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Abstract. We show that every finite abelian group occurs as the group of rational 

points of an ordinary abelian variety over F2, F3 and F5. We produce partial results for 

abelian varieties over a general finite field Fq. In particular, we show that certain 

abelian groups cannot occur as groups of rational points of abelian varieties over Fq 

when q is large. Finally, we show that every finite cyclic group arises as the group of 

rational points of infinitely many simple abelian varieties over F2. 

1. Introduction 

Recently, Howe and Kedlaya [HK21] proved that every positive integer m is the 

order of the group of rational points of an ordinary abelian variety over F2. Shortly 

afterwards, Van Bommel, Costa, Li, Poonen and Smith [vBCL+21] extended the result 
to the finite fields F3 and F5. Similar results, with some exceptions, are obtained for the 

finite fields F4, F7 and, when m is large enough, for a general finite field Fq. In another 

direction, Kedlaya expanded the result of [HK21] to prove that every positive integer 
is the order of the group of rational points of infinitely many (not necessarily ordinary) 

simple abelian varieties over F2 [Ked21, Theorem 1.1]. The goal of this paper is to 

strengthen these results from statements regarding cardinality to statements 
regarding groups. 

1.1. Finite fields of small cardinality. For clarity, we start with a simplified statement 
of our first main result. Recall that an abelian variety A of dimension g over a finite 

field of characteristic p is called ordinary, resp. almost ordinary, if the p-torsion of
) consists of pg points, resp. pg−1. 

Main Theorem 1. Let G be a finite abelian group. Then the following statements hold. 

(1) Let k be one of the finite fields F2, F3 or F5. Then there is an ordinary abelian 

variety A defined over k, such that A(k) =∼ G. 
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(2) Over F4, there is an abelian variety B which is either ordinary or almost ordinary 

such that B(F4) =∼ G. 

In fact, over F2, the proof of this result also provides a way to bound the dimension 

of the abelian variety A appearing in the theorem. Moreover, the non-ordinary abelian 
varieties used over F4 can be described precisely. The version of the theorem including 

all details appears in Section 3 as Theorem 3.3. 

The outline of the proof of the first part of Main Theorem 1 is as follows. To begin, 
we reduce to the case when the group G is cyclic, and we focus our attention on 
isogeny classes with the key property of being square-free; see Definition 2.1. Square-
free isogeny classes over prime fields Fp and square-free ordinary isogeny classes over 

any finite field Fq are well-understood in terms of fractional ideals in ´etale algebras 

over Q; see Definition 2.2 and Proposition 2.5. Using this description, we prove that in 

every such isogeny class there is an abelian variety with cyclic group of points; see 
Proposition 2.7. Therefore, because the number of rational points on an abelian 
variety is an isogeny invariant [Tat66, Theorem 1.(c)], we simply require a square-
free isogeny class of abelian varieties with the correct number of points. The result of 
Howe and Kedlaya [HK21] provides the necessary isogeny classes in the case of F2, 

and the result of Van Bommel et al. [vBCL+21] does the same for the remaining cases. 

See Theorems 3.1 and 3.2 for the precise statements of their results. This allows us to 
conclude the proof of the first part of Main Theorem 1. The second part requires a 
small modification of the argument since there is no ordinary abelian variety over F4 

with 3 rational points; see [vBCL+21, Remark 1.16]. The argument shows that any 
finite cyclic group is the group of rational points of a square-free ordinary abelian 

variety over F2, F3 and F5; see Corollary 3.5. The same is true over F4 and F7, with some 

exceptions; see again Corollary 3.5 and Corollary 3.6. 

1.2. Finite fields of arbitrary cardinality. We pause to stress that Propositions 2.5 
and 2.7 work over any finite field Fq. Since [vBCL+21] shows that, for any prime power 

q, every sufficiently large integer is the order of an abelian variety defined over Fq, this 

gives us Main Theorem 2. 

Main Theorem 2. Let q be a prime power. If m1,...,mr are integers satisfying mi ≥ q3√q logq 

for all i, then the group Z/m1Z × ··· × Z/mrZ is isomorphic to the group of rational points 

of an ordinary abelian variety over Fq. 

