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Abstract— Reconstructing accurate object shapes based on
single image inputs is still a critical and challenging task, mainly
due to the potential shape ambiguity and occlusion. Most exist-
ing single image 3D reconstruction approaches, either trained
on stereo setting or structure-from-motion, estimate 2.5D visible
models which generally reconstruct one viewpoint of objects.
We propose a method to leverage both the general Morphable
Model on common objects and a multi-view synthesis-based
shape-from-silhouette model to reconstruct complete object
shapes. We use the proposed method to exploit strong geometric
and perceptual cues in 3D shape reconstruction. During the
inference, the trained model is able to produce high-quality
and complete meshes with finely detailed structures from a
2D image captured from arbitrary perspectives. The proposed
method is evaluated on both large-scale synthetic ShapeNet and
real-world Pascal 3D+ and Pix3D datasets. The proposed work
achieves state-of-the-art results compared with other recent self-
supervised methods. Moreover, it shows a good capability of
being applied in the unseen object reconstruction tasks.

I. INTRODUCTION

Accurate and swift 3D object reconstruction is pivotal for

numerous tasks in computer vision and robotics, such as 3D

model matching [8], manipulation [16], and understanding

[46]. While multi-view reconstructions exploit geometric

cues as prior information for unambiguous 3D model infer-

ence, deriving shape data solely from a single-view image

remains a formidable challenge.

The recent development in deep learning has enabled

researchers to focus more on applying deep networks to

perform single-view 3D reconstruction [38][40][43]. Most

works rely on volumetric structures to represent the shape

and then conduct 3D convolution for reconstruction. How-

ever, such methods are largely limited due to the reconstruc-

tion quality of the low-resolution voxel grid, and the high

expense on computational complexity and memory. Conven-

tional techniques, such as SfM/SLAM, that depend on stereo

and sequential images often necessitate intricate camera

configurations and extensive camera motions. These meth-

ods can still face challenges from occlusions and produce

incomplete 3D reconstructions. Following the approaches

in [38], [40], we utilize polygon meshes with triangular

faces for precise reconstruction. Distinctly, we integrate the

3D morphable model, commonly used in face modeling,

into our deep network for general object reconstruction.

This is iteratively refined using a novel-view synthesis-based

deep shape-from-silhouette network, facilitating precise and

efficient 3D reconstructions in a self-supervised fashion.

We present a cutting-edge deep learning architecture,

Morphable-SfS, designed to reconstruct a 3D mesh from
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a singular image by perpetually updating the coefficients of

the blend-shape basis. Upon shape prediction, it is revolved

across varied perspectives in the 3D domain, synchronized

with the given camera viewpoints. These 3D shapes, when

associated with different perspectives, are cast into 2D color

images and silhouette masks via a differentiable rendering

network, fortified with a projection layer. This process is

navigated by both multi-view silhouette and pixel color

consistency. The ensuing reduction in shape ambiguity is

largely attributed to the synergy between the morphable

model prior and the multi-view rendering constraints. Given

that the rendering loss is predominantly assessed in the pro-

jected image domain and falls short in depth and geometric

detail constraints, we augment our method with 3D keypoint

consistency across diverse viewpoints. The inherent nature of

the morphable model facilitates the holistic recovery of the

3D shape, but with limited detailed constraints. Contrarily,

shape-from-silhouette possesses the prowess to delve into

intricate shapes and textures. Our intent is to harmonize

the strengths of both by integrating SfS into the morphable

model estimation network’s framework. A visual depiction

of our proposed architecture is provided in Fig. 1.

The salient contributions of our work are: 1. Harnessing

the prowess of the morphable model, predominantly used in

human face modeling, and embedding it in general object

reconstruction with our shape estimation algorithm. This

showcases the efficacy of a learning-based morphable model

as a robust shape prior for general object reconstruction. 2.

Unveiling an image rendering network tasked with predicting

both object mask and color image from the modified 3D

shapes. The enforcement of multi-view rendering consisten-

cies, coupled with incessant updates from the morphable

model network, enables the procurement of a comprehensive

3D shape without the crutch of ground-truth 3D data. 3.

Beyond the confines of rendering loss, we incorporate multi-

view 3D keypoint consistency to curtail shape ambiguity

during the training phase.

II. RELATED WORK

A plethora of studies have delved into 3D object recon-

struction and modeling, leveraging either a single image or

multi-view images. In this context, we sequentially elucidate

the 3D morphable model, the learning-centric 3D shape

generation, and the neural rendering process.

