Importance of Orbital Invariance in Quantifying Electron—Hole Separation and

Exciton Size

John M. Herbert* and Aniket Mandal
Department of Chemistry € Biochemistry,
The Ohio State University, Columbus, Ohio 43210 USA

Abstract

A fundamental tenet of quantum mechanics is that properties should be independent of representa-
tion. In self-consistent field methods such as density functional theory, this manifests as a require-
ment that properties be invariant with respect to unitary transformations of the occupied molecular
orbitals and (separately) the unoccupied molecular orbitals. Various ad hoc measures of excited-
state charge separation that are commonly used to analyze time-dependent density-functional cal-
culations violate this requirement, as they are based on incoherent averages of excitation amplitudes
rather than expectation values involving coherent superpositions. As a result, these metrics afford
markedly different values in various common representations including canonical molecular orbitals,
Boys-localized orbitals, and natural orbitals. Numerical values can be unstable with respect to
basis-set expansion and may afford nonsensical values in the presence of extremely diffuse basis
functions. In contrast, metrics based on well-defined expectation values are stable, representation-
invariant, and physically interpretable. Use of natural transition orbitals improves the stability of
the incoherent averages but numerical values can only be interpreted as expectation value in the
absence of superposition. To satisfy this condition, the particle and hole density matrices must each
be dominated by a single eigenvector so that the transition density is well described a single pair
of natural transition orbitals. Counterexamples are readily found where this is not the case. Our
results suggest that ad hoc charge-transfer diagnostics should be replaced by rigorous expectation
values, which are no more expensive to compute.

1. Introduction

Time-dependent density functional theory (TD-
DFT),! the most widely used quantum chemistry tech-
nique for computing electronic excitation energies, has a
simple and conceptually pleasing one-electron interpre-
tation in terms of a particle (the excited electron) and a
hole.? Excited-state properties can be decomposed into
contributions from each of these quasiparticles. In par-
ticular, the particle and hole densities can be used to de-
fine a mean electron—hole distance (d.) in the excited
state,? 8

de—h - ||<relec - I'hole>H . (1)

Over the years, a variety of ad hoc charge-transfer (CT)
diagnostics have been introduced in order to quantify
electron-hole in TD-DFT calculations,? 2! as reviewed
recently.? The original purpose of these analysis tools is
to alert the user to the presence of a charge-separated
state,?29725 for which TD-DFT with conventional semilo-
cal and hybrid functionals may fail badly.!?6-3° Remark-
ably, however, the simple expectation value in eq. (1)
seems not to have been considered as a diagnostic of
CT character in TD-DFT calculations until recently,!:32
where it was borrowed from careful excited-state analyses
in wave function theory.*”
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The issue of spurious CT states in TD-DFT is substan-
tially ameliorated using range-separated and long-range
corrected density functionals,>*33 4! yet measures of
electron—hole separation and exciton size remain impor-
tant tools for analysis of excited-state calculations.*? 62
In the present work, we demonstrate that some widely
used charge-separation metrics are not invariant under
unitary transformations of the occupied or virtual molec-
ular orbitals (MOs). This implies that their numerical
values depend on the choice of representation. This has
been pointed out before,'':57:63 but the present work ex-
plores the numerical and conceptual implications of this
result for the first time. Dependence on the choice of
orbitals is not an esoteric point, as we will demonstrate
substantial numerical differences (including nonsensical
results) using several common MO representations.

As an antidote to these problems, we suggest orbital-
invariant (and thus representation-independent) charge-
displacement metrics that attempt to model the same
charge-separation physics as earlier ad hoc definitions.
These invariant metrics are based on well-defined ex-
pectation values of the transition density, following a
paradigm laid out for wave function calculations by
Plasser, Dreuw, and co-workers.3>® Herein, we demon-
strate that they can be used to the same ends as previous
CT metrics, namely, to diagnose problems with TD-DFT
or to quantify electron—hole separation in a physically
meaningful way.



2. Theory

2.1. TD-DFT. Linear-response TD-DFT calcula-
tions involve solution of a mnon-Hermitian pseudo-
eigenvalue problem,?

(5 %)C) =66 o

for excitation energies w and amplitudes {x,y}. Matrices
A and B are orbital Hessians, as discussed elsewhere.!:%
Transition amplitudes z;, and y;, indicate excitation and
de-excitation, respectively, between an occupied MO 1,
and an unoccupied (virtual) MO ),.

Importantly, TD-DFT excitation energies and excited-
state properties are invariant to unitary transformations
of either the occupied or the virtual MOs, so at this point
it does not need to be stipulated which MOs (canonical
or otherwise) we mean by 1; and t,. This allows the
freedom to use localized MOs% 72 or other transforma-
tions that are favorable for visualization or interpretative
purposes,? without affecting observables.

The de-excitation amplitudes y;, are often neglected,
resulting in a Hermitian eigenvalue problem

Ax =wx. (3)

This is known as the Tamm-Dancoff approximation
(TDA)Y? and it is typically quite accurate for small-
molecule excitation energies,” although larger errors
have been noted in solids.” Importantly, the TDA decou-
ples the excitation energy problem from the ground-state
stability problem®"® and this is sometimes necessary in
photochemical simulations.”®"® On the other hand, it
violates gauge invariance and thus introduces ambiguity
for oscillator strengths,” which are typically more accu-
rate in full linear response theory.®? In any case, the CT
metrics introduced below can be used with either eq. 2
or eq. 3, although all calculations reported here are full
linear response.

2.2. Conventional CT Metrics. A recent review?

provides an overview of ad hoc CT metrics for TD-DFT
calculations, the most common of which are introduced
here. Historically, the first of these diagnostics (called
A) was introduced by Tozer and co-workers,*??72% who
defined it as

A= Zia szaOiU« (4)
= 72 o
jb"™Vjb
where
Kia = Tia + Yia (5)

and

O = / ()] [t ()] d - (6)

The integral in eq. 6 quantifies the spatial overlaps be-
tween occupied and virtual MOs.
The normalization condition for TD-DFT is?

D (@5 —yh) =1 (7)

a

so that the denominator in eq. 4 generally differs from
unity unless the TDA is invoked,®! although it does nor-
malize A such that 0 < A < 1. Larger values indi-
cate a localized excitation whereas A = 0 indicates com-
plete spatial separation of the excited electron and the
hole. Several puzzling failures in early TD-DFT calcula-
tions were explained by using A to measure “hidden” CT
character,?*2%82 although certain types of charge sepa-
ration elude this particular metric.22.63:83

The A metric has undeniable intuitive appeal as an
amplitude-weighted sum of donor—acceptor overlaps O;,,
yet it is an incoherent average that does not correspond
to the expectation value of any measurable (or even po-
tentially measurable) physical quantity. A proper expec-
tation value is expressible as the trace of an operator with
a density matrix, as shown in Appendix A. From another
point of view, the definition of A involves squaring the
amplitudes, then constructing an incoherent superposi-
tion of the quantities O;, associated with ; — v, exci-
tation, rather than evaluating an average using coherent
superposition (i.e., an expectation value). A consequence
is that A is not invariant to rotations of the occupied and
virtual MOs, even within the TDA. As such, its numeri-
cal value depends on the choice of representation.

To the best of our knowledge, the A metric has only
ever been evaluated using canonical MOs (CMOs), but
since A does not respect orbital invariance this choice
is arbitrary. Nevertheless, the value Aoy in the CMO
representation does provide a useful (albeit functional-
specific) threshold, beyond which TD-DFT excitation en-
ergies should not be taken seriously unless range separa-
tion is used.”2? For interpretative purposes, a drawback
of this dimensionless metric is that it does not quantify
electron—hole separation in a way that is readily visual-
izable.

To remedy this, other CT metrics have been suggested
that have dimensions of length and are intended to be in-
terpreted as quantitative measures of charge separation.
A seemingly obvious choice is to replace O;, in eq. 4 with

Ria = (ilF[Yh;) = ($alt[t0a) (8)

which is the vector displacement between the centroids of
orbitals ¢; and 1,. Using the scalar norm ||R;,|| of this
displacement vector results in a charge-separation metric
that has been called Ar,'%1117 defined as

ia Mol Riiall
Zjb H?b

This amounts to an incoherent average of the charge dis-
placements associated with v; — 1, excitation. Like A,

Ar = (9)



the definition of Ar fails to satisfy orbital invariance so
its numerical value depends upon the choice of MOs.