Main Theorem 2 is recalled in Section 4 as Theorem 4.4, together with further 
discussion about general finite fields. For example, we show that abelian groups of 
small exponent, regardless of cardinality, never appear as a group of rational points 
for an abelian variety over Fq when q is large; see Proposition 4.2. 

1.3. Infinitely many occurrences. We now return to the finite field F2. After proving 

that every positive integer is the order of the group of rational points of infinitely 
many simple abelian varieties over F2 [Ked21, Theorem 1.1], Kedlaya suggested that 
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it would be interesting to show an analogous statement regarding groups. The results 
contained in Section 2 allow us to immediately deduce that every finite cyclic group 
is the group of rational points of infinitely many simple abelian varieties over F2; see 

Proposition 5.2. Using this, we can prove the following stronger statement, which will 

be recalled in Section 5 as Theorem 5.3. 

Main Theorem 3. For every n ≥ 1, there is an infinite set of Weil 2-polynomials {fn,j(t)}j≥1 

which are pairwise coprime and enjoy the following property. For each j, every finite 

abelian group of cardinality n arises as the group of rational points of an abelian variety 

with Weil polynomial fn,j(t). 

However, as noted by Kedlaya, a result of Kadets [Kad21] shows that these results 
are impossible over Fq for larger q. Indeed, if q > 2, then for each positive integer m 

there are only finitely many simple abelian varieties with m rational points. 

1.4. Related work. We conclude this section by outlining additional relevant 
literature. The groups of points of elliptic curves have been studied extensively, in 
particular in relation to their application to cryptography; see for example [Ru¨c87], 
[TVN07, Theorem 3.3.15], and [Vol88]. The groups of points of abelian surfaces have 
been studied by Xing in [Xin94] and [Xin96], Rybakov in [Ryb12], and by David et al. 
in [DGS+14]. Such results were extended to dimension three by Kotelnikova in 

[Kot19]. Giangreco-Maidana determined precisely when a given Weil polynomial 
corresponds to a cyclic isogeny class (Definition 2.6) in [GM19,GM20, GM21]. Rybakov 
provided classification results for the group of points in [Ryb10] and [Ryb15] in terms 
of the Newton polygon of the characteristic polynomial of Frobenius. The second 
author gave a classification in terms of the endomorphism ring of the abelian variety 
in [Spr21]. 

2. The square-free case 

Definition 2.1. An isogeny class of abelian varieties over Fq is called square-free if the 

corresponding characteristic polynomial of Frobenius (also known as its Weil 

polynomial) has no multiple complex roots. An abelian variety A over Fq is called 

square-free if it belongs to a square-free isogeny class. 

Definition 2.2. Let A be an abelian variety over a finite field Fq. We say that A satisfies 

condition Ord if it is ordinary. We say that A satisfies condition CS if q is a prime 
number and the Weil polynomial has no real roots; such abelian varieties were 

studied by Centeleghe and Stix in [CS15]. 

Note that in [HK21], an isogeny class is called square-free if the isogeny 
decomposition has no repeated factors. Their definition differs from ours in general, 
so we provide Lemma 2.3 to disambiguate the use of terminology. For example, we do 
not call an elliptic curve over Fp2 with Weil polynomial (x−p)2 square-free in this paper 

even though it is simple. 

Lemma 2.3. Let A be an abelian variety over Fq. The following are equivalent. 

(1) A has square-free Weil polynomial, i.e. A is square-free. 
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(2) The endomorphism algebra EndFq(A) ⊗ Q is commutative. 

Additionally, these conditions imply the following. 

(3) The isogeny decomposition of A contains no repeated factors. 

Moreover, if A satisfies Ord or CS, then all three conditions are equivalent. In particular, 

if A satisfies Ord or CS, then A is simple if and only if its Weil polynomial is irreducible.  

Proof. The first equivalence is [Tat66, Theorem 2(c)]. The implication that the first two 
conditions imply the third follows from [Tat66, Theorem 1(b)]. For property Ord, it 
follows from Honda-Tate theory that an ordinary isogeny class is simple if and only if 

its Weil polynomial is irreducible; see for example [How95, Theorem 3.3]. For 
property CS, note that the Weil polynomial of any simple abelian variety over a prime 
finite field Fp is irreducible, unless the Weil polynomial has a real root; see for example 

[Wat69, Theorem 6.1] or [Tat71, p.96].  

