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Abstract
Let A be a simple abelian variety of dimension g defined over a finite field Fq with
Frobenius endomorphism π . This paper describes the structure of the group of rational
points A(Fqn ), for all n� 1, as a module over the ring R of endomorphisms which
are defined over Fq , under certain technical conditions. If [Q(π) : Q] = 2g and R
is a Gorenstein ring, then A(Fqn ) ∼= R/R(πn− 1). This includes the case when A is
ordinary and has maximal real multiplication. Otherwise, if Z is the center of R and
(πn−1)Z is the product of invertible prime ideals in Z , then A(Fqn )

d ∼= R/R(πn−1)
where d = 2g/[Q(π) : Q]. Finally, we deduce the structure of A(Fq) as a module
over R under similar conditions. These results generalize results of Lenstra for elliptic
curves.
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1 Introduction

Given an abelian variety A over a finite field Fq , one may view the group of rational
points A(Fq) as a module over the ring EndFq (A) of endomorphisms defined over Fq .
Lenstra completely described this module structure for elliptic curves over finite fields
in the following theorem. In addition to being useful and interesting in its own right,
this theorem also determines a fortiori the underlying abelian group structure of A(Fq)

purely in terms of the endomorphism ring. The latter perspective has been leveraged
for the sake of computational number theory and cryptography; see, for example, the
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work of Galbraith [6, Lemma 1], Ionica and Joux [8, Section 2.3], and Kohel [12,
Chapter 4]. The goal of this paper is to generalize Lenstra’s theorem beyond elliptic
curves to abelian varieties of arbitrary dimension.

Theorem 1.1 ([13, Theorem 1]) Let E be an elliptic curve over Fq . Write R =
EndFq (E) and let π ∈ R be the Frobenius endomorphism of E.

(a) Suppose that π /∈ Z. Then R has rank 2 over Z and there is an isomorphism of
R-modules

E(Fqn ) ∼= R/(πn− 1)R.

(b) Suppose that π ∈ Z. Then R has rank 4 over Z, we have

E(Fqn ) ∼= Z/Z(πn− 1)⊕Z/Z(πn− 1)

as abelian groups. Further, this group has up to isomorphism exactly one left
R-module structure, and one has an isomorphism of R-modules

E(Fqn )⊕E(Fqn ) ∼= R/R(πn− 1).

Notice that E is supersingular in the second case, but not conversely. To prove the
theorem, Lenstra notes that E(Fqn ) = E[πn− 1], and πn − 1 is a separable isogeny.
For part (b), the abelian group structure is simply the well-known structure of the
n-torsion of an elliptic curve for n ∈ Z. The additional statements in part (b) follow
from Morita equivalence and an isomorphism of rings, for integers n coprime to q,
between R/Rn and the ring M2(Z/nZ) of 2×2 matrices with coefficients in Z/nZ.

For part (a) of the theorem, Lenstra uses the following proposition; see [13, Propo-
sition 2.1].

Proposition 1.2 Let E be an elliptic curve over Fq , and let R = EndFq E. If [R : Z] =
2, then for every separable element s ∈ R there is an isomorphism E[s] ∼= R/Rs of
R-modules.

Lenstra showed in his original paper that the preceding proposition does not imme-
diately generalize to all “nice” abelian varieties of higher dimension, i.e., principally
polarized ordinary abelian varieties; see [13, Proposition 6.4].Although thismeans that
a certain natural generalization is not correct, the examples that Lenstra produces must
have very particular endomorphism rings. By inspecting Lenstra’s theorem through
two perspectives and imposing restrictions on the endomorphism ring, we can recover
a natural generalization to certain abelian varieties of higher dimension.

