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Abstract—Support vector machines (SVMs) have been the learning
model of choice in numerous classification applications. While SVMs are
widely successful in real-world deployments, they remain susceptible to
mislabeled examples in training datasets where the presence of few faults
can severely affect decision boundaries, thereby affecting the model’s
performance on unseen data. In this brief, we develop and describe
in implementation detail a novel method based on Lj-norm principal-
component data analysis and geometry that aims to filter out atypical
data instances on a class-by-class basis before the training phase of SVMs
and thus provide the classifier with robust support-vector candidates for
making classification boundaries. The proposed dataset curation method
is entirely data-driven (touch-free), unsupervised, and computationally
efficient. Extensive experimental studies on real datasets included in this
brief illustrate the L;-norm curation method and demonstrate its efficacy
in protecting SVM models from data faults during learning.

Index Terms—L;-norm, dataset curation, faulty data, mislabeled
data, outlier resistance, principal-component analysis (PCA), rank selec-
tion, support vector machines (SVMs).

I. INTRODUCTION

Support vector machines (SVMs) are introduced [1] as a learning
classification algorithm designed to maximize the margin between
class training examples and decision boundaries. SVMs attain broadly
high generalization performance by matching their adjustable param-
eters with the size of the available training set preventing over- and
underfitting [2]. The derived classification function considers just few
data points from a linearly separable training dataset referred to as
support vectors. The support vectors are the training examples closest
to the decision boundary (usually a small subset of the training data)
and have direct bearing on its location. Depending on the number of
the input data features (dimensionality), a decision boundary can be a
point (1-D datasets), a line (2-D datasets), a plane (3-D datasets), or
a hyperplane (four or more data dimensions) [3], [4]. SVM classifiers
can also deal effectively with nonlinearly separable datasets. When
linear boundaries are not deemed appropriate to separate the patterns,
input data are mapped to a new subspace (generally of higher
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dimension) using a kernel function to make the dataset linearly
separable. Kernel SVMs have produced highly popular, widely used
classifiers in various applications such as pattern recognition, image
classification, face detection, text categorization, and time-series data
analysis including medical diagnosis and prognosis [5], [6], [7], [8].

The performance of all the data-driven machine learning classifiers
including SVMs is tightly regulated by the quality of the training
data. In particular, the presence of a few atypical/faulty/noisy data
in the training dataset can affect the decision boundaries created by
the model and drastically inhibit the performance of the classifier on
unseen data [9], [10], [11], [12]. Multiple comparative studies have
revealed that depending upon the type and level of noise contami-
nation, different machine learning classification algorithms can have
different sensitivity to the irregularities present in training datasets
[13], [14], [15]. Noise in a dataset can manifest itself in various
ways. Discrepancies due to measurement technique inconsistencies
and sensor hardware limitations or during automated or human-expert
labeling are few examples. Correspondingly, dataset noise can be
present in the form of feature noise, which refers to noise in the
values of features/attributes of the training samples, or label noise
which refers to class/label faults of the samples. It has been pointed
out that label noise can have indelible impact on learning in the
models and prove disastrous to classification algorithms as accidental
(or intentional) flip in the label training values can induce model bias
and lower drastically the generalization power of the classifiers [16],
[17], [18]. Eliminating/suppressing label noise instances is expected
to enhance significantly classification accuracy [19]. SVMs are partic-
ularly susceptible to mislabeling during the training phase as decision
boundaries produced by SVMs come directly from small subsets of
training samples. When data points belonging to the small subset of
support vectors are fallacious, the decision boundaries can become
severely flawed and lead to significant increase in misclassification
of operational input data.

Several methods have been developed to deal with noisy training
data labels. These methods can be organized into three main cate-
gories [20]. The first category involves building classifiers that are
robust against noise without taking into consideration the underlying
nature and model of noise. In [21], a methodology is presented
where clustering analysis is used to create classification boundaries
for robust SVM operation. Another technique based on the flipping
probability of label noise and a logistic regression classifier that
uses both noisy and auxiliary less-noisy labels to learn a classifier is
presented in [22]. The second category of methods involves building
a noise model along with a classification model to develop noise-
tolerant classifiers [20]. The third approach is removing the outliers
and noisy data from the datasets. To combat the adverse effects of
label noise, it has been demonstrated that curating the training data
and successfully eliminating likely mislabeled instances produces,
with high probability, classifiers of superior predictive accuracy [17],
[19]. It can be noted that label noise reduction is closely related
to the process of outlier detection and excision. The occurrences of
mislabeled data for a class or label can be considered as outlying
data as they have low odds of existence in that class [16]. Various
distance-based, density-based, and clustering-based outlier detection
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methods have been used as label noise detection techniques [23].
Data undersampling (a form of indirect excision) has also been used
effectively to deal with imbalanced classification problems [24], [25].