Remark 2.4. Over a prime field Fp, there is only one simple isogeny class whose Weil 

polynomial has real roots, namely (x2 − p)2. 

Square-free abelian varieties satisfying Ord or CS are well-understood in terms of 
fractional ideals, thanks to certain equivalences of categories proved by Deligne in 
[Del69] and Centeleghe-Stix in [CS15]. We summarize the relevant results in the 
following Proposition; see [Mar21, Cor. 4.4 and Cor. 4.7] for the proofs. Let fA be the 

characteristic polynomial of Frobenius for a square-free abelian variety A satisfying 
Ord or CS. Let K be the ´etale algebra generated by the Frobenius endomorphism π, 
that is, K = Q[π] = Q[x]/(fA). Denote by Z[π,π] the order in K generated by the Frobenius 

and Verschiebung endomorphisms. 

Proposition 2.5. There is an equivalence1 F between the category of abelian varieties 

isogenous to A (with Fq-homomorphisms) and the category of fractional Z[π,π]-ideals in 

K (with Z[π,π]-linear morphisms). In particular, if F(B) = I then we have an isomorphism 

of finite abelian groups 

. 
Before applying this proposition and concluding this section, we recall one more 

definition. 

Definition 2.6. An abelian variety A over Fq is cyclic if A(Fq) is a cyclic group. An 

isogeny class is cyclic if every abelian variety in the isogeny class is cyclic. 

Using Proposition 2.5, we can prove the existence of cyclic abelian varieties within 
every isogeny class satisfying Ord or CS. Proposition 2.7 can be viewed as a 
generalization of a result of Galbraith for elliptic curves [Gal99, Lemma 1].  

Proposition 2.7. Every square-free isogeny class over Fq satisfying Ord or CS contains a 

cyclic abelian variety 

 
1 In the CS case, the functor is contravariant. This detail is not needed in this paper. 
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− − − 

because f A ( π 

Proof. We fix a square-free isogeny class over Fq satisfying Ord or CS. By Proposition 

2.5 there exists an abelian variety A in such an isogeny class such that F(A) = Z[π,π]. 

Observe that a natural surjective map 

 

is induced by mapping x to π and y to π ) = 0 and ππ = q. The target of ϕ is isomorphic 
to the group of rational points A(Fq) by Proposition 2.5. To conclude the proof, we will 

show that the domain is a cyclic group of order fA(1) = #A(Fq), which implies that the 

natural surjective map is actually an isomorphism. 

We note that the closely-related surjective map Z[x,y]/(fA(x),xy −q) → Z[π,π] is not an 

isomorphism in general; see [CS15, Theorem 11] for the correct description of Z[π,π] 

which could be used in an alternate presentation of this proof. 

By the division algorithm we can write fA(x) = (x − 1)p(x) + fA(1), for some 

polynomial p(x). This relation together with y−q = (xy−q)−y(x−1) shows that we have 

the following equality of ideals of Z[x,y]: 

 (fA(x),xy  q,x 1) = 

(fA(1),x 1,y  q). 

Therefore the evaluation map ( ) induces an isomorphism 

. 

 − − 

We conclude that ϕ is an isomorphism and A(Fq) is a cyclic group.  

Remark 2.8. We note that the same result can be deduced from [Ryb10], and in the 

simple case, the result can also be deduced from [Spr21, Theorem 1.3]. Our proof 
shows that we can choose the cyclic ordinary abelian variety A to have endomorphism 
ring isomorphic to Z[π,π]. In fact, any abelian variety in the given isogeny class with 

minimal endomorphism ring is cyclic because Z[π,π] is Gorenstein; see [CS15, 

Theorem 11]. 

3. Proof of Main Theorem 1 

We now focus on abelian varieties defined over F2. As indicated in the introduction, 

Howe and Kedlaya proved Theorem 3.1. 

Theorem 3.1 ([HK21, Theorem 1]). Let m > 0 and d > 2 be integers with m < (4/3)2d + 

1. Then there is a square-free ordinary abelian variety A over F2 of dimension at most d 

with m = #A(F2). 

