
Embodiment: Self-Supervised Depth Estimation Based on Camera Models

Jinchang Zhang*, Praveen Kumar Reddy*, Xue-Iuan Wong, Yiannis Aloimonos, Guoyu Lu

Abstract— Depth estimationn is a critical topic for robotics
and vision-related tasks. In monocular depth estimation, in
comparison with supervised learning that requires expensive
ground truth labeling, self-supervised methods possess great
potential due to no labeling cost. However, self-supervised
learning still has a large gap with supervised learning in 3D
reconstruction and depth estimation performance. Meanwhile,
scaling is also a major issue for monocular unsupervised depth
estimation, which commonly still needs ground truth scale from
GPS, LiDAR, or existing maps to correct. In the era of deep
learning, existing methods primarily rely on exploring image
relationships to train unsupervised neural networks, while the
physical properties of the camera itself—such as intrinsics and
extrinsics—are often overlooked. These physical properties are
not just mathematical parameters; they are embodiments of the
camera’s interaction with the physical world. By embedding
these physical properties into the depth learning model, we
can calculate depth priors for ground regions and regions
connected to the ground based on physical principles, providing
free supervision signals without the need for additional sensors.
This approach is not only easy to implement but also enhances
the effects of all unsupervised methods by embedding the
camera’s physical properties into the model, thereby achieving
an embodied understanding of the real world.

I. INTRODUCTION

Monocular depth estimation serves as a cornerstone in

robotics [14], 3D mapping [20], camera localization [24],

[23], and augmented reality [29]. This process aims to derive

depth from a single RGB image, an inherently challenging

task due to scale ambiguity, where one 2D image might

represent numerous possible 3D scenes. Convolutional neural

networks have significantly advanced this area [15], though

most cutting-edge methods rely on supervised training [6],

[2], necessitating sparse depth ground truth from instruments

like LiDAR. The high cost and labor of data collection and

labeling constrain the data scale for supervised approaches

[2]. To avoid the need for depth labeling, there has been

a shift towards self-supervised frameworks, employing re-

gression modules for pixel-wise depth estimation and pho-

tometric consistency loss for model training [12]. Despite

these efforts, self-supervised learning for monocular depth

estimation still faces significant accuracy challenges, often

misestimating objects’ 3D structures as either too distant or

too close due to the indirect nature of photometric and cross-

frame consistency constraints.

Meanwhile, due to the convenience brought by deep

neural networks, extensive information from the sensors
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themselves has been ignored. This paper introduces a method

that leverages camera model parameters (both intrinsic and

extrinsic) to accurately calculate depth information, thereby

embedding the camera model and its physical characteristics

into the deep learning model. This approach goes beyond

mere mathematical computation; it embodies the interaction

between the camera and the physical world. By integrating

these physical characteristics into the deep learning model,

we can accurately determine the depth for much of the scene,

facilitating neural network training without the need for ex-

plicit ground truth data. The method also incorporates image

semantics to calculate the ground plane’s depth, allowing

for the estimation of the depth of objects on the ground,

such as buildings and vehicles. Utilizing this physics-based

supervision approach, the framework not only enhances the

performance of unsupervised networks but also achieves an

embodied understanding of the real world, providing strong

support for detailed 3D structure modeling. Importantly, our

algorithm serves as a valuable extension for any unsupervised

depth estimation effort.

In summary, our main contributions include the following

aspects: 1. We propose a novel mechanism that leverages

the physical model parameters of the camera to calculate the

depth information for a large portion of the scene, embedding

the camera model and its physical properties into the deep

learning model to supervise the depth estimation network.

We refer to this depth information, derived from the camera’s

physical model, as physics depth. 2. To address the uncertain

scale issue in unsupervised monocular depth estimation,

our approach provides an absolute scale instead of just a

relative scale. 3. We designed a neural network training

framework to effectively integrate physics depth supervision

with unsupervised methods, specifically targeting the physics

depth calculated from the camera model. The framework

for physics depth computation and training with the self-

supervised network is shown in Fig. 1.

II. RELATE WORK

A. Self-Supervised Depth Estimation

Self-supervised depth estimation from monocular videos

or stereo image pairs is gaining prominence, particularly

due to the challenges in obtaining accurate ground truth.