3D Morphable Model has been extensively used for

modeling 3D human faces [5]. While some approaches

focus on single images [9], [36], others harness multiple

frames [3] or unstructured photo sets [31]. These models

utilize 3D parametric identities and principal components

for geometry and associated expressions. Variations across
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Fig. 1. An illustration of our proposed deep Morphable-SfS network for 3D shape reconstruction. Object-level shape reconstruction is achieved by
continuously updating the blend-shape basis coefficients, based on multi-view rendering (silhouette and color) and keypoint consistencies in the Shape-
from-silhouette network.

different individuals are captured using principal components

derived from laser scans in a reduced-dimensional subspace

[4]. Traditional optimization strategies leverage personalized

models [6], [12], [18] to deduce 3D shapes considering

texture or lighting. Contemporary research has seen a shift

towards learning-based methodologies that directly infer 3D

faces from an image [21], [30], [32], [11]. While the majority

of such research targets human face modeling, comprehen-

sive 3D shape reconstructions like the human head are less

explored [27]. Leveraging the inherent advantage of the

3D morphable model to recover a holistic 3D shape, we

propose its integration into our general object reconstruction

endeavor. Given the inherent capability of the 3D morphable

model to holistically recover an initial 3D shape and align

with 2D image observations, we advocate its integration into

our broader object reconstruction framework.

Single Image Shape Generation, a burgeoning area of

research, strives to reconstruct 3D shapes from singular

RGB images [38], [15], [39], [45], depth images [44],

[48], or a combination thereof [10]. Approaches span from

alignment-based [20], [2], deformation-based [40], [23], to

direct regression using convolutional neural networks [42],

[13]. The 3D Recurrent Reconstruction Neural Network,

DIRT [17], was inspired by traditional LSTM [34] to convert

single or multi-view object images to 3D shapes. However,

these techniques often overlook the potential of morphable

geometric cues for shape constraint enhancement. Also, inte-

grating class prediction, rendering networks, and multi-view

consistencies alleviates the need for intensive 3D supervision.

Neural Rendering Methods: Rendering traditionally in-

volves projecting a 3D shape onto a 2D plane. While early

methods used derivatives of rendering to link 2D image

variations with 3D modifications [14], [47], others explored

renderings of voxel grids [29], [37], point clouds [19],

[1], meshes [22], [24], and implicit surfaces [28]. Often,

these approaches utilized differentiable functions and approx-

imations, trading off image clarity and 3D shape fidelity.

Recent endeavors [22], [35] have incorporated these into 3D

reconstruction networks, placing supervisions solely on the

2D images. While many methods leverage encoder-decoder

architectures for projection, our approach distinguishes itself

by deriving shape geometry from a novel deep morphable

model network and sourcing texture colors from a dedicated

color-rendering CNN. Rendering is executed using a Soft

Rasterizer [25], and optimized via multi-view perceptual,

silhouette, and keypoint consistencies.

III. MORPHABLE-SFS FOR SHAPE RECONSTRUCTION

3D shape estimation from singular images is non-trivial

due to unknown poses and occlusions. We aim for continual

geometry updates through deep morphable models and multi-

view constraints.

A. Deformable Deep 3D Morphable Model

The 3D Morphable Model (3DMM) in our framework

serves a dual purpose: it offers robust shape priors and

facilitates iterative optimization. Such a design assists in

circumventing challenges such as incompleteness, occlusion,

and ambiguity inherent when learning shapes from a solitary

view during inference. The geometry of a typical object

having n vertices and encompassing the shape coordinates

(x, y, z) can be articulated via a shape matrix:

S =





x1, x2, ... , xn

y1, y2, ... , yn
z1, z2, ... , zn





3×n

(1)

Here, the object shape S comprises x, y, and z coordinates,

sized 3×n (with n = 642). To streamline the training for our

shape estimation network, we commence with object classi-

fication, deriving probability scores for sub-classes (e.g., suv,

sedan, coupe, van) within primary categories (e.g., car, chair,

table). For each sub-class, we systematically reduce edges

in the 3D model, aiming to minimize surface quadric errors

until attaining a uniform count of vertices and mesh faces

suitable for principal component analysis (PCA). The 3D

shape S undergoes updates by morphing an average model

using a sub-class weighted amalgamation of a set of trainable

parameters. These parameters resonate with the coefficients

of the principal shape basis, leading to:
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Mc +
∑

i

Pi · Ui,s · diag(Ãi,s) · ³i,s → S (2)

Given Mc ∈ R
3n as the mean object shape for a specific

category c, and denoting Ui,s as the matrix of principal

components for each shape basis i — where each column

vector is given by ui,j and k j n — we can define Ãi,s as

the standard deviation. The shape can then be parameterized

and subsequently updated using shape vectors ³i,s.