Over F3,F4 and F5, Van Bommel et al. proved the following result. 

Theorem 3.2 ([vBCL+21, Theorem 1.13(a), Remarks 1.16 and 1.18]). Let m be a 

positive integer and k be F3,F4 or F5. Then there is a square-free abelian variety A over k 

with m = #A(k). One can choose A to be ordinary except in the case m = 3 and k = F4. 

We are now ready to complete the proof of Main Theorem 1. 



506 STEFANO MARSEGLIA AND CALEB SPRINGER 

Licensed to Penn St Univ, University Park. Prepared on Fri Jan 17 09:17:36 EST 2025 for download from IP 132.174.254.159. 
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 

Theorem 3.3. Let 

G = Z/n1Z × ··· × Z/nrZ 

be a finite abelian group. The following statements hold. 

• Let k be one of the finite fields F2,F3,F5. Then there is an ordinary abelian variety 

A defined over k, such that A(k) =∼ G; 

• There is an abelian variety B over F4, such that B(F4) =∼ G and B is either 

ordinary or of the form  where B is ordinary and E belongs to the 

unique isogeny class of supersingular elliptic curves over F4 with 3 rational 

points; see the LMFDB label [LMF21, 1.4.ac]. The variety B can be taken to be 

ordinary unless G is a 3-group such that G =∼ (Z/3Z)n1 ×  

odd. 

Moreover, if k=F2 and d1,...,dr are integers satisfying nj <(4/3)2dj+1 and dj ≥ 3 for each 1 

≤ j ≤ r, then there is an ordinary abelian variety A defined over F2 of dimension at most 

d = d1 + ··· + dr such that A(F2) =∼ G. 

Proof. Assume that k is one of the finite fields F2, F3, or F5. We can immediately reduce 

to the case when r = 1, that is, when the group G is cyclic. By Theorems 3.1 and 3.2, 

there exists a square-free ordinary isogeny class over k with |G| rational points. By 

Proposition 2.7, we have an abelian variety A within this isogeny class with cyclic 

group of points, that is, we have A(k) =∼ G. 

We deal now with the finite field F4. Consider the simple ordinary isogeny class of 

abelian surfaces over F4 with 9 rational points given by the Weil polynomial x4 −3x3 

+7x2 −12x+16; see the LMFDB label [LMF21, 2.4.ad  h]. Let K = Q(π) be the 

endomorphism algebra of this isogeny class and let OK 

be the maximal order of K. We observe that 

. 

Hence by Proposition 2.5, in this isogeny class there is an abelian surface B0 with 
group of rational points isomorphic to (Z/3Z)2. Let E belong to the unique isogeny 

class of supersingular elliptic curves over F4 with 3 rational points; see the LMFDB 

label [LMF21, 1.4.ac]. 

Write the group G as a product of cyclic groups 

G =∼ (Z/3Z)2e+δ × (Z/s1Z) × ··· × (Z/sfZ), 

where δ ∈ {0,1}, e ≥ 0 and each sj is a prime power satisfying either sj = 2 or sj > 3 for 

all j. Using Theorem 3.2 with the method from above, we can find an ordinary abelian 

variety B1 over F4 whose group of rational points is isomorphic to (Z/s1Z)×···×(Z/sfZ). 

If G is not a 3-group then there exists an sj which is not divisible by 3, say s1. Again, the 

https://www.lmfdb.org/Variety/Abelian/Fq/1/4/ac
https://www.lmfdb.org/Variety/Abelian/Fq/2/4/ad_h
https://www.lmfdb.org/Variety/Abelian/Fq/2/4/ad_h
https://www.lmfdb.org/Variety/Abelian/Fq/1/4/ac
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above construction using Theorem 3.2 gives us an over F4 whose group of rational 

points is isomorphic to 

( 3s1 ) × ··· × ( f ). 

With this set up, we now distinguish three cases. If δ = 0 then we set B = 

= 1 and G is not a 3-group then set . Finally, if δ = 1 and G is 

a 3-group then we set . In all three cases, we have that 

B(F4) =∼ G by construction and the Chinese Remainder Theorem. In the first two 

cases, the variety B is ordinary, while in the last one B is almost ordinary.  