1.1 First perspective: Gorenstein rings

First, consider part (a) of Lenstra’s theorem, or more generally, Proposition 1.2. In
this case, the endomorphism ring of the elliptic curve is commutative, specifically an
order in an imaginary quadratic number field. In general, a simple abelian variety A
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of dimension g over Fq with Frobenius endomorphism π has commutative endomor-
phism ring exactly when [Q(π) : Q] = 2g, and in this case, EndFq (A) is an order in
the field Q(π) [21, Theorem 8]. In fact, if π is an ordinary Weil q-integer, then the
rings which arise as the endomorphism rings of abelian varieties in the corresponding
isogeny class overFq are precisely the orders ofQ(π)which contain theminimal order
Z[π, π ] [20, Theorem 7.4]. Since every order in a quadratic number field is Goren-
stein, restricting to the Gorenstein case for abelian varieties of arbitrary dimension
provides us with our first natural generalization.

Proposition 2.1 Let A be a simple abelian variety over Fq of dimension g with Frobe-
nius endomorphism π . If [Q(π) : Q] = 2g and R = EndFq (A) is a Gorenstein ring,
then there is an isomorphism of R-modules

A[s] ∼= R/Rs

for every separable s ∈ R.

This proposition will be proved in Sect. 2 by using properties of finite local Gorenstein
rings. To see exampleswhere the proposition applies, note that EndFq (A) is guaranteed
to be Gorenstein if A has maximal real multiplication, i.e., if EndFq (A) contains the
ring of integers of the maximal totally real subfield of Q(π); see [3, Lemma 4.4].
Many recent results in the algorithmic study of abelian varieties over finite fields have
productively focused on the case of maximal real multiplication, including results on
point counting [1,7], isogeny graphs [3,9,15], and endomorphism ring computation
[19]. At the other extreme, Centeleghe and Stix have shown that the minimal order
Z[π, π ] is also always Gorenstein, where π is a Weil integer [4, Theorem 11].

1.2 Second perspective: modules over the center

Now consider part (b) of Lenstra’s theorem, where E is a supersingular elliptic curve
overFq with all endomorphisms defined. Before describing the group of rational points
E(Fqn ) as a module over the endomorphism ring EndFq (E), Lenstra first identifies
E(Fqn ) as an abelian group, i.e., a module over Z. Importantly, Z is the center of the
endomorphism ring in this case.

Following this point of view, given a simple abelian variety A over Fq with Frobe-
nius endomorphism π , we will first consider the structure of A(Fqn ) as a module of the
center of EndFq (A). Recall that the center of the endomorphismalgebraEndFq (A)⊗Q

is the field Q(π) [21, Theorem 8]. More generally, we can study A[s] as a module
over the center of the endomorphism ring EndFq (A) for any separable endomorphism
s in the center, which leads us to the following result.

Proposition 3.1 Let A be a simple abelian variety over Fq of dimension g, and let Z
be the center of R = EndFq (A). If s is a separable element of Z for which sZ is the
product of invertible prime ideals in Z, then there is an isomorphism of Z-modules

A[s] ∼= (Z/Zs)d
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where d = 2g/[Q(π) : Q]. Moreover, this Z-module has exactly one R-module struc-
ture, up to isomorphism. The unique R-module structure comes from the isomorphism
of rings R/Rs ∼= Md(Z/Zs), and there is an isomorphism

A[s]d ∼= R/Rs

as R-modules.

This proposition will be proved in Sect. 3 through the study of kernel ideals. The
latter parts of this proposition will follow from Morita equivalence, similarly to The-
orem 1.1 (b). Notice that we must require that sZ is the product of invertible prime
ideals, which is automatically true when Z is a maximal order. For example, let A
be an abelian surface defined over Fp in the isogeny class corresponding to the Weil
polynomial (t2 − p)2 for a prime p �≡ 1 mod 4. This Weil polynomial corresponds
to the Weil restriction of a supersingular elliptic curve over Fp2 , and A is simple over
Fp. The endomorphism ring EndFp (A) is a noncommutative ring whose center is
Z[√p], which is a maximal order by construction because p �≡ 1 mod 4. Hence the
proposition automatically applies in this case for any separable s ∈ Z[√p].

