avoid secular growth of the net mass of surfactant in (2.37), we require that
the right-hand sides of (2.37) are zero (Bender & Orszag 2013). Hence, the bulk and
interfacial concentrations evolve over intermediate time scales according to

∫

An

c0T dA+
d

dx

∫

An

(

u0c0 −
c0x
Pe

)

dA−
2D

Pe

∫

In

(Γ0 − c0) dz⊥ = 0 in Dn
1 , (2.39a)

∫

In

Γ0T dz⊥ +
d

dx

∫

In

(

u0Γ0 −
Γ0x

PeI

)

dz⊥ + B

∫

I

(Γ0 − c0) dz⊥ = 0 in Dn
1 , (2.39b)

∫

An

c0T dA+
d

dx

∫

An

(

u0c0 −
c0x
Pe

)

dA = 0 in Dn
2 . (2.39c)

Substituting the velocity and flux conditions (2.35)–(2.36) into the surfactant transport
equations (2.39) gives us ODEs that govern the unsteady advection, diffusion and
exchange of surfactant over one period,

θc0T + c0x − αc0xx − ν(Γ0 − c0) = 0 in Dn
1 , (2.40a)

ζΓ0T + βΓ0x − γ(Γ0Γ0x)x − δΓ0xx − ν(c0 − Γ0) = 0 in Dn
1 , (2.40b)

θc0T + c0x − αc0xx = 0 in Dn
2 . (2.40c)

We describe (2.40) as the unsteady moderate-exchange equations. The steady-state
problem was solved in Tomlinson et al. (2023a), where the transport coefficients α, β, γ,
δ and ν (specified below) were defined in terms of physical and geometrical parameters
and the fluxes Q̃, Q̄, q̃ and q̄. The new transport coefficients θ and ζ are associated with
unsteady effects for the bulk and interfacial surfactant concentration, respectively (see
more details below). Combining (2.40) with (2.34) gives a set of constraints on the total
surfactant flux over one period,

θc0T + ζΓ0T +K0x = 0, where K0 = c0 − αc0x + βΓ0 − γΓ0Γ0x − δΓ0x in Dn
1 , (2.41a)

θc0T +K0x = 0, where K0 = c0 − αc0x in Dn
2 . (2.41b)

We solve (2.40)–(2.41) subject to boundary conditions which enforce continuity and
periodicity, of both the surfactant concentration and flux, between subdomains

c0(2n+ φ−
x , T, χ, τ) = c0(2n+ φ+

x , T, χ, τ), (2.42a)

c0(2n− φx, T, χ, τ) = c0(2(n+ 1)− φx, T, χ, τ), (2.42b)

K0(2n+ φ−
x , T, χ, τ) = K0(2n+ φ+

x , T, χ, τ), (2.42c)

K0(2n− φx, T, χ, τ) = K0(2(n+ 1)− φx, T, χ, τ), (2.42d)

[βΓ0 − γΓ0Γ0x − δΓ0x](2n± φx, T, χ, τ) = 0. (2.42e)
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In (2.40)–(2.42), we have introduced the following transport coefficients:

α =
4Pz

Pe
(bulk diffusion); (2.43a)

β =
2D q̃

BPeQ̃
(partition coefficient); (2.43b)

γ =
2MaD(q̃Q̄/Q̃− q̄)

BPe
(surfactant strength); (2.43c)

δ =
4φzPzD

BPePeI
(surface diffusion); (2.43d)

ν =
4φzPzD

Pe
(exchange strength); (2.43e)

θ = 4Pz (bulk capacitance); (2.43f )

ζ =
4φzPzD

BPe
(surface capacitance). (2.43g)

The bulk (surface) diffusion coefficient α > 0 (δ > 0) compares the strength of bulk
(interfacial) streamwise diffusion to advection. The partition coefficient β > 0 charac-
terises the distribution of the surfactant flux, where for β , 1 (β * 1) the interfacial
(bulk) surfactant flux dominates. The surfactant strength γ > 0 characterises the impact
of Marangoni stresses on the interfacial surfactant flux. The exchange strength ν > 0
compares the rate of adsorption to advection. The remaining parameters, θ and ζ, are
associated with time-dependent variations and were not reported in Tomlinson et al.
(2023a). The bulk capacitance coefficient θ > 0 characterises the transverse aspect ratio
of the channel and specifies the bulk response to time-dependent changes in the surfactant
flux. The surface capacitance ζ > 0 is the rescaled (by 4φzPz) surfactant depletion
depth Ld = D/(BPe); ζ captures the manner in which solubility regulates the surface
response to gradients in the surfactant flux. The dependence of the transport coefficients
on dimensional parameters will be discussed later in §4.
We solve (2.40)–(2.42) subject to the initial condition c0(x, 0, χ, 0) = 1 to illustrate

the dependence of the bulk concentration field on the intermediate time scale T in figure
2(a); convergence to a steady state for different values of θ = ζ is illustrated using
c0(φx, T, χ, τ) in figure 2(b). The initially uniform concentration falls to an equilibrium
state, periodic over the unit cell, in which the positive gradient (c0x > 0) in D1 generates
an interfacial stress opposing the mean flow. The discontinuities in c0x are related to
the use of a long-wave theory, which does not resolve the inner problems near the
contact lines. The time taken to reach a steady state increases with θ and ζ. However,
as our primary objective is to investigate surfactant transport over the full length of
the channel, we assume that the leading-order solution is close to equilibrium and the
concentration field no longer depends on the intermediate time T , i.e. Γ0 = Γ0(x, χ, τ)
and c0 = c0(x, χ, τ). As the concentration field does not depend on T , from (2.41),
K0x = 0 in D1 and D2, and therefore the problem in each period simplifies to finding
c0 = c0(x; K0) and Γ0 = Γ0(x; K0) for a given surfactant flux K0 = K0(χ, τ) that is
uniform along each periodic cell. Hence, we solve the steady moderate-exchange equations
from Tomlinson et al. (2023a), given by

c0x − αc0xx − ν(Γ0 − c0) = 0 in Dn
1 , (2.44a)

βΓ0x − γ(Γ0Γ0x)x − δΓ0xx − ν(c0 − Γ0) = 0 in Dn
1 , (2.44b)

c0x − αc0xx = 0 in Dn
2 , (2.44c)
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Figure 2. The unsteady bulk concentration field (c0) in a unit cell (D1 ∪D2), computed using
(2.40)–(2.42) with c0(x, 0, χ, 0) = 1, where bulk–surface exchange is strong (c0 ≈ Γ0). The drag
reduction depends on ∆c0 = c0(φx, T, χ, τ )− c0(−φx, T, χ, τ ) and a large gradient of c0 in D1

can partially immobilise the liquid–gas interface. Plot of (a) c0(x, T, χ, τ ) at different times T
for θ = ζ = 1; and (b) leading-order bulk concentration at the end of the plastron c0(φx, T, χ, τ )
for varying bulk capacitance θ = ζ, computed using (2.44) where α = δ = 10 and β = γ = 1.

subject to the steady surfactant flux conditions

K0 = c0−αc0x+βΓ0− γΓ0Γ0x− δΓ0x in Dn
1 , K0 = c0−αc0x in Dn

2 , (2.45a, b)

and boundary conditions given in (2.42).
The solution to the surfactant concentration transport equations (2.42, 2.44, 2.45)

exhibits multiple asymptotic regimes, which are discussed in detail in Tomlinson et al.
(2023a). Briefly, we distinguish a strong-exchange problem (ν , max(1, α, δ)), where
the c0 and Γ0 fields are in equilibrium (c0 ≈ Γ0), from a moderate-exchange problem (ν =
O(1, α, δ)), where c0 and Γ0 are distinct. In the strong-exchange problem, we identify
three primary areas of parameter space and two significant boundaries between them;
these are summarised in figure 3(a). In the Marangoni-dominated (M) region (analysed
in Appendix B.1), the interfacial surfactant gradient immobilises the liquid–gas interface
(leading to low drag reduction); in the advection-dominated (A) region (Appendix B.2),
the interfacial surfactant is swept to the downstream stagnation point of each plastron
and the liquid–gas interface is mostly shear-free (high drag reduction); and in the
diffusion-dominated (D) region (Appendix B.3), the surfactant gradient is attenuated by
diffusion and the liquid–gas interface is mostly shear-free (high drag reduction). Across
the advection–Marangoni (AM) (Appendix B.4) and the diffusion–Marangoni (DM)
boundaries (Appendix B.5), these effects compete to partially immobilise the liquid–
gas interface (moderate drag reduction). Each of these regions has an analogue when
exchange is weak (ν * min(1, α, δ); see figure 3b). These sub-regions have the same
leading-order physics as regions M, D and A and are referred to as Marangoni–exchange
(ME), diffusion–exchange (DE) and advection–exchange (AE) sub-regions.
The link between surfactant flux K0 and surfactant concentration is evident from

(2.45), by noting that K0 can be scaled to unity under the mapping c0 → K0c∗0, Γ0 →
K0Γ ∗

0 and γ → γ∗/K0. Equivalently, by solving the surfactant transport equations (2.44,
2.45) withK0 = 1, we can capture variations in the surfactant flux parametrically through
variations in γ. For instance, increasing K0 from 1/2 to 1 for fixed α = 1 and γ = 100 is
equivalent (for the rescaled concentrations c∗0 and Γ ∗