Assuming that the MOs transforms like irreducible
representations of the molecular point group, then Ar =
0 for any centrosymmetric system because the charge dis-
placements R, must preserve inversion symmetry in that
case. From a symmetry perspective, this is a feature and
not a bug. However, it does mean that charge-resonance
states®341:84 (involving counterbalancing contributions
from forward and backward CT) cannot be detected by
Ar. To obtain a non-vanishing metric for centrosymmet-
ric systems, an “electron displacement” measure

I'=Ar+Ac (10)
has been suggested.!! It combines Ar from eq. 9 with

Zia /@?a0-4
Ao = 27,%2“1 ) (11)
JbV5b

which is the weighted sum of the quantities

Gia = | (Wil 1;) — (Wal#2[0) |2 - (12)

Here, (1,.|#2|1,.) is the second moment of orbital 1., so
Oiq 1S a measure of the disparity between the size of the
excited electron and the size of the hole, for the excitation
’l/)i — 7/}(1~

Both Ar and Ac¢ involve incoherent sums, rather than
constructing a transition density and evaluating a proper
expectation value for the excited state in question. As
such, these quantities fail to preserve orbital invariance,
and this failure is inherited by I" in eq. 10. Nevertheless,
T" has been used to define a critical threshold or “trust
radius” for TD-DFT excitation energies,'? which is sim-
ilar to the manner in which A has been used but with
an ostensibly more direct physical interpretation, since
T" has units of length. It was observed in Ref. 11 that T"
has a different numerical value in the CMO basis as com-
pared to the basis of natural transition orbitals (NTOs),
although no explanation was provided. (See Appendix B
for a brief overview of NTOs and Ref. 2 for more complete
discussion.) Furthermore, Ar was seen to be sensitive
to the presence of diffuse basis functions.!' The present
work provides a physical and mathematical explanation
for these observations.

2.3. Invariant Measures of CT. Lack of orbital in-
variance in metrics such as A, Ar, Ao, and I" is prob-
lematic in applications, as shown by examples that are
discussed in Section 4. As such, we propose alternative
means to measure charge displacement that are based on
proper expectation values and thus invariant to unitary
transformations of the MOs. Some of these were intro-
duced previously by Plasser, Dreuw, and co-workers,*”
and can be defined also for correlated wave function
models.*

Density matrices for the excited electron and the hole
(eq. A3), constructed from the amplitudes x and y, are

introduced in Appendix A. In position space, these den-
sity matrices correspond to (unrelaxed) difference den-
sities Ap..(r) and Ap, . (r), which together afford the
difference density with respect to the ground state:

Ap(r) = Apelec (I‘) + Aphole (I‘) . (13)

From the density matrices corresponding to Ap,,. and
Ap, oo, €xpectation values of rejec and ryole can be eval-
uated as discussed in Appendix A.

Invariant measures of electron—hole separation and ex-
citon size are obtained from expectation values of the
particle and hole coordinates. For example, we define?

&= | [18000 £ Spcolia . o
More succinctly, this is
d,:;h = H<relec> + <rhole> || (15)

where
@md=/xA%ﬁﬂm' (16)

is the & component of (reec), for example. The quantity
d_, is is the distance between the centroids of Ap..(r)
and Ap, . (r), or in other words, the norm of the expec-
tation value of the intracule coordinate rejec —Ihole->° It is
the same quantity introduced in eq. 1, and we henceforth
omit the superscript and define

den =dgy, - (17)

The quantity d;ih in eq. 15 is the expectation value of
the extracule coordinate, reiee + Thole.>?> The intracule
and extracule coordinates have sometimes been taken to
be quasiparticle coordinates for excitons in conjugated
polymers,36-88 but the extracule coordinate will not con-
cern us here.

As elaborated in Ref. 2, the quantity de.p, is essentially
the same as a metric called “Dgr”,'2 which is widely used
to analyze TD-DFT calculations!3~ 16214250 Lyt was in-
troduced in a manner that obscures its connection to the
particle and hole density matrices. As such, we prefer
the straightforward definition in eq. 15 and the intuitive
nomenclature of “d..;,”.2 More complicated extensions of
D¢t have been suggested,'® though the need for them is
unclear to us.

Both Ar and de., are intended to measure electron—
hole separation but only the latter is invariant to unitary
transformations of the MOs. Like Ar, however, do.;, van-
ishes in any centrosymmetric system and this may cause
interpretative problems, e.g., for symmetric or near-
symmetric arrangements of molecular chromophores.*!
(The change in dipole moment is proportional to dep
and also vanishes for centrosymmetric charge-resonance
states, even when the forward and reverse CT contri-
butions are individually large.) To circumvent this lim-
itation, the quantity Ac was added to Ar (eq. 10) to



indicate size disparity between the donor and acceptor
orbitals. Invariant metrics along the same lines are

<rclcc> : <rclcc>)1/2 (18&)

Thole = ({Thole * Thole) — (Thole) - (Thole)) (18b)

These are the root-mean-square (RMS) sizes of the ex-
cited electron and the hole, respectively.?57

Two other quantities worth mentioning are the “H-
index” and the “t-index” introduced by Ciofini and co-
workers.'>!4 The former is essentially (0elec + Thole)/2
but restricted to a one-dimensional donor—acceptor
coordinate, 3144243 while t = Do — H.'3 These quanti-
ties will not be addressed directly in the present work, as
they do not appear to provide new information beyond
what is obtainable using the readily interpretable expec-
tation values defined above, combined in various ways.

To that end, results presented below suggest that the
charge-displacement metric

Oelec — (<rClOC ' rclcc> -
1/2

dcp1 = de-h + |Thole — Telec| (19)

is a reasonable surrogate for I' (eq. 10) in some instances,
yet one that based on rigorous expectation values and
independent of representation. The first term in eq. 19
(den) can be seen as a representation-invariant alterna-
tive to Ar, while |opole — Telec| €ncodes any size disparity
between the electron and the hole. In previous work,!2
it was speculated that the quantity

%(Uhole + O'elec) (20)

might provide a useful alternative to the aforementioned
t = Dcr — H, although no data were provided. The
quantity

dcp2 = de-n —

dCDS = de—h + dexc (21)
was also suggested,’? where
1/2
dexe = <||relec - rh01e||2> / (22)
is the RMS exciton size. The metrics dcpi, dope and
dcps are explored for the first time in the present work
and dcpy will prove to be particularly useful as an in-
variant replacement for I'.
Other invariant CT metrics based upon particle and
hole densities have been introduced by Etienne et al..?!*
These include a charge-overlap index (¢g),’! defined as

¢S = 19_1/ [Apelec(r)Aphole(r)] 1z dr (23)

where ¥ = (1/2) [[Apgec () = Appore (r)]dr is a normaliz-
ing denominator.”® Evaluation of ¢gq requires numerical
integration over a real-space grid and for that reason it
is not considered here.

In contrast, dcpi, dexc, de-n, and other expectation
values are no more expensive to compute than Ar or
Ao, as they require the same TD-DFT amplitudes and
one-electron integrals. They are even less expensive to
calculate than A, which requires a quadratic number of
numerical quadrature steps in order to evaluate the inte-
grals Oj,.

3. Computational Methods

The metrics introduced in Section 2.2 have been im-
plemented in a locally-modified version of the Q-Chem
program.®? Invariant metrics (Section 2.3) were eval-
uated using Q-Chem’s implementation of the libwfa
library.?C Orbital isosurface plots were rendered using
IQmol®! and VMD,?? using isoprobability contour val-
ues computed with the OpenCubMan program.”3

3.1. Numerics. Integrals O;, (eq. 6) were evaluated
by numerical quadrature using a single-center Euler-
MacLaurin-Lebedev (EML) grid,”® with N, = 300 radial
points and N = 302 angular points per atom, except in
the calculations reported in Section 4.1 where extremely
diffuse basis functions were employed. There, a denser
grid (N, = 400, No = 434) was used to compute the
Oi,. Either grid is considerably denser than those that
are typically used to integrate the exchange-correlation
functional.?® For the latter purpose, the SG-1 quadrature
grid?® was used except in Sections 4.1 and 4.4 where
the SG-3 grid®® was used instead. For most calculations,
the integral drop tolerance was set at Tings = 10712 Ey,
and the shell-pair drop tolerance was set at Tghipr =
1072 a.u., although in Sections 4.1 and 4.4 the tighter
values Tings = 107 Ey and 7oppe = 10716 au. were
used instead. (See Ref. 97 for a discussion of appropri-
ate numerical thresholds for diffuse basis functions.) The
self-consistent field (SCF) convergence criterion was set
to Tgep = 1078 B}, in the norm of the orbital gradient an
eq. 2 was considered to be converged when the maximum
element of the residual vector fell below 7q;q = 1076 E,,.