For any given input image, we determine the correspond-

ing low-dimensional shape basis of the selected 3D shapes,

each signifying a different sub-class from ShapeNet. We

retain only the initial 20 dimensions of the shape vectors,

utilizing them as a shape basis for every individual sub-

class. The final resultant shape emerges from an incessantly

updated fusion of the mean model shape and the blended

shape basis. This fusion is influenced by the trainable coeffi-

cient parameters and the classification scores. An exemplary

representation of our proposed trainable and modifiable 3D

morphable model is depicted in Fig. 2. To counteract extreme

vertex movement in the reconstructions, we integrate a

Laplacian loss Lshape, mirroring the approach adopted in

[38] and [25].

�1
�2 �3

�1, �2, �3…

�1, �2, �3… �1, �2, �3…

�1
�2 �3

�1, �2, �3…

�1, �2, �3… �1, �2, �3…
Fig. 2. An illustration of our 3D morphable model. For each sub-
class, we continuously update a group of trainable principal coefficients
for reconstruction.

B. Differentiable Neural Rendering

Given a reconstructed 3D mesh, let’s denote its vertices

as v1, v2, . . . , vn and corresponding faces as f1, f2, . . . , fN .

Here, vi defines the 3D position of the ith vertex, while fj
represents the jth index of the triangle face, composed of

three vertices. The process of rendering a 3D object entails

transforming these vertices from the object space to an image

plane. Rather than discretely sampling feature points, which

results in a non-differentiable operation or making use of

approximate derivatives as in [41], we leverage the aggregate

function detailed in [25]. This allows us to compute the

probability map Pj for every pixel i and a relative depth for

3D points, dj . Consequently, both the rendered color image

Icolor and the silhouette mask Isilhouette for each pixel i

can be articulated by integrating the object color Cj with

the background color Cb as:

Iicolor =
∑

j

wi
jC

i
j + wi

bCb

Iisilhouette = 1−
∏

j

(1− P i
j )

(3)

where wj and wb weight the foreground object color Cj

and background color Cb, respectively, and are defined as

wi
j =

P i
j exp(d

i
j/µ)∑

k
P i

k
exp(di

k
/µ)+exp(ϵ/µ)

and
∑

j w
i
j + wi

b = 1. ϵ and

µ are both small constants of 1e-4.

To estimate the color maps C, we employ a color gen-

eration network designed to predict color values. Given an

RGB image, a pre-trained ResNet-18 network serves as a

feature extractor, producing 512-dimensional global features.

The network’s output consists of n× 3 color values, derived

from the FC layers, where n represents the number of

sampled color classes. These values are then incorporated

into the aggregation function and are pivotal in minimizing

the rendering loss between the generated and actual images.

C. Multi-view Rendering and Geometric Constraints

Leveraging the aforementioned deep morphable model for

3D shape generation and the differentiable rendering process

for image mapping, we suggest rotating the produced mesh

to various perspectives, as illustrated in Fig. 3. In practice,

numerous views of each scene are captured, and a subset

is randomly sampled during each training iteration. This ap-

proach facilitates the development of models robust to a wide

range of camera transformations. The multi-view silhouettes

impose stringent constraints on the global geometry of our

reconstruction model. The transformation of the predicted 3D

shape derived from an input image Iinput through the deep

3D morphable model Morph(·) to a rendered image from

a distinct viewpoint Irender, using the transformation T and

the aforementioned neural rendering function R(·), can be

described as:

Irender = R(T ·Morph(Iinput)) (4)

����1
����ÿ

����ÿĀ
����ÿā

����Ā

Fig. 3. Illustration of the multi-view generation. Given a generated
3D object, we generate 24 random views (12 horizontal and 12 vertical
directions).