0 ) to setting K0 = 1 and increasing
γ from 50 to 100 (illustrated by the right white line in figure 3a), thus moving away
from the DM boundary and further into the M region. Similarly, increasing K0 from
0.01 to 1 for fixed α = 0.1 and γ = 10 has the more dramatic effect of moving from
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Figure 3. Contours of the leading-order drag reduction (DR0) in the (a) (α, γ)-plane for
ν = 100 (strong-exchange problem) and (b) in the (ν, γ)-plane for α = 10 (illustrating
the transition from weak to strong exchange as ν increases), computed using (2.44) where
α = δ, β = 1, K0 = 1, φx = 0.5 and Pz = 1 in both panels. When DR0 = 0 the
liquid-gas interface is no-slip and when DR0 = 1 the liquid-gas interface is shear-free. The
Marangoni (M), advection (A) and diffusion (D) regions, the advection–Marangoni (AM)
and diffusion–Marangoni (DM) boundaries (taken to lie in between the DR = 0.1 and
DR0 = 0.9 contours), the Marangoni–exchange (ME) and diffusion–exchange (DE) sub-regions,
and the diffusion–Marangoni–exchange boundary (DME), are separated by black lines. The
advection–diffusion and moderate-exchange boundaries are illustrated using black lines at
α = 0.3 and ν = 100 in (a) and (b), respectively. The white lines illustrate the relationship
between K0 and γ that is discussed at the end of §2.3.2.

the A region (high drag reduction) to the M region (low drag reduction), by varying
γ from 0.1 to 10 with K0 = 1 (illustrated by the left white line in figure 3a). While
we could reduce the number of parameters in the plastron-scale problem by using the
rescaled concentrations c∗0 and Γ ∗

0 and by subsuming the parameter K0 into the rescaled
surfactant strength parameter γ∗ = γK0, we choose to retain K0 explicitly and use the
concentrations c0 and Γ0, because it provides a crucial link between the plastron-scale
and large channel-scale problems. We will return to these examples in §3.

2.3.3. Second-order problem

Finally, we relate the surfactant-flux distribution K0(χ, τ) to the surfactant concen-
trations c0(x; K0) and Γ0(x; K0). We derive an unsteady advection–diffusion equation
for K0 at the channel scale (see (2.50) below), which is coupled to c0 and Γ0 through
nonlinear coefficients (see (2.49) below).
Solvability conditions are imposed on the second-order problem to constrain u1, c1

and Γ1 appearing in (2.37)–(2.38). These conditions are provided by the conservation
arguments that result in the surfactant transport equations at O(ε4). In Dn

1 , (2.23a, b)
give bulk and interfacial equations, which can be combined into

∫

An

(c2t + c1T ) dA+
2D

BPe

∫

In

(Γ2t + Γ1T ) dz⊥ +K1x = −λ

(
∫

An

c0τ dA

+
2D

BPe

∫

In

Γ0τ dz⊥ +K0χ − λε2
(
∫

An

c0χχ
Pe

dA+
2D

BPe

∫

In

Γ0χχ

PeI
dz⊥

))

, (2.46)

and in D2, (2.23c) gives
∫

An

(c2t + c1T ) dA+K1x = −λ

(
∫

An

c0τ dA+K0χ − λε2
∫

An

c0χχ
Pe

dA

)

, (2.47)

using the definition of the leading- and first-order surfactant fluxes K0 and K1 given in
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(2.34) and (2.38), respectively. In (2.46)–(2.47), we have retained only the O(ε2) diffusion
terms in order to regularise any shocks that may arise in the numerical solution of these
equations, because of the nonlinear dependence of c0 and Γ0 on K0 (discussed further in
§3 below).
To avoid secular growth of the net mass of surfactant, we require that the combined

right-hand sides (i.e. source/sink terms) of the surfactant transport equations, (2.46)–
(2.47), integrate to zero along one period. We know from §2.3.2 that c0 = c0(x; K0) and
Γ0 = Γ0(x; K0) where K0 = K0(χ, τ). As c0 is assumed to be periodic in x, we can
use the cell with n = 0 as representative of all others. Hence, integrating the surfactant
transport equations (2.46)–(2.47) over one period, using the velocity fields and fluxes
from (2.35)–(2.36) and using the definition of the transport coefficients in (2.43), we
obtain

dC0

dτ
+

dA0

dχ
−

dM0

dχ
−

dD0

dχ
− λε2

d2D1

dχ2
= 0, (2.48)

where

C0(K0) = θ

∫ 2−φx

x=−φx

c0 dx+ ζ

∫ φx

x=−φx

Γ0 dx, (total weighted concentration), (2.49a)

A0(K0) =

∫ 2−φx

x=−φx

c0 dx+ β

∫ φx

x=φx

Γ0 dx (advective flux), (2.49b)

M0(K0) = γ

[

Γ 2
0

2

]φx

x=−φx

(Marangoni flux), (2.49c)

D0(K0) = α

[

c0

]2−φx

x=−φx

+ δ

[

Γ0

]φx

x=−φx

(primary diffusive flux), (2.49d)

D1(K0) = α

∫ 2−φx

x=−φx

c0 dx+ δ

∫ φx

x=−φx

Γ0 dx, (secondary diffusive flux). (2.49e)

We can express (2.48) as a nonlinear advection–diffusion equation for the leading-order
surfactant flux:

∂C0

∂K0

∂K0

∂τ
+

(

∂A0

∂K0
−

∂M0

∂K0
−

∂D0

∂K0

)

∂K0

∂χ
− λε2

∂

∂χ

(

∂D1

∂K0

∂K0

∂χ

)

= 0. (2.50)

Equation (2.50) describes the spatio–temporal evolution of a disturbance to the flux
of surfactant. It predicts how such disturbances are advected and spread by the flow
over the long length scale (χ) and slow time scale (τ) that are characteristic of the
channel flow. This equation is motivated by environmental surfactant concentrations
that can vary significantly in space and time across the large length scales involved in
applications (Frossard et al. 2019). As the surfactant flux K0 evolves with respect to χ
and τ , its transport (2.50) is coupled to smaller-scale surfactant concentration transport
(2.44, 2.45) over a given periodic cell. The local steady surfactant flux condition (2.45)
(where K0 remains uniform over a given periodic cell) shows how K0 decomposes into
local advective and diffusive fluxes of c0 and Γ0, as well as the nonlinear flux associated
with the Marangoni stress. We illustrate the relationship between the surfactant flux K0

and the resulting surfactant bulk concentration c0 in figure 4, which shows how they both
vary over 500 plastrons, in a case which is representative of the numerical simulations
we perform in this study. Where K0 is elevated, stronger adsorption can be expected to
lead to interfacial rigidification, reducing the proportion of net flux K0 carried by the
interface and increasing the local drag. The impact of these changes on the evolution of
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Figure 4. A plot illustrating the relationship between the total flux of surfactant
(K0 = (1 + exp(−9χ2))/2) over the length of the SHS (χ ∈ [−1, 1]) and the corresponding
concentration field (c0 and Γ0) over 2N = 500 periods (x ∈ [−100, 100]), computed using (3.2)
where α = δ = 0.1, β = 1, γ = 10, φx = 0.5 and bulk–surface exchange is strong (c0 = Γ0).

the flux field is described by (2.50). While K0 varies smoothly with χ, the underlying
concentration field has a wavy multiscale structure (inset). We now aim to solve this
coupled transport problem to compute the time- and space-varying leading-order drag
reduction and slip associated for specific initial and boundary conditions of relevance to
applications.
We can solve (2.50) using analytical methods and numerical techniques. Analytically,

we will neglect O(ε2) terms. This yields a hyperbolic problem for which the solution is
found using the method of characteristics, generating simple formulae that can be used
by experimentalists and practitioners. Numerically, we will retain secondary diffusion
terms to regularise any shocks that may arise in hyperbolic problem and to validate the
analytical results.
We solve (2.50) subject to an initial condition, K0(χ, 0), satisfying the constraint

max(K0(χ, 0)) = 1. However, bar this constraint, we can choose any initial condition for
the distribution of surfactant flux in the channel. Here, we choose a Gaussian distribution,
rather than a step or a ramp function, as it constitutes a classical example for which
behaviours in purely advective transport systems are observed, such as: wave steepening,
wave expansion or shock formation (Strauss 2007). We solve (2.50) subject to the initial
and boundary conditions

K0(χ, 0) = Kb + (1−Kb) exp(−(10χ+ 15/2)2), K0(−1, τ) = Kb, (2.51a, b)

where Kb is the background surfactant flux. Taking Kb = 1/2, the distribution defined
in (2.51) is characteristic of a channel that is contaminated with a bolus of surfactant
that locally doubles the background surfactant flux. In this case, the drag-reduction
values remain in region M (see figure 3), as we will show in §3. We also take Kb = 0.01,
representing an almost clean channel that is contaminated with a bolus of surfactant. We
investigate Kb = 0.01, as an alternative to Kb = 1/2, as in this case values of the drag
reduction can transition between region A (or D) and region M (figure 3). As we show
in §3, the surfactant-flux distribution can exhibit shocks with such initial conditions.
The dependence of C0, A0, M0 and D0 in (2.49) on K0, for different values of α, β, γ,