In this brief, we focus specifically on SVM classifiers and
propose a novel training dataset curation method that is built on
robust L;-norm subspace representation (summarization) [26], [27]
of individual classes and L;-norm data-point distances. In con-
trast to conventional L,-norm subspace representation methods (i.e.,
singular-vector-decomposition-based) that place square emphasis on
the amplitude of data points, the L;-norm methods operate on the
absolute value of data and are known to be inherently robust in
the presence of outliers [28]. The developed method identifies and
eliminates on a class-by-class basis data in training sets of SVMs that
do not seem to be conforming with the rest and may not be suitable
contenders to become a support vector for the class. The technical
novelty of the method is summarized as follows.

1) For the first time in the literature, class datasets are char-
acterized by joint L;-norm maximum projection computed
subspaces, and

2) distance of individual class data points from a class subspace
is L;-norm-computed.

3) For the first time in the literature, optimal class subspace rank
selection is embedded in the outlier excision process.

The operational highlights of the developed procedure for dataset
curation are summarized as follows.

1) Robust subspace summarization of individual classes and iden-
tification of outlying data points class by class.

2) Binary and multiclass classification training dataset curation.

3) Zero-touch dataset curation with no tunable parameters or
human operator.

4) Seamless integration as pretraining step across all forms of
SVMs including recent and future advanced variants.

Extensive tests on real and synthetically contaminated data (with
different levels of label noise) presented in this brief illustrate the
theoretical developments and operational properties and demonstrate
consistently notable SVM classification improvement.

The rest of this brief is organized as follows. Section II introduces
the general classification model and notation. Section III presents
in algorithmic implementation detail the proposed training dataset
curation method. Section IV is devoted to extensive experimental
studies and comparisons. Finally, Section V summarizes the scientific
findings and discusses possible future work.

Notation: In this brief, matrices are denoted by upper case bold
letters, column vectors by lower case bold letters, and scalars by
lower case plain-font letters. The transpose operation is represented
by the superscript T.

II. DATA MODEL AND NOTATION

We consider a general classification problem where we collect
D-dimensional real-valued data samples x € R? and we want to
decide their class of origin among L > 2 different class alternatives.
The only guidance that we have is one set of examples from each
class that we organize in the form of individual matrices

X0 = [0 w0 ]l =L (1)

where N, is the number of available examples from class / (sample
support of class ). Collectively, the matrices X?,/ = 1,...,L,
constitute our complete training dataset; if x € X, we say that the
label of x is I. Without loss of generality and for simplicity in our
treatment, we assume that N; > D for each class [ =1,..., L.

In broad mathematical notation, every machine learning classifier
uses the dataset X,/ =1,...,L, to build a parametrically described
function f(-) from R? to {1,2,...,L} such that every unseen X is
classified to f(x;X®",...,X®). For example, linear support vector
machines (SVMs) solve binary hypothesis testing problems by look-
ing at functions of the form f(x) = sign(wTX—i—b) from R? to {-1,1}
where the weight vector w and the bias term b are chosen according
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to the given data examples X" and X®. Multiple hypothesis testing
problems (L > 2) are usually solved by SVMs as a series of one-
to-one or one-to-rest tests. Nonlinear SVM classifiers use “kernel”
transforms K(x) from R? to R?" with D’ > D and design classifiers
of the form f’(x) = sign(W'K(x) + b).

In this work, we deal exclusively with SVM classifiers and we are
concerned with cases where the available training dataset of matrices
X®,1=1,...,L, may be contaminated with faulty label entries, i.e.,
there are columns x € RP of X? where x are not truly coming
from class / due to annotation or sensing error or other reason. In
Section III, we describe a purely data-driven method (zero human
touch) that curates the SVM training dataset X®,/ = 1,... L, ie.,
removes from each individual class examples that are not conforming
with general class data characteristics and therefore are not good
candidates to serve as support vectors. Conformity is evaluated by
new robust L;-norm principal-component analysis (PCA) (feature
extraction) algorithms and L;-norm distance geometry.

III. ALGORITHM FOR TRAINING DATASET CURATION

In Sections I and II, we discussed the importance of training
machine learning classifiers with correctly labeled data and under-
lined the vulnerability of SVMs that presuppose correctly labeled
support-vector selection to position decision boundaries. In this sec-
tion, we propose a novel solution to filter out atypical data instances
on a class-by-class basis before the training phase of SVMs and
thus provide the classifier with robust support-vector candidates for
making classification boundaries. The complete flow of the process
is summarized in Fig. 1. The proposed algorithmic method occupies
Steps 1-4 before training; the core mathematical developments fall
under Steps 2 and 3.

In the sequel, we describe Steps 2 and 3 of Fig. 1 in complete
implementation detail in the form of four data-driven optimiza-
tion operations: 1) class-by-class L;-norm data feature extraction;
2) excision threshold optimization; 3) optimal rank selection, and
finally and 4) data curation.

A. Li-Norm Data Feature Extraction

The first operation in the proposed method to curate training
datasets for SVMs involves feature extraction on a class-by-class
basis.