1.3 Main result

Combining the perspectives outlined above, we have the following main result.

Theorem 1.3 For g� 1, let A be a simple abelian variety over Fq of dimension g with
Frobenius endomorphism π . Write K = Q(π) and R = EndFq (A), and let Z be the
center of R.

(a) If [K : Q] = 2g and R is a Gorenstein ring, then

A(Fqn ) ∼= R/R(πn− 1).

(b) If (πn−1)Z is the product of invertible prime ideals in Z, then there is an isomor-
phism of Z-modules

A(Fqn ) ∼= (Z/Z(πn− 1))d,

where d = 2g/[K : Q]. Moreover, this Z-module has exactly one left R-module
structure, up to isomorphism. This R-module structure comes from the isomor-
phism of rings R/R(πn− 1) ∼= Md(Z/Z(πn− 1)), and there is an isomorphism
of R-modules

A(Fqn )
d ∼= R/R(πn− 1).

Notice that parts (a) and (b) of the theorem provide the same answer in the case when
all hypotheses are simultaneously satisfied, e.g. when A is a simple ordinary abelian
variety with maximal endomorphism ring. The theorem follows immediately from the
propositions above, given that A(Fqn ) = A[πn−1] and πn −1 is a separable isogeny,
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as in the elliptic curve case. Propositions 2.1 and 3.1 will be proved in Sects. 2 and 3,
respectively, which completes the proof of our main theorem. Finally, in Sect. 4, we
stitch together all of the isomorphisms described above to understand the structure of
A(Fq) as a module of the endomorphism ring EndFq (A).

2 Gorenstein rings

The goal of this section is to prove the following generalization of Proposition 1.2, as
outlined in the introduction.

Proposition 2.1 Let A be a simple abelian variety over Fq of dimension g with Frobe-
nius endomorphism π . If [Q(π) : Q] = 2g and R = EndFq (A) is a Gorenstein ring,
then there is an isomorphism of R-modules

A[s] ∼= R/Rs

for every separable s ∈ R.

In order to prove this proposition, we will follow a strategy that is largely similar to
the proof of Theorem 1.1 (a) in Lenstra’s original paper. Our approach differs from
Lenstra byworking directlywith finite localGorenstein rings, rather than using duality.
Background for Gorenstein rings can be found in Matsumura’s book [16, Chapter 18].

Lemma 2.2 Let R be aGorenstein domain and s a nonzero element of R. If the quotient
S = R/Rs is finite, then every faithful S-module M contains a submodule that is free
of rank 1 over S.

Proof Notice that S is Gorenstein because R is Gorenstein; see [16, Exercise 18.1].
Additionally, the fact that S is finite implies that it is an Artinian ring. In particular,
it is canonically isomorphic to a finite product of its localizations S = S1× · · · × Sr .
Thus every S-module M has the form M ∼= M1× · · · ×Mr where Mi is an Si -module
for each 1� i � r . This lemma therefore reduces to the following lemma. 	

Lemma 2.3 Let (T ,m) be a finite local Artinian ring that is Gorenstein.

(a) Every nonzero ideal J ⊆ T contained in m contains a nonzero element that is
killed by all elements of m.

(b) Every faithful T -module N contains a submodule that is free of rank 1 over T .

Proof To prove part (a), list the elements of the maximal ideal m = {a1, . . . , ad}.
Define J0 = J , and for each 1� i � d, let Ji be the set of elements of J which are
annihilated by {a1, . . . , ai }. In other words, for each 1� i � d, the ideal Ji is the kernel
of the map fi : Ji−1 → Ji−1 defined by x 
→ ai x . All elements of m are nilpotent,
and therefore the kernel Ji of the map fi is nontrivial precisely when Ji−1 �= 0. Since
J0 �= 0 by hypothesis, it is clear by induction that Ji �= 0 for all 1� i � d. In particular,
there are nonzero elements in Jd ⊆ J which are annihilated by every element of m.