δ, θ and ζ, is illustrated in figure 5. We choose parameter values for α, β, γ and δ such
that drag reduction values are generally at the AM boundary in the parameter space (see
figure 3). By increasing K0, we transition from regions A to M when K0 = O(2φxβ/γ)
(see Appendix B.4). In figure 5(a, b), the relationship between C0 and A0 with K0 is
linear in regions M (see (B 4a, b)) and A (see (B 11a, b)), and nonlinear in between. In
figure 5(c, d), the relationship between M0 and D0 with K0 can be nonlinear in regions
M and A, however, this nonlinearity does not affect the leading-order surfactant-flux
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Figure 5. Coefficients in the nonlinear advection–diffusion equation (2.50) for the leading order
surfactant flux K0: (a) ∂C0/∂K0 defined in (2.49a) for different θ = ζ, α = δ = 0.01, β = 10
and γ = 5; (b) ∂A0/∂K0 defined in (2.49b) for different β, α = δ = 0.01, θ = ζ = 1 and γ = 5;
(c) ∂M0/∂K0 defined in (2.49c) for different γ, α = δ = 0.01, θ = ζ = 1 and β = 10; (d)
∂D0/∂K0 defined in (2.49d) for different α = δ, β = 10, γ = 5 and θ = ζ = 1, where we vary
the surfactant flux (K0) and φx = 0.5. Numerical solutions are plotted using solid coloured lines
and asymptotic solutions are plotted using dashed black lines using (B 5), (B 11) and (B 19) in
regions M, A and D respectively.

distribution and the drag reduction in regions M and A, because γ , max(1, α, δ)
and max(α, δ, γ) * 1, respectively (see Appendices B.1 and B.2). In figure 5(d), when
α = 100, we transition to region D because min(α, δ) , max(1, γ) (see Appendix B.3). In
figure 5, we see that all the coefficients C0, A0,M0 andD0 have a nonlinear dependence on
K0 at the AM boundary, which will affect the leading-order surfactant-flux distribution
and drag reduction. We will discuss this further in §3.

2.4. Solving the surfactant-flux evolution equation

To solve (2.50) using the method of characteristics, we neglect the O(ε2) terms and
seek closed-form expressions for the surfactant-flux distribution. dK0/dτ = 0 on the
characteristic curves of (2.50), which are solutions of (Strauss 2007)

dχ

dτ
= a(K0(χ, τ)) =

A′
0 −M ′

0 −D′
0

C′
0

, (2.52)

where primes denote derivatives of the functions defined in (2.49) with respect to K0. The
propagation speed, a, characterises how fast changes in the surfactant-flux distribution
will be transported in space and time along the length of the channel. The characteristic
curves χ = χ(τ) are straight lines and K0 is uniform along each characteristic. We can
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solve (2.50) subject to (2.51) provided that the characteristics do not intersect. The
characteristics are given by

χ = ξ + a(K0(ξ, 0))τ for ξ → R, (2.53)

which gives ξ implicitly as a function of χ and τ , i.e. ξ = ξ(χ, τ). Hence, the solution to
(2.50) subject to (2.51) is given by K0(χ, τ) = K0(ξ, 0). The time τb when a shock first
forms is given by (Strauss 2007)

τb = min
ξ∈R

{

−1

aξ(K0(ξ, 0))



, (2.54)

and (2.53) gives the streamwise location χb where a shock first forms. The integral form of
(2.48) can be used to derive the Rankine–Hugoniot condition, us = [[A0−M0−D0]]/[[C0]],
where us is the shock speed, with the jump bracket defined as [[q]] = q(χ+

s , τ)− q(χ−
s , τ)

and χs is the location of the shock (Strauss 2007). The jump condition can then be
integrated to determine the location of the shock for times τ > τb, for admissible shocks
that satisfy the entropy condition,

χs(τ) = usτ +B, (2.55)

where the integration constant B is determined using χs(τb) = χb from (2.53)–(2.54).
Alternatively, we retain O(ε2) diffusive terms in (2.50) and solve it numerically sub-

ject to the initial and boundary conditions (2.51). We use the method of lines and a
backwards-in-time and centered-in-space scheme. As discussed earlier, retaining small
diffusive terms avoids numerical difficulties associated with shock formation and regu-
larises the shocks through a small amount of diffusion. This procedure is outlined in
detail in Appendix C.

2.5. Quantities of interest for applications

As discussed in §1, the main quantities of interest in SHS applications are the effective
slip length and drag reduction. The pressure drop across a plastron can be expressed in
terms of ∆pU = −2φx/Q̃−2(1−φx)/Q̆ (its value when the interface is shear free), ∆pI =
−2/Q̆ (its value when the interface is immobilised) and ∆p0 = −2φx/Q̃− 2(1−φx)/Q̆+
MaQ̄∆Γ0/Q̃ (its value in general, where ∆Γ0 ≡ Γ0(φx; K0) − Γ0(−φx; K0)). Following
Tomlinson et al. (2023a), integrating −p0x across the period, substituting ∆pU , ∆pI and
∆p0 into (2.27) and using the definition of β and γ in (2.43b, c), the leading-order drag
reduction (over a plastron) depends on the total flux of surfactant via

DR0(χ, τ) = 1−
γ∆Γ0

2φxβ
. (2.56)

Given a surfactant-flux distribution K0, we can calculate the corresponding drag-
reduction distribution DR0 by solving the surfactant transport equations (2.42, 2.44,
2.45) for each K0 to get Γ0(x; K0), and then use (2.56) to calculate DR0. The drag
reduction inherits a dependence on τ and χ from K0; we therefore define the space- and
time-averaged drag reduction as

〈DR0〉χ(τ) =
1

2

∫ 1

χ=−1
DR0 dχ, DR0(χ) =

1

T

∫ T

τ=0
DR0 dτ, (2.57a, b)

where [−1, 1] covers the length of the channel and [0, T ] is the time interval over which
the drag reduction is measured. To evaluate the effective slip length λe over a plastron
(Tomlinson et al. 2023a), we integrate the leading-order streamwise momentum equation
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(2.29b) for an equivalent channel with the mixed boundary conditions (2.30a, 2.32a)
replaced by λeu0y⊥

− u0 = 0. We obtain u0 = Ǔp0x, where Ǔ = y⊥(y⊥ − 2)/2 − λe

and p0x is the same pressure gradient as in the SHS channel. The corresponding volume
flux is Q̌ = (Q̆ − 2Pzλe)p0x, or by integrating over one period Q̌ = (Q̆ − 2Pzλe)∆p0/2.
Equating the volume flux of the equivalent channel with the volume flux (2.36), we find

λe =
DR0(∆pI −∆pU )

Pz∆pI(∆pUDR0 +∆pI(1 −DR0))
, (2.58)

which can be used to convert results from DR0 to λe. Therefore, with λe and DR0 being
directly related to K0, the governing equations, (2.50)–(2.51), can also be rewritten as
initial boundary value problems for either the effective slip length or drag reduction, that
vary over the long length scale and slow time scale of the channel.

3. Results

In §3.1–3.4, we investigate how the surfactant flux (K0), drag reduction (DR0),
propagation speed (a), streamwise velocity (u0) and surfactant concentration (c0 and
Γ0) vary with the bulk diffusion (α), partition coefficient (β), surfactant strength (γ),
surface diffusion (δ), exchange strength (ν), bulk capacitance (θ), surface capacitance
(ζ) and streamwise gas fraction (φx). We discuss the quantities that vary over the
length of the channel (K0, DR0 and a) and their effect on the flow and surfactant
transport (u0, c0 and Γ0) over each period. Using asymptotic (detailed in Appendix
B) and numerical (Appendix C) techniques, we evaluate the solution to (2.50, 2.51)
in the main regions and boundaries illustrated in figure 3 and discussed in §2.3.3: the
Marangoni-dominated (M) region (§3.1); the advection-dominated (A) region (§3.2); the
diffusion-dominated (D) region (§3.2); the advection–Marangoni (AM) boundary (§3.3);
and the diffusion–Marangoni (DM) boundary (§3.4). Shocks in the surfactant-flux and
drag-reduction distribution can arise in regions AM and DM. Throughout §3, we fix the
channel-height-to-streamwise-period ratio ε = 0.1, spanwise gas fraction φz = 0.5 and
spanwise period width Pz = 1. We construct asymptotic solutions for any φz and Pz in
Appendix B where ε * 1.