3.2. Choice of Orbitals. In introducing the various
CT metrics of Section 2.2, it was not explicitly stated
how the MOs {¢;} and {t,} are to be defined, and we
will consider several (seemingly reasonable) choices. The
most obvious choice is to use the CMOs that diagonal-
ize the Fock matrix and have well-defined one-electron
energy levels. An opposite limit is to use MOs that are
localized in space rather than energy. For that purpose,
we will consider Boys-localized MOs,”® computed using
the iterative algorithm from Ref. 99. We have occassion-
ally noticed that resulting Boys orbitals can be sensitive
to the initial set of orbitals used to seed the algorithm,
especially in the highly diffuse basis sets that are consid-
ered in Section 4 .1. For consistency, in all cases involving
Boys orbitals the initial guess for the SCF procedure con-
sists of a superposition of atomic densities generated in
situ, using the target density functional and basis set.
The NTO representation (Appendix B) is now widely
used for interpretative purposes.? NTOs are the best one-
particle orbitals in the well-defined sense of minimizing
configuration mixing by reducing the transition density
to a minimal number of non-vanishing amplitudes, X;
(i=1,...,N0cc), thus minimizing configuration mixing.?



Although sometimes defined using singular value decom-
position of x,51:199-103 3 more general definition when
y # 0 is that the NTOs diagonalize both AP, and
APyoe. For future reference, note that the particle and
hole densities in the NTO basis are

Mocc
Z )\2 ,(pelec

Noce

Z )\2 ‘whole

where the orbitals 1/1?1“ are eigenfunctions of AP (par-
ticle NTOs), with eigenvalues A?, and the functions !
are eigenfunctions of APy (hole NTOs), with eigen-
values —A?.%1 In both eqgs. 24a and 24b, the number of
nonzero eigenvalues is no larger than nycc, the number of
occupied MOs.? (See Appendix B.)

It has been suggested that Ar correlates with Dt in
the NTO basis,!” although reasonable correlation is also
observed using CMOs.” For visualization purposes, one
typically examines only the occupied/virtual NTO pair
having the largest amplitude, namely, }°¢ and §'ec if
we order the eigenvalues as )\2 > /\2 > )\2 > . How-
ever, in present work we retain all of the NTOS so that
the transformation from CMOs to NTOs is unitary, with-
out loss of information. Changes in A, I', or other metrics
from one representation to another are thus inherent to
the definitions of these quantities and are not any kind
of numerical artifact or approximation.

Apelec (243‘)

Aphole (24b)

4. Results and Discussion

In the following discussion, we will present several ex-
amples that reveal how the representation dependence
of metrics such as A, I'; Ar, and Ao negatively impacts
their use as measures of CT character and/or exciton size.
We first consider a catastrophic example (Section 4.1)
where diffuse basis functions lead to nonsensical results
for a compact valence transition. In Section 4.2, we
consider how different choices for the MOs impact the
use of A and I" as metrics for assessing CT character, in
the sense that was originally envisaged by Tozer and co-
workers? and by Guido et al..!%!! In Section 4.3, we con-
sider several examples that cannot be reduced to a single
NTO pair (because A3 > 0), which is not uncommon in
conjugated polymers. These examples demonstrate that
Ar and I" may lose their simple physical interpretation
in such cases. Finally, Section 4 .4 considers a set of CT
complexes in which the S; state is well described by elec-
tron transfer from the highest occupied MO (HOMO) of a
donor molecule into the lowest unoccupied MO (LUMO)
of its partner. These examples highlight that I'yto does
have intuitive and interpretative value in this idealized
case.

(b) s,
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Fig. 1: Principal NTO pairs for (a) So — Si excitation and
(b) So — Ss excitation of a dipeptide, computed at the TD-
CAM-B3LYP/6-314++4G* level. Isosurfaces are plotted using
a contour value of 0.02 a o */? that encapsulates at least 94% of
[4|? in each case. For both transitions, the largest eigenvalue
AT of APgec is indicated.

4.1. Catastrophic Example. To illustrate how
badly things can go awry when orbital invariance is sac-
rificed, we begin with an example of the low-lying ex-
cited states of a dipeptide that has been used in previ-
ous tests of A and I'.%!! Guido et al.'' noted that the
CMO and NTO representations afford different values of
Ar and I' for these systems, but did not pursue this ob-
servation in detail. We computed excited states at the
TD-CAM-B3LYP/6-31(n+,n+)G* level, meaning that n
sets of diffuse functions are added to all atoms, starting
from 6-31G*.104105 Beyond 6-31++G* (n = 1), diffuse
functions are added in geometric progression, scaling the
exponents by successive factors of (3.32) 7.1%4 Due to the
ultra-diffuse nature of these basis sets, tighter thresholds
and denser quadrature grids are used for these calcula-
tions, as described in Section 3.1.

Principal NTOs for the Sg — S; and So — S3 exci-
tations of this dipeptide are depicted in Fig. 1. The S;
and So states both have n7* character, involving different
carbonyl groups, but are otherwise qualitatively similar
to one another so only one of them is considered. The
So — S3 transition involves a Rydberg state. Each of
these transitions is well-described by a single eigenvalue
of APgee, with A7 > 0.94. For n > 2 sets of diffuse
functions, the excitation energies change by < 0.001 eV
(Table 1) and additional diffuse functions also have van-
ishingly little impact on the nature of the NTOs, as
shown in the side-by-side comparison of 6-31++G* and
6-31(9+,9+)G* results that appears in Fig. S1. However,
several of the CT metrics continue to change their values
as additional diffuse basis functions are added.

4.1.1. CMO and Boys representations. Numerical
values of Ar, Ao and I' are listed in Table 1, up to

= 9 sets of diffuse functions, in both the CMO and
the Boys-localized representations. (See Table S2 for the
A metric.) In the CMO representation, the value of T'
continues to grow as additional diffuse shells are added,
driven mostly by grown in the value of Ao and reaching



Table 1: CT Metrics for Transitions of a Dipeptide, Computed at the TD-CAM-B3LYP/6-31(n+,n+)G* Level
n So — Si(n7™*) So — S3(Rydberg)

AE Ar (A) Ao (A) r (&) AE Ar (A) Ao (A) r (A)

(eV) CMO Boys CMO Boys CMO Boys (eV) CMO Boys CMO Boys CMO Boys
0 5.796 1.2 3.7 0.4 0.5 1.6 4.3 7.189 2.17  5.06 0.11  0.33 2.28 5.39
1 5.828 1.5 4.5 22 1.1 3.6 5.6 6.258 3.49 5.86 1.65 1.86 5.14 7.73
2 5.813 1.8 3.6 42 1.6 6.0 5.1 6.236 4.04 9.18 3.80 4.29 7.84 13.47
3 5.812 23 6.9 6.2 3.7 8.5 10.6 6.236 4.48 13.58 6.24 9.11 10.72 22.69
4 5.812 2.3 6.1 72 35 9.5 9.7 6.236 4.88 17.18 8.22 14.10 13.11 31.28
5 5.812 23 53 7.3 28 9.6 8.1 6.236 4.53 21.71 10.24 20.35 14.78 42.06
6 5.812 26 5.9 8.1 3.3 10.7 9.2 6.236 5.20 26.99 12.09 26.84 17.29 53.63
7 5.812 2.3 59 8.7 3.8 10.9 9.7 6.236 5.17 34.51 13.97 43.12 19.14 77.64
8 5.812 24 7.2 9.0 6.2 11.3 134 6.236 5.01 36.02 15.49 53.08 20.50 89.10
9 5.812 2.3 638 11.2 5.6 13.5 12.5 6.236 5.22 228.29 19.64 287.90 24.87 516.19

Temo = 13.5 A for the Sy state and Tomo = 24.9 A for
Ss3, for n = 9 sets of diffuse functions.

We will first discuss the results in the CMO repre-
sentation. Depending on basis set, the dipeptide in
question has at most two (very slightly) bound vir-
tual orbitals, with orbital energies e; 0 = —0.15 eV
and e oy = —44 x 107° eV at the CAM-B3LYP/
6-31(9+,9+)G* level, whereas the 6-31G* and 6-31++4G*
basis sets do not afford any bound virtual orbitals at all.
Even the Rydberg state S3 (Fig. 1b) is relatively compact
as compared to these unbound CMOs, which requires sig-
nificantly configuration mixing amongst spatially diffuse
basis functions in order to generate the target state. The
result is large values of 0;, when ¢, > 0, with mixing
that grows more pronounced as additional diffuse shells
are added. As evidence, in the 6-31(9+,9+)G* basis set
the largest CMO transition amplitude for the So — S
excitation represents only ~ 25% of the transition den-
sity (Jzia|? = 0.255), and for the Sq — S3 transition
|Zomo.Lumol” = 0.364. In these cases, [|y|| < 107 and
TDA results are quite similar.