For part (b), let k = T /m be the residue field of T . Because T is a zero-dimensional
Gorenstein ring, the k-vector space Ext0T (k, T ) = HomT (k, T ) is one-dimensional;
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see [16, Theorem 18.1]. Thus the annihilator of m in T is a principal ideal I = tT
where t = φ(1) for some nonzero φ : k → T . Because N is a faithful module, there
is some n ∈ N such that tn �= 0. Let Ann(n) be the annihilator of n, which is an ideal
contained in m.

If Ann(n) = 0, then the submodule Tn ⊆ N is free of rank 1 and we are done. If
Ann(n) �= 0, then part (a) implies that Ann(n) contains a nonzero element x which is
killed by all elements ofm. Since I is the annihilator ofm, this means that x ∈ Ann(n)

is also a nonzero element of I . However, I is a principal ideal that can be viewed as a
module over the field k = T /m, hence every nonzero element of I is a generator. In
particular, xn �= 0 because t ∈ I = xT and tn �= 0. This contradiction completes the
proof. 	

We are now ready to prove the key proposition.

Proof of Proposition 2.1 Put S = R/Rs and M = A[s] for ease of notation. Notice
that M is a faithful S-module: Any r ∈ R such that rM = r A[s] = 0 factors as r = ts
for some t ∈ R, i.e., r ∈ Rs. Indeed, this follows immediately from the universal
property of quotients; see [11, Remark 7 (c)].

Therefore, Lemma 2.2 implies that M contains a free S-submodule of rank 1. Now,
we can count the cardinalities of these sets:

# M = deg s = NK/Qs = # R/Rs = # S.

The first equality comes from the separability of s, and the second equality above is
a well-known theorem [17, Proposition IV.12.12]. Therefore, M ∼= S as an S-module
because their cardinalities are the same. This proves Proposition 2.1. 	


3 Using kernel ideals

In this section, A is a simple abelian variety over Fq with Frobenius endomorphism
π . Then the endomorphism algebra D = EndFq (A)⊗Q is a division algebra with
center K = Q(π) [21, Theorem 8]. Write R = EndFq (A), and let Z be the center of
the endomorphism ring. Our goal in this section is to prove the following result.

Proposition 3.1 If s is a separable element of Z forwhich sZ is the product of invertible
prime ideals in Z, then there is an isomorphism of Z-modules

A[s] ∼= (Z/Zs)d

where d = 2g/[Q(π) : Q]. Moreover, this Z-module has exactly one R-module struc-
ture, up to isomorphism. This R-module structure comes from the isomorphism of
rings R/Rs ∼= Md(Z/Zs), and there is an isomorphism

A[s]d ∼= R/Rs

as R-modules.
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To prove this proposition, we will inspect the isogenies associated to (left) ideals,
inspired by Waterhouse [20]; see also [11, Section 2] for additional background. In
the construction of Waterhouse, a nonzero ideal I ⊆ R is associated to an isogeny
whose kernel is A[I ] = ⋂

α∈I A[α], where A[α] is the kernel of the endomorphism α.
In other words, if I is generated by the elements α1, . . . , αm , then the abelian variety
A/A[I ] is isomorphic to the image of the map (α1, . . . , αm) : A → Am .

Similarly, we can also associate a finite subgroup scheme H of A to a left ideal
I (H) ⊆ R, given by

I (H) = {α ∈ R : H ⊆ A[α]}.

Given a nonzero ideal I ⊆ R, we always have I ⊆ I (A[I ]). If equality holds, then
I is called a kernel ideal. Every nonzero ideal I is contained in a kernel ideal J such
that A[I ] = A[J ].

For our purposes, we will be concerned with isogenies that are associated to ideals
contained in the center I0 ⊆ Z . For convenience, we will write A[I0] in place of
A[I0R]. The goal of this section is to describe A[s] in terms of A[pe jj ] where sZ =
p
e1
1 . . . perr is the factorization of s into invertible prime ideals in Z , which will allow

us to prove Proposition 3.1.

