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EVERY FINITE ABELIAN GROUP IS THE GROUP OF
RATIONAL POINTS OF AN ORDINARY ABELIAN VARIETY OVER F;, F3 AND Fs

STEFANO MARSEGLIA AND CALEB SPRINGER
(Communicated by Rachel Pries)

Abstract. We show that every finite abelian group occurs as the group of rational
points of an ordinary abelian variety over F, Fzand Fs. We produce partial results for
abelian varieties over a general finite field F,. In particular, we show that certain
abelian groups cannot occur as groups of rational points of abelian varieties over Fq
when g is large. Finally, we show that every finite cyclic group arises as the group of
rational points of infinitely many simple abelian varieties over F.

1. Introduction

Recently, Howe and Kedlaya [HK21] proved that every positive integer m is the
order of the group of rational points of an ordinary abelian variety over F,. Shortly
afterwards, Van Bommel, Costa, Li, Poonen and Smith [vBCL*21] extended the result
to the finite fields Fz and Fs. Similar results, with some exceptions, are obtained for the
finite fields F4, F; and, when m is large enough, for a general finite field F;. In another
direction, Kedlaya expanded the result of [HK21] to prove that every positive integer
is the order of the group of rational points of infinitely many (not necessarily ordinary)
simple abelian varieties over F, [Ked21, Theorem 1.1]. The goal of this paper is to
strengthen these results from statements regarding cardinality to statements
regarding groups.

1.1. Finite fields of small cardinality. For clarity, we start with a simplified statement
of our first main result. Recall that an abelian variety A of dimension g over a finite

field of characteristic p is called ordinary, resp. almost ordinary, if the p-torsion of A(F,
) consists of p9 points, resp. p9-1.

Main Theorem 1. Let G be a finite abelian group. Then the following statements hold.
(1) Let k be one of the finite fields F», F3 or Fs. Then there is an ordinary abelian
variety A defined over k, such that A(k) =~ G.
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(2) Over F4, there is an abelian variety B which is either ordinary or almost ordinary

such that B(F4) =~ G.

In fact, over F, the proof of this result also provides a way to bound the dimension
of the abelian variety A appearing in the theorem. Moreover, the non-ordinary abelian
varieties used over F4can be described precisely. The version of the theorem including
all details appears in Section 3 as Theorem 3.3.

The outline of the proof of the first part of Main Theorem 1 is as follows. To begin,
we reduce to the case when the group G is cyclic, and we focus our attention on
isogeny classes with the key property of being square-free; see Definition 2.1. Square-
free isogeny classes over prime fields F, and square-free ordinary isogeny classes over
any finite field F4 are well-understood in terms of fractional ideals in ‘etale algebras
over Q; see Definition 2.2 and Proposition 2.5. Using this description, we prove that in
every such isogeny class there is an abelian variety with cyclic group of points; see
Proposition 2.7. Therefore, because the number of rational points on an abelian
variety is an isogeny invariant [Tat66, Theorem 1.(c)], we simply require a square-
free isogeny class of abelian varieties with the correct number of points. The result of
Howe and Kedlaya [HK21] provides the necessary isogeny classes in the case of F;,
and the result of Van Bommel et al. [vBCL*21] does the same for the remaining cases.
See Theorems 3.1 and 3.2 for the precise statements of their results. This allows us to
conclude the proof of the first part of Main Theorem 1. The second part requires a
small modification of the argument since there is no ordinary abelian variety over Fa
with 3 rational points; see [vBCL*21, Remark 1.16]. The argument shows that any
finite cyclic group is the group of rational points of a square-free ordinary abelian
variety over F;, Fzand Fs; see Corollary 3.5. The same is true over F4and F7, with some
exceptions; see again Corollary 3.5 and Corollary 3.6.

1.2. Finite fields of arbitrary cardinality. We pause to stress that Propositions 2.5
and 2.7 work over any finite field F,. Since [vBCL*21] shows that, for any prime power
q, every sufficiently large integer is the order of an abelian variety defined over Fg, this
gives us Main Theorem 2.