3.1. Marangoni–dominated region

3.1.1. Flow and surfactant flux transport at the channel scale

Figure 6(a) shows how a bolus of surfactant flux, using initial and boundary conditions
(2.51), is advected along the length of the channel at increasing times. Taking Kb = 1/2
in (2.51), K0 remains sufficiently large for the flow to be everywhere in the Marangoni-
dominated (M) region. Where the surfactant flux and concentration increase, the leading-
order drag reduction in figure 6(b) decreases, implying that the liquid–gas interface is
more immobilised. We plot in figure 6(a, b) asymptotic solutions for the leading-order
surfactant flux and drag reduction (derived in Appendix B.1),

K0(χ, τ) ≈ Kb + (1−Kb) exp(−(10(χ− aMτ) + 15/2)2), (3.1a)

DR0(χ, τ) ≈ (α + δ + φx(E + 1)/(E − 1))/(γK0), (3.1b)

aM ≈ 1/(θ + ζφx) (3.1c)

derived in the limit where both Marangoni effects and bulk–surface exchange are strong
compared to advection and diffusion (see region M in figure 3a); aM is the propaga-
tion speed in region M (see further discussion about its physical meaning in the next
paragraph) and E ≡ exp(2(1 − φx)/α). As the flux of surfactant is conserved in (2.50),
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Figure 6. Quantities of interest as a bolus of surfactant flux, (2.51), passes through the channel
in the Marangoni-dominated region (M), where α = β = δ = 1, γ = 10, ν = 100, φx = 0.5
and Kb = 1/2. (a) Surfactant flux K0 and (b) drag reduction DR0 versus distance along the
channel χ at different times τ = 0, 0.2, 0.4, 0.6, 0.8 and 1, computed using (2.56, 2.51, B 5) for
θ = ζ = 1. The dashed horizontal line in panel (b) is the space-averaged drag reduction 〈DR0〉χ,
calculated using (2.57). (c) Bulk c0 (dotted lines) and interfacial Γ0 (solid lines) concentration
fields across a unit cell D1 ∪ D2 and (d) streamwise slip velocity u0(x, 0, 0) across a plastron
(domain D1), located at χ = −0.5 (dotted vertical line in panels a and b) when τ = 0.2, 0.3,
0.4, 0.5, 0.6 and 0.7, and calculated using (2.35, 2.44).

the space-averaged drag reduction (〈DR0〉χ) defined in (2.57a) is constant provided the
bolus of surfactant flux remains in the channel for the given time interval. However, once
the bolus of surfactant flux is advected out of the channel, the space- and time-averaged
drag reduction 〈DR0〉χ defined in (2.57) is maximised by increasing the propagation
speed (aM) in region M. In figure 6(b), 〈DR0〉χ = 〈DR0〉χ = 0.06 for χ → [−1, 1] and
τ → [0, 1]; the drag reduction is small as the liquid–gas interface is mostly immobilised.
In region M, the bolus of surfactant flux, (2.51), is advected downstream by the flow

with a constant propagation speed, (3.1c), and therefore the distribution of surfactant
flux and drag reduction in figure 6(a, b) do not change shape as the bolus moves through
the channel. For ζ * θ, aM ≈ 1/θ, which corresponds to a dimensional speed Ûm =
Q̂/(4P̂zĤ). This is the cross-channel-averaged bulk propagation speed and indicates bulk-
dominated surfactant transport. For fixed θ, adsorption at the liquid–gas interface (via
an increase in ζ) causes the propagation speed of the bolus of surfactant flux to fall
significantly compared to the cross-channel-averaged bulk propagation speed, reducing
to aM ≈ 1/(ζφx) for ζ , θ. Dimensionally, this corresponds to a reduction in the
bulk propagation speed by a factor φxφzLd and indicates surface-dominated transport,
where Ld = K̂a/(ĤK̂d) is the normalised surfactant depletion length and φxφz is the
area gas fraction of the SHS. Hence, the propagation of disturbances to the surfactant
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concentration field is significantly slower for more insoluble surfactants (large Ld) and
when the area of adsorption, i.e. the liquid–gas interface 0 < φxφz < 1, is maximised.

3.1.2. Flow and surfactant transport at the scale of the periodic cell

The magnitude of the background surfactant flux in figure 6, Kb = 1/2, means that
the liquid–gas interface is almost immobile along the entire SHS and the leading-order
bulk and interfacial concentrations (Γ0 and c0) in each period are approximately linear
with a shallow gradient (Appendix B.1),

c0(x; K0) ≈ Γ0(x; K0) ≈ K0 + β(x − φx(E + 1)/(E − 1))/γ, (3.2)

as shown in figure 6(c). In (3.2), we see that c0 depends linearly on K0 at leading-
order, however, ∆c0 does not, as the liquid–gas interface is already immobilised when
K0 = O(1). As the bolus of surfactant flux passes over an individual plastron and K0

varies from 1/2 up to 1 and back down to 1/2, the concentration rises (from times τ = 0.2
to τ = 0.4) and then falls (from times τ = 0.4 to τ = 0.7). We observe adsorption and
desorption inside boundary layers around x = ±φx = ±0.5 where the bulk and interfacial
concentrations deviate from each other, generating local surfactant gradients that reduce
the streamwise slip velocity (u0) close to the stagnation points (x = ±φx = ±0.5)
in figure 6(d). The streamwise slip velocity inherits a dependence on K0 through c0, as
more surfactant increases the amount of immobilisation at the liquid–gas interface. Thus,
u0(x, 0, 0) falls and then rises as the bolus passes over an individual plastron (see curves
from τ = 0.2 to τ = 0.7 in the graph in figure 6d). As mentioned in §2.3.1, the present
long-wave theory does not capture inner regions close to the stagnation points where the
streamwise velocity satisfies u0 = 0, explaining the non-zero value exhibited by u0(x, 0, 0)
in figure 6(d) near x = ±φx = ±0.5. As described in (2.31a), we have instead imposed
no flux of surfactant in the streamwise direction at these stagnation points.

3.2. Advection and diffusion–dominated regions

We also briefly discuss asymptotic results (derived in Appendix B.2 and B.3) for the
advection-dominated (A) and diffusion–dominated (D) regions (see regions A and D in
figure 3a). When bulk–surface exchange is strong, the bolus of surfactant flux in (2.51)
propagates in a similar manner to figure 6(a), but is advected with speeds aA ≈ (β +
1)/(φx (ζ + θ)+θ(1−φx)(β+1)) and aD ≈ (α(1+β)+δ(1−φx))/((θ+ζφx)(α+δ(1−φx)))
in the A and D regions, respectively. In both regions, the propagation speed increases with
the partition coefficient β = 2Ldq̃/Q̃. For β , 1 (β * 1), the flux of surfactant along the
liquid–gas interface is greater (smaller) than the flux of surfactant in the bulk, which is
non-dimensionalised to unity in (2.44). Hence, as Ld grows, the localised concentration
of surfactant will be advected faster along the liquid–gas interface, and therefore, the
surfactant will be advected faster throughout D1. When bulk–surface exchange is weak,
e.g. regions ME and DE depicted in figure 3(b), the propagation speed is the same in all
regions M, A and D (see Appendices B.1, B.2 and B.3), with aM = aD = aA ≈ 1/(θ+ζφx).

3.3. Advection–Marangoni boundary

3.3.1. Flow and surfactant flux transport at the channel scale

Figure 7(a) shows asymptotic predictions (derived in Appendix B.4),

K0(χ, τ) ≈ Kb + (1 −Kb) exp(−(10(χ− aAMτ) + 15/2)2), (3.3a)

DR0(χ, τ) ≈ 1− γK0/(2φxβ), (3.3b)

aAM(K0) ≈ 2β/(γ(ζ + θ)K0 + 2βθ(1 − φx)) (3.3c)
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and numerical solutions (outlined in Appendix C) of the spatio–temporal evolution of
DR0 along the length of the channel at the advection–Marangoni (AM) boundary (where
Marangoni effects, interfacial advection and bulk–surface exchange are strong compared
to diffusion, see the AM boundary in figure 3a). Taking low background flux Kb = 0.01,
we focus on the case where γK0 ! 2φxβ, which places the surfactant profile at the
plastron scale in the stagnant-cap regime (Tomlinson et al. 2023a). The flow advects the
bolus of surfactant flux (2.51) through the channel with a K0-dependent propagation
speed (3.3c). As the bolus propagates in (χ, τ)-space, the wave steepens at its rear side
and ultimately a shock forms at some location and time along the channel, which we
discuss further in §3.3.2. For the chosen parameters, Marangoni effects are sufficiently
weak for the space-averaged drag reduction (〈DR0〉χ) to remain close to the shear-free
value.
Figure 7(b) shows how the propagation speed depends on the spatio–temporal evo-

lution of the bolus of surfactant at the AM boundary. The wave steepening in the
DR0-distribution observed in figure 7(a) occurs because there is wave steepening in
the surfactant-flux distribution: a small surfactant flux is advected faster than a large
surfactant flux. Physically, greater surfactant concentrations at a given location in the
channel imply that the liquid–gas interface is more immobilised than it is for small
surfactant concentrations. This implies that the streamwise slip velocity and thus the
propagation speed decreases with increasing K0. The dependence of aAM on β, θ and ζ
is similar as for aM, which is discussed in §3.1. When K0 * 1, aAM ≈ 1/(θ(1− φx)), the
cross-channel-averaged bulk propagation speed is enhanced by a factor proportional to
the streamwise groove length 1− φx.