PCA has been proven instrumental in moving datasets into lower
dimensions and encapsulating the information in the data with few
projection vectors referred to as principal components (PCs) [29],
[30]. PCA in its conventional equivalent forms of L,-norm error
minimization and L,-norm projection maximization (i.e., L,-norm
PCA executed by the singular-vector decomposition algorithm) is
known to be sensitive to the presence of outliers [28]. As a remedy,
several robust PCA methods have been created and studied [31],
[32], [33]. One example is to attempt direct L;-norm PCA by
Li-norm projection maximization. This is a discrete mathematics
(combinatorics) problem that was recently solved in [26] and [27].

In this context, for each class label [ = 1,2,..., L, we consider the
corresponding available dataset of N, examples X(ll,)X , Where D is the
data sample dimension (without loss of generality D < N;.) We are
interested in the “summarization” (or feature extraction or PCA) of
X%)XN, by a size-K orthonormal basis {q;, qz,...,qx}, ] < K < D-1,
calculated as follows:

(D(K) _
Q"' = argmax
QEJRDXK
QTQ=Ix

wq), 8

where Q(Lli’(m = [q1,92,-..,qk] is the rank-K basis in matrix form
and I is the size K identity matrix. The analysis problem in (2) was
solved: 1) exactly (optimally) by an exhaustive search algorithm of
complexity O(2V¥) in [26]; 2) exactly (optimally) by a polynomial
algorithm of complexity O(NPX) in [26]; and 3) approximately
with low complexity O(N;D* + N*K*(K? + D)) by the bit-flipping
algorithm in [27].
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Fig. 1. Flowchart of the proposed SVM training dataset curation process.
Having calculated the rank K subspace representation of class [ and
data, Q(’) &) , we can now take each data instance x,({), n=1,...,N, (1) Ky 4 bg»(K) (7
and measure its distance from ng’(K) under the L;-norm metric R P
P where, by standard least-squares linear regression,
e ] I B VR ©)
1 D.(K) id"™ — (1 /p) 3L iyr, d
! — L
Intuitively, data entries x{ with small distance value d?-® are in my, = P 2 2 (8)
the core of the examples from label /, while data entries with large =1 #=(/p )( )
distance value are peripheral/outlyin.g examples thgt are suspect to L0 _ P d(l) (K) B P ©
be faulty labeled. Furthermore, we min—max normalize the calculated Lp ~ p mep

distance values by defining 4O & £ min, dP&, 0K 2

(D).(K)
i = max, d,"'",
and

d(l) (K) _ d([)‘(K )
A Tn  Tmin

dOw 4)
DK (K
C 0
and reindex in ascending order
(OXC.o (D.(KY' (D.(KY (l> (K)'
a® = [ d ¢ }
0<dP® <0 <. < dxzm L 5)

With this arrangement, suspect label examples are toward the
bottom of the column vector d?®" e [0, 17M*! with increasing
likelihood. To exploit this property, we turn to the problem of
selecting in a data-driven manner a distance threshold ¥ ¢ [0, 1]
above which examples with dP®" > 1O® are to be excised from
the class [ dataset.

B. Excision Threshold Optimization

Given the L;-norm rank K representation of class / data and
their corresponding ordered L;-norm min-max normalized distance
sequence 0 < d(l) K < d(/) K<< d(l) K <1, we propose
a two-line-fit method [34] across the ordered distance points to
determine the excision threshold. In particular, for every index value
p=2,3,....,N,— 1, we fit one line on the data points to the left (L)
of p (i.e., from 1 to p) and one line to the right (R) of p (i.e., from
p to N)) of the form

(/),(K) (D.(K)
mL,p bL N

(6)

and, similarly, for the N,
side of breakpoint p

— p + 1 number of data points to the right

N (DK N, ([) (KY
m%)sz) — Z! =p dl Ni—p+1 Zi Z 2 (10)
' Ny 1 Ny .
Zl‘:’p 2 - po— (Zizlp l)
N (KY N
pOE) _ Yo d; P (11
N—-p+1 " N—p+1°

We will now seek the breakpoint p that gives the best two-line fit in
the sense of smallest sum of absolute-value errors ¢$"® defined as

P
D.(K) _ (D,(KY
e;)()_z'(di ~ (m

i=1

Ly i+ bL,P))‘

N
3| = i+ 0ey) | (12
i=p
The selected breakpoint is found as
pg‘)“(lm = arg min ep([)’(’() (13)
2<p<N;-1
and the threshold value is set to
ADE) = gOKY (14)

Pmin
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Fig. 2. Example of ordered min—max-normalized distance sequence of data
points from their L;-norm principal-component representation (“Breast Cancer
Wisconsin” dataset [38], class “Benign,” D = 9, N; = 299, rank K = 1,
breakpoint ppmin = 260, threshold value A = 0.25, and angle 6 = 43.36°).