Main Theorem 2. Let q be a prime power. If m,..,m,are integers satisfying m;> q3Valoga
for all i, then the group Z/miZ x -+ x Z/m,Z is isomorphic to the group of rational points

of an ordinary abelian variety over F,.

Main Theorem 2 is recalled in Section 4 as Theorem 4.4, together with further
discussion about general finite fields. For example, we show that abelian groups of
small exponent, regardless of cardinality, never appear as a group of rational points
for an abelian variety over F,when q is large; see Proposition 4.2.

1.3. Infinitely many occurrences. We now return to the finite field F,. After proving
that every positive integer is the order of the group of rational points of infinitely
many simple abelian varieties over F, [Ked21, Theorem 1.1], Kedlaya suggested that
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it would be interesting to show an analogous statement regarding groups. The results
contained in Section 2 allow us to immediately deduce that every finite cyclic group
is the group of rational points of infinitely many simple abelian varieties over F,; see
Proposition 5.2. Using this, we can prove the following stronger statement, which will
be recalled in Section 5 as Theorem 5.3.

Main Theorem 3. For every n = 1, there is an infinite set of Weil 2-polynomials {fn,j(t)}jzl

which are pairwise coprime and enjoy the following property. For each j, every finite
abelian group of cardinality n arises as the group of rational points of an abelian variety
with Weil polynomial f,j(t).

However, as noted by Kedlaya, a result of Kadets [Kad21] shows that these results
are impossible over F, for larger g. Indeed, if q > 2, then for each positive integer m
there are only finitely many simple abelian varieties with m rational points.

1.4. Related work. We conclude this section by outlining additional relevant
literature. The groups of points of elliptic curves have been studied extensively, in
particular in relation to their application to cryptography; see for example [Ru'c87],
[TVNO7, Theorem 3.3.15], and [V0l88]. The groups of points of abelian surfaces have
been studied by Xing in [Xin94] and [Xin96], Rybakov in [Ryb12], and by David et al.
in [DGS*14]. Such results were extended to dimension three by Kotelnikova in
[Kot19]. Giangreco-Maidana determined precisely when a given Weil polynomial
corresponds to a cyclicisogeny class (Definition 2.6) in [GM19,GM20, GM21]. Rybakov
provided classification results for the group of points in [Ryb10] and [Ryb15] in terms
of the Newton polygon of the characteristic polynomial of Frobenius. The second
author gave a classification in terms of the endomorphism ring of the abelian variety
in [Spr21].

2. The square-free case

Definition 2.1. An isogeny class of abelian varieties over Fqis called square-free if the
corresponding characteristic polynomial of Frobenius (also known as its Weil
polynomial) has no multiple complex roots. An abelian variety A over F, is called
square-free if it belongs to a square-free isogeny class.

Definition 2.2. Let A be an abelian variety over a finite field F,. We say that A satisfies
condition Ord if it is ordinary. We say that A satisfies condition CS if q is a prime
number and the Weil polynomial has no real roots; such abelian varieties were
studied by Centeleghe and Stix in [CS15].

Note that in [HK21], an isogeny class is called square-free if the isogeny
decomposition has no repeated factors. Their definition differs from ours in general,
so we provide Lemma 2.3 to disambiguate the use of terminology. For example, we do
not call an elliptic curve over F,:with Weil polynomial (x-p)? square-free in this paper
even though it is simple.

Lemma 2.3. Let A be an abelian variety over F,. The following are equivalent.

(1) A has square-free Weil polynomial, i.e. A is square-free.
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(2) The endomorphism algebra Endg(A) @ Q is commutative.

Additionally, these conditions imply the following.
(3) The isogeny decomposition of A contains no repeated factors.