3.3.2. Shock formation and regularisation via streamwise diffusion

The time taken for the shock to form in the surfactant-flux distribution, τb, increases as
the partition coefficient (β) decreases and the bulk and surface capacitance parameters (θ
and ζ) increase. The location in space where the shock in the surfactant-flux distribution
forms, χb, does not vary with respect to θ and ζ; however, χb increases with decreasing
β, for reasons that we now explain. Recall that, as β increases, the propagation speed
increases because the interfacial surfactant flux increases and the bulk surfactant flux is
fixed; as θ and ζ decrease, the propagation speed increases because the cross-sectional area
reduces and the volume flux is fixed. A larger propagation speed means that the difference
between the total flux of surfactant when the concentration is small and large is greater
(see figure 7b), and therefore, the larger difference causes the wave to steepen faster
and the shock forms earlier. Taking Kb = 0.01 in the initial distribution of surfactant
flux (2.51), we use (2.53)–(2.54) to calculate that a shock will form when (χb, τb) ≈
(0.34, 0.13); as illustrated by the red dot in figure 7(c). We evaluate the shock speed and
location χ = χs(τ) for times τ > τb using the Rankine–Hugoniot condition in (2.55), as
shown by the green curve in figure 7(c). The solid curves for τ = 0.17, 0.21, 0.25 and
0.29 in figure 7(a) are composed of the solution found using the method of characteristics
combined with the above results for χ = χs(τ). For τ > 0.25, the minimum in the drag
reduction starts to increase owing to nonlinear interaction with the SHS.
Alternatively, we can solve the advection–diffusion equation in (2.48) numerically using

the method in Appendix C. Diffusion over the length of the channel regularises the flow
in the vicinity of the shock. This methodology allows us to compute the distribution
of DR0 for τ " τb, as shown by the dotted curves for τ " 0.17 in figure 7(a). The
solutions, inclusive of a small amount of diffusion (dotted lines), remain fairly close to
the solutions without diffusion (solid lines). However, diffusion marginally reduces the
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Figure 7. Quantities of interest as a bolus of surfactant flux, (2.51), forms a shock while
passing through the channel at the advection–Marangoni boundary (AM), where α = δ = 0.1,
β = 10, ε = 0.1, γ = 5, ν = 1000, φx = 0.5 and Kb = 0.01. (a) Drag reduction DR0 versus
distance along the channel χ at different times τ = 0, 0.04, 0.08, 0.12, 0.17, 0.21, 0.25 and 0.29,
computed using (2.56, 2.51), (B 25) (solid lines, no streamwise diffusion) and (2.44) (dashed
lines, weak streamwise diffusion), for θ = ζ = 1. The dashed horizontal line in panel (a) is the
space-averaged drag reduction 〈DR0〉χ, calculated using (2.57). (b) Propagation speed aAM for
varying surfactant flux K0 and capacitance θ = ζ, computed using (B 25). (c) Characteristic
curves χ = χ(τ ; ξ) intersecting and forming a shock at (χb, τb) that propagates along χ = χs(τ ),
computed using (2.51, 2.53, 2.54, 2.55). (d) Bulk c0 (dotted lines) and interfacial Γ0 (solid lines)
concentration fields across a unit cell D1 ∪D2 and (e) streamwise slip velocity u0(x, 0, 0) across
a plastron (domain D1), located at χ = −0.7 (dotted line in panel a) when τ = 0, 0.02, 0.05,
0.07, 0.08 and 0.1, and calculated using (2.35, 2.44).

maximum (minimum) amplitude of the surfactant-flux (drag-reduction) distribution and
widens the surfactant-flux (drag-reduction) distribution as time progresses.

3.3.3. Flow and surfactant transport at the scale of the periodic cell

As the bolus of surfactant flux passes over a given plastron at the AM boundary, the
proportion of the liquid–gas interface that is shear-free at the upstream end and no-slip
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at the downstream end varies; as seen from the concentration field in figure 7(d) and the
streamwise slip velocity in figure 7(e). Using the asymptotic solution (Appendix B.4),

c0(x; K0) ≈ Γ0(x; K0) ≈



0 for − φx ! x ! φx − γK0/β,

β(x − φx)/γ +K0 for φx − γK0/β ! x ! φx,
(3.4)

the length of the shear-free region increases as K0 decreases, β increases and γ decreases,
as less surfactant is held at higher concentrations at the plastron’s downstream stagnation
point, x = φx = 0.5. The maximum concentration at the downstream end of the interface
increases with K0 and ∆c0 = K0. Therefore, DR0 attains a minimum when K0 is at
its maximum, where the amplitude (K0) and length (γK0/β) of the stagnant cap are
greatest. At the leading edge of the bolus of surfactant flux, large stagnant caps slowly
transition into small ones over a long range in χ, and at the trailing edge of the bolus
of surfactant flux, small stagnant caps rapidly transition into large ones over a shorter
range in χ.

3.4. Diffusion–Marangoni boundary

We derive asymptotic solutions at the diffusion–Marangoni (DM) boundary in Ap-
pendix B.5, where both diffusion and Marangoni effects dominate over interfacial ad-
vection (see the DM boundary in figure 3a). The asymptotic solution for aDM has a
complex dependence on α, β, δ, θ, ζ and K0 that is different to aAM. Nevertheless,
we find that aDM exhibits similar trends as aAM with respect to α, β, δ, θ, ζ and K0;
furthermore, because of its nonlinear dependence on K0, wave-steepening effects can lead
to shock formation in the surfactant-flux and drag-reduction distribution. When bulk–
surface exchange is weak, e.g. at the DME boundary depicted in figure 3(b), we find that
aAM = aDM ≈ 1/(θ + ζφx), such that the propagation speed is the same for all α, β, γ
and δ and there is no wave-steepening at leading order.

4. Discussion

Superhydrophobic surfaces (SHSs) can be contaminated by trace amounts of surfac-
tant, which may reduce their drag-reducing potential for applications in microchannels
and marine hydrodynamics (Peaudecerf et al. 2017; Tomlinson et al. 2023b). In order to
provide some fundamental insight into the effect of these local spatio–temporal variations
in surfactant concentration, we have considered a scenario that is simplified compared
to real applications, which take place in complex natural, industrial or laboratory en-
vironments. We have derived an asymptotic theory to model the unsteady transport
of soluble surfactant in a laminar pressure-driven channel flow bounded between two
SHSs. The SHSs are textured with periodic grooves in the streamwise and spanwise
directions. Exploiting the multiple length scales in the problem, we have derived and
solved a quasi-steady advection–diffusion equation for surfactant concentration transport
over moderate length scales, which is coupled to an unsteady advection–diffusion equation
for surfactant flux transport over large length scales. The governing partial differential
equations for surfactant flux transport can be rewritten in terms of the slip length
or drag reduction, key quantities of interest for practical applications. When there
is a disturbance to the surfactant flux that varies over a large number of periods
(similar to those measured in the ocean by Frossard et al. 2019), our model allows us
to make predictions about the propagation speed, the shape of the disturbance, and the
evolving distribution of slip length and drag reduction. Furthermore, in certain regions
of parameter space, higher surfactant concentrations can lead to surface immobilisation
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and therefore slower surfactant flux transport, leading to wave-steepening and shock
formation in the distribution of surfactant flux, slip length and drag reduction.
We have investigated the transport of the surfactant flux and the corresponding reduc-

tion in drag along the channel length in distinct asymptotic regimes (figure 3), defined by
the relative strength of bulk diffusion (α), the partition coefficient (β), surfactant strength
(γ), surface diffusion (δ), exchange strength (ν) and background surfactant flux (Kb).
Extending the results of Tomlinson et al. (2023a), we also identify the bulk capacitance
(θ) and surface capacitance (ζ) as key parameters, which quantify the bulk and surface
response to time-dependent changes in the surfactant flux, respectively. Distinct flow
patterns emerge across parameter space. If a bolus of surfactant flux is injected into
the channel, the propagation speed is constant in the Marangoni- (M), advection- (A)
and diffusion-dominated (D) regimes, and the shape of the bolus of surfactant flux does
not change appreciably along the length of the channel (figure 6). In region M, the
interfacial concentration profile along each plastron is linear, the liquid–gas interface
is immobilised and there is negligible drag reduction (DR0 * 1); in region A, the
interfacial concentration is uniform and then increases in a boundary layer at each
plastron’s downstream contact line, the liquid–gas interface is largely shear-free and
there is substantial drag reduction (1 − DR0 * 1); and in region D, the interfacial
concentration profile in each plastron is uniform, the liquid–gas interface is shear-free
and there is substantial drag reduction (1−DR0 * 1).
The speed of propagation of disturbances to the surfactant flux across different asymp-

totic regimes is summarised in tables 2 and 3. All of the propagation speeds presented
in table 2 decrease with ζ and θ. When the surfactant is very soluble, ζ * θ, changes in
the surfactant flux are advected at the cross-channel-averaged bulk propagation speed.
As the surfactant becomes more insoluble (increasing Ld) and the area for adsorption
increases (increasing φxφz), more surfactant is adsorbed and the propagation speed
falls as the liquid–gas interface is more immobilised. Because the volume flux of fluid
is fixed, changes in the cross-channel area of the channel through Pz or φzPz reduce
the streamwise velocity and therefore the propagation speed. However, at the advection–
Marangoni (AM) and diffusion–Marangoni (DM) boundaries, the values of DR0 can span
the whole range from 0 to 1 along the whole channel, depending on the local surfactant
flux. Here, a bolus of surfactant flux steepens at its rear side as smaller concentrations of
surfactant are advected faster than larger concentrations, because the liquid–gas interface
is more mobile at lower concentrations, resulting in the formation of a shock (figure 7).
We anticipate that the results observed here for a Gaussian initial distribution in the
surfactant flux would be applicable to other distribution profiles due to the dominant
advective nature of the transport at the channel scale. Hence, for other distribution
profiles, the dimensionless parameters in table 3 can be chosen to move into a favourable
region of parameter space (second column of table 2) for drag-reduction applications and
optimise the propagation speed (third column of table 2) to maximise the space- and
time-average drag reduction. Wave-steepening effects arise only in the strong-exchange
limit (large ν). In contrast, when exchange is weak, the propagation speed given in table
2 is the same for all α, β, γ, δ, θ, ζ and φx.
As a practical illustration, we now evaluate the propagation speeds (a) presented

in tables 2 and 3 using parameters characteristic of microchannel applications. In the
analysis that follows, the transport coefficients in (2.43) have been appropriately adjusted
for the geometry employed in Temprano-Coleto et al. (2023), which is bounded by one
SHS and solid wall rather than the two SHSs considered in §2. In regions M, ME,
AE and DE, θ ≈ 4, ζ ≈ 20.8, and therefore, the dimensionless propagation speed is
predicted to be a ≈ 0.04. Using εÛ = 2.4× 10−4m/s as the velocity scale, a surfactant-
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Strong exchange ν ' max(1, α, β, δ)