In the Boys-localized representation, these metrics be-
have somewhat similarly for Sg — S; although their nu-
merical values are certainly different. For So — S3, how-
ever, I'goys increases dramatically as the basis set be-
comes more diffuse, reaching I'goys = 516 A for n = 9!
As compared to I'cnmo, consistently larger values of I'goys
are driven by the fact that (Ar)goys also becomes very
large, e.g., (Ar)poys = 228 A for n = 9 as compared to
(Ar)enmo = 5 A. These outrageously large values in the
Boys-localized representation prompt us to remind the
reader that this is the same Sg — Ss state that is visu-
alized in Fig. 1b for n = 1, and (with little difference) in
Fig. S1d for n = 9. Similar artifacts are observed in the
6-31G(n+)G* basis set, e.g., 'poys = 413 Aforn =9
(Table S3).

Boys localization is most commonly applied to the oc-
cupied MOs but the algorithm is perfectly well-defined
for the virtual space and we have used it to localize

both the occupied and (separately) the virtual MOs. In
the latter case, the unbound and spatially diffuse na-
ture of the canonical virtual orbitals leads to Boys or-
bitals that are extremely diffuse in a few cases. For ex-
ample, the Rydberg state Ss primarily involves a pair
of excitations (with opposite phase) into a single ultra-
diffuse virtual orbital, such that ||R,,(Boys)| ~ 366 A
and oy,(Boys) ~ 462 A for both of these amplitudes.
In contrast, the relatively compact Sy — S; excitation
(Fig. 1a) involves amplitudes for which ¢;,(Boys) <5 A,
which is actually smaller than the corresponding val-
ues for Sy — S; in the CMO basis. The latter range
0ia(CMO) = 7.4 A to 04,(CMO) = 13.5 A.

The most diffuse exponent in the 6-31(9+,9+)G* ba-
sis set is ¢ ~ 2.44 x 107 aaz, corresponding to a half
width at half maximum of 533 A.1°6 This means that
much of the probability density for the aforementioned
ultra-diffuse Boys orbital lies near the edges of the ba-
sis set, which may impair our ability to numerically inte-
grate the functions in question even though we have used
dense grids for these calculations as described in Sec-
tion 3.1. However, there is good consistency in (Ar)goys
and (Ac)Boys up to n = 8 (Table 1), which might be
considered more reliable. Even for n = 8, the Sg — Sz
excitation has significant contributions from amplitudes
Tiq with ||Riq(Boys)|| = 49 A and 0;,(Boys) = 76 A. In
a proper expectation value, such long-distance charge-
separation would cancel in a coherent superposition of
i — a excitations with different phases, but this does not
occur in the k2, |Ri.|| and k7,0, terms that appear in
the definitions of Ar and Ao.

It is worth emphasizing that we are not necessar-
ily advocating for the use of Boys orbitals in TD-
DFT, although localized-orbital implementations of TD-
DFT have certainly been reported® 72 and can be used
to reduce cost for large systems,?® 69 for qualitative
analysis,” and to eliminate spurious CT states.6":%8 Sim-
ilarly, we are not advocating for the use of numerous
diffuse shells when one or two is enough to obtain con-
verged properties. That said, Gaussian basis sets with up



Table 2: Exciton Parameters (in A) for the Sy — S3 Rydberg
Transition of a Dipeptide, Computed at the CAM-B3LYP/
6-31(n+,n+)G* Level.*

NTO Invariant
" Ar Ao den  Onole Oclec  dcD1
0 1.83 0.15 1.80 198 1.84 1.94
1 1.68 0.84 1.68 228 3.14 2.53
2 1.71 0.98 1.71 231 3.32 2.72
3 1.71 0.98 1.71 231 3.32 2.72
4 1.71 0.98 1.71 231 332 2.72
5 1.71 0.98 1.71 231 3.32 2.72
6 1.71 0.98 1.71 231 3.32 2.72
7 1.71 0.98 1.71 231 332 2.72
8 1.71 0.98 1.71 231 3.32 2.72
9 1.71 0.99 1.71 231 3.33 2.73

?Same Sp — S3 transition as in Table 1.

to n = 8 diffuse shells,'°”" 119 designed to approximate
continuum states, have been used to simulate molec-
ular high-harmonic generation induced by strong laser
fields.1%8"115 (Such calculations are typically performed
using real-time Kohn-Sham theory.!) Thus, applications
of both localized orbitals and ultra-diffuse basis sets do
exist in the TD-DFT literature.

More importantly, we believe that the metrics used to
characterize excited states should be robust and stable in
any basis set, so that the user need not worry that the
wrong basis set might afford nonsensical results. Orbital-
invariant metrics might be used to verify that amplitudes
discarded in a low-cost, localized-orbital implementation
of TD-DFT make negligible contributions to the tran-
sition density, and thus to expectation values. This is
only possible if the metrics are compatible with orbital
localization.

4.1.2. NTO representation. In contrast to instabili-
ties observed in the CMO and Boys representations, val-
ues of Ar and Ao (and thus I' as well) are quite stable
in the NTO representation, as shown in Table 2 for the
problematic Rydberg excitation. For n > 2 sets of dif-
fuse functions, there is absolutely no change in either
(Ar)nto = 1.71 A or (Ac)nTo = 0.98 A. The NTO ba-
sis also affords stable results for the Sg — S; transition
and for the A metric, as documented in Table S2.

This stability originates in the fact that both transi-
tions are dominated by a single pair of principal NTOs,
with A\? > 0.99 for Sg — Sy and A\? > 0.94 for Sg — Ss,
even when the basis set contains numerous diffuse shells.
If \? ~ 1 then Ap,,..(r) and Ap, ,.(r) in eq. 24 can be ap-
proximated using just a single term involving 1§'*(r) or
yhole(r). Expressions for (Ar)yto and (Ao)nTo reduce
to a single term under these conditions, and use of the
NTO representation approximates an expectation value
that is stable with respect to additional diffuse shells.

Such stability is obviously desirable so its worth not-
ing that exciton properties such as de.p, dexc, dCD15 Thole,
etc., which were introduced in Section 2.3, are inherently
stable because they are formulated as expectation val-
ues. Results for a few of these invariant metrics are also
shown in Table 2, confirming this stability. Note also
that these exciton properties are no more expensive to
compute than Ar or Ao yet there is no ambiguity re-
garding which representation is the best choice because
proper expectation values are invariant to unitary trans-
formations of the MOs.

Finally, it is worth noting that (Ar)nro &~ den (see
Table 2). For a transition that is dominated by a single
principal NTO pair, it follows that the quantity (Ar)nTo
does measure electron—hole separation. The same cannot
be said for (Ar)cmo or (Ar)peys, even if A =~ 1. Fur-
thermore, we find that (Ac)nTo is a good approximation
t0 |Telec — Thole|, Which makes sense in terms of the defini-
tion of Ao (eq. 11) and implies that I'nto & decp1 when
A? ~ 1. This is clear in the data provided in Table 2,
where I'nto = 2.69 A as compared to dep; = 2.72 A.
This provides a rationale for the stability of I'yto that
was observed but not explained in Ref. 11.

At the same time, this observation suggests that cor-
respondences between proper expectation values and the
numerical values of (Ar)nTo, (Ao)NTO, and I'nto may
degrade in cases where more than one principal NTO
pair is significant (i.e., A3 > 0). Such cases will be ex-
amined in Section 4.3. Before that, we consider the use
of I" and A for their original purpose: detecting errors in
TD-DFT excitation energies by correlating those errors
with a measure of CT character.

4.2. CT Diagnostics. The A metric (eq. 4) and the
I metric (eq. 10) have often been used to detect errors in
TD-DFT calculations.? 112272582 With few exceptions,®?
it has been tacitly assumed that A should be evaluated in
the CMO basis. The I metric was originally introduced
with the same assumption,'? although in that case it was
quickly realized that Ar (and thus T') is sensitive to dif-
fuse functions for Rydberg states.'! The use of NTOs was
suggested as a means to mitigate that dependence,'! and
results in Section 4.1 explain why.