[38] spearheaded a self-supervised framework by jointly

training depth and pose networks based on image recon-

struction loss. [12] further advanced this field by introducing

a minimum reprojection loss and auto-masking loss, set-

ting a new benchmark. [13] and [4] integrated real-time

data sources such as GPS or camera velocity to address
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Fig. 1. The framework for unsupervised 3D scene reconstruction neural network based on physics depth calculated from camera models. We first calculate
the physical depth of flat ground areas in the input image using the camera model and semantic segmentation results. This physical depth serves as a
label for supervised learning, providing a foundation for initial depth estimation. In the first stage, we train the depth estimation network with these labels.
In the subsequent self-supervised stage, we introduce photometric and 2D spatial losses, which optimize depth estimation based on image characteristics
without relying on depth labels.

the scale ambiguity inherent in monocular Structure-from-

Motion (SfM) methods. These self-supervised models hinge

on the photometric consistency of the reprojection. In stereo

training contexts, models use synchronous stereo image pairs

to predict disparity [28], which inversely relates to depth.

Since the relative camera pose is known in stereo setups,

the primary task of these models is disparity prediction.

[9] pioneered this approach, training a self-supervised mon-

odepth model using stereo pairs and a photometric consis-

tency loss. This methodology was further refined by [11]

with additional constraints like left-right consistency and

bundle adjusted pose graph [22]. Moreover, [8] extended

it to predict continuous disparity. Stereo views naturally

offer an absolute depth scale, whereas current monocular

self-supervised models only predict relative depths, needing

ground truth for scale calibration. Utilizing physics depth

data from ground surfaces and road-connecting areas can im-

prove these unsupervised models to predict absolute depths,

enhancing accuracy for datasets such as KITTI.

B. Geometric Priors

Geometric priors are becoming crucial for monocular

depth estimation, evolving beyond the optimization-focused

traditional multi-view stereo methods noted by [7]. In self-

supervised learning, multi-view geometry is essential, en-

abling image warping from source to target viewpoints to

generate reprojection errors. These errors act as the loss

function for depth estimation networks [12]. Moreover, geo-

metric consistency, especially in comparing point clouds, is

gaining attention as a valuable complement to photometric

consistency [26]. The surface normal constraint, highlighted

in works by [17] and [21], is a key geometric prior ensuring

the alignment of normal vectors from both estimated and

actual depth data. However, this approach can lead to inac-

curacies in depth estimations, especially in areas with high

curvature, underscoring the limitations of relying solely on

planarity assumptions.

III. EMBODIMENT PHYSICS DEPTH

A. Physics depth for Full Field of view

We introduce a novel monocular depth estimation tech-

nique called ”physics depth”. This method leverages the

camera’s intrinsic and extrinsic parameters, as well as se-

mantic segmentation, to calculate absolute depth, embedding

the physical characteristics of the camera model into the

deep learning model. This approach derives depth from basic

physical principles, assuming the camera captures initially

flat surfaces. We refine depth estimates by identifying truly

flat areas through semantic segmentation, extending depth to

adjacent areas, and filling gaps with inpainting. Our method,

tested on KITTI, CityScape, and Make3D datasets, achieves

accuracy comparable to LiDAR, especially for close, flat

surfaces. Our model is based on the pinhole camera model,

which is widely used in practical applications due to its

minimal distortion, making it an ideal reference point for

achieving embodiment. Although designed with the pinhole

model in mind, our method can be adapted for different

camera types by adjusting for each camera’s unique charac-

teristics. For every image pixel, we compute a unit vector

r̂ representing the camera ray’s direction in the physical

world, translating pixel positions into directional vectors that

indicate the camera’s viewpoint in real space.

r̂ = [u,v,f ]√
u2+v2+f2 (1)

where (u, v) represents the coordinates of the pixel, with the

origin of the coordinate system situated at the optical center

(Ox, Oy) of the image, commonly referred to as the principal

point. Meanwhile, f = (fx + fy)/2, where fx and fy denote

the camera’s focal length in the x and y directions.