C. Optimal Rank Selection

Once the threshold for each L;-norm rank of interest
K = 1,2,...,D -1 is determined for a class /, the best rank is
identified as the one for which the breakpoint p»*’ calculated above
in (13) gives the maximum acute angle between the two least-square
regression lines fit in (6) and (7). This selection is founded on the
geometric notion that in the curve of d®® the larger the acute
angle formed between the two fit regression lines corresponding to
breakpoint pigi‘(K) for a given rank K, the steeper the change in the
value of d®" at the elbow and, hence, the sharper the distinction
between the outlying and conforming data. The acute angle formed
between the two lines fit at breakpoint pﬂ;ﬁm for rank K is

DK _ . (D(K)
m L.pmin

R.pmin
(),(K) (D,(K)
1+ MR pain " " Lopmin

K = tan! € [0%,90°]. (15)

Fig. 2 offers a visual illustration of a min—max-normalized ordered
distance sequence example in (5), its py;, breakpoint calculated
by (13), and its angle 6 measured by (15). Given 85 for ranks
K=1,2,...,D -1, we calculate the optimal rank for class / by

K9 = argmax §P&) (16)

opt
1<K<D-1

[=1,2,...,L.

D. Dataset Curation

Having obtained the optimized rank value Kf,gt

for every class
I =1,2,...,L by (16), we curate each dataset X%)XNI by purging
samples with min—max-normalized distance value greater than the
threshold value A o) in (14). That is, we remove samples with
indexing in ascending distance value greater than or equal to pﬁ’i&"")
in (13).

Fig. 3 offers a visual illustration of the excision process for a given
dataset class and highlights comparatively the importance of applying
the proposed robust L;-norm PCs methodology over potentially
conventional L,-norm PCA (i.e., singular/eigenvector analysis).

Fig. 4 offers a visual illustration of the effect of the proposed
dataset curation method on the selection of support vectors and the
subsequently created decision boundaries.

The developed multistep procedure described above to curate
training datasets of SVMs is summarized in Table I for easy reference.
Complete coded implementation can be found and downloaded for
execution in [36]. If L;-norm PCA is carried out by bit-flipping [27],
the overall worst case computational complexity of the dataset cura-
tion algorithm is dominated by the term Y o_| [ND*+N2K*(K*+D)]
where N is the maximum training sample size across classes, i.e.,
N £ argmax, ., N;, which simplifies to O(ND? + 2N?D* + N>D3).
If we upper bound the rank optimization search in (16)to 1 < K < T

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

® Data Points [
1| O Mislabeled Data o
= = = - Excision Threshoid

08

06 .

Min-max normalized distance from L2 subspace

)7 ) S A . SO A A
g - . ®
.
. .
.
. LY
0.2 . . ®
. o o
. e
.
0 I I I I L@
0 5 10 15 20 25
Data Sample Index
()
® Data Points
8 4| O Misiabeled Data ®
o — = = - Excision Threshold ®
2
L 1 ®
J 08|
=
g
b .
@
g 08|
.
2 . .
5 .
K
2 oal A =0.365
g F---- —F---—-—-F————-L-__1_ .———————
.
s . . .
2 .
3 o2r *
£ * e .
£
=
0 s bd
0 5 10 15 20 25
Data Sample Index

Fig. 3. Data point excision under (a) L-norm and (b) L;-norm PCA
(“Iris” dataset [37], class “Virginica” with 10% contamination from class
“Versicolor.”). Lj-norm-PCA-equipped data curation correctly removes all
four mislabeled data points, while L,-norm data curation fails.

TABLE I
TRAINING DATASET CURATION FOR SVM CLASSIFIERS BY L;-NORM PCA

1: for/=1,2,....L do

2: for K=1,....D—1 do

3: Find le)’(K) € RP*K by (2).

Compute d\" n=1,2,....N,, by (3)
and min-max normalize to d,(,l) (KY by (4).

. Re-index df,l)"(Ky in ascending order to form
' d-K) ip (5).
Fit left-and-right least-square regression lines

4:

6 around dK)'[p], p=23,....N,— 1, by (6), (7).

7. Compute sum of absolute error e,” K ,
p=2,3,....,N;—1,in (12).

g Obtain breakpoint pfrlg["l(K) = argmin eﬁ,l)’m

2<p<N;—1

9: Determine threshold A():(K) = d,(,l,zgsml.

10: Calculate 6():K) by (15).

11: end for

12: Calculate optimal rank K(SQ[ by (16).

Remove samples x,ﬁ” from X%L N, for which

d,(ll)v(Knpt)' < 1(1)7(1(0,;1)’ n=1,2,...,N,.
14: end for
15: Output: Curated training dataset X(!) for each class [

for some 1 < T < D — 1, then the computational complexity of the
dataset curation algorithm reduces to O(ND? 4+ N*(DT? 4+ T* + T?)).
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Fig. 4. Comparison of support vectors selected (a) before and (b) after the
proposed training dataset curation visualized in standard 2-D-feature space
(three-class “Iris” dataset [37] with 25% cross-class mislabeling, radial basis
function SVM). Misclassification error was reduced from 7.55% to 1.89%.

IV. EXPERIMENTAL STUDIES AND COMPARISONS

In this section, we apply the developed training dataset curation
algorithm to real-world datasets. In all the experiments, we execute
the code in [36] using MATLAB R2023b and Python 3.10.12 on a
system equipped with an Intel64 Family 6 Model 166 Stepping O
processor operating at clock speed of 1105 MHz with 16 GB of
RAM.