Remark 3.4. We stress that Theorem 3.3 does not exclude the existence of ordinary 
abelian varieties over F4 with group of points isomorphic to (Z/3Z)n1 × 

 odd. Indeed, the LMFDB [LMF21] contains ordinary abelian 

varieties over F4 with group of points Z/3Z × Z/9Z; for example, see the isogeny class 

with label [LMF21, 2.4.b  f]. However, the LMFDB does not currently contain any 

ordinary abelian varieties over F4 with a group of rational points isomorphic to 

(Z/3Z)2e+1 for e ≥ 1. Nonexistence when e = 0 follows from [Kad21, Theorem 3.2]; see 

[vBCL+21, Remark 1.16]. Proving more general existence or nonexistence results will 

require additional understanding of which groups can occur as the group of rational 

points of an abelian variety in a given isogeny class. 

From the proof of Theorem 3.3 we immediately deduce the following special case. 

Corollary 3.5. Let k be one of the finite fields F2, F3 or F5. Let G be a finite cyclic abelian 

group. Then there is: 

• a square-free ordinary abelian variety A over k with A(k) =∼ G; and 

• a square-free abelian variety B over F4 with B(F4) =∼ G, which we can choose to 

be ordinary if . 

In a similar fashion, using [vBCL+21, Theorem 1.13(a), Remarks 1.17 and 1.18], we 
can achieve a result analogous to Corollary 3.5 for abelian varieties over the finite field 

F7. 

Corollary 3.6. Let G be a finite cyclic abelian group 
with73}. 

Then there is a square-free ordinary abelian variety A over F7 with A(F7) =∼ G. 

Remark 3.7. Using Proposition 2.7 or Remark 2.8, one can construct square-free 
abelian varieties over F7, necessarily non-ordinary, with group of rational points 

isomorphic to Z/8Z and Z/73Z. 

https://www.lmfdb.org/Variety/Abelian/Fq/2/4/b_f
https://www.lmfdb.org/Variety/Abelian/Fq/2/4/b_f
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4. Proof of Main Theorem 2 

For large q, the Weil bounds prohibit the existence of abelian varieties over Fq with 

a relatively small number of points; see [Wei48] and [Kad21]. However, in [vBCL+21] 

it is proven that: 

Theorem 4.1 ([vBCL+21, Theorem 1.13(b), Remarks 1.16 and 1.18]). For an arbitrary 

prime power q, every integer m ≥ q3√q logq arises as m = #A(Fq) for some ordinary square-

free abelian variety A over Fq. 

Still, Theorem 4.1 does not imply that every abelian group of sufficiently large 
order arises as the group of points of an abelian variety over Fq, as shown by 

Proposition 4.2, which was suggested by Bjorn Poonen. 

Proposition 4.2. Let m > 1 be an integer and q a power of a prime p. Suppose there 

exists an abelian variety A over Fq such that A(Fq) is a group of exponent m. Then we 

have the following. 

(1) Unconditionally, q ≤ (m + 1)2; ≤ √ (2) If m is also a 

power of p, then we have q ( m + 1)2. 

Proof. Suppose that g is the dimension of A. Then, using the Weil bounds and the 
structure of torsion subgroups, we get 

. 

Rearranging, we obtain q ≤ (m + 1)2. The stricter upper bound follows similarly by 

using the structure of the pe-torsion of an abelian variety in characteristic p. 

Corollary 4.3. If q > 9 or q = 8, then the group (Z/2Z)r for r ≥ 1 does not arise as the 

group of rational points for any abelian variety over Fq. 

Theorem 4.4, whose proof is exactly like that of Theorem 3.3, is the best that can 
be obtained with our current methods. The nonexistence results above show that 
restrictions on the sizes of the cyclic factors are necessary. We observe that there are 
some finite abelian groups which are not outlawed by Proposition 4.2 but which are 
also not realized in Theorem 4.4. For general q, determining which of these groups 
arise as the group of rational points of an ordinary abelian variety over Fq remains an 

open question for future research. 

Theorem 4.4. Let q be a prime power. If m1,...,mr are integers satisfying mi ≥ q3√q logq for 

all i, then the group Z/m1Z ×···× Z/mrZ is isomorphic to the group of rational points of 

an ordinary abelian variety over Fq. 