Utilizing the aforementioned mapping, our comprehensive

network perpetually refines the parameters of the adaptable

shape coefficients, mapping a singular 2D image to a 3D

mesh. We aim for the rendered color image and the object

silhouette mask derived from the produced object to achieve

the highest degree of photo-realism. The multi-view render-

ing losses for both silhouette and color images are crafted to

diminish discrepancies between the synthesized renderings

and the authentic color and silhouette representations. We

incorporate a blend of SSIM and perceptual loss, denoted

by Φvgg(·), as given:

Lrendering = ¼ · [(1− SSIM(Irender, Ireal))+

(1− SSIM(Mrender,Mreal))]+

(1− ¼) · [||Φvgg(Irender)− Φvgg(Ireal)||1+

||Φvgg(Mrender)− Φvgg(Mreal)||1]

(5)

Given that Irender and Mrender denote the rendered color image

and silhouette mask in a batch, respectively, the function
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Fig. 4. Keypoint detection results on the rendered image of different single
objects from the test split of the ShapeNet dataset.

Φvgg(·) fetches feature vectors from the layers ’conv1-2’,

’conv2-2’, ’conv3-2’, ’conv4-2’, and ’conv5-2’ of the VGG-

19 network, which is pretrained on the ImageNet dataset. In

contrast to utilizing L1 or L2 for rendering, the integration

of SSIM and perceptual loss results in more defined images.

While the rendering loss does not impose geometric con-

straints on the reconstructed shape, we introduce spatial cor-

respondence using consistent 3D keypoints across multiple

views of the same object instance. A dedicated keypoint

detection network predicts 3D keypoints from an input

2D image without reliance on ground truth keypoints for

supervision. With known relative camera poses, this network

processes each view through 13 stacked dilated convolution

layers (with 64 channels), culminating in the output of eight

3D keypoints in the form of pixel coordinates xy and depth

z. In inference, it gleans 3D keypoints directly from a single

image, eschewing the need for pose data. The overarching

objective of this geometric constraint is to align the projected

3D keypoints on the initial image with their corresponding

positions in subsequent views. Should the predicted keypoint

in 3D space from the rendered image Irender be [xr, yr, zr],
and using the projection function Ã(·), the corresponding 2D

keypoint in image coordinates is denoted as [ur, vr]. The re-

projected 2D keypoints from the other M−1 viewpoints are

thus expressed as [ũr, ṽr] = Ã×PÃ−1[ur
j , v

r
j ]. Consequently,

the multi-view keypoint consistency loss Lconsis is:

Lconsis =
1

N(M − 1)

N∑

i=1

M−1∑

j=1

||(ur
i , v

r
i )− (ũr

j , ṽ
r
j )||

2
(6)

To guarantee that all estimated 2D keypoints fall within the

object’s silhouette regions, we apply an additional regional

constraining loss Lregion to enforce the relationship between

the pixel intensity of keypoints and the silhouette mask:

Lregion =
1

N

N∑

i=1

[−log
∑

u,v

M(u, v)Ii(u, v)] (7)

Ensuring that all predicted 2D keypoints reside within

the object silhouette regions is vital. Hence, we introduce a

regional constraining loss Lregion which enforces the pixel

intensity of the keypoint and the silhouette mask to adhere

to the relationship:

Lsep =
1

N2

N∑

i=1

N∑

i ̸=j

max(0, c− ||(ur
i , v

r
i )− (ur

j , v
r
j )||

2)

(8)

Fig. 5. Generalization of keypoint detection on real images from the real-
world PASCAL 3D+ dataset.

Category DIRT [17] Pix2Mesh [38] SoftRas [25] Learn3D [26] Ours

airplane 42.6 (-) 31.4 (2.82) 50.9 (1.96) 56.5 (1.62) 53.4 (1.78)
car 66.1 (-) 55.2 (2.88) 67.2 (2.03) 67.0 (2.31) 67.6 (2.16)

chair 43.9 (-) 50.7 (2.76) 41.9 (7.09) 41.5 (8.01) 43.4 (5.97)
table 42.0 (-) 40.9 (5.47) 38.0 (6.90) 41.7 (6.92) 45.1 (5.59)

display 44.0 (-) 45.8 (3.02) 47.8 (3.73) 52.8 (3.60) 51.9 (3.91)
sofa 62.6 (-) 61.3 (2.39) 55.9 (2.65) 59.2 (2.27) 63.1 (2.23)
lamp 28.1 (-) 32.3 (9.79) 32.7 (9.84) 37.8 (8.67) 38.0 (8.43)

TABLE I

IOU (AND CD) RESULTS ON THE SHAPENET DATASET, COMPARED WITH

RECENT METHODS WITH [17][38] AND WITHOUT [25][26] DIRECT 3D

SUPERVISION. FOR IOU, THE HIGHER VALUE MEANS THE BETTER

RECONSTRUCTION. FOR CD, THE LOWER VALUES INDICATE THE

BETTER PERFORMANCE. BOLD INDICATES THE BEST RESULTS AMONG

THE METHODS WITHOUT DIRECT SUPERVISION, AND THE UNDERSCORE

INDICATES THE BEST RESULTS AMONG ALL THE COMPARED METHODS.