3.1 Basics of invertible ideals

First, we recall some basic key properties about invertible ideals in algebraic number
theory. Within this section, let L denote a number field and letO ⊆ L be an order. The
conductor ideal ofO is defined to be fO = {a ∈ L : aOL ⊆ O}. The following lemmas
show the connection between the conductor ideal and the invertibility of ideals.

Lemma 3.2 If p ⊆ O is a nonzero prime ideal, then the following are equivalent:

• p is invertible, i.e., pI = aO for some ideal I ⊆ O and some a ∈ O;
• p is regular, i.e., the localization Op is integrally closed;
• p is coprime to the conductor ideal fO, i.e., p + fO = O.

Moreover, when these equivalent conditions hold, the localization Op is a discrete
valuation ring.

Proof The prime ideal p is invertible if and only if it is regular by [18, Exercise
I.12.5], which is true if and only if p � fO [18, Proposition 12.10]. To obtain the last
equivalent condition, observe that O is a one-dimensional Noetherian integral domain
[18, Proposition I.12.2], so any nonzero prime ideal of O is maximal. In particular,
p � fO is equivalent to p + fO = O.

Finally, if p is regular, then the localization Op is equal to the localization of the
ring of integers OL at the prime ideal p̂ = pOL [18, Proposition 12.10], and the latter
localization OL,p̂ is known to be a discrete valuation ring [18, Proposition I.11.5]. 	

While the preceding lemma focuses on prime ideals, the following result shows the
connection between invertibility and the conductor ideal in general. In particular, we
see that Proposition 3.1 can be rephrased to require that sZ is coprime to the conductor
ideal fZ of Z instead of requiring that sZ is the product of invertible ideals.
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Lemma 3.3 ([14, Proposition 3.2]) If a ⊆ O is any ideal coprime to the conductor fO,
then a is invertible and is uniquely factored into (invertible) prime ideals.

Recall that the Picard group Pic(O) is defined to be the quotient of the set of invertible
fractional ideals of O by the set of principal fractional ideals. We refer readers to [18,
Section I.12] and [14] for additional background.

Lemma 3.4 Every class of ideals in Pic(O) contains infinitely many prime ideals.

Proof The extension and contraction of ideals provides a natural bijection between the
set of invertible prime ideals ofO and the set of prime ideals ofOL which are coprime
to the conductor ideal fO [14, Lemma 3.3]. Using this bijection, there is a natural
isomorphism of groups that allows us to interpret the Picard group Pic(O) in terms
of fractional ideals of OL which are coprime to the ideal fO [14, Theorem 3.11]. This
reduces the claim to a question concerning ideals in OL , and a generalization of the
Dirichlet density theorem immediately shows that there are infinitely many suitable
prime ideals [18, Theorem VII.13.2]. 	


3.2 Isogenies associated to ideals

Nowwe focus our attention on the invertible ideals of the center Z of the endomorphism
ring R, and investigate the corresponding isogenies.

Lemma 3.5 If I0 ⊆ Z is an invertible ideal, then I0R is an invertible two-sided ideal
of R. In particular, I0R is a kernel ideal.

Proof Clearly I0R is naturally a right ideal, and RI0 is naturally a left ideal, and these
two sets are equal as I0 ⊆ Z is in the center. Thus, I0R is a two-sided ideal.

Because I0 is invertible, there is a fractional ideal J0 of Z such that I0 J0 = Z .
Since Z is the center of R, it also follows that

(I0R)(J0R) = (J0R)(I0R) = R.

Moreover, if J is any fractional two-sided ideal of R such that J ·(I0R) = (I0R) · J =
R, then J0R = (J0R)(I0R)J = J . This proves that J0R is the unique two-sided frac-
tional ideal of R with this property, which we denote (I0R)−1. It follows immediately
from uniqueness that ((I0R)−1)−1= I0R.