Moreover, if A satisfies Ord or CS, then all three conditions are equivalent. In particular,
if A satisfies Ord or CS, then A is simple if and only if its Weil polynomial is irreducible.
Proof. The first equivalence is [Tat66, Theorem 2(c)]. The implication that the first two
conditions imply the third follows from [Tat66, Theorem 1(b)]. For property Ord, it
follows from Honda-Tate theory that an ordinary isogeny class is simple if and only if
its Weil polynomial is irreducible; see for example [How95, Theorem 3.3]. For
property CS, note that the Weil polynomial of any simple abelian variety over a prime
finite field Fpis irreducible, unless the Weil polynomial has a real root; see for example
[Wat69, Theorem 6.1] or [Tat71, p.96].

Remark 2.4. Over a prime field F,, there is only one simple isogeny class whose Weil
polynomial has real roots, namely (x% - p)2

Square-free abelian varieties satisfying Ord or CS are well-understood in terms of
fractional ideals, thanks to certain equivalences of categories proved by Deligne in
[Del69] and Centeleghe-Stix in [CS15]. We summarize the relevant results in the
following Proposition; see [Mar21, Cor. 4.4 and Cor. 4.7] for the proofs. Let fs be the
characteristic polynomial of Frobenius for a square-free abelian variety A satisfying
Ord or CS. Let K be the “etale algebra generated by the Frobenius endomorphism 7,
thatis, K= Q[r] = Q[x]/(fa). Denote by Z[m, ] the order in K generated by the Frobenius
and Verschiebung endomorphisms.

Proposition 2.5. There is an equivalencel F between the category of abelian varieties
isogenous to A (with Fe-homomorphisms) and the category of fractional Z[m,]-ideals in
K (with Z[m,m]-linear morphisms). In particular, if F(B) = I then we have an isomorphism
of finite abelian groups

_

(r— 1L

Before applying this proposition and concluding this section, we recall one more
definition.

B(F,) =

Definition 2.6. An abelian variety A over F;is cyclic if A(F4) is a cyclic group. An
isogeny class is cyclic if every abelian variety in the isogeny class is cyclic.

Using Proposition 2.5, we can prove the existence of cyclic abelian varieties within
every isogeny class satisfying Ord or CS. Proposition 2.7 can be viewed as a
generalization of a result of Galbraith for elliptic curves [Gal99, Lemma 1].

Proposition 2.7. Every square-free isogeny class over Fqsatisfying Ord or CS contains a
cyclic abelian variety

11n the CS case, the functor is contravariant. This detail is not needed in this paper.
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Proof. We fix a square-free isogeny class over F, satisfying Ord or CS. By Proposition
2.5 there exists an abelian variety A in such an isogeny class such that F(4) = Z[n,7].
Observe that a natural surjective map

Zlz, vy . Z[ﬂ',ﬂ
fa(z),zy _gqx _1) (7 _1)

is induced by mapping x to w and y to 7 ) HOamderfux{g. The target of ¢ is isomorphic
to the group of rational points A(F;) by Proposition 2.5. To conclude the proof, we will
show that the domain is a cyclic group of order fs(1) = #A4(F,), which implies that the
natural surjective map is actually an isomorphism.

it

We note that the closely-related surjective map Z[xy]/(fa(x),xy -q) = Z[m,m] is not an
isomorphism in general; see [CS15, Theorem 11] for the correct description of Z[m, 7]
which could be used in an alternate presentation of this proof.

By the division algorithm we can write fa(x) = (x - 1)p(x) + fa(1), for some
polynomial p(x). This relation together with y-q = (xy-q)-y(x-1) shows that we have

the following equality of ideals of Z[xy]:

Gy gx 1=
(Fa(1)x 1y wule e 9
Therefore the evaluation map ( ) induces an isomorphism

Zlz,y) Z

~

(fa(l,z 1y q)  (fa(1)) _

We conclude that ¢ is an isomorphism and A(F,) is a cyclic group.

Remark 2.8. We note that the same result can be deduced from [Ryb10], and in the
simple case, the result can also be deduced from [Spr21, Theorem 1.3]. Our proof
shows that we can choose the cyclic ordinary abelian variety A to have endomorphism
ring isomorphic to Z[m,n]. In fact, any abelian variety in the given isogeny class with
minimal endomorphism ring is cyclic because Z[mm] is Gorenstein; see [CS15,
Theorem 11].