Therefore, the comprehensive spatial consistency loss Lspatial

for geometric constraints is an amalgamation of Lconsis,

Lregion, and Lsep.

Loss for Joint Training: In pursuit of a refined object

shape, we amalgamate multi-view rendering with geometric

constraints encompassing shape geometry and texture into an

end-to-end schema. By leveraging this joint loss function, we

harness insights from both avenues, enhancing performance

and tackling shape ambiguities and truncations. Formally, the

culminating objective is framed as a weighted aggregation of

the three constituent losses, assigned weights of 0.005, 1.0,

and 0.1 respectively.

LGe3DMM = ¼shapeLshape + ¼renderingLrendering+

¼spatialLspatial

(9)

IV. EXPERIMENTS

Training Data: Our dataset is sourced from ShapeNet [7],

a comprehensive repository boasting around 51K 3D models

spread over 13 primary categories. We adopt a distinct train-

ing/testing partition for diverse object classes in alignment

with the protocol in [17], which encompasses cars, chairs,

planes, monitors, and more. Each CAD model is normalized

such that its largest dimension spans the interval (−1, 1). We

render these models from 24 eclectic vantage points, split

evenly between horizontal and vertical orientations.

In addition to the ShapeNet collection, the PASCAL 3D+

dataset augments our data. We chiefly cull the car, airplane,

and sofa categories from PASCAL 3D+, mirroring those in

ShapeNet, to scrutinize our technique across varied scenar-

ios. Given that ShapeNet is replete with rendered imagery,

we employ the Pix3D [33] dataset for our test segment, fa-

cilitating evaluation of our approach against genuine images

coupled with their 3D counterparts.

Experimental Settings: Our training strategy entails a

three-pronged approach, harnessing the capabilities of a 3D

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on June 08,2025 at 18:31:20 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Comparison of reconstruction performance on ShapeNet dataset (shown in two views). Left to right: raw input image; our reconstructed shape;
reconstruction from [26]; reconstruction from [25]; reconstruction from [38]. Empty space represents that the corresponding method fails to reconstruct a
3D shape based on the input image.

Fig. 7. Sample images and reconstructed shapes from ShapeNet and Pascal
3D+ datasets. Left to right for each sample: Input 2D image; 3D shape from
two different viewpoints.

Fig. 8. Generalization results on the real-world Pix3D dataset.

morphable network, a differentiable rendering network, and

a 3D keypoint detection network. Importantly, our approach

is self-supervised, devoid of any 3D oversight.

Both the generated mean shape and the reconstructed

shape share a consistent mesh structure, comprising 642

vertices and 1280 faces. During testing, our method requires

merely a single input image to furnish the predicted 3D

object and the associated 3D keypoints.

We rigorously benchmark our methodology against con-

temporaneous approaches reliant on either direct 3D super-

vision or 2D images for shape synthesis. This includes the

works of [38], [25], and [26]. For a comprehensive insight,

we direct the reader to the extensive visual and quantitative

comparisons presented in Table I and Figs. 6-10.

Fig. 9. Our reconstruction pipeline is able to recover the texture of the 3D
model. For each sample, the left side is the input image, and the right side
is the projected image from our reconstructed colored meshes.

A. Keypoint Detection Results

Our self-supervised general-object keypoint detection is

first evaluated qualitatively on classes such as cars, chairs,

monitors, and planes from the ShapeNet dataset’s test split.

Fig. 4 showcases randomly selected objects across various

viewpoints. Despite the absence of annotated keypoints for

direct supervision, our network demonstrates a commendable

ability to infer stable and precise keypoint locations from a

single rendered input image.

The network’s generalization capability is further exem-

plified in Fig. 5, where we examine its performance in real-

world scenarios using the PASCAL 3D+ dataset, specifically

on airplane and car scenes. Notably, even without training on

this dataset, our model produces consistent and meaningful

keypoint inferences.

B. Shape Reconstruction from A Single Image

For a comprehensive assessment of the shape and point

distribution, we perform quantitative comparisons on 3D

shape reconstruction using both IoU and chamfer distance

(CD) metrics, as presented in Table I. Our model outperforms

other state-of-the-art methods without direct 3D supervision

in most categories, such as car, chair, table, sofa, and lamp.