To generate a physics depth scaled to dimensions different

from those of the original RGB image, the parameters of the

unit vector r̂ must be adjusted accordingly. Suppose Worg and
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Horg are the width and height of the original RGB image,

and Wnew and Hnew are the desired width and height for

the physics depth. Let Swidth and Sheight represent the scaling

factors for the width and height, respectively, where Swidth =
Wnew

Worg
and Sheight =

Hnew

Horg
. The scale-adjusted pixel coordinates

(u′, v′) are given by (Swidth×u, Sheight×v). The scale-adjusted

optical center coordinates (O′
x, O

′
y) are (Swidth×Ox, Sheight×

Oy), and the scale-adjusted focal lengths (f ′
x, f

′
y) are (Swidth×

fx, Sheight×fy), as determined by perspective projection. The

scale-adjusted unit vector r̂′ can be derived using the below

equation by updating the parameters in Eq. 1:

Rroll =





1 0 0
0 cos(roll) sin(roll)
0 − sin(roll) cos(roll)



 ,

Rpitch =





cos(pitch) 0 − sin(pitch)
0 1 0

sin(pitch) 0 cos(pitch)



 ,

Ryaw =





cos(yaw) sin(yaw) 0
− sin(yaw) cos(yaw) 0

0 0 1





(2)

Rc = Ryaw ∗Rpitch ∗Rroll (3)

Using Rc we rotate the camera ray vector to align it with

the ground coordinate system: r̂c = Rc ∗ r̂′
Since r̂c(rc,u, rc,v, rc,f ) is a unit vector, the 3D coordi-

nates of the point, P = (xc, yc, zc), on the ground surface

in camera’s coordinate system can be determined by multi-

plying rc with the point-to-point distance (d) of the ground

point from camera.

[xc, yc] = d ∗ [rc,u, rc,v] (4)

When the height of the camera (h) is known from the

camera’s extrinsic parameters and assuming the camera co-

ordinate system’s y-axis is oriented downwards, then yc = h,

and the point-to-point distance d and xc can be calculated

as shown:
d =

h

rc,v
, xc = d ∗ rc,u (5)

The projection of a three-dimensional point from the

camera coordinate system (xc, yc, zc) to the two-dimensional

image plane (u, v), can be accurately represented using the

following linear camera model equation:

Zc





u
v
1



 =





f ′
x 0 O′

x

0 f ′
y O′

y

0 0 1









xc

yc
zc



 (6)

where K denotes the camera’s intrinsic matrix:

K =





f ′
x 0 O′

x

0 f ′
y O′

y

0 0 1



 (7)

By substituting xc, yc in Eq. 6, we derive zc for a given

pixel (u, v) that maps to a ground point. This process allows

calculating depth and 3D coordinates in the camera coordi-

nate system for ground surface pixels, given the camera’s

height. We tested our approach on the KITTI [10] and

Cityscapes [5] datasets, with results detailed in Section V-B.

Our method improves depth estimation by closely aligning

it with LiDAR data on flat surfaces like roads, providing

more detail than standard sparse LiDAR data, as demon-

strated on the KITTI and Cityscapes datasets. Initially tar-

geting flat surfaces may risk overfitting, limiting versatility.

To counter this, we expanded our physics depth approach

to cover the entire image, including vertical structures like

cars and buildings. This involves deriving depth by extending

upwards from where flat and vertical surfaces meet, creating

a comprehensive ground physics depth as detailed in Section

V-B. We extended physics depth to vertical objects in contact

with flat surfaces, such as vehicles, pedestrians, and build-

ings, by propagating depth values upward from their points

of intersection with the ground, termed as Edge Extended

Physics Depth. We assume these vertical entities have a

consistent depth with the ground they touch, enabling us to

infer their depth directly from the ground. This approach

greatly improves the accuracy and consistency of depth

estimation throughout the image. After vertically extending

physics depth, we encountered objects with incomplete depth

due to their limited contact with the ground. We used the

Telea Inpainting Technique [30] to fill these gaps, leveraging

its fast and effective method based on the surrounding pixels’

directional changes and geometric distances. For objects

not touching the ground, we projected depth from nearby

objects to ensure continuity. Additionally, we assigned the

sky a depth 1.5 times the maximum of the inpainted depths,

achieving a gap-free Dense Physics Depth. This approach

primarily serves to create an improved depth prior, enhancing

overall depth estimation accuracy.

The effectiveness of our method has been validated using

the KITTI [10] and Cityscapes [5] datasets, with results

showing a close alignment in accuracy with LiDAR-derived

depth measurements, especially for proximal flat surfaces.

IV. INTERACTION BETWEEN PHYSICS-DEPTH

SUPERVISION AND SELF-SUPERVISION

A. Network Architecture

Our research addresses the data scarcity in physics depth,

which is typically limited to only portions of an image

and, by itself, inadequate for self-supervised learning. By

embedding the physical characteristics of the camera model

into the deep learning model, we utilize physics depth as

an embodied prior, enhancing depth estimation. Unlike tradi-

tional self-supervised models that typically start with random

depth values, our model can more accurately refine the

depth estimation of ground surfaces and surrounding areas.