3. Proof of Main Theorem 1
We now focus on abelian varieties defined over F,. As indicated in the introduction,
Howe and Kedlaya proved Theorem 3.1.

Theorem 3.1 ([HK21, Theorem 1]). Let m > 0 and d > 2 be integers with m < (4/3)24+
1. Then there is a square-free ordinary abelian variety A over F, of dimension at most d
with m = #A(F,).

Over F3Fsand Fs, Van Bommel et al. proved the following result.

Theorem 3.2 ([vBCL21, Theorem 1.13(a), Remarks 1.16 and 1.18]). Let m be a
positive integer and k be F3,F4or Fs. Then there is a square-free abelian variety A over k
with m = #A(k). One can choose A to be ordinary except in the case m = 3 and k = F4.

We are now ready to complete the proof of Main Theorem 1.
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Theorem 3.3. Let
G=2/nZx+x2/n'Z
be a finite abelian group. The following statements hold.

o Let k be one of the finite fields F,,F3,Fs. Then there is an ordinary abelian variety
A defined over k, such that A(k) =~ G;

e There is an abelian variety B over F4, such that B(F4) =~ G and B is either
ordinary or of the form B = B' x I where Bis ordinary and E belongs to the
unique isogeny class of supersingular elliptic curves over F4 with 3 rational

points; see the LMFDB label [LMF21, 1.4.ac]. The variety B can be taken to be
ordinary unless G is a 3-group such that G =~ (Z/3Z)m x [1;o1(Z/3Z)" for ny
odd.

Moreover, if k=F; and d.,...,d, are integers satisfying nj<(4/3)2%+1 and d; = 3 for each 1
<j <1, then there is an ordinary abelian variety A defined over F; of dimension at most
d=dy+ - +drsuch that A(F2) =~ G.

Proof. Assume that k is one of the finite fields F3, F3, or Fs. We can immediately reduce
to the case when r = 1, that is, when the group G is cyclic. By Theorems 3.1 and 3.2,
there exists a square-free ordinary isogeny class over k with |G| rational points. By
Proposition 2.7, we have an abelian variety A within this isogeny class with cyclic
group of points, that is, we have A(k) =~ G.

We deal now with the finite field F4. Consider the simple ordinary isogeny class of
abelian surfaces over F; with 9 rational points given by the Weil polynomial x*-3x3
+7x%2 -12x+16; see the LMFDB label [LMF21, 2.4.ad _h]. Let K = Q(m) be the
Ok L Z

(Trf 1)(9{( - 37 x E
be the maximal order of K. We observe that

endomorphism algebra of this isogeny class and let Ok

Hence by Proposition 2.5, in this isogeny class there is an abelian surface By with
group of rational points isomorphic to (Z/3Z)2. Let E belong to the unique isogeny
class of supersingular elliptic curves over F4with 3 rational points; see the LMFDB
label [LMF21, 1.4.ac].

Write the group G as a product of cyclic groups

G =~ (2/32)20x (Z/51Z) % -+ x (Z/57Z),

where 6 € {0,1}, e 2 0 and each s;is a prime power satisfying either s;= 2 or s;> 3 for
allj. Using Theorem 3.2 with the method from above, we can find an ordinary abelian
variety B1 over F4 whose group of rational points is isomorphic to (Z/s12)x--x(Z/sZ).

If G is not a 3-group then there exists an s;which is not divisible by 3, say s1. Again, the
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above construction using Theorem 3.2 gives us an over F4 whose group of rational
ordinary abelian variety B{ points is isomorphic to
Z] Z Zls L [ 3s1) % x ( 2.
With this set up, we now distinguish three cases. If § = 0 then we set B =
B§ x By. 1f 0= 1 and G is not a 3-group then set® = B X B Finally,if6=1and G is
a 3-group then we setB = E° x B§ x Bi 1n all three cases, we have that
B(F4) =~ G by construction and the Chinese Remainder Theorem. In the first two

cases, the variety B is ordinary, while in the last one B is almost ordinary.