Region Parameter space Propagation speed (a) Regime

M γ ' max (1, α, β, δ), Kb > 2φxβ/γ
1

θ + ζφx
DR0 ( 1

A max(α, δ) ( 1, γ ( min(1, β)
(β + 1)

φx(ζ + θ) + θ(1− φx)(β + 1)
1−DR0 ( 1

D min(α, δ) ' max(1, γ)
α(1 + βφx) + δ(1− φx)
(θ + ζφx)(α+ δ(1− φx))

1−DR0 ( 1

AM min(β, γ) ' 1 ' max(α, δ), Kb ! 2φxβ/γ
2β

γ(ζ + θ)K0 + 2βθ(1− φx)
0 < DR0 < 1

Weak exchange ν ( min(1, α, β, δ)

Region Parameter space Propagation speed (a) Regime

ME γ ' max(1, α, β, δ)
1

θ + ζφx
DR0 ( 1

AE, DE γ ( min(1, α, β, δ)
1

θ + ζφx
1−DR0 ( 1

Table 2. Summary of the propagation speed and drag reduction regime in the
main regions analysed in the strong-exchange problem: the Marangoni-dominated region
(M), the advection-dominated region (A), the diffusion-dominated region (D) and the
advection-Marangoni (AM) boundary; and their analogues in the weak-exchange problem: the
ME, AE and DE regions. The propagation speed is expressed in terms of the transport coefficients
α, β, γ, δ, ν, θ and ζ given in (2.43).

Quantity α β γ δ ν Kb θ ζ

Prop. to
D̂P̂zĤ

P̂xQ̂

K̂a

ĤK̂d

K̂2
aÂĤ2 max(K̂(x̂, 0))

P̂xK̂2
d µ̂Q̂

2

D̂IK̂aP̂z

P̂xK̂dQ̂

K̂aP̂zĤ2

P̂xQ̂

min(K̂(x̂, 0))

max(K̂(x̂, 0))

P̂z

Ĥ

K̂aP̂z

Ĥ2K̂d

Table 3. Summary of the dimensionless parameters appearing in table 2 that affect
the leading-order propagation speed, and their dependence on the dimensional quantities
characterising the flow, surfactant properties and geometry (outlined in §2).

flux perturbation is advected out of the channel at approximately 9.6 × 10−6m/s when
Marangoni effects dominate, significantly slower than the fluid itself. For regions A and
D, α ≈ 0.4, β ≈ 3.7, δ ≈ 1, and therefore, a ≈ 0.19. Thus, when advection or diffusion
dominates the surfactant transport over each period, we find that the surfactant-flux
disturbance is advected out of the channel at approximately 4.5×10−5m/s, approximately
five times faster than the propagation speed in region M. The difference in propagation
speed is because shear-free liquid–gas interfaces (regions A and D) that lack surfactant
gradients give rise to greater streamwise velocities than immobilised liquid–gas interfaces
(region M) with substantial surfactant gradients. We can then vary these parameters to
maximise the propagation speed in regions M, A and D, and therefore, if we suppose a
bolus of surfactant enters and leaves the channel in the measurement time interval, we
can minimise the space and time-averaged drag reduction for applications.
Our theory rests on several assumptions, which we summarise below and suggest
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possible extensions to this study. First, the asymptotic expansion requires ε = Ĥ/P̂x * 1
and E = P̂x/L̂x * 1, which seems reasonable based on the microchannel configurations
considered herein, e.g. 1 × 10−5m # Ĥ # 1 × 10−2m, 1 × 10−3m # P̂x # 1 × 10−1m
and 1 × 10−2m # L̂x # 1m in Ou et al. (2004), Ou & Rothstein (2005), Daniello et al.
(2009), Bolognesi et al. (2014), Song et al. (2018) and Temprano-Coleto et al. (2023).
This may need to be revised in other applications, e.g. marine hydrodynamics, where
the boundary layer grows over the surface of the vessel and L̂x , 1m. Furthermore,
the homogenisation framework that we have developed here for laminar channel flow is
a stepping stone towards the turbulent external flow problem, where transient values
of the slip length and drag reduction are expected due to variations in the surfactant
concentration (Frossard et al. 2019). Second, we have only considered the case where dif-
fusion is strong enough to eliminate cross-channel concentration gradients. The reader is
referred to Tomlinson et al. (2023a) for a discussion of the parameter regimes where cross-
channel concentration gradients first become important. Third, several potential physical
complications can arise when considering surfactant-contaminated superhydrophobic
channels, such as liquid–gas interface deformation, the interaction of the interior flow with
the external gas or liquid subphase (as discussed in Lee et al. 2016; Sundin & Bagheri
2022) or turbulence in the outer flow field (as discussed in Tomlinson et al. 2023b), which
have been neglected in this study. Finally, with minor modifications, the theory outlined
here could be used to analyse diabatic flows (Maynes et al. 2008), where thermocapillary
stresses can affect the performance of SHSs in the thermal management of electronics
(Kirk et al. 2020).
To summarise, we have shown how a disturbance to the surfactant concentration field

can undergo wave-steepening as it propagates under a laminar channel flow bounded by
SHSs. This nonlinear evolution is shared by the distributions of the effective slip and drag
reduction in microchannel applications, emphasising the importance of treating these as
dynamic quantities in time-evolving flows. We hope our theoretical study will encourage
further experimental work to study these effects and gain some practical insight for
applications which take place in environments where surfactant concentrations can vary
in time and space. In the first instance, our closed-form asymptotic solutions for the drag
reduction in various parts of the parameter space can provide testable predictions for
experimental studies in well-controlled laboratory settings.
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Appendix A. Velocity functions and fluxes

We define the streamwise flow due to the pressure gradient in D1,

∇2
⊥Ũ = 1, subject to Ũy⊥

(0, zs) = 0, Ũ(0, zns) = 0, Ũy⊥
(2, zs) = 0,

Ũ(2, zns) = 0, Ũz⊥(y⊥, −Pz) = 0, Ũz⊥(y⊥, Pz) = 0; (A 1a–g)

the streamwise flow due to the surfactant gradient in D1,

∇2
⊥Ū = 0, subject to Ūy⊥

(0, zs) = 1, Ū(0, zns) = 0, Ūy⊥
(2, zs) = −1,

Ū(2, zns) = 0, Ūz⊥(y⊥, −Pz) = 0, Ūz⊥(y⊥, Pz) = 0; (A 2a–g)

and the streamwise flow due to the pressure gradient in D2,

Ŭy⊥y⊥
= 1, subject to Ŭ(0) = 0, Ŭ(2) = 0; (A 3a–c)

with zs ≡ {z⊥ → [−φzPz, φzPz]} and zns ≡ {z⊥ → [−Pz, −φzPz ]} ∪ {z⊥ → [φzPz, Pz ]}.
We define the volume and surface fluxes

Q̃ =

∫

An

Ũ dA, Q̄ =

∫

An

Ū dA, Q̆ = −
4Pz

3
, (A 4a–c)

and

q =

∫

In

u0 dz⊥, q̃ =

∫

In

Ũ dz⊥, q̄ =

∫

In

Ū dz⊥. (A 5a–c)

Appendix B. Asymptotic solutions

B.1. Strong Marangoni effect: region M

Assume that β = O(1), γ , max(1, α, δ) and ν , max(1, α, δ), so that exchange is
strong, c0 = Γ0, and expand using c0 = c00 + c01/γ + .... At O(γ), Marangoni effects are
comparable to bulk advection and diffusion, and (2.44) reduces to

c00c00x = 0 in D1, c00 − c00x = K0 in D2,

subject to c00(φ
−
x ) = c00(φ

+
x ), c00(−φx) = c00(2− φx), (B 1a–d)

which gives c00 = K0 in D1∪D2. At O(1), Marangoni effects are comparable to advection
and bulk diffusion, and (2.44) gives

β − c01x = 0 in D1, c01 − c01x = 0 in D2,

subject to c01(φ
−
x ) = c01(φ

+
x ), c01(−φx) = c01(2− φx), (B 2a–d)

such that c01 = β(x− φx(E +1)/(E − 1)) in D1 where E ≡ exp(2(1− φx)/α). Similarly,
at O(1/γ), (2.44) reduces to

K0c02x = (β + 1)c01 − c01c01x − (α+ δ)c01x in D1, c02 − c02x = 0 in D2,

subject to c02(φ
−
x ) = c02(φ

+
x ), c02(−φx) = c02(2− φx), (B 3a–d)

which gives c02 = βx2/(2K0) + βx(φx − α− δ − 2φxE/(E − 1)))/K0 +M1 where M1 is
an integration constant. Hence, we have that c0 and DR0 are given by (3.2) and (3.1b)
respectively in region M. Substituting c0 into (2.49), at leading order we have that