This approach significantly improves efficiency in correct-

ing depth inaccuracies through self-supervised training. Our

model uniquely combines RGB and physics depth, adding

valuable depth insights. During the supervised phase, we as-

sess the confidence in physics depth to focus learning on the

reliable areas. For self-supervised learning, we advance the

model by integrating geometric consistency with photometric

consistency, leading to more precise depth estimates.
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B. Physics-Depth Supervision

In this study, we calculate the physical depth of ground

areas in each image using the camera model and employ

it as an initial guide during the depth network training

phase to enhance the model’s understanding of depth across

various regions. These physical depth data serve as labels

for supervised learning, significantly improving the model’s

comprehension and prediction of ground area depths. Specif-

ically, we first utilize the camera’s intrinsic and extrinsic

parameters, along with the semantic segmentation results

of the images, to accurately calculate the physical depth

of ground areas. These physical depth data provide initial

guidance to the model, equipping it with a fundamental un-

derstanding of spatial depth. This not only ensures the model

has reliable depth information at the initial training stage

but also effectively reduces dependence on randomly initial-

ized depths, thereby preventing substantial error propagation

during early training. During training, the physical depth

data act as supervisory signals, enabling the model to better

learn the geometric structure of ground areas. This approach

allows the model to more accurately capture the actual depth

information of the ground and extend this understanding to

the entire scene. The reliability of physical depth ensures the

model performs more robustly and accurately when handling

areas with similar geometric characteristics. Furthermore,

physical depth serves as a benchmark, helping the model

better correct prediction errors. In subsequent training stages,

by integrating physical depth with other self-supervised

signals (such as photometric and geometric consistency),

the model can further optimize depth prediction results.

Ultimately, the foundational knowledge provided by physical

depth significantly enhances the model’s depth prediction

accuracy and robustness, leading to excellent performance

in practical applications.

Lphy =
∑M

i=1

∑N

j=1

(

dphyij − d̂ij

)2
(8)

dphyij is the physics depth of (i, j) as a label for supervision

pixel point as a label for supervised learning. d̂ij is the depth

of (i, j) predicted by the model.

Our model uses physics depth as its starting point, which

helps in accurately predicting real depth. This is important

because estimating depth from a single camera view often

leads to scale issues, where the same point can appear to

have different depths. Most single-view models can only

estimate depth relative to other points, not the actual depth.

However, our method uses physics depth during training,

enabling the model to learn and correct errors in depth

prediction. Since physics depth represents the true depth,

it maintains scale accuracy during these corrections. Thus,

our model effectively overcomes the scale problem in single

depth estimation.

C. Self-Supervised Training

In the self-supervised training paradigm, depth estimation

is framed as an image reconstruction problem. This approach

avoids the need for ground truth labels by utilizing unlabeled

monocular videos during training. Our methodology lever-

ages both photometric and geometric consistencies as dual

pillars to jointly optimize image reconstruction.

1) Photometric Consistency: For consecutive frames It−1

and It, our model independently estimates their correspond-

ing depths, Dt−1 and Dt. As outlined in Eq. 9, frames It−1

and It can be projected into structured 3D point clouds Qt−1

and Qt, respectively. Utilizing the pose network, we estimate

the camera’s motion from time t − 1 to t. Through the ap-

plication of the transformation matrix Tt−1→t and the point

cloud Qt, an estimated version of Qt−1, denoted as Q̂t−1,

is obtained as Q̂t−1 = Tt−1→tQt. Subsequently, frame It is

reconstructed by warping It−1 using the principles detailed

in Eq. 10. The photometric loss is computed by Eq. 10 using

reconstructed target image It−1→t and target image It.

Qxy
t−1 = Dxy

t−1 ·K−1





x
y
1



 (9)

It−1→t [u] = It−1 ïu′ð, Lph = ph (It, It−1→t)
(10)

ph (It, It−1→t) =
α
2 (1− SSIM (It, It−1→t))

+ (1− α) ∥(It, It−1→t)∥1
(11)

Here α is commonly set to 0.85 [12], ph is a photometric

reconstruction error. Furthermore, for each pixel p, the min-

imum of the losses computed from forward and backward

neighboring frames allows the mitigation of the effect of

occlusions [12] on the reprojection process.

Lph (p) = min
s∈[−1,1]

pe (It−1 (p) , It−1→t (p)) (12)

1 stands for forward, −1 stands for backward.