A. Raw Versus Curated Training Data

We consider four publicly available datasets, the MNIST Database
of Handwritten Digits [35], the Iris Dataset [37], the Breast Cancer
Wisconsin Dataset [38], and the Wine Dataset [39]. We evaluate and
compare the performance of SVM classification models when trained
on raw data and curated data. As performance evaluation metrics, we
use the SVM model’s class confusion matrix as well as class-specific
power probability and false alarm rate values when relevant. Below,
we describe the four dataset experiments and the obtained results.

1) Mnist Database of Handwritten Digits: MNIST is a
database of 70 000 examples of handwritten digits O, 1,...,9 [35].
In vector representation, each data point has dimensionality D = 784
(number of pixels). For our study, we isolated about 13 000 available
records combined of handwritten digits “1” and “7” to carry out
SVM design with polynomial kernel under 70%/30% training/testing
split. All the classification performance results presented below are
averages over ten independent training/testing splits. L;-norm rank
selection in class data curation [K,p in (16)] was sought among ranks
K =1,2,3 (i.e., T = 3) for rapid execution.

In Table II, we present side by side the binary classification
confusion matrices of the SVMs when trained on raw or curated data.
It is interesting to observe that although MNIST is a high quality
dataset with no known label faults/errors, the developed training

TABLE I

CONFUSION MATRIX FOR THE MNIST DATASET
WITHOUT INDUCED LABEL NOISE

Raw Training Data Curated Training Data
‘One’ ‘Seven’ ‘One’ ‘Seven’
‘One’ 0.99 0.01 0.99 0.01
‘Seven’ 0.03 0.97 0.02 0.98
TABLE III
CONFUSION MATRIX FOR THE MNIST DATASET
WITH 20% INDUCED LABEL NOISE
Raw Training Data Curated Training Data
‘One’ ‘Seven’ ‘One’ ‘Seven’
‘One’ 0.82 0.18 0.84 0.16
‘Seven’ 0.20 0.80 0.06 0.94
TABLE IV

CONFUSION MATRIX FOR THE IRIS DATASET WITHOUT
INDUCED LABEL NOISE

Raw Training Data Curated Training Data
Sentosa Versicolor Virginica | Sentosa Versicolor Virginica
Sentosa 1 0 0 1 0 0
Versicolor | 0.01 0.93 0.06 0 0.94 0.06
0.04 0.96 0 0.02 0.98

Virginica 0

dataset curation algorithm improved correct classification of “seven”
from 0.97 to 0.98.

To examine the performance of the developed curation dataset
method in the presence of faulty training data labels, in Table III
we repeat the study of Table II under 20% label noise contamination
of the training set, i.e., 20% of the data samples in each class of the
training dataset are randomly changed to the label of the other class.
The effect of the training data curation algorithm is significant. Under
data curation, the probability of correct classification of “seven” rises
from 0.80 to 0.94, while the probability of correct classification of
“one” increases from 0.82 to 0.84.

The studies demonstrate the strong impact of the proposed data
curation method on model performance under training with corrupted
data and underscore the ability of the proposed algorithm to lead to
gains in model accuracy even when initial data quality is presumed
to be high.

2) Iris Dataset: The Iris Dataset [37], [40] categorizes Iris
flowers into three subspecies classes: Sentosa, Versicolor, and
Virginica. The dimensionality of each data point is D = 4 where
the four attributes identify length and width of sepals and petals in
centimeters. The dataset consists of combined samples from the three
subspecies of Iris totaling 150 data points. We carry out SVM design
using a radial basis function kernel and evaluate experiments under
70%/30% training/testing splits. All the results presented below are
averages over ten independent training/testing splits. L;-norm rank
selection in class data curation [K,y in (16)] is sought among all
ranks K =1,2,3 (i.e., T = 3.)

In Table IV, we present side by- side the classification confu-
sion matrices of the SVMs when trained on raw or curated data.
Under raw (and curated) data, “Sentosas” are always classified
correctly. Training dataset curation improves correct classification
of “Versicolors” from 0.93 to 0.94 and “Virginicas” from 0.96 to
0.98. Dataset curation eliminates misclassification of “Versicolors” as
“Sentosas” and reduces the probability of misclassifying “Virginicas”
as “Versicolors” from 0.04 to 0.02.