Now for any ideal I of R, define (R : I ) = {x ∈ D : x I ⊆ R}. Then we have

(R : I0R) = {x ∈ D : x I0 ⊆ R} = {x ∈ D : I0x ⊆ R}

because x I0R ⊆ R if and only if x I0 ⊆ R, and x I0 = I0x for all x ∈ D because I0 is
contained in the center Z . In particular, (R : I0R) is a two-sided fractional ideal and it
is easy to verify that (R : I0R) = (I0R)−1. Indeed, the containments

R ⊇ (R : I0R) · I0R ⊇ (I0R)−1 ·(I0R) = R
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show that (R : I0R) · I0R = R, and similarly I0R ·(R : I0R) = R. Therefore, we have

(R : (R : I0R)) = ((I0R)−1)−1= I0R.

By [11, Remark 7 (d)], we know that

I (A[I0R]) ⊆
⋂

R f ⊇I0

R f

where the intersection is taken over all elements f ∈ D.
A routine verification shows that

(R : (R : I0R)) = {x ∈ D : x ·(R : I0R) ⊆ R}
= {

x ∈ D : ∀y ∈ D, if I0y ⊆ R, then xy ∈ R
}

= {
x ∈ D : ∀y ∈ D \{0}, if I0 ⊆ Ry−1, then x ∈ Ry−1}

=
⋂

Ry−1⊇I0R

{x ∈ D : x ∈ Ry−1}

=
⋂

Ry−1⊇I0R

Ry−1 =
⋂

R f ⊇I0R

R f

where the final equality comes from simply reindexing the intersection with f = y−1.
Combining all of the containments above, we see that

I0R ⊆ I (A[I0R]) ⊆
⋂

R f ⊇I

R f = (R : (R : I0R)) = I0R

which shows that I0R is a kernel ideal by definition. 	

The lemma above is useful because it shows that the prime ideals appearing in Proposi-
tion 3.1 are actually kernel ideals, which gives us the following important information.
We will write |H | for the rank of a finite subgroup scheme H of A, or equivalently,
the degree of the isogeny πH : A → A/H .

Proposition 3.6 If I0 ⊆ Z is an invertible ideal, then

EndFq (A/A[I0]) = EndFq (A) = R.

Moreover,

|A[I0]| = NK/Q(I0)
2g/[K :Q].

Proof For convenience, write B = A/A[I0]. Because I0R is a kernel ideal by
Lemma 3.5, the endomorphism ring EndFq (B) is equal to the right order of I0R
[20, Proposition 3.9], which we denote by

Or (I0R) = {x ∈ D : (I0R) · x ⊆ I0R}.

123



The structure of the group of rational points of an abelian variety... 1133

Since I0R is a two-sided ideal, clearly R ⊆ Or (I0R). Conversely, let x ∈ Or (I0R).
Then

Rx = (I0R)−1(I0R)x ⊆ (I0R)−1 I0R = R

because I0R is an invertible ideal. Therefore, x ∈ R and EndFq (B) = Or (I0R) = R.
To prove the second claim, first assume that I0 = αZ is a principal ideal. Then

A[I0] = A[α] and |A[I0]| = degα, so the claim is known [17, Proposition V.12.12].
Now suppose I0 is not principal. Because I0 is an invertible ideal of Z , we can pick

an ideal J0 ⊆ Z such that I0 J0 = λZ and NK/Q(J0) is coprime to |A[I0]|. Indeed,
there are only finitely many prime factors of |A[I0]|, while there are infinitely many
prime ideals in the equivalence class [I0]−1∈ Pic(Z) by Lemma 3.4. Multiplication of
ideals corresponds to composition of isogenies [20, Proposition 3.12], and therefore

|A[I0]| · |B[J0]| = |A[I0 J0]| = |A[λ]|
= NK/Q(λ)2g/[K :Q] = NK/Q(I0)

2g/[K :Q]NK/Q(J0)
2g/[K :Q].