2) 2D Spatial Consistency: Our method prioritizes spa-

tial disparities to gauge scene geometry, which is key for

decoding object interactions. This strategy excels in depth

and scale depiction, functioning well in scenes with sparse

texture or color and remaining stable against lighting or

color shifts. We devised a model that refines pose and

depth networks via a loss function, using spatial disparities

to boost pose accuracy and depth perception. By utilizing

dense optical flow, the model aligns points across frames to

compute their movement, aiding in precise motion analysis.

Our loss function, L2D, is based on motion variance between

actual and reconstructed frames, It and Ît, enhancing model

accuracy.

L2D =
N
∑

i=1

(

α∥v(i)
t+1 − v

(i)
t ∥2 + β(1− cos(θ(i)))

)

(13)

N represents the total number of matching points. alpha
and beta are weight coefficients balancing the positional

and directional differences. v
(i)
t and v

(i)
t+1 denote the motion

vectors of the i − th matching point in frames t and t + 1,

respectively. θ(i) is the angle between vectors v
(i)
t and v

(i)
t+1,

with cos(θ(i)) =
v
(i)
t

·v
(i)
t+1

∥v
(i)
t

∥∥v
(i)
t+1∥

representing the cosine of this

angle. The first term in the loss function, ∥v(i)
t+1 − v

(i)
t ∥2,

quantifies the positional difference, whereas the second

term, 1 − cos(θ(i)), assesses the directional difference. The
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Method Scale Test AbsRel ↓ Sq Rel↓ RMSE↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [12] LiDAR Scale 32.260 0.159 1.689 5.168 0.238 0.830 0.931 0.967
Physics Depth Scale 32.487 0.158 1.968 5.287 0.242 0.842 0.930 0.966

MonoVit [37] LiDAR Scale 28.354 0.110 0.759 4.248 0.199 0.872 0.954 0.979
Physics Depth Scale 28.096 0.108 0.743 4.241 0.200 0.874 0.955 0.979

SQLDepth [33] LiDAR Scale 43.51 0.087 0.659 4.096 0.165 0.920 0.970 0.984
Physics Depth Scale 44.17 0.089 0.664 4.101 0.169 0.918 0.969 0.982

TABLE I

EVALUATION OF DIFFERENT MODELS WITH LIDAR DEPTH SCALING FACTOR AND PHYSICS DEPTH SCALING FACTOR.

KITTI Date
Road Physics Depth
Error: +/- 5%

Road Physics Depth
Error: +/- 10%

Flat Surface Physics Depth
Error: +/- 5%

Flat Surface Physics Depth
Error: +/- 10%

2011-09-26 84.28% 96.26% 75.08% 89%
2011-09-28 80.61% 85.64% 61.21% 77%
2011-09-29 90.53% 97.34% 74.46% 91%
2011-09-30 76.43% 91.86% 56.98% 81%
2011-10-0 78.12% 94.61% 62.77% 85%

TABLE II

ERROR BETWEEN PHYSICS DEPTH AND KITTI GROUND TRUTH. THE PROPORTION OF THE 5-DAYS ROAD PHYSICS DEPTH ERROR AND THE FLAT

SURFACE PHYSICS DEPTH ERROR WITHIN 5% AND WITHIN 10% OF GROUND TRUTH, RESPECTIVELY, IN THE KITTI DATASET.

City
Road Physics Depth
Error: +/- 5%

Road Physics Depth
Error: +/- 10%

Flat Surface Physics Depth
Error: +/- 5%

Flat Surface Physics Depth
Error: +/- 10%

aachen 87.48% 94.77% 73.17% 86.94%
bochum 80.76% 93.22% 65.51% 83.95%
bremen 86.55% 97.64% 72.60% 88.29%
cologne 81.66% 98.88% 75.14% 88.82%
darmstadt 82.49% 95.44% 69.95% 86.56%
dusseldorf 83.22% 93.59% 68.79% 84.96%
erfurt 83.78% 94.26% 69.58% 85.85%
hamburg 82.77% 96.81% 67.93% 84.22%
hanover 76.59% 97.45% 64.71% 83.00%
monchengladbach 83.42% 94.73% 63.75% 82.48%
strasbourg 84.63% 95.62% 61.44% 81.52%
stuttgart 80.49% 96.38% 68.52% 85.26%
tubingen 85.44% 92.76% 67.22% 84.69%
ulm 89.00% 98.38% 73.35% 87.89%
weimar 80.06% 93.69% 64.47% 82.58%
zurich 88.99% 97.52% 70.72% 85.82%
jena 77.90% 92.85% 63.75% 81.85%
krefeld 86.23% 94.11% 65.83% 83.92%

TABLE III

ERROR BETWEEN PHYSICS DEPTH AND CITYSCAPE GROUND TRUTH:

THE PROPORTION OF ROAD PHYSICS DEPTH ERROR AND FLAT

SURFACE PHYSICS DEPTH ERROR FOR DIFFERENT CITIES IN THE

CISYSCAPE DATASET.