C0 ≈ 2(θ + ζφx)K0, A0 ≈ 2(1 + βφx)K0, M0 ≈ 2βφxK0, D0 ≈ 0, (B 4a–d)



Unsteady surfactant-contaminated superhydrophobic channels 31

where K0 = K0(χ, τ) and D0 = O(1/γ). Then (2.50) with λ = 0 has the solution

K0 = K0(χ− aMτ, 0) where aM ≈
1

θ + ζφx
. (B 5)

Note that when ζ → 0, aM → 1/θ.
Next, assume that ν * min(1, α, δ) so that exchange is weak, and expand using

c0 = c00 + c01/γ + ... and Γ0 = Γ00 + Γ01/γ + .... At O(γ), Marangoni effects are
comparable to bulk advection and bulk diffusion, and (2.44) reduces to

(c00 − αc00x)x = 0, Γ00Γ00x = 0 in D1, c00 − αc00x = K0 in D2,

subject to c00(φ
−
x ) = c00(φ

+
x ), c00(−φx) = c00(2− φx),

c00(±φx)− αc00x(±φx) = K0, Γ00(±φx)Γ00x(±φx) = 0, (B 6a–g)

which gives Γ00 = c00 = K0 as
∫ φx

x=−φx

(Γ00 − c00) dx = 0. At O(1), Marangoni effects are

comparable to advection and bulk diffusion, and (2.44) gives

(c01 − αc01x)x = 0, β − Γ01x = 0 in D1, c01 − αc01x = 0 in D2,

subject to c01(φ
−
x ) = c01(φ

+
x ), c01(−φx) = c01(2− φx),

c01(±φx)− αc01x(±φx) = 0, β − Γ01x(±φx) = 0, (B 7a–g)

such that Γ01 = βx and c01 = 0 as
∫ φx

x=−φx

(Γ01 − c01) dx = 0. Hence,

c0 = K0 + ..., Γ0 = K0 + βx/γ..., ∆Γ0 = 2βφx/γ + .... (B 8a, b)

Substituting (B 8) into (2.49) we recover (B 4) and the propagation speed in (B 5).

B.2. Strong advection: region A

In the advection–dominated (A) region, assume that β = O(1), γ * 1 and ν ,
max(1, α, δ), such that c0 = Γ0 and expand using c0 = c00+γc01+ .... At O(1), advection
is comparable to diffusion, and (2.44) reduces to

(β + 1)c00 − (α+ δ) c00x = K0 in D1, c00 − αc00x = K0 in D2, (B 9a, b)

subject to (B 1c, d), which gives c00 = K0/(β+1)+K0β exp((β+1)(x−φx)/(α+δ))/(β+1)
in D1 and c00 = K0 in D2, for max(α, δ) * 1. Hence, we have that

c0 =
K0

β + 1

(

1 + β exp

(

(β + 1)(x− φx)

α+ δ

))

+ ..., ∆c0 =
K0β

β + 1
+ .... (B 10a, b)

From (B 10), c0 is uniform over the upstream end of the liquid–gas interface and increases
exponentially in a boundary layer close to the downstream stagnation point. The surfac-
tant gradient, size of the boundary layer and drag reduction increase with decreasing K0,
as the channel and liquid–gas interface becomes less contaminated with surfactant, or
with increasing α and δ, as diffusion eliminates the concentration gradient. Substituting
(B 10) into (2.49), at leading order we have that

C0 ≈
2φx(ζ + θ)K0

β + 1
+ 2θ(1− φx)K0, A0 ≈ 2K0, M0 ≈ 0, D0 ≈ 0, (B 11a–d)

where K0 = K0(χ, τ) and M0 = D0 = O(γ). Then (2.50) with λ = 0 has the solution

K0 = K0(x− aAτ, 0) where aA ≈
(β + 1)

φx(ζ + θ) + θ(1− φx)(β + 1)
. (B 12)
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Note that when β → 0 and ζ → 0, aA → 1/θ.
Next, assume that ν * min(1, α, δ) and expand using c0 = c00 + γc01 + ... and

Γ0 = Γ00 + γΓ01 + .... At O(1), diffusion is comparable to advection, and (2.44) reduces
to

(c00 − αc00x)x = 0, βΓ00 − δΓ00x + c00 − αc00x = K0 in D1,

c00 − αc00x = K0 in D2, subject to c00(φ
−
x ) = c00(φ

+
x ), c00(−φx) = c00(2− φx),

c00(±φx)− αc00x(±φx) = K0, βΓ00(±φx)− δΓ00x(±φx) = 0. (B 13a–g)

which gives c00 = K0 and Γ00 = 2φxβK0 exp((β(φx + x))/δ)/(δ(exp((2βφx)/δ) − 1)) as
∫ φx

x=−φx

(Γ00 − c00) dx = 0. Hence,

c0 = K0 + ..., Γ0 =
2φxβK0 exp

(

β(φx+x)
δ

)

δ
(

exp
(

2βφx

δ

)

− 1
) + ..., ∆Γ0 =

2φxβK0

δ
+ .... (B 14a, b)

Substituting (B 14) into (2.49), we have

C0 ≈ 2(θ + ζφx)K0, A0 ≈ 2(1 + βφx)K0, M0 ≈ 0, D0 ≈ 2φxβK0, (B 15a–d)

and we recover (B 5).

B.3. Strong diffusion: region D

Assume that β = O(1), min(α, δ) , max(1, γ) and ν , max(1, α, δ) such that
c0 = Γ0. Let δ = dα where d = O(1) and expand using c0 = c00 + c01/α + .... At O(α),
diffusion dominates and (2.44) reduces to

c00x = 0 in D1, c00x = 0 in D2, (B 16a, b)

subject to (B 1c, d). At O(1), diffusion is comparable to advection, and (2.44) gives

(β + 1)c00 − (1 + d)c01x = K0 in D1, c00 − c01x = K0 in D2, (B 17a, b)

subject to (B 2c, d). Integrating (B17) over D1 and D2 gives c00 = (K0(α + δ(1 −
φx)))/(α(βφx + 1) + δ(1 − φx)). Hence, we have that

c0 =
(α+ δ(1− φx))K0

(α(βφx + 1) + δ(1− φx))
+ ..., ∆c0 =

2βφx(1 − φx)K0

α(βφx + 1) + δ(1− φx)
+ .... (B 18a–c)

From (B 18), the surfactant concentration and drag increase linearly as the flux of
surfactant increases over the SHS, and the interface becomes completely shear-free as
K0 → 0. Substituting (B 18) into (2.49), at leading order we have that

C0 ≈
2(θ + ζφx)(α+ δ(1 − φx))K0

α(βφx + 1) + δ(1− φx)
, A0 ≈

2(1 + βφx)(α+ δ(1− φx))K0

α(βφx + 1) + δ(1 − φx)
,

M0 ≈ 0, D0 ≈
2βφxδ(1− φx)K0

α(βφx + 1) + δ(1 − φx)
, (B 19a–d)

where K0 = K0(χ, τ) and M0 = O(1/α). Then (2.50) with λ = 0 has the solution

K0 = K0(x − aDτ, 0) where aD ≈
α(1 + βφx) + δ(1− φx)

(θ + ζφx)(α+ δ(1− φx))
. (B 20)

Note that when β → 0, δ → 0 and ζ → 0, aD → 1/θ.
When ν * min(1, α, δ), the expansion and solution are the same as in region A, such

that we recover (B 5).
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B.4. Strong advection and strong Marangoni effect: the AM boundary

At the advection–Marangoni boundary, assume that β = O(γ), γ , max(α, δ),
max(α, δ) * 1 and ν , max(1, α, δ), such that c0 = Γ0. Rescale α = a/γ, β = bγ and
δ = d/γ, where a, b and d are positive O(1) constants. Expand using c0 = c00+c01/γ+ ....
At O(γ), Marangoni effects are comparable to advection, and (2.44) reduces to

c00(b − c00x) = 0 in D1, c00 = K0 in D2, (B 21a, b)

subject to (B 1c, d). For K0/b ! 2φx, (B 21) gives c0 as (3.4). Hence, using (2.56), we
have that DR0 is given by (3.3b) at the AM boundary. At O(1), Marangoni effects are
comparable to advection, and (2.44) gives

bc01 + c00 − c00c01x − c01c00x = K0 in D1, c01 = 0 in D2, (B 22a, b)

subject to (B 2c, d). For K0/b ! 2φx, (B 22) gives

c01 = K0/b for all − φx ! x ! φx −K0/b, (B 23a)

c01 = x− φx −K0 log(b(x− φx)/K0 + 1)/b for all φx −K0/b ! x ! φx. (B 23b)

The solution for K0/b > 2φx is outlined in Tomlinson et al. (2023a) and is not included
here as it gives a similar propagation speed to region M. Substituting (3.4,B 23) into
(2.49), we have

C0 ≈
(ζ + θ)K2

0

2b
+ θ(2− 2φx)K0, A0 ≈

γK2
0

2
+ 2K0,

M0 ≈
γK2

0

2
, D0 ≈ 0, (B 24a–d)

where K0 = K0(χ, τ). Then (2.50) with λ = 0 has the solution

K0 = K0(χ− aAMτ, 0) where aAM ≈
2b

K0(ζ + θ) + 2bθ(1− φx)
. (B 25)