In the present section, we examine the representation-
dependence of both A and T" in the context of their use
as CT diagnostics. We use the data set assembled by
Tozer and co-workers for testing A;*!'6 the same data
set has also been used to evaluate the diagnostic proper-
ties of I'.1%:11 (Geometries are provided in the Supporting
Information; see Tables S5 and S6 for the excitation en-
ergies.) This data set consists of numerous 59 singlet
excited states including numerous 'n7* and 'm7* tran-
sitions of two dipeptides and a tripeptide, the 'Bs, and
1Bs,, states of acenes up to hexacene, the 1B, state of
polyacetylenes H(CoHs),,H up to n = 5, several excited
states of N-phenylpyrrole and 4-(N,N-dimethylamino)-
benzonitrile (DMABN), and finally a variety of singlet
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Fig. 2: Errors in vertical excitation energies for Tozer’s data
set,” computed at the TD-PBEO/triple-¢ level and plotted
as a function of the A metric, which is evaluated in either
(a) the CMO representation or (b) the Boys-localized MO
representation. Data are partitioned into localized, Rydberg,
and CT excited states and the blue shaded regions delineate
where the absolute error is smaller than 0.5 eV. In (a), the
data point for the CT transition in the DMABN molecule is
indicated explicitly and a suggested threshold value (Acymo =
0.3) is also indicated.

excited states of No, CO, HoCO, and HCIl. Benchmark
excitation energies are taken from Ref. 9 and used to de-
termine errors that are plotted below as functions of A
or I'. Following Ref. 9, we use the cc-pVTZ basis set for
all calculations in this section, except for the molecules
Ny, CO, and HyCO that are responsible for all of the
Rydberg transitions in the data set. For these molecules,
we use the doubly-augmented d-aug-cc-pVTZ basis set
instead.!'” For brevity, we refer to these calculations as
“TD-DFT /triple-¢”. We focus on the hybrid functionals
B3LYP and PBEO since errors are much larger for semilo-
cal functionals. (See Fig. S3 for a side-by-side comparison
of TD-PBE and TD-PBEQO errors.)

4.2.1.  Representation Dependence of A and I'.  Fig-
ure 2 plots TD-DFT errors as a function of A, com-
puted using PBEO where the metric is evaluated using
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Fig. 3: Errors in vertical excitation energies for Tozer’s data
set,? computed at the TD-B3LYP/triple-¢ level and plotted
as a function of either Acmo (open symbols) or else Anto
(filled symbols). The blue shaded region delineates where
the absolute error is smaller than 0.5 eV. A threshold value
Acvo = 0.3, suggested in Ref. 9 for hybrid functionals, is
indicated. Thin horizontal lines (in magenta) connect Acmo
and AnTo for the same transition in several cases.

either CMOs or else Boys-localized MOs. (See Fig. 3
for TD-B3LYP errors versus Acmo, which can be com-
pared directly to analogous data plotted in Ref. 9.) Data
in Fig. 2a demonstrate that Acymo correlates reasonably
well with errors in excitation energies. Localized valence
excitations have errors that are generally smaller than
0.5 eV in magnitude but may be positive or negative,
and are furthermore characterized by Acpyo > 0.3. In
principle, this critical value might be functional depen-
dent although valence excitations computed using TD-
PBE are also characterized by Acymo > 0.3; see Fig. S3b.
Rydberg states have larger errors and are characterized
by smaller values of the metric, e.g., Aomo < 0.3 for
the TD-PBEO data in Fig. 2a. Finally, errors for CT
excitation energies grow larger as the metric Acmo gets
smaller. The DMABN molecule is a special case that
is often classified as a CT state, but whose excitation
is relatively accurate even for a global hybrid functional
such as B3LYP.''® The explanation is that the nominal
CT state has a rather large value of Acyo, due to the
molecule’s compact size, indicating that electron and hole
are not well separated.?%24

Because A is not invariant to unitary transformations,
its numerical value may change dramatically upon ro-
tating the orbitals. A vivid demonstration comes from
using Boys-localized orbitals; see Fig. 2b. Nearly all
transitions, including localized valence excitations, ex-
hibit rather small values of Apgys, such that the overall
scale is quite compressed even while the theoretical lim-
its (0 < Agoys < 1) remain the same. In the Boys MO
representation, A provides no diagnostic ability whatso-
ever, as the Rydberg and CT states have similar values
of Apoys as compared to localized excitations.

Figure 3 correlates A against errors TD-B3LYP calcu-
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lations, comparing the CMO and NTO representations
within the same plot. For several of the CT states, Acyo
is numerically quite different from Axto and this is high-
lighted for a few of the CT transitions. A threshold value
Acmo = 0.3 that was suggested by Tozer and co-workers?
for calculations involving hybrid functionals works rea-
sonably well in the CMO representation but rotation into
the NTO representation moves a few of these transitions
across the line. Furthermore, not all of the shifts between
Acymo and AnTo are in the same direction.

Errors are correlated against I'cyo and I'peys in Fig. 4,
using the same data set. As with Acmo, the metric
T'cmo does a reasonably good job of separating the lo-
calized excitations from the CT and Rydberg transi-
tions, with errors in the CT transitions that increase
in rough proportion to the value of I'cyio. Here, the
Boys-localized basis does not compress the data in the
same way that it does with A. Part of this difference
may stem from the fact that unlike A, which is bounded,
I' is not bounded except by the basis-set size. In addi-
tion, Boys-localized MOs need not (and typically do not)
transform as irreducible representations of the molecular
point group, which means that (Ar)goys need not (and
typically does not) vanish in the presence of inversion
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Fig. 5: Errors in vertical excitation energies for Tozer’s data
set,” computed at the TD-B3LYP/triple-¢ level and plotted
as a function of either I'cmo (open symbols) or I'nto (filled
symbols). The blue shaded region delineates where the ab-
solute error is smaller than 0.5 eV and the data point for
DMABN’s CT transition is indicated explicitly.

symmetry. This increases the value of I'poys relative to
T'emo since (Ar)emo = 0 in centrosymmetric molecules.
In any case, the transformation to Boys orbitals once
again destroys the utility of the metric, as I'goys cannot
separate the Rydberg and CT transitions from the local-
ized excitations.

Guido et al.'! suggest using I'yto rather than Tcyvo as
the metric, due to instabilities in (Ar)cmo for Rydberg
excitations, and Fig. 5 plots errors in TD-B3LYP exci-
tation energies as a function of both quantities. (They
are plotted separately in Fig. S5. See Tables S7 and S8
for the data set.) Both representations manage to sepa-
rated localized excitations from the others, yet the fact
that the numerical value of I' is sensitive to the choice
of MOs is problematic if one wants to interpret its value
as a quantitative measure of charge displacement, or a
“trust radius” for TD-DFT.!! The absolute difference
Temo — Inrol averages 0.60 £ 0.76 A but there are
significant outliers, and I'cppo — I'nTo does not have a
consistent sign. For the localized excitations, the largest
difference is |Tcmo — Into| = 1.4 A (for the tripeptide)
while for the Rydberg and CT states the largest differ-
ences are 3.25 A (for a Rydberg state of HoCO) and and
2.6 A (for a m7* state of the tripeptide), respectively.

4.2.2.  Invariant metrics. In contrast, invariant met-
rics do not depend on the choice of MOs and these are
the only metrics that can be interpreted as genuine phys-
ical properties of the excitonic wave function. Perhaps
the simplest such property is de.n, the mean electron—
hole separation, but the present data set contains various
centrosymmetric molecules for which de;, = 0. Even for
molecules lacking inversion symmetry, typical values for
localized valence excitations are de., < 1.5 A, with most
values < 1 A, and this is not much different from values
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obtained for Rydberg excitations (de., < 2 A). This is
readily apparent in Fig. 6a, which plots errors in Tozer’s
data set versus de.,,. Similarly, dey. cannot distinguish
between valence excitations and Rydberg or CT transi-
tions as shown in Fig. 6b.

Analogous plots of errors versus de.;, and deyc for other
functionals can be found elsewhere.'' These results in-
dicate that deyx. cannot distinguish localized excitations
from either Rydberg or CT states, while d.} cannot
discriminate between localized and Rydberg excitations.
For these reasons, we discount both d.., and dey. as di-
agnostics for CT character. Nevertheless, they remain
physically interpretable measures of electron—hole sepa-
ration and exciton size, respectively.

More useful in this capacity are the metrics dcpi,
dcpa, and dgops that were defined in eqs. 19-21, and es-
pecially decpi. TD-DFT errors are plotted against these
quantities in Fig. 7; see Tables S9 and S10 for the numeri-
cal data. The dgpi metric does the best job of separating
the localized excitations from the two other types of tran-
sitions. The distribution of dep; values (Fig. 7a) closely
resembles that of I'yto in Fig. 5, and from these data

10

one might infer a trust radius of about 2 A. Indeed, that
is the value put forward previously based on analysis of
Inro.'!

As compared to the error distribution versus de.p
(Fig. 7a), the additional term |opole — Oclec| that is in-
cluded in the definition of dcp; functions to separate the
Rydberg states from the localized excitations, because
valence excitations are characterized by similar sizes for
the electron and the hole (0elec & Onhole) Whereas for Ry-
dberg states involve excitation from a compact occupied
MO into a relatively diffuse virtual MO (0ejec >> Thole)-
Adding deyc to de1, which defines the quantity dcps that
was suggested in previous work (eq. 21),%? does not sep-
arate the localized excitations to nearly the same extent
(Fig. 7c), and that is because dex. does not separate the
localized excitations. Lastly, dcpe (eq. 20) exhibits both
positive and negative values and the CT states tend to
have dcpe > 0, driven by a relatively large value of de_j,.
However, both localized and Rydberg excitations exhibit
negative values of dcps so this metric does not discrimi-
nate between these two types of states.