Road Physics Depth Ground PhysicsDepth

+/- 5% error 80.24% 60.30%
+/- 10% error 99.33% 74.89%

TABLE IV

PHYSICS DEPTH IN A SAMPLE KITTI IMAGE.

directional consistency is measured by the cosine of the

angle between the motion vectors, where a value close to

1 indicates minimal directional change, and a value further

from 1 signifies a greater change.

V. EXPERIMENT

A. Implementation Details

The depth estimation network framework references

SQLdepth [33]. The pose network, PoseCNN, receives 3

frames as input and outputs axis-angle and translation com-

ponents to describe the change in camera pose. The network

consists of 7 convolutional layers, each followed by a ReLU

activation function. The output of the convolutional layers

goes through a 1x1 convolutional layer and then undergoes

an average pooling operation to obtain the pose estimation

vector. The model is trained on 4 NVIDIA A6000 GPUs.

Our training process is divided into two phases: a supervised

learning phase and a self-supervised learning phase. During

the supervised learning phase, we use physical depth as

labels and train the model for 15 epochs. In the subsequent

self-supervised learning phase, the model is trained for 20

epochs. We use the Adam optimizer to jointly train DepthNet

and PoseNet with parameters β1 = 0.9 and β2 = 0.999. The

initial learning rate is set to 1×10−4 and decays to 1×10−5

after 15 epochs. We set the SSIM weight to α = 0.85 and

the smooth loss term weight to λ = 1× 10−3.

B. Physics Depth Evaluation

Physics Depth Methodology: In Section III, we explore

two different types of physics depth: road physics depth

and ground physics depth. Utilizing the KITTI dataset, we

visualize the outcomes of these different types of physics

depth in Figure 2. ’d’ shows the semantic segmentation

results obtained using a pre-trained segmentation model,

while ’e’ and ’f’ represent the visualized results of the

physics depth calculated for the road and ground areas.

Error Distribution: The comparison of physics depth

logic on a sample image, shown in Fig. 3 and Table IV,

highlights its effectiveness in estimating road surfaces. With

over 99% of pixels showing less than 10% error and more

than 81% exhibiting less than 5% error compared to LiDAR,

it confirms the potential of physics depth estimations for flat

surfaces like roads as a viable LiDAR alternative for scal-

ing factor calculations in self-supervised monocular depth

estimation algorithms. However, accuracy declines with non-

level surfaces like sidewalks or rail tracks due to their

variable elevation relative to the camera’s base. Extending

the logic to vertical surfaces slightly increases error, a trade-

off for denser physics depth estimation.

Scale Alignment: In Table I, we compared three monoc-

ular depth estimation models by calculating ratios of model-

predicted depths to both ground truth and physics depth.

After adjusting the predicted depths with these ratios, we
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Method Type Year Resolution AbsRel ↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [12] MS 2019 1024×320 0.106 0.806 4.630 0.193 0.876 0.958 0.980
HR-Depth [25] MS 2021 1024×320 0.101 0.716 4.395 0.179 0.899 0.966 0.983
Lite-Mono [36] M 2023 1024×320 0.097 0.710 4.309 0.174 0.905 0.967 0.984
MonoVIT [37] M 2023 1024×320 0.096 0.714 4.292 0.172 0.908 0.968 0.984
DualRefine [1] MS 2023 1024×320 0.096 0.694 4.264 0.173 0.908 0.968 0.984
ManyDepth [34] M 2021 1024×320 0.087 0.685 4.142 0.167 0.920 0.968 0.983
RA-Depth [16] M 2022 1024×320 0.097 0.608 4.131 0.174 0.901 0.968 0.985
PlaneDepth [32] MS 2023 1280×384 0.090 0.584 4.130 0.182 0.896 0.962 0.981
SQLDepth [33] M 2023 1024×320 0.087 0.659 4.096 0.165 0.920 0.970 0.984
Ours (Backbone: SQLDepth) M 2023 1024×320 0.085 0.583 3.885 0.158 0.922 0.970 0.986

TABLE V

THE QUANTITATIVE DEPTH COMPARISON USING THE EIGEN SPLIT OF THE KITTI DATASET [10]. M: TRAINED WITH MONOCULAR VIDEOS; MS:

TRAINED WITH STEREO PAIRS.