Remark 3.4. We stress that Theorem 3.3 does not exclude the existence of ordinary
abelian varieties over F; with group of points isomorphic to (Z/3Z)m x

[ (Z/372)™ forny g4 Indeed, the LMFDB [LMF21] contains ordinary abelian

varieties over F4 with group of points Z/3Z x Z/9Z; for example, see the isogeny class
with label [LMF21, 2.4.b_f]. However, the LMFDB does not currently contain any
ordinary abelian varieties over F; with a group of rational points isomorphic to
(2/3Z)%e*1 for e = 1. Nonexistence when e = 0 follows from [Kad21, Theorem 3.2]; see
[VBCL*21, Remark 1.16]. Proving more general existence or nonexistence results will
require additional understanding of which groups can occur as the group of rational

points of an abelian variety in a given isogeny class.

From the proof of Theorem 3.3 we immediately deduce the following special case.

Corollary 3.5. Let k be one of the finite fields F,, F3 or Fs. Let G be a finite cyclic abelian
group. Then there is:

* a square-free ordinary abelian variety A over k with A(k) =~ G; and

¢ a square-free abelian variety B over F4 with B(F4) =~ G, which we can choose to
be ordinary ifG # L[3L
In a similar fashion, using [vBCL*21, Theorem 1.13(a), Remarks 1.17 and 1.18], we
can achieve a result analogous to Corollary 3.5 for abelian varieties over the finite field
F-.

Corollary 3.6. Let G be a finite cyclic abelian group G| & {2,8, 14, 16, 17
with73}. T

Then there is a square-free ordinary abelian variety A over F; with A(F7) =~ G.

Remark 3.7. Using Proposition 2.7 or Remark 2.8, one can construct square-free
abelian varieties over F7, necessarily non-ordinary, with group of rational points
isomorphic to Z/8Z and 2/73Z.
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4., Proof of Main Theorem 2

For large g, the Weil bounds prohibit the existence of abelian varieties over F,with
a relatively small number of points; see [Wei48] and [Kad21]. However, in [vBCL+21]
it is proven that:

Theorem 4.1 ([vBCL*21, Theorem 1.13(b), Remarks 1.16 and 1.18]). For an arbitrary
prime power q, every integer m > q3Valgd arises as m = #A(F,) for some ordinary square-
free abelian variety A over F,.

Still, Theorem 4.1 does not imply that every abelian group of sufficiently large
order arises as the group of points of an abelian variety over F,, as shown by
Proposition 4.2, which was suggested by Bjorn Poonen.

Proposition 4.2. Let m > 1 be an integer and q a power of a prime p. Suppose there
exists an abelian variety A over Fqsuch that A(F,) is a group of exponent m. Then we
have the following.

(1) Unconditionally, q < (m + 1)% <V (2) If m is also a
power of p, then we haveq  ( m+1)2

Proof. Suppose that g is the dimension of A. Then, using the Weil bounds and the
structure of torsion subgroups, we get

(V= 1)* < #A(F,) < #A(F,)[m] <m?,
Rearranging, we obtain q < (m + 1)2. The stricter upper bound follows similarly by

using the structure of the pe-torsion of an abelian variety in characteristic p.

Corollary 4.3. If g > 9 or q = 8, then the group (Z/2Z) for r 2 1 does not arise as the
group of rational points for any abelian variety over F,.

Theorem 4.4, whose proof is exactly like that of Theorem 3.3, is the best that can
be obtained with our current methods. The nonexistence results above show that
restrictions on the sizes of the cyclic factors are necessary. We observe that there are
some finite abelian groups which are not outlawed by Proposition 4.2 but which are
also not realized in Theorem 4.4. For general q, determining which of these groups
arise as the group of rational points of an ordinary abelian variety over F;remains an
open question for future research.

Theorem 4.4. Let q be a prime power. If my,..,m.are integers satisfying m; > q3Valoga for
all i, then the group Z/myZ x---x Z/m,Z is isomorphic to the group of rational points of
an ordinary abelian variety over Fq.