4.3. Failure of the Single-NTO Approximation.
In Section 4.1 we saw that (Ar)nTo = de.y and I'nro &
dcp1 when A2 ~ 1. Tt follows that (Ao)NTO & |Telec —
Ohole| In that case. In other words, these metrics ap-
proximate rigorous expectation values if the transition in
question is dominated by a single eigenvalue of AP,
and then only when the metrics are evaluated in the NTO
representation. The criterion A\? ~ 1 is satisfied by many
(though not all) of the transitions in the data set used in
Section 4.2, which has also been used elsewhere to cali-
brate TD-DFT errors versus metrics such as I' or A9
The distribution of errors versus I'yto (Fig. 5) strongly
resembles the distribution versus depy (Fig. 7a) for the
examples in that data set.

Although NTOs provide the most compact basis in
which to visualize an excitation, it cannot be assumed
that an arbitrary transition is dominated by a single
pair of NTOs. From Tozer’s data set that was used
in Section 4.2, the Bs, state of the linear acenes is a
good example where there are two significant eigenval-
ues of APgec with comparable magnitudes. Since the
eigenvalues \? are related directly to natural occupation
numbers,?192 this indicates unresolvable multiconfigura-
tional character in the excited state.? This phenomenon,
which is also known as excited-state entanglement,'?° can
occur even when the ground state is comfortably single-
reference and implies that individual MOs alone are no
longer sufficient to characterize the excited state in ques-
tion. This section will explore several such examples, in-
cluding the linear acenes (Section 4.3.1) but also exam-
ples involving conjugated polymers (Section 4.3.2) and
an example with multiple electronically-coupled chro-
mophore units (Section 4.3.3).
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dCD1 (S1) = 007 A
MnTo(Sy) = 0.07 A

22, =0.434

dep1(Sq) =0.06 A
MnTo(S4) = 0.28 A

Fig. 8: Principal NTOs for (a) the S; (1Bzu or 1La) state and
(b) the S4 (1B3u or 1Lb) state of hexacene, computed at the
TD-B3LYP /cc-pVTZ level. Some metrics for are also shown.

4.3.1. Linear acenes. The By, (1L,) and Bz, (L)
states of linear acene molecules'?! have attracted con-
siderable interest because 'L; is accurately described
by global hybrid functionals such as B3LYP but 'L, is
not.83122 The latter exhibits ionic character that is not
detected by standard metrics such as Acmo.%3

For each of the acenes in Tozer’s data set (naphthalene
through hexacene), we find that 'L, is well described by
one principal NTO pair but 'L; requires two pairs. Rep-
resentative results for hexacene are shown in Fig. 8, in-
cluding principal NTOs and the metrics 'yto and deps -
For the 'L, state with A\ = 0.977, I'nto ~ dcp1 to
within 0.004 A but the difference is more substantial
for the 'L, state where A\? = 0.555. In the latter case,
Inro = 0.28 A but depy = 0.06 A.

Figure 9a correlates the difference I'yto — dop1 with
the value of \?, for a data set consisting of the lowest
30 singlet transitions for each acene in the sequence from
naphthalene to hexacene. A cluster of transitions with
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Fig. 9: Difference I'vto — dop1 versus A for the lowest 30

singlet excited states of linear acene molecules. (a) Planar
acenes from the Tozer data set. (b) Nonacene, comparing
results from a planar and from a slightly distorted (RMSD
=0.14 A) geometry. All calculations were performed at the
TD-B3LYP /cc-pVTZ level.

A? ~ 1 confirms that I'yto &~ dcpi under these circum-
stances. However, there are numerous states where \2
deviates significantly from unity, indicating that two or
more principal NTO pairs are qualitatively important.



(Note also that A\? may exceed unity in full linear re-
sponse theory; see the discussion surrounding eq. B5.)
All of the geometries used to generate Fig. 9a are planar
and centrosymmetric (Dgyj, symmetry), so (Ar)nto =
0 = de.p, and

D
I'nro —depr = (A)NTO — |Telec — Thole| - (25)

Values I'vto — dep1 # 0 reflect different estimates of
how the size of the hole compares to the size of the ex-
cited electron, rather than electron—hole separation per
se. Sometimes (Ac)NTO R |Telec — Ohole| €ven when A2
deviates significantly from unity but the overall trend
is that the difference I'yto — dopi increases as A2 gets
smaller, meaning that NTOs participate in the transition
or participate to a greater degree.

By constraining (Ar)nTto and de, to be zero, the sym-
metry of these planar acenes limits the disparity between
I'nto and dgopi. To understand the effect of this con-
straint, we lift it by examining a slightly distorted geome-
try for nonacene obtained by small displacements of a few
atoms at one end of the molecule. The RMS displacement
between this perturbed geometry (with C symmetry),
and a Daj, geometry optimized at the wB97X-D/6-31G*
level, is only 0.14 A in the standard nuclear orientation.6
An overlay of the two geometries (Fig. S6) shows that
they are essentially indistinguishable to the eye. How-
ever, the reduced symmetry does allow de.p, to differ from
ZErO.

This rather benign distortion of nonacene’s geometry
exacerbates disparities between dcp; and I'yto, as de-
picted in Fig. 9b for the lowest 30 singlet transitions of
both the planar Dy, and the distorted C; geometries.
For the Dy structure, the behavior as a function of
A? resembles what was observed for smaller acenes in
their Dgp, geometries, with |I'nto — dep1] < 2.0 A in
all cases. However, (Ar)nTo is quite large for a few ex-
cited states in C geometry, e.g., I'nto(S19) = 9.96 A,
I'nto(S21) = 8.85 A, and T'xro(S29) = 10.75 A (see Ta-
ble S11). Because the actual electron—hole separation is
much smaller (de, < 3 A for all 30 transitions), some of
the differences I'nto — dop1 are quite large in the dis-
torted geometry.

The largest such difference, I'nto — dep1 = 8.9 A,
occurs for Sg — S19 s0 we examine that transition in de-
tail. The numerical difference between dcpi; and I'nto
in this case is driven almost entirely by the difference be-
tween d..1, and (Ar)nTo, values for which are provided in
Fig. 10 alongside the principal NTOs. The tphole — q)slec
and Yhole — Slec excitations are characterized by right-
to-left and left-to-right CT, but their coherent superposi-
tion (to form Sy — S19) does not displace much charge at
all, with de.,, = 0.13 A. Because I'nTo is computed as an
incoherent average, it consists of a sum of two large | R;, ||
values corresponding to the two basis states y°le — y§lec
and 50 — ¢slec. The result is (Ar)nto = 9.45 A. This
example dramatically illustrates the failure of incoher-
ent averages as compared to proper expectation values
involving coherent superpositions.
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Fig. 10: Principal NTOs for the So — Si9 transition of a
slightly distorted (C1) nonacene molecule, for which (Ar)nto
differs substantially from de.n. Calculations were performed
at the TD-B3LYP /cc-pVTZ level.

4.3.2.  Poly(phenylene vinylene).  Excitons in conju-
gated polymers sometimes require two or more 7w* or-
bitals with different phases in order to describe the
excited-state wave function, analogous to the 'L, state
of the linear acenes (Fig. 8b). Alternatively, exciton
localization can create a situation in which a single
molecule effectively exhibits more than one chromophore,
which are then electronically coupled due to their spa-
tial proximity.?®” Typically, that situation also leads to
more than one significant eigenvalue of APgjec.? Poly(p-
phenylene vinylene) or PPV chromophores exhibit these
behaviors and we next examine an isomer of (PPV)g in
which two of the vinylene moieties are in the cis config-
uration while the others are trans, which creates “kinks”
in the geometry that can induce excited-state localiza-
tion. An all-trans isomer of (PPV)g is considered in the
Supporting Information (Table S13 and Fig. S7) and ex-
hibits many of the same features and trends, demonstrat-
ing that the observations presented below are not unique
to this “bent” isomers (PPV),.

Figure 11 depicts the principal NTO pairs for three
low-energy excitations bent (PPV)g. Each transition re-
quires more than one pair of NTOs to reach at least
80% of the norm of the transition density, i.e., so that
A24+A3+- -+ > 0.8. For example, in the S; state the princi-
pal NTO pair captures only 61% of the transition density
while for S5, four NTO pairs are required to reach 80%.
In the latter case, one can identify two effective chro-
mophores within the (PPV)g molecule, on the left side
and in the middle segment, whose localized excitations
each require a pair of NTOs to describe and which are
electronically coupled. Although this state is optically
dark, the S; state has a large oscillator strength (see Ta-
ble 3) so the need for multiple NTO pairs affects bright
and dark states alike.