Method Size Test AbsRel ↓ Sq Rel↓ RMSE↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Pilzer et al [27] 512× 256 1 0.240 4.264 8.049 0.334 0.710 0.871 0.937
Struct2Depth [3] 416× 128 1 0.145 1.737 7.280 0.205 0.813 0.942 0.976
Monodepth2 [12] 416× 128 1 0.129 1.569 6.876 0.187 0.849 0.957 0.983
Lee [19] 832× 256 1 0.111 1.158 6.437 0.182 0.868 0.961 0.983
InstaDM [18] 832× 256 1 0.111 1.158 6.437 0.182 0.868 0.961 0.983
ManyDepth [34] 416× 128 2 0.114 1.193 6.223 0.170 0.875 0.967 0.989
SQLDepth [33] 416× 128 1 0.110 1.130 6.264 0.165 0.881 0.971 0.991
Ours (Backbone: SQLDepth) 416× 128 1 0.103 1.090 6.237 0.157 0.895 0.974 0.991

TABLE VI

THE QUANTITATIVE DEPTH COMPARISON OF THE CITYSCAPE DATASET.

Method Type AbsRel ↓ Sq Rel↓ RMSE↓ log10↓

Zhou [38] S 0.383 5.321 10.470 0.478
DDVO [31] M 0.387 4.720 8.090 0.204
Monodepth2 [12] M 0.322 3.589 7.417 0.163
CADepthNet [35] M 0.312 3.086 7.066 0.159
SQLDepth [33] M 0.306 2.402 6.856 0.151
Ours (Backbone: SQLDepth) M 0.304 2.313 6.822 0.148

TABLE VII

THE QUANTITATIVE DEPTH COMPARISON OF THE MAKE3D.

assessed the models against ground truth metrics. Results

show that scales from physics depth closely match those

from ground truth, with performance metrics nearly iden-

tical. Notably, the MonoVit model sometimes surpassed the

performance of scales based on ground truth. This confirms

that physics depth are reliable alternatives to LiDAR depths

for scaling factor calculations, significantly improving the

autonomy of self-supervised models.

RGB image Road segmented result Ground segmented result

Semantic segmented image Physics depth of road Physics depth of ground
Fig. 2. Physics Depth Methodology demonstrated on KITTI.

C. Evaluation of Physics Depth

In this paper, we have systematically generated physics

depth for the entire KITTI and Cityscapes datasets to facil-

itate the training of our models. This involved a meticulous

analysis of the discrepancies in both road and flat surface

physics depth across these datasets. As detailed in Tables
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Physics depth of road and error distribution Physics depth of ground and error distribution

Fig. 3. Error distribution of Physics depth.

II and III, the KITTI dataset showed approximately 90%
of pixels exhibited an error margin of less than 10%, and

about 80% of pixels were within a mere 5% deviation when

compared with the LiDAR-generated depth. Notably, the

Cityscapes dataset demonstrated exceptional performance. In

this dataset, around 95% of pixels showed less than a 10%
error margin, and 85% of pixels were within a 5% error

range, in comparison to the depth derived from Cityscapes’

standard disparity data.

Tables II and III indicate that the road physics depth

outperforms the flat surface physics depth in accuracy. Yet,

road pixels in a single image are limited. To increase the

density of physics depth pixels in each image, we applied the

logic to flat surfaces, although the flatness of these surfaces is

not exactly the same. This extension, while increasing data,

also enlarges the error margin with the ground truth. Still,

as seen in Tables II and III, the flat surface physics depth,

despite higher errors, maintains good accuracy, enriching the

dataset and reducing the risk of overfitting.