In Table V, we repeat the same study of Table IV under 10% label
noise contamination, that is, the labels of 10% of data in each class
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TABLE V
CONFUSION MATRIX FOR THE IRIS DATASET WITH
10% INDUCED LABEL NOISE
Raw Training Data Curated Training Data
Sentosa Versicolor Virginica | Sentosa Versicolor Virginica
Sentosa 1 0 0 1 0 0
Versicolor | 0.02 0.94 0.04 0 0.96 0.04
Virginica 0 0.05 0.95 0 0.02 0.98
TABLE VI

CONFUSION MATRIX FOR THE BREAST CANCER WISCONSIN DATASET

Raw Training Data | Curated Training Data
Benign Malignant | Benign Malignant
Benign 0.96 0.04 0.96 0.04
Malignant 0.04 0.96 0.02 0.98
TABLE VII

CONFUSION MATRIX FOR THE WINE DATASET WITHOUT
INDUCED LABEL NOISE

Raw Training Data
Cultivarl Cultivar2 Cultivar3

Curated Training Data
Cultivarl Cultivar2 Cultivar3

Cultivarl 0.99 0.01 0 0.99 0.01 0
Cultivar2 0.01 0.98 0.01 0 0.99 0.01
Cultivar3 0 0.03 0.97 0 0.03 0.97

are randomly changed to labels of the two other classes. Algorithmic
curation of the faulty (label noisy) training dataset offers across the
board classification performance improvement, reinstating or even
exceeding precontamination performance levels.

3) Breast Cancer Wisconsin Dataset: The Breast Cancer
Wisconsin Dataset in the UCI repository [38], [40] has data dimen-
sionality D = 9 (the index attribute “sample code number” is
disregarded). Each data point represents breast cell sample measure-
ments and is labeled as benign or malignant.

There are 683 complete (no missing values) data points in the
dataset. In our study, we use the 683 data points to carry out
SVM design with radial basis function kernel under 70%/30%
training/testing split and performance averaging over ten independent
training/testing splits. L;-norm rank selection in class data curation
[Kopt in (16)] is sought among all ranks K = 1,2,...,D—-1 =8 (ie,
T =8.)

In Table VI, we present side by side the binary classification confu-
sion matrices of the SVM when trained on raw data and when trained
on curated data. The developed training dataset curation algorithm
improves the power probability of the classifier (the probability of
correctly identifying malignant cells) from 0.96 to 0.98. The false
alarm rate of the classifier (probability of identifying benign cells as
malignant) remains 0.04. A 2% improvement in probability of cancer
detection maintaining the same false alarm rate over this celebrated
dataset is arguably remarkable.

4) Wine Dataset: The Wine Dataset is created with samples of
wines that come from three different cultivars in Italy. Each data point
in the set consists of D = 13 chemical composition measurements
such as alcohol content, color intensity, hue, flavonoids, and total
phenols [39]. The objective of the experiment is to detect the cultivar
of a wine sample from the chemical composition data provided.
The dataset has a total of 178 data points and is label balanced.
We carry out again SVM design using radial basis function kernel
under 70%/30% training/testing splits and performance averaging
over ten independent training/testing splits. L;-norm rank selection
in class data curation [Kyy in (16)] is sought among all ranks
K=12,...,.D-1=12 (ie., T = 12))

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VIII

CONFUSION MATRIX FOR THE WINE DATASET
WITH 10% INDUCED LABEL NOISE

Raw Training Data
Cultivarl Cultivar2 Cultivar3

Curated Training Data
Cultivarl Cultivar2 Cultivar3

Cultivarl 0.91 0.04 0.05 0.96 0.03 0.01
Cultivar2 0.05 0.91 0.04 0.03 0.94 0.03
Cultivar3 0.02 0.08 0.90 0.02 0.05 0.93

Table VII presents side by side the classification confusion matri-
ces of the SVM when trained on raw or curated data. Training
dataset curation of the database improves the probability of correct
classification of class “Cultivar 2” from 0.98 to 0.99 eliminating
misclassification of “Cultivar 2” as “Cultivar 1.”

In Table VIII, we repeat the same study of Table VII under artificial
10% label noise contamination; that is, the label of 10% of data
in each class is randomly changed to the label of another class.
Dataset curation of the faulty (label noisy) training dataset offers,
as anticipated, significant classification performance improvement
across the classes. For the class “Cultivar 1,” correct classification
improves from 0.91 to 0.96, for “Cultivar 2” from 0.91 to 0.94, and
for “Cultivar 3” from 0.90 to 0.93.

B. Proposed Algorithm Versus Benchmark Methods

In this section, we compare the proposed data-driven training
dataset curation algorithm against leading data correction methods
and robust SVM classifiers, such as the scikit-learn implementation
of one-class SVM (ocSVM) [41], [42], [43], the scikit-clean ensemble
[41], [44], [45], robust SVM (RSVM) with rescaled hinged loss [46],
SVM via Ly, soft margin loss [47], SVM with maximum minimum
margin (M?SVM) [48], and the wave loss function SVM (Wave-
SVM) [49].

In Table IX, we present the misclassification error of these six
methods alongside our proposed algorithm on the datasets Wine [39],
Iris [37], Breast Cancer Wisconsin [38], Palmer Penguins [50], Pima
Indian Diabetes [51], Glioma [52], and Heart Disease [53]. Label
noise in each dataset is varied from 0% to 25% to study and compare
the relative behavior of the algorithms. The misclassification error
presented for each algorithm on each dataset at each label noise level
is the average over ten independent experiments. Multiclass classifi-
cation is implemented throughout by one-over-all binary classification
extension.