In the previous section, we deduced that certain cyclic groups can be realized as
the group of rational points of a square-free abelian variety over F, for various small
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values of g; see Corollaries 3.5 and 3.6. For arbitrary q, we prove an analogous
corollary concerning square-free abelian varieties with an explicit bound for the size
of the group.

Corollary 4.5. Fix a prime power q and let m be an integer satisfying m > q3Valogs, Then
there is a square-free ordinary abelian variety over F, whose group of rational points is
isomorphic to Z/mZ.

Alternatively, we prove the following result concerning geometrically simple abelian
varieties. As a trade-off for this stronger condition on the abelian variety, there is no
effective lower bound for the size of the group in Theorem 4.6.

Theorem 4.6. Fix a prime power q and let n be sufficiently large with respect to q. There

is a geometrically simple ordinary abelian variety A over F;with A(Fq) =~ Z/nZ

Proof. When n is sufficiently large, another result [vBCL*21, Corollary 1.3] from the
same paper as Theorem 4.1 proves that there is a geometrically simple ordinary
abelian variety Ao over Fq with |Ao(Fq)| = n. By Proposition 2.7, there is an abelian

variety A isogenous to Ao which is cyclic, which concludes the proof.

5. Proof of Main Theorem 3

The goal of this section is to prove Main Theorem 3. As a foundation, we have the
following result of Kedlaya regarding cardinality.

Theorem 5.1 (Theorem 1.1, [Ked21]). Every positive integer is equal to the order of
the group of rational points of infinitely many simple abelian varieties (of various
dimensions) over F.

Using this result together with Lemma 2.3, Remark 2.4 and Proposition 2.7, we can
immediately prove the following result.

Proposition 5.2. Let n 2 1 be a positive integer. There are infinitely many simple abelian

varieties A over F, with A(F2) =~ Z/nZ

When searching for examples of (possibly non-simple) abelian varieties A over F;
such that A(F2) is isomorphic to a given finite abelian group G, there is one way to
“cheat” to find an infinite number of examples: Find one example Ao with A¢(F2) =~ G
using Theorem 3.3, then consider the infinite set {4o xB | #B(Fz) = 1}. The fact that
there are infinitely many abelian varieties B over F; with only one point is a special
case of Kedlaya’s theorem which was originally proven by Madan and Pal [MP77]. In
order to prove the existence of genuinely interesting infinite storehouses of examples,
we find examples with pairwise coprime Weil polynomials. This corresponds to
finding examples whose isogeny classes share no simple factors in common. We now
prove Main Theorem 3.

Theorem 5.3. For every n = 1, there is an infinite set of Weil 2-polynomials {ﬁ,J(t)}jzl

which are pairwise coprime and enjoy the following property. For each j, every finite
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510 STEFANO MARSEGLIA AND CALEB SPRINGER

abelian group of cardinality n arises as the group of rational points of an abelian variety
with Weil polynomial f,,(t).

Proof. Writen = f1...4., where {1,....¢ are primes that are not necessarily
distinct. By Proposition 5.2, for each 1 < i < r, there are infinitely many simple abelian
varieties A; over Fasuch thatAi(F2) = Z/t;Z, By Remark 2.4, there is only one simple
isogeny class over F; whose Weil polynomial has real roots; see [LMF21, 2.2.a_ae].
Hence, by Lemma 2.3, we can choose the A; to have distinct irreducible Weil
polynomials. Let C be the isogeny class of A1 x --- x A4,. Note that C is square-free by
construction.

Because each sub-product HJES 4 for S c {1,..,r}is also square-free, we can apply
Proposition 2.7 to get a cyclic isogenous variety As satisfying As(Fz) =~ Z/(H_—,'es t;)2
. In this way, we obtain all abelian groups of cardinality n as the group of rational
points of an abelian variety in C.

Remark 5.4. With the currently technology we are not able to determine whether,
given an arbitrary finite abelian group G, there are infinitely many simple abelian
varieties over F, with group of rational points isomorphic to G. A possible approach to
this questions is to study which groups can occur in a given isogeny class.
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