Our analysis showed that the KITTI dataset had lower

accuracy than Cityscapes, likely due to differences in cam-

era calibration quality. KITTI uses one calibration file per

day, while Cityscapes has individual files for each image,

suggesting that better calibration enhances physics depth ac-
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Back-bone
Physics

Depth
confidence

2D Spatial

Consistency
AbsRel ↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑

✓ 0.087 0.659 4.096 0.165 0.920
✓ ✓ 0.086 0.621 3.912 0.161 0.921
✓ ✓ ✓ 0.086 0.594 3.886 0.159 0.918
✓ ✓ 0.087 0.620 4.043 0.164 0.913
✓ ✓ ✓ ✓ 0.085 0.583 3.885 0.158 0.922

TABLE VIII

ABLATION STUDY ON KITTI: INPUT IS 1024× 320. Lcon : LOSS OF PHYSICS-DEPTH SUPERVISION. L2D : LOSS OF 2D SPATIAL CONSISTENCY.

Fig. 4. Qualitative results on make3d (Zero-shot): From left to right the models are Monodepth2 [12], RA-Depth [16], MonoVit [37], SQLDepth [33],
our models.

Fig. 5. Qualitative results on KITTI: From top to bottom the models are
MonoVit [37], RA-Depth [16], ManyDepth [34], our models.

curacy. This implies that improved calibration could further

increase the accuracy of physics depth. Our physics depth

estimation method, especially for flat surfaces like roads,

shows promising potential, replacing LiDAR in calculating

scale factors for self-supervised monocular depth estimation.
D. Depth Estimation

KITTI: Our model was assessed on the KITTI Eigen

split of 697 images, and the results, displayed in Table V,

demonstrate that our method significantly surpasses exist-

ing self-supervised techniques on the KITTI dataset. Our

advancements, such as physics depth, confidence metrics,

and 2D consistency checks, have notably enhanced perfor-

mance, particularly in RMSE metrics. Figure 5 illustrates our

model’s exceptional capability in capturing complex scene

details and reconstructing scenes more accurately than other

models like MonoVit, RA-Depth, and ManyDepth.

Cityscapes: To assess the generalizability of our model,

we showcase results from the Cityscapes dataset. In Table

VI, we perform additional comparisons where we train and

test on the Cityscapes dataset. We consistently outperform

competing methods.

Make3D: We evaluated our model’s generalization ca-

pabilities through a zero-shot test on the Make3D dataset,

using a version pretrained on KITTI. Results in Table VII

show that our model achieves lower errors than other zero-

shot competitors, highlighting its superior zero-shot gener-

alization. Figure 4 demonstrates that our model surpasses

baseline models, producing high-quality depth with improved

sharpness and scene detail accuracy, proving its exceptional

ability to adapt to new scenarios without further fine-tuning.

E. Ablation Study

Our ablation study, presented in Table VIII, evaluates

the impact of various components in monocular depth es-

timation. Results indicate that integrating all components

enhances performance compared to the baseline model.

Physics Depth: Table VIII shows that accurate ground

depth significantly improves depth prediction, which is es-

sential for precise object positioning and overall scene un-

derstanding. This enhancement in spatial perception not only

clarifies size and distance ambiguities but also accelerates the

model’s training and its ability to adapt to the geometry of

diverse scenes.

Confidence in Physics Depth: As shown in Table VIII,

our method, which assigns confidence scores to physics

depth estimation, surpasses basic physics depth. Incorporat-

ing confidence scores enables our model to focus on more

accurate regions during training, reducing error impact and

improving self-supervision efficacy.

2D Spatial Consistency: Table VIII indicates that our

model, which utilizes optical flow for 2D reprojection error

calculation, outperforms the baseline model that relies solely

on photometric consistency.
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Our ablation study reveals that incorporating Physics

Depth significantly enhances monocular depth estimation ac-

curacy by initiating training with accurate ground depth. This

self-supervised method, which emphasizes reliable Physics

Depth areas, outperforms traditional approaches. Addition-

ally, adding 2D Spatial Consistency further boosts accuracy.

VI. CONCLUSION

This paper presents a novel self-supervised learning ap-

proach that integrates the physical characteristics of the

camera model with the concept of embodiment, embedding

them into the deep learning model. By leveraging physics-

based depth cues, our method improves monocular depth

estimation. Through the incorporation of physics depth esti-

mation, our approach achieves an embodied understanding of

the interaction between the camera and the physical world,

enhancing the model’s accuracy and its ability to capture

environmental details, surpassing existing self-supervised

techniques. This method enables the model to accurately

predict scene depth, achieving state-of-the-art self-supervised

learning results on the KITTI, Cityscapes, and Make3D

datasets. This approach provides better depth information,

thereby deepening the model’s embodied understanding of

real-world scenes.
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