It is remarkable to observe that the proposed dataset curation
method is nearly universally superior and maintains near stable
performance as label contamination increases from 0% to 25%. Ly
and M>SVM exhibit competitive performance on the Glioma dataset
only; scikit-clean is in general the second best performing scheme
across datasets.

To investigate the statistical significance of these experimental
findings, we implemented the Wilcoxon signed-rank test [54] on the
misclassification error rates of the proposed algorithm (propAlgo)
versus each of the other models (ocSVM, scikit-clean, rsvm, L0/1,
M3SVM, and Wave-SVM.) In Table X, the positive rank (Pos
Rank Sum) points to the total ranks where the proposed algorithm
performed better than the competing method and the negative rank
(Neg Rank Sum) shows the sum of ranks when the opposite is true.
We can see that for all the scenarios, the proposed model strongly
outperforms each other model. The proposed model’s statistically
significant advantage is confirmed by the high positive rank sums
and significant p-values observed in all the comparisons, indicating
its robustness and efficacy in managing datasets with different degrees
of label noise. Table XI summarizes the findings and formalizes
that the proposed algorithm (propAlgo) performance is statistically
distinguishable from every other method.

As a final study in this section, Table XII lists expended compu-
tation time in seconds and establishes that the proposed algorithm
is in general the fastest, with only exception its execution over the

Authorized licensed use limited to: Florida Atlantic University. Downloaded on June 08,2025 at 18:50:59 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IX

MISCLASSIFICATION RATES ACROSS DIFFERENT DATASETS AND
METHODS AT VARYING LEVELS OF MISLABELING

Misclassification Error

% Mislabel 0cSVM  scikitClean rsvm L0/L M3SVM  Wave-SVM  propAlgo
0 0.021 0.021 0.072  0.059 0.038 0.264 0.019
5 0.028 0.023 0.058 0.051 0.057 0.321 0.023
Wine 10 0.036 0.026 0.062 0.074 0.038 0.302 0.019
15 0.087 0.025 0.070  0.051 0.057 0.340 0.017
20 0.049 0.028 0.087 0.083 0.038 0.340 0.023
25 0.126 0.030 0.089  0.096 0.057 0.396 0.034
0 0.066 0.058 0.108 0.357 0.113 0.076 0.040
5 0.060 0.057 0.157  0.362 0.113 0.132 0.043
Iris 10 0.064 0.049 0.170  0.368 0.151 0.038 0.036
15 0.049 0.058 0.245 0.370 0.094 0.151 0.042
20 0.064 0.068 0213 0.357 0.132 0.189 0.043
25 0.064 0.070 0.257  0.406 0.340 0.350 0.042
0 0.035 0.033 0.076  0.037 0.044 0.029 0.027
5 0.037 0.031 0.053  0.046 0.044 0.045 0.028
Cancer 10 0.038 0.031 0.042  0.046 0.039 0.098 0.029
15 0.042 0.035 0.039  0.042 0.039 0.088 0.035
20 0.050 0.034 0.037 0.042 0.039 0.102 0.033
25 0.073 0.038 0.031  0.039 0.044 0.059 0.033
0 0.006 0.007 0.018 0.043 0.040 0.270 0.007
5 0.010 0.007 0.019 0.070 0.030 0.330 0.005
Penguin 10 0.009 0.007 0.019 0.123 0.020 0.330 0.005
15 0.017 0.008 0.017 0.132 0.050 0.310 0.008
20 0.009 0.009 0.017 0.083 0.160 0.290 0.007
25 0.026 0.014 0.019  0.201 0.180 0.330 0.008
0 0.341 0.233 0292  0.256 0.239 0.274 0.234
5 0.376 0.242 0.300 0.249 0.256 0.326 0.239
Pima 10 0.341 0.241 0.291 0.267 0.261 0.291 0.240
15 0.341 0.249 0.306  0.293 0.261 0.322 0.249
20 0.341 0.250 0.323  0.270 0.261 0.357 0.251
25 0.371 0.261 0.327 0311 0.270 0.283 0.254
0 0.425 0.145 0271  0.159 0.147 0.286 0.143
5 0.425 0.146 0.264 0.140 0.159 0.242 0.144
. 10 0.425 0.156 0.269  0.150 0.143 0.290 0.146
Glioma
15 0.425 0.160 0.352  0.150 0.143 0.234 0.145
20 0.471 0.165 0271 0.154 0.173 0.298 0.163
25 0.475 0.180 0.364 0.180 0.179 0.444 0.176
0 0.192 0.182 0.227  0.222 0.220 0.341 0.179
5 0.216 0.198 0.243  0.234 0.220 0.451 0.197
Heart 10 0.220 0.197 0.249  0.229 0.209 0.341 0.196
15 0.279 0.211 0.256  0.236 0.220 0.407 0.211
20 0.275 0.221 0.253  0.257 0.242 0.451 0.212
25 0.302 0.236 0.284 0.288 0.231 0.473 0.234
TABLE X