Metrics for a few excited states are presented in Ta-
ble 3 and additional metrics can be found in Table S12.
Both de, and depi are rather small (< 0.5 A) for each
of the ten excited states in the table, whereas Ar and T’
span a wider range. It is no longer clear that (Ar)nro
is a good approximation to d.y, nor is I'nTo a good
approximation to dcpi. This is especially evident for



Fig. 11:
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Principal NTO pairs for the (a) So — S1, (b) So — Ss, and (c) So — Se transitions of a bent isomer of (PPV)s. In

each case, the NTOs needed to recover 80% of the transition density are shown. Calculations were performed at the TD-CAM-

B3LYP/6-314G* level and orbitals are plotted using an isocontour value of 0.02 a,

the densities [4$°°(r)|? and |2 (r)|?.

-%/2 which is sufficient to capture > 90% of

Table 3: Descriptors for Excited States of (PPV)s with Two cis Kinks.”

Non-Invariant Metrics (A)

Invariant Metrics (A)

State AFE Osc. A2 CMO NTO

de-h dCDl dexc

(eV)  Str. Ar r Ar r

S1 330 229 0.61 0.84 1.07 0.07 0.13 0.02 0.05 5.53
Sa 3.55  1.52  0.47 2.99  4.60 0.11  0.20 0.03 0.05 5.41
Ss 3.88 1.42 0.54 6.55 7.54 0.14 0.29 0.04 0.07 5.12
Sy 4.17 0.16 0.34 3.77 5.24 0.26 0.40 0.04 0.06 5.12
Ss 4.46 0.07 0.27 3.05 4.29 0.80 1.31 0.17 0.25 4.82
Se 4.56 0.00 0.49 3.92 5.37 3.65 6.45 0.12 0.23 10.14
S 4.62 0.01 0.52 4.34 5.91 0.54 1.23 0.19 0.42 4.40
Ss 4.64 0.03 0.46 6.92 9.02 144 1.69 0.32 0.52 5.36
So 4.66 0.03 049 4.78  6.44 0.21  1.08 0.73 0.10 4.25
S0 4.67 001 0.41 4.81 7.08 0.29 0.83 0.09 0.20 4.30

“TD-CAM-B3LYP/6-314+-G* level

the Sy — Sg transition, which has a much larger RMS
exciton size (dexc = 10.1 A) as compared to the other
excited states (where dexe = 4.2-5.5 A). The Sg state
represents a CT exciton whereas other excited states
are Frenkel excitons, meaning superpositions of local-
ized excitations.>®4 (Frenkel excitons can nevertheless
span a large distance in a conjugated molecule.) The
distinction between Frenkel and CT excitons is challeng-
ing to understand based on NTOs alone but a few such
excitons appear consistently in the spectra of different
PPVs, where they stand out as especially large values
of dexe (Tables S12 and S13). Frenkel and CT excitons
can be distinguished by plotting the transition density
T(Thole; Felec ), Which facilitates visualization of correla-
tions between the positions of the excited electron (rejec)
and the hole (rpe10). 241123

For the Sg state in Table 3, the larger value of deyc is
also reflected in a larger value I'nto = 6.45 A, whereas
I'nto < 1.7 A for all other states up to Sig. This is
partly driven by a larger value of (Ar)xto = 3.65 A
and that is not reflected in do, = 0.1 A. The latter is
consistent with an exciton in which both the electron
and the hole are delocalized over eight of the nine PPV
units so there is little net change in the center of charge.
Values of (Ar)cyo do not correlate at all with de_p,, nor
does I'cavio correlate with dopy.

4.8.8.  Triazine benzobisthiadiazole propeller. The
“triazine propeller” depicted in Fig. 12 has been con-
sidered as a platform for optoelectronic applications.!?*
Three benzobisthiadiazole (CgH2N4S2) substituents



Fig. 12: NTOs for the Sg — S4 transition of a triazine benzo-
bisthiadiazole propeller, computed at the TD-CAM-B3LYP/
6-31+G* level. Isosurfaces are plotted using a contour value

of 0.02 a33/2 that encapsulates at least 94% of |t]2.

function as the blades of the propeller, connected by
a central triazine unit. The substituents have strong
dipole-allowed '77* transitions but excited states on
different benzobisthiadiazole units are excitonically
coupled, leading to delocalization.

Each of the lowest ten singlet excited states requires
at least two NTO pairs to recover 80% of the transi-
tion density, including the So — S, transition depicted
in Fig. 12, and this is a good example of an excitation
where the various NTOs exhibit rather different delocal-
ization patterns. Whereas 11°°(r) is delocalized across
the entire molecule, ¥$'°(r) is spread over only two of
the three propeller blades. The opposite is true for the
second principal NTO pair: ¥5°(r) is supported on two
chromophores but 15'(r) is delocalized across all three.
Both excitations have comparable weights.

Charge-separation metrics for S; through S;¢ are pro-
vided in Table 4 and additional metrics can be found in
Table S14. For none of theses states can it be quantita-
tively stated that (Ar)nro matches the value of dey,, or
that I'vto matches dopy. For the S4 and Sy states, the
values are substantially different with I'yto being more
than 3 A larger than dcpi, which is driven by a similar
disparity between (Ar)xTo and dep,. Both of these states
are characterized by (de)localization patterns similar to
what is observed for S4 in Fig. 12, and the disparities
between charge-displacement measures represent the dif-
ference between an incoherent metric (Ar or T', in which
the amplitudes are squared outside of the observable in
question) and a proper expectation value that involves a
coherent superposition of orbitals.

4.4. Electron—Hole Separation in CT Complexes.
Finally, we investigate some systems characterized by
long-range electron transfer where the donor and accep-
tor orbitals have vanishingly little spatial overlap. It
has been suggested that (Ar)xto correlates with Dor,'”
meaning d..1,, although reasonable correlation is also ob-
served using CMOs.5” Given what we now understand
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Table 4: Descriptors for Excited States of a Triazine Benzo-
bisthiadiazole Propeller.®

State AFE 22 Metrics (A)

(eV) (Ar)nto I'nro den depi
S1 2.595  0.65 0.15 0.75 0.06 0.52
So 2.597  0.53 0.14 0.63 0.06 0.52
Ss 2.718  0.33 0.16 0.73 0.00 0.45
Sa 3.435 0.55 3.69 4.22 0.62 1.09
Ss 3.480 0.66 4.93 5.83 1.93 2.61
Se 3.481 0.68 2.81 3.47 2.11 2.93
S 3.568  0.72 2.84 3.57 1.94 2.75
Ss 3.569 0.73 3.33 4.18 1.96 2.78
So 3.592 0.66 0.94 1.42 0.52 0.96
S0 3.909  0.50 0.25 0.64 0.01 0.46

eTD-CAM-B3LYP/6-314+G* level.

from the analysis presented herein, we can state that
because long-range CT transitions are dominated by a
single NTO pair, we expect excellent correspondence be-
tween (Ar)nto and dep.

As a first example, we consider low-lying singlet ex-
citations in a set of 29 intermolecular CT dimers as-
sembled from common small-molecule electron donors
(acenes, stilbenes, thiophenes, etc.) and acceptors (tetra-
cyanoquinone and its fluorinated analogues).'?® In cal-
culations at the TD-B3LYP/6-31+G* level, we find that
the S — S1 and Sg — S; transitions are dominated by a
single NTO pair in every single case, with A\?(S;) > 0.99
and A\2(S3) > 0.94. For Sg — Sz, A3 > 0.90 except
for a few cases involving complexes of meso-diphenyl
tetrathia[22]annulene[2,1,2,1] (DPTTA) with fluorinated
tetracyanoquinone, for which A\? = 0.83. As a result,
we expect that (Ar)nto should correlate reasonably well
with de., for the S1, So, and S3 states of these dimers.