As b → K0/(2φx), the bulk concentration c00 → K0 and we recover (B 4). As b → ∞, the
bulk concentration c00 → 0 everywhere except at x ≈ φ where c00 = K0 and we recover
(B 11). Furthermore, as K0 → 2φxb, the propagation speed aAM → aM, and as K0 → 0,
the propagation speed aAM → aA for β , 1.
Next, assume that ν/ε2 * min(1, α, δ) and expand using c0 = c00 + γc01 + ... and

Γ0 = Γ00+γΓ01+ .... At O(γ), Marangoni effects are comparable to advection, and (2.44)
reduces to

c00x = 0, bΓ00 − Γ00Γ00x = 0 in D1, c00 = K0 in D2,

subject to c00(φ
−
x ) = c00(φ

+
x ), c00(−φx) = c00(2− φx),

c00(±φx) = K0, bΓ00(±φx)− Γ00(±φx)Γ00x(±φx) = 0. (B 26a–g)

For K0γ ! βφx, (B 26) gives

Γ00 = 0 for all − φx ! x ! φx − 2(φxK0/b)
1/2, (B 27a)

Γ00 = b(x− φx) + 2(bφxK0)
1/2 for all φx − 2(φxK0/b)

1/2 ! x ! φx, (B 27b)

as
∫ φx

x=−φx

(Γ00 − c00) dx = 0 and c00 = K0. At O(1), Marangoni effects are comparable
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to advection, and (2.44) gives

c01x = 0, bΓ01 − Γ00Γ01x − Γ01Γ00x = 0 in D1, c01 = 0 in D2,

subject to c01(φ
−
x ) = c01(φ

+
x ), c01(−φx) = c01(2− φx), c01(±φx) = 0,

bΓ01(±φx)− Γ00(±φx)Γ01x(±φx)− Γ01(±φx)Γ00x(±φx) = 0. (B 28a–g)

For K0γ ! βφx, (B 26) gives Γ01 = 0 for all −φx ! x ! φx as
∫ φx

x=−φx

(Γ01 − c01) dx = 0

and c01 = 0. Substituting (B 28) into (2.49), we have

C0 ≈ 2(θ + ζφx)K0, A0 ≈ 2(1 + βφx)K0, M0 ≈ 2βφxK0, D0 ≈ 0, (B 29a–d)

and we recover (B 5).

B.5. Strong diffusion and strong Marangoni effect: the DM boundary

Assume that β = O(1), γ , 1 and ν , max(1, α, δ), so that c0 = Γ0. Rescale α = Aγ
and δ = dγ, whereA and d are positive O(1) constants. Expand using c0 = c00+c01/γ+....
At O(γ), Marangoni effects are comparable to diffusion, and (2.44) reduces to

c00c00x + (A+ d)c00x = 0 in D1, c00x = 0 in D2, (B 30a, b)

subject to (B 1c, d), which means that c00 is uniform along the periodic cell. At O(1),
Marangoni effects are comparable to advection and diffusion, and (2.44) gives

(β+1)c00−c00c01x−(A+d)c01x = K0 in D1, c00−Ac01x = K0 in D2, (B 31a, b)

subject to (B 2c, d). Integrating (B 30) over D1 and D2 gives c00 = c00(K0) as the solution
to the quadratic equation

(c00 −K0)(φx − 1)(A+ d+ c00) = Aφx(c00(β + 1)−K0). (B 32)

We can then substitute c00 back into (B 31), which gives c01 = (x((β+1)c00−K0))/(A+
d+ c00) +D1 in D1, where D1 is an integration constant. Hence,

c0 = c00(K0) + ..., ∆c0 =
2φx((β + 1)c00 −K0))

A+ d+ c00
+ .... (B 33a, b)

At the DM boundary, the shear stress at the liquid-gas interface is not sufficient to
completely immobilise the interface and there is partial drag reduction, as seen in (B 33).
The concentration field is approximately uniform with a shallow gradient in D1 and D2.
Substituting (B 33) into (2.49) gives

C0 ≈ 2(θ + ζφx)c00, A0 ≈ 2(1 + βφx)c00,

M0 ≈
4φxc00((β + 1)c00 −K0)

A+ d+ c00
, D0 ≈

2φxd((β + 1)c00 −K0))

A+ d+ c00
, (B 34a–f )

where c00 = c00(K0). Then (2.50) with λ = 0 has the solution

K0 = K0(χ− aDMτ, 0) where aDM(K0) ≈
A′

0 −M ′
0 −D′

0

C′
0

, (B 35)

where primes denote derivatives of the functions defined in (B 34). As A → 0 and d → 0,
the bulk concentration c00 → K0 and we recover (B 4). As A → ∞ and d → ∞, the bulk
concentration c00 → (α+ δ(1− φx))K0/(α(βφx + 1) + δ(1− φx)) and we recover (B 19).
Furthermore, as K0 → ∞, we need c00 = K0 to satisfy (B 32) and the propagation speed
aDM → aM, and as K0 → 0, we linearise (B 32) (neglecting terms O(c200, c00K0)) and the
propagation speed aDM → aD.
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Next, assume that ν * min(1, α, δ) and expand using c0 = c00 + c01/γ + ... and
Γ0 = Γ00 + Γ01/γ + .... At O(γ), Marangoni effects are comparable to diffusion, and
(2.44) reduces to

c00xx = 0, Ac00x + Γ00Γ00x + dΓ00x = 0 in D1, c00x = 0 in D2,

subject to c00(φ
−
x ) = c00(φ

+
x ), c00(−φx) = c00(2− φx),

c00x(±φx) = 0, Γ00(±φx)Γ00x(±φx) + dΓ00x(±φx) = 0, (B 36a–g)

which implies that Γ00 and c00 are uniform along the periodic cell. At O(1), Marangoni
effects are comparable to surface advection and diffusion, and (2.44) gives

c01xx = 0, c00 −Ac01x + βΓ00 − (Γ00 + d)Γ01x = K0 in D1, c01x = 0 in D2,

subject to c01(φ
−
x ) = c01(φ

+
x ), c01(−φx) = c01(2− φx),

c00 −Ac01x(±φx) = K0, βΓ00 − (Γ00 + d)Γ01x(±φx) = 0. (B 37a–g)

such that c00 = Γ00 = K0, Γ01 = (βxK0)/(d +K0) + C and c01 = C, as
∫ φx

x=−φx

(Γ00 −

c00) dx = 0 and
∫ φx

x=−φx

(Γ01 − c01) dx = 0, where C is an integration constant. Hence,

c0 = K0 + ..., Γ0 = K0 + ..., ∆Γ0 =
2φxβ

γ(d+K0)
+ .... (B 38a, b)

Substituting (B 38) into (2.49) we have

C0 ≈ 2(θ+ζφx)K0, A0 ≈ 2(1+βφx)K0, M0 ≈
2φxβK2

0

d+K0
, D0 ≈

2φxβdK0

d+K0
, (B 39a–d)

and we recover (B 5).

Appendix C. Numerical solution to the advection–diffusion equation

In §3, we solve (2.50) whilst retaining the O(ε2) secondary-diffusion operator, partly
for numerical convenience and partly to provide a rational regularisation of shock-
like structures that may arise. The unsteady advection–diffusion equation is solved
numerically using the method of lines and a backwards-in-time and centered-in-space
(BTCS) scheme. At each timestep, we iterate C0, A0, M0, D0 and D1, using c0, Γ0 and
K0 at the current timestep (which are solved using the Chebyshev collection technique
described in Appendix A of Tomlinson et al. 2023a). Discretising space such that χi =
i∆χ for i = 0, 1, ..., Nχ = 2∆χ, where 2 is length of the channel, we write (2.50) at each
χi for i = 1, 2, ..., N − 1:

(

∂C0

∂K0

)

i

(

dK0

dt

)

i

=

(

∂A0

∂K0
−

∂M0

∂K0
−

∂D0

∂K0
− λε2

∂2D1

∂K2
0

∂K0

∂χ

)

i

(

K0, i+1 −K0, i−1

2∆χ

)

− λε2
(

∂D1

∂K0

)

i

(

K0, i+1 − 2K0, i +K0, i−1

∆χ2

)

+O(∆χ3), (C 1)

with periodic boundary conditions applied at interior (i = 1, N − 1), boundary interior
(i = 0, N) and ghost nodes (i = −1, N + 1):

K0, 0 = K0,N ,
K0, 1 −K0,−1

2∆χ
=

K0, N+1 −K0, N−1

2∆χ
+O(∆χ3). (C 2)
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Assembling (C 1)–(C2) into a matrix problem, the advection–diffusion equation in (2.50)
reduces to solving the system of ODEs

dK0

dt
= A(K0)K0. (C 3)

We solve the problem in (C 3) using an implicit Euler scheme. Hence, defining τn = n∆τ
for n = 1, 2, ..., N , we have that

(I −∆τA(Kn+1
0 ))Kn+1

0 = Kn
0 . (C 4)

Note that (C 4) is nonlinear, therefore we initialise (C 4) with the solution at the previous
step Kn

0 such that A = A(Kn
0 ), we then solve (C 4) for Kn+1

0 and substitute the new
solution into A = A(Kn+1

0 ), until Kn+1
0 varies less than some specified tolerance.
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