WILCOXON SIGNED-RANK TEST OF PROPALGO VERSUS OTHER METHODS

Method Pos Rank Sum Neg Rank Sum Ties Mean Diff W-Stat  p-value
propAlgo vs ocSVM 902 1 0 0.0735 1.0 <0.00001
propAlgo vs scikitClean 839 43 6 0.0053 26.5 < 0.00001
propAlgo vs rsvm 902 1 0 0.0690 1.0 < 0.00001
propAlgo vs LO/1 894 9 0 0.0801 9.0 < 0.00001
propAlgo vs M>SVM 853 8 0 0.0373 8.0  <0.00001
propAlgo vs Wave-SVM 903 0 0 0.1697 0.0 < 0.00001
TABLE XI
SIGNIFICANCE TEST RESULTS
Significance ocSVM scikitClean rsvm Lo/1 M3SVM Wave-SVM
propAlgo Yes Yes Yes Yes Yes Yes

Pima dataset. As anticipated, the Ly, and M3SVM methods are
considerably slower by one and two orders of magnitude, respectively.

C. Application to New SVM Variants

The field of SVM classification enjoyed significant advances
in recent years, for example, in the domain of Twin-SVMs

TABLE XII
COMPUTATION TIME IN SECONDS ACROSS DATASETS

Computation Time (secs)

Dataset 0cSVM  scikitClean rsvm L0/ M3SVM  Wave-SVM  propAlgo
Wine 0.378 0.540 0.795 49.850 392230 1.590 0.282
Iris 0.533 0.660 0.728 34.620 205.079 1.230 0.409
Cancer 0.428 0.510 0.610 14.060  202.300 1.320 0.420
Penguin  0.473 0.584 0.773 45370  201.000 1.560 0.341
Pima 0.990 0.977 1.028 27.108 337.570 1.770 2453
Glioma 0.953 2.860 0.716  38.580  206.700 1.580 0.699
Heart 0.577 0.634 0.601 15360  144.760 1.460 0.560
TABLE XIII
TWIN-SVM MISCLASSIFICATION ERROR
WITH/WITHOUT DATA CURATION
Dataset % Mislabel FULSTSVM [59] Proposed Neo-TSVM [60] Proposed
(raw data) Algo + FULSTSVM (raw data) Algo + Neo-TSVM
15% 0.039 0.034 0.083 0.054
Cancer 20% 0.039 0.029 0.068 0.068
25% 0.044 0.024 0.146 0.117
15% 0.143 0.135 0.171 0.163
Glioma 20% 0.159 0.147 0.159 0.135
25% 0.179 0.163 0.151 0.143
15% 0.270 0.248 0.287 0.274
Pima 20% 0.309 0.274 0.270 0.257
25% 0.287 0.261 0.278 0.265

[55] and their follow-up variants which address jointly mat-
ters of computational complexity, class imbalance, and robust
operation [56], [57], [58]. The data-driven, hands-free, training
dataset curation method that we developed in this brief can be
directly applied as a preprocessing step to any SVM system of
interest.

In this section, we consider the widely successful robust clas-
sification method with fuzzy class-membership values known as
FULSTSVM [59], as well as the neo-twin SVMs for pattern clas-
sification (Neo-TSVM) introduced in [60]. There, the quadratic
optimization problem of Twin-SVMs is reformulated as an uncon-
strained minimization problem and maximum separability between
nonparallel hyperplanes is pursued by maximizing the generalized
angle between hyperplanes.

We execute FULSTSVM and Neo-TSVM classification on the
datasets Breast Cancer, Glioma, and Pima under 15%, 20%, and
25% cross-label contamination, with or without the proposed dataset
curation preprocessing. Table XIII presents misclassification error
averages over ten independent experiments. Remarkably, the data
curation method almost universally improves the performance of
the already well-performing, outlier-resistant SVMs, even in the
highest performing test cases such as FULSTSVM on the Cancer
dataset.

V. CONCLUSION AND FUTURE WORK

Label noise (faults) present in training datasets can deteriorate
the generalization ability of machine learning algorithms. SVMs in
particular, which rely on a small subset of the training dataset (support
vectors) to draw decision boundaries, can be severely affected by
erroneous labels.

This brief proposed a novel method based on robust L;-norm PCA
and L;-norm geometry to curate the training datasets of SVM classi-
fiers. The approach is entirely data-driven and touch-free, including
the inherent well-known challenge of rank selection. As a plug-and-
play computationally efficient dataset curator, the method can become
the front part of any preferred SVM classification system.

Extensive experimental studies on raw and curated datasets across
multiple databases and SVM classifier systems demonstrated con-
sistent robustness against label noise and notable classification
performance improvement even on high-quality training datasets with
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no known label faults (for example, the Wisconsin Breast Cancer
dataset.)

Future work can be directed toward: 1) further lowering the
computational complexity of data curation (in particular, the rank
selection step) and 2) generalized training dataset curation for non-
SVM classifiers. An interesting, yet challenging, question is whether
the mathematical foundation of this presented work can be extended
to address issues of completeness and fairness (bias) in training

datasets.
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