Remarkably, our approach even surpasses some supervised

methods in categories like car, table, sofa, and lamp. This

performance underscores the efficacy of our introduced 3D

morphable network with multi-view rendering and geometric

constraints. Specifically, our method consistently demon-

strates an increase in IoU and a decrease in CD metrics

against the evaluated ground truth shape. After training, our

model can accurately and comprehensively reconstruct a 3D

shape from a single 2D image across various categories and
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Fig. 10. Comparison of reconstruction performance on PASCAL 3D+ dataset (shown in two views). Left to right: raw input image (detected regions
as input); our reconstructed shape; reconstruction from [26]; reconstruction from [38]. Empty space represents that the corresponding method fails to
reconstruct a 3D shape based on the input image. Reconstructions are directly from the pre-trained model on ShapeNet without re-training or fine-tuning.

Fig. 11. Ablation study of reconstruction results on ShapeNet with
different baseline methods and our full pipeline. Left to right: input image;
reconstruction without morphable model; reconstruction without keypoint
constraint; our full reconstruction.

viewpoints, as illustrated in Fig. 7.

Visual predictions and comparisons on the ShapeNet and

PASCAL 3D+ datasets are depicted in Fig. 6 and Fig. 10.

From [38], one can notice distortions and numerous holes

when viewed from different perspectives, as well as missing

structures, like the bottom of chairs or car wheels, as seen

in [25]. Although [26] excels in comparison to others, it

doesn’t adequately constrain details, leading to smoothed

approximations. Our method, with its multi-view constraints,

closely aligns with the ground truth shape. Fig. 8 and Fig.

10 display the robustness of our model in real-world settings

(note that for complex scenes, we detect and resize objects as

inputs across all methods). While meshes are shown without

textures for fair comparisons, our approach can reconstruct

not just the shape but also color closely resembling the input

2D image. However, training was restricted to just 50 distinct

colors. The input image alongside the projected image from

the inferred 3D model is exhibited in Fig. 9.

C. Ablation Study and Analysis

The ablation study, comprising both quantitative and qual-

itative results from the ShapeNet dataset, is presented in

Table II and Fig. 11. As seen in Table II, our proposed

approach outperforms various baselines—whether replacing

the morphable model with a generic 3D encoder-decoder,

omitting multi-view keypoint cues, or solely using SSIM loss

in Lrendering . This underscores the efficacy of our com-

prehensive training methodology. Specifically, our method

elevates the IoU score by 4.7 and 2.9 points over baselines

lacking the morphable model and keypoint modules, respec-

tively. Fig. 11 further highlights the advantage of our full

pipeline: while baselines may exhibit irregular surfaces (as

in cars) or partial omissions (as in airplanes), our method

Fig. 12. Ablation study of how the number of viewpoints affect the
reconstructed shape geometry (in IoU and CD) and texture (in PSNR).

mitigates these issues.

Moreover, our Morphable-SfS demonstrates an iterative

refinement in the reconstruction of both shape geometry

and color texture, contingent on the number of rendered

viewpoints. As illustrated in Fig. 12, the IoU performance

initially ascends as CD significantly drops, but plateaus

beyond a certain number of views, indicating a subsequent

rise in computational demands.

airplane chair car mean

Ours w/o morphable model 49.7 40.2 62.9 50.1
Ours w/o keypoints 51.2 40.9 65.3 51.9

Ours w/o perceptual loss in Lrendering 52.7 41.9 66.3 53.9
Our full pipeline 53.4 43.4 67.6 54.8

TABLE II

ABLATION STUDY OF OUR MODEL TRAINED WITHOUT SPECIFIC

COMPONENT ON IOU RESULTS.

V. CONCLUSION

In this study, we introduce Morphable-SfS: a versatile,

deep, morphable model-driven shape reconstruction net-

work fortified with multi-view rendering and geometric

constraints. Our methodology enhances the reconstruction

process by ensuring that rendering outputs align with the

initial inputs. Additionally, we incorporate a self-supervised

3D keypoint detection network to refine the reconstruc-

tion against sparse keypoint geometries. Coupled with

Morphable-SfS, our learning-based neural rendering facili-

tates the derivation of high-caliber textured images, supersed-

ing traditional non-differentiable variants. Through extensive

3D modeling experiments, our approach consistently outper-

forms recent state-of-the-art techniques across both rendered

and real-world datasets. Furthermore, ablation analyses of

various components and configurations within our workflow

substantiate the efficacy of our proposed paradigm.
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