Now the fact that the rank of A[I0] is coprime to NK/Q(J0) means that |A[I0]|
divides NK/Q(I0)2g/[K :Q]. But the same must be true for J0, so |B[J0]| divides
NK/Q(J0)2g/[K :Q] as well. Therefore, equality must hold, as claimed. 	

Because we are ultimately only concerned with separable isogenies, we will restrict
our attention to this case now. Recall that the kernel of a separable isogeny φ : A → A′
can be identified with a finite subgroup of A(Fq) of cardinality degφ.

Lemma 3.7 If r � , and p ⊆ Z is an invertible prime ideal which corresponds to a
separable isogeny, then

A[pr ] ∼= (Z/pr )2g/[K :Q]

is an isomorphism of Z-modules.

Proof First, A[p] is a Z/p-module. But Z/p is a field, so A[p] is a vector space, and
therefore A[p] ∼= (Z/p)m for some m. We have m = 2g/[K : Q] by counting the
cardinality of each side with Proposition 3.6.

Now we proceed by induction. Given r � 2, we know that A[pr ] is a finitely gen-
erated module over Z/pr ∼= Zp/p

r Zp. Because Zp is a discrete valuation ring by
Lemma 3.2, we can apply the structure theorem for finitely generated modules [5,
Theorem 12.1.6] to deduce that A[pr ] is the direct sum of modules of the form
Zp/p

i Zp
∼= Z/pi for 1� i � r .

Further, A[pr ] contains A[pr−1], which is of the form (Z/pr−1)2g/[K :Q] by assump-
tion. Thus, writing A[pr ] ∼= Z/pr1 × · · · × Z/prs implies that s = 2g/[K : Q]. By
counting the cardinality, we must have r j = r for all 1� j � s. 	


3.3 Proof of main result

Now we are ready to prove the main result of this section.
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Proof of Proposition 3.1 We factor (s) = p
e1
1 . . . perr . Notice that for any nonzero I , J ⊆

R, we have A[I ] ∩ A[J ] = A[I + J ] by definition because I + J is generated by
I ∪ J . Thus, coprime ideals correspond to subgroups with trivial intersection, and we
conclude that we have an isomorphism of Z -modules:

A[s] ∼= A[pe11 ]× · · · × A[perr ].

For each 1� i � r , we see that A[peii ] ∼= (Z/p
ei
i )2g/[K :Q] by the proposition above. By

the Chinese Remainder Theorem, we conclude that

A[s] ∼= (Z/Zs)2g/[K :Q]

as desired.
Now write d = 2g/[K : Q] for convenience. To prove the second claim, we notice

that the endomorphism ring of the Z -module A[s] ∼= (Z/Zs)d is the ring of d×d
matrices over Z/Zs, which we write as End Z (A[s]) = Md(Z/Zs). As in the proof
of Proposition 2.1, we see that A[s] is a faithful R/Rs-module, so the map R/Rs →
End Z (A[s]) induced by the natural R-module structure on A[s] is injective.Moreover,
s defines a linear map on the lattice R ⊆ D, so we have

#(R/Rs) = ND/Q(s) = NK/Q(ND/K (s)) = NK/Q(s)[D:K ],

where ND/Q(s) and ND/K (s) denote the determinants of s : D → D as a linear map
over Q and K , respectively. On the other hand, it is clear that

#Md(Z/Zs) = NK/Q(s)d
2 = NK/Q(s)[D:K ]

because d2 = [D : K ]; see [21, Theorem 8]. Therefore, R/Rs and Md(Z/Zs) have
the same cardinality, so the injective ring map R → Md(Z/Zs) is an isomorphism.