In the previous section, we deduced that certain cyclic groups can be realized as 
the group of rational points of a square-free abelian variety over Fq for various small 
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values of q; see Corollaries 3.5 and 3.6. For arbitrary q, we prove an analogous 
corollary concerning square-free abelian varieties with an explicit bound for the size 
of the group. 

Corollary 4.5. Fix a prime power q and let m be an integer satisfying m ≥ q3√q logq. Then 

there is a square-free ordinary abelian variety over Fq whose group of rational points is 

isomorphic to Z/mZ. 

Alternatively, we prove the following result concerning geometrically simple abelian 

varieties. As a trade-off for this stronger condition on the abelian variety, there is no 
effective lower bound for the size of the group in Theorem 4.6. 

Theorem 4.6. Fix a prime power q and let n be sufficiently large with respect to q. There 

is a geometrically simple ordinary abelian variety A over Fq with A(Fq) =∼ Z/nZ. 

Proof. When n is sufficiently large, another result [vBCL+21, Corollary 1.3] from the 

same paper as Theorem 4.1 proves that there is a geometrically simple ordinary 

abelian variety A0 over Fq with |A0(Fq)| = n. By Proposition 2.7, there is an abelian 

variety A isogenous to A0 which is cyclic, which concludes the proof.  

5. Proof of Main Theorem 3 

The goal of this section is to prove Main Theorem 3. As a foundation, we have the 
following result of Kedlaya regarding cardinality. 

Theorem 5.1 (Theorem 1.1, [Ked21]). Every positive integer is equal to the order of 
the group of rational points of infinitely many simple abelian varieties (of various 

dimensions) over F2. 

Using this result together with Lemma 2.3, Remark 2.4 and Proposition 2.7, we can 
immediately prove the following result. 

Proposition 5.2. Let n ≥ 1 be a positive integer. There are infinitely many simple abelian 

varieties A over F2 with A(F2) =∼ Z/nZ. 

When searching for examples of (possibly non-simple) abelian varieties A over F2 

such that A(F2) is isomorphic to a given finite abelian group G, there is one way to 

“cheat” to find an infinite number of examples: Find one example A0 with A0(F2) =∼ G 

using Theorem 3.3, then consider the infinite set {A0 ×B | #B(F2) = 1}. The fact that 

there are infinitely many abelian varieties B over F2 with only one point is a special 

case of Kedlaya’s theorem which was originally proven by Madan and Pal [MP77]. In 
order to prove the existence of genuinely interesting infinite storehouses of examples, 
we find examples with pairwise coprime Weil polynomials. This corresponds to 
finding examples whose isogeny classes share no simple factors in common. We now 
prove Main Theorem 3. 

Theorem 5.3. For every n ≥ 1, there is an infinite set of Weil 2-polynomials {fn,j(t)}j≥1 

which are pairwise coprime and enjoy the following property. For each j, every finite 
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abelian group of cardinality n arises as the group of rational points of an abelian variety 

with Weil polynomial fn,j(t). 

Proof. Write  , where   are primes that are not necessarily 

distinct. By Proposition 5.2, for each 1 ≤ i ≤ r, there are infinitely many simple abelian 

varieties Ai over F2 such that . By Remark 2.4, there is only one simple 

isogeny class over F2 whose Weil polynomial has real roots; see [LMF21, 2.2.a  ae]. 

Hence, by Lemma 2.3, we can choose the Ai to have distinct irreducible Weil 

polynomials. Let C be the isogeny class of A1 × ··· × Ar. Note that C is square-free by 

construction. 

Because each sub-product  for S ⊂ {1,...,r} is also square-free, we can apply 

Proposition 2.7 to get a cyclic isogenous variety AS satisfying AS(F2) =∼ 

. In this way, we obtain all abelian groups of cardinality n as the group of rational 
points of an abelian variety in C.  

Remark 5.4. With the currently technology we are not able to determine whether, 
given an arbitrary finite abelian group G, there are infinitely many simple abelian 
varieties over F2 with group of rational points isomorphic to G. A possible approach to 

this questions is to study which groups can occur in a given isogeny class. 
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