Therefore, to prove that A[s] has exactly one R-module structure, it suffices to show
that (Z/Zs)d has exactly one Md(Z/Zs)-module structure. Morita equivalence states
that every Md(Z/Zs)-module M ′ is isomorphic to Md for some Z/Zs-module M ,
where Md is given the natural left Md(Z/Zs)-module structure defined by applying
matrices to column vectors; see [10, Proposition 1.4]. Thus we simply need to know
that if a Z -module M satisfies Md ∼= (Z/Zs)d , then M ∼= Z/Zs. But, as above, s is
the product of invertible primes, so M must be of the desired form.

Finally, we notice that Md(Z/Zs) is isomorphic to ((Z/Zs)d)d as a module over
itself, which proves the final claim. 	


4 Considering the algebraic closure

Now that we have considered the module structure of the group of rational points of a
simple abelian variety over a finite field Fq , we turn our attention towards the algebraic
closure Fq . Because Fq is the union of all its finite subfields, we can stitch together
the isomorphisms from Propositions 2.1 and 3.1 to recover the following theorem.
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As before, given a simple abelian variety A of dimension g over Fq , we write
R = EndFq (A) and define Z to be the center of R. Let [Z : Z] denote the rank of Z as a
Z-module.Write S ⊆ Z for the set of separable isogenies in Z , and RS (resp. ZS) for the
left R-submodule (resp. Z -submodule) of the endomorphism algebra R⊗Q generated
by the set {s−1 : s ∈ S}. Equivalently, these can be recognized as localizations by the
set S.

Theorem 4.1 For g� 1, let A be a simple abelian variety over Fq of dimension g. Let
R = End

Fq
(A), and let Z be the center of R.

(a) If [Q(π) : Q] = 2g and R is a Gorenstein ring, then

A(Fq) ∼= RS/R

is an isomorphism of R-modules.
(b) If Z is a maximal order, then

A(Fq) ∼= (ZS/Z)d

is an isomorphism of Z-modules where d = 2g/[Z : Z]. Moreover, this Z-module
has exactly one left R-module structure, up to isomorphism, and there is an iso-
morphism

A(Fq)
d ∼= RS/R

as R-modules.

Proof Notice that, in any case, we have

A(Fq) =
⋃

s∈S
A[s] =

⋃

n � 1

A[πn− 1] =
⋃

n � 1

A(Fqn )

where π denotes the Frobenius endomorphism of A over Fq . Indeed, it is clear that
each term contains the next, and the final term equals the first. This allows us to deduce
the theorem after describing only A[s] for s ∈ S.

For part (a), the hypotheses allowus to applyProposition 2.1 to obtain isomorphisms
A[s] ∼= R/Rs ∼= s−1R/R for every separable s ∈ R. In other words, for each s ∈ S,
the set Ws of isomorphisms between A[s] and s−1R/R is nonempty. Moreover, if s
and t are two separable endomorphisms such that s divides t , then the isomorphism
A[t] ∼−−→ t−1R/R maps the submodule A[s] isomorphically to s−1R/R. Thus the set
{Ws}s∈S forms a projective system of nonempty finite sets, and the projective limit
of this system is nonempty [2, Section 7.4, Théorème 1]. In particular, there exists a
simultaneous choice of isomorphisms A[s] → s−1R/R for all s ∈ S that commutes
with the natural inclusions of sets, and the result follows by taking the union over all
s ∈ S.

Part (b) follows similarly. Indeed, for each s ∈ S, Proposition 3.1 provides an
isomorphism A[s] ∼= (Z/Zs)d ∼= (s−1Z/Z)d . By the same projective limit argument
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given for part (a), we obtain the desired isomorphism A(Fq) ∼= (ZS/Z)d . Similarly,
we obtain the isomorphism A(Fq)

d ∼= RS/R.
Finally, any two R-module structures on (ZS/Z)d give rise to two R-module struc-

tures on (s−1Z/Z)d for each s ∈ S. Since this structure is known to be unique by
Proposition 3.1, we obtain compatible isomorphisms for all s ∈ S, and yet again obtain
the desired isomorphism through the projective limit construction. 	
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