That expectation is borne out by plots of (Ar)xTo
versus dep, in Fig. 13. Deviations (Ar)nto — den are
strictly positive and the average deviation is no larger
than 0.06 A for any of the these excited states. De-
spite this strong correspondence, (Ar)xTo remains nu-
merically distinct from de.,. It is clear from from the S
data in Fig. 13a that the difference is not some system-
atic error, despite the fact that A7 > 0.99 in these cases.
The formula for Ar (eq. 9), which involves squaring the
amplitudes k;, separately from the quantity ||R;.|| that
is to be averaged, is still not an exact expectation value
even in these cases. These calculations were carried out
with tight thresholds and dense grids as described in Sec-
tion 3.1, to answer any question of whether residual dif-
ferences between (Ar)nto and de, might be numerical
artifacts. In any case, the correlation between (Ar)nTo
and d..; is much better than the correlation between
(A"")CMO and de—h-

Our last example involves long-range intramolecu-
lar CT in a sequence of a-N(CHjs)2-w-NOg(phenylene),,
push—pull chromophores, n = 1-8. The principal NTO
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Fig. 13:

Correlation between Ar (in either the canonical or the NTO representation) and the invariant metric de.n, for

excitation from S to (a) S1, (b) Sa, or (c) Sz, for a set of 29 intermolecular CT complexes'®® described at the TD-B3LYP/
6-314+G* level. The length scale is different in each panel; see Fig. S8 for a version in which all three panels are plotted on the

same scale.

pair for the largest of these molecules is depicted in
Fig. 14a and accounts for the entirety of the density
change (A = 1.000), so that (Ar)xTo and de, are essen-
tially identical. One can also watch deye converge to de.p
as the polymer’s length increases (Fig. 14b). This conver-
gence is driven by vanishing correlations (as a function
of increasing n) between 7°¢(r) and ¢§*°(r), which are
localized on the dimethylamino donor moiety and the ni-
tro acceptor moiety, respectively. Notably, the Sg — S;
excitation energy has essentially converged (as a function
of length) by n = 8, which is consistent with convergence
of dexe t0 depy-

5. Conclusions

The present work points out serious flaws in the defi-
nition of several commonly used CT diagnostics for TD-
DFT calculations. These metrics are not independent
of representation so cannot truly be said to measure
electron—hole separation or exciton size. Proper measures
ought to be invariant with respect to rotations of the oc-
cupied MOs and (separately) the virtual MOs, which is
automatically satisfied by genuine expectation values but
not by incoherent averages over excitation amplitudes.
Metrics that fail to preserve orbital invariance can be-
come unstable in diffuse basis sets, even when changes in
the basis set do not affect excitation energies or proper-
ties. Lack of orbital invariance also introduces an arbi-
trary decision regarding which representation should be
used to evaluate the metric in question. Different rep-
resentations may afford dramatically different numerical
values for putative CT diagnostics, leading to ambiguity
in what is or is not classified as a CT excitation.

For small molecules, transition densities are often (but
certainly not always) dominated by a principal pair of
NTOs; long-range electron-transfer excitations in large
molecules often fall into this category. In these special
cases, non-invariant metrics Ar, Ao, and I" are stable and

TD-B3LYP

A (Ar)nTo
u deXC
o AE

distance / A
excitation energy / eV

0 | | ! | . ! | 292
1 2 3 4 5 6 7 8

no. monomer units, n

Fig. 14: (a) Principal NTO pair for the So — S; transi-
tion of a-N(CHs)2-w-NOg(phenylene)s, with isosurfaces that
encapsulate 80% of |1|2. (b) Descriptors for the So — S; tran-
sition in a sequence of a-N(CHs)2-w-NOg(phenylene),, chro-
mophores. In (b), distances (Ar)NTo, de-h, and dexc should
be read from the scale at left whereas excitation energies AE
should be read from the scale on the right. Calculations were
performed at the TD-B3LYP/6-314+G* level on geometries
that were optimized at the wB97X-D/6-31G* level.

interpretable in terms of expectation values when eval-
uated in the NTO representation. Under these circum-
stances, (Ar)nto does measure electron—hole separation



and

I'nto = (Ar)nTo + (A0)NTO (26)

measures overall charge displacement, including any size
disparity between the excited electron and the hole. How-
ever, it is easy to find molecules where many of the ex-
cited states cannot be described by a single pair of NTOs.
These cases, involving multiconfigurational character or
excited-state entanglement cannot be properly described
by incoherent superpositions of orbitals, even in the NTO
basis. As a result, interpretability of the various terms
in eq. 26 is lost. Examples include linear acenes, conju-
gated polymers, and systems with multiple electronically
coupled chromophores.

Fortunately, invariant metrics such as dop (mean
electron—hole separation), dex. (RMS exciton size), and
dcpr (charge displacement) are no more complicated or
expensive to evaluate as compared to the aforementioned
non-invariant metrics. Invariant metrics never lose their
physical interpretability, are stable with respect to basis-
set expansion, and do not require arbitrary choices re-
garding representation. For that reason, we suggest
that proper expectation values should be used exclu-
sively when characterizing excited-state wave functions
and transition densities.

A. Expectation Values

In practice, the libwfa code® that is used to evaluate
de-hs Telec, and Opole relies upon treating the one-electron
transition density matrix as a wave function in order to
compute expectation values, as described elsewhere. %119
In order to motivate the introduction of NTOs in Ap-
pendix B, however, it is useful to consider the construc-
tion of density matrices for the excited electron (APge.)
and for the hole (APyge). These are the matrix rep-
resentations of the real-space quantities Ap,..(r) and
Ap,1e(r) introduced in eq. 13.

Consider an arbitrary operator A Its expectation
value in a TD-DFT calculation is expressed as a change
relative to the ground-state value (A4p),

(Ay = Ay + AA. (A1)

The change in (A) upon excitation is computed according
to

AA =tr [A(AP + Z)} (A2)
where
AP = APelec + A:Phole (A3)

is the unrelaxed difference density matrix and Z is the
contribution from orbital relaxation.*?7%126 The quan-
tity AP 4+ Z in eq. A2 is called the relaxzed difference
density matrix.*?
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Matrix elements of the unrelazed difference density
matrix (AP) are given by

(APelec)ab = Z(‘ria:ﬂib + yiayib)

(APhoie)ij = = Y (%10Tja + YiaYja)

a

(Ada)
(A4b)

when expressed in any orthonormal basis that preserves
occupied/virtual separation.?!'?” Elsewhere, the unre-
laxed density matrices defined in eq. A4 have been called
attachment (APge.) and detachment (APy)e) density
matrices,?!?® with corresponding attachment and de-
tachment densities Ap,..(r) and Ap,  (r). In the
present work, the orbital relaxation or Z-vector contri-
bution to the density matrix is omitted, in which case
there is no distinction between attachment/detachment
and particle/hole quantities. More generally, the particle
density matrix would be constructed from those eigen-
vectors of AP + Z (“natural difference orbitals”) that
have positive eigenvalues, while the hole matrix would
be constructed from eigenvectors corresponding to nega-
tive eigenvalues.?

Finally, the unrelaxed contribution to AA can be ex-
pressed in terms of particle and hole contributions based
on eq. A3,

tr [A(AP)] = (Ad)etec + (AA)note - (A5)

These two contributions are
(AA) e = tr(xAxT) + tr(yAyT) (A6a)
(Ad)oe = —tr(x'Ax) — tr(y'Ay) . (A6b)

B. Natural Transition Orbitals

A thorough discussion of NTOs can be found in Ref. 2
and is summarized here. By definition, these are the or-
bitals that diagonalize APge. and APy in eq. Ada.?5!
Specifically, NTOs for the hole (¢/}°'°) are defined by the
unitary transformation U, of the occupied MOs that di-
agonalizes the negative semidefinite matrix APpq. We

express this transformation as®!
A2 0 0
0 -X o e
Ul (APo1e)U, = S . (BY)
O e 0 _A%OCC
— A2

This notation for the eigenvalues reflects the fact that
each ); is a singular value of the coefficient matrix x, if
y = 0 as in the TDA (see below). The values \? are
also connected to the natural occupation numbers of the
excited-state density matrix.2102

NTOs for the excited electron (1) are defined by a
unitary transformation U, of the virtual MOs that di-
agonalizes the positive semidefinite matrix APge.. The



values )\% > )\3 > /\g > ... in eq. B1 are precisely the
nonzero eigenvalues of APg, so the transformation of
the virtual space can be expressed as8!

A20
t _
Ul (APgec) U,y = (0 O) : (B2)

This illustrates that the rank of AP is equal to the
number of occupied MOs (nge.). The NTOs occur in
matched electron/hole pairs whose contribution to the
norm of the transition density is A?, hence the expressions
for Apgee(r) and Ap, . (r) in eq. 24.

Note that
tr(A]-:)elec) = Z >‘z2 = Z (‘zia|2 + ‘yia|2) (BS)
and that
tr(APeleC) = —tr(APhole) . (B4)

The second equality in eq. B3 different from the normal-
ization condition in eq. 7, with the effect that tr(APgjec)
may differ slightly from unity. Within the TDA,

tr(APgec) = 1. (B5)

In our experience, ||y|| < 1072 so deviations from eq. B5
in full linear response are rather small. Equation B4
holds in either case.

Within the TDA, APgec = x'x and APpoe = —xx7.
In that case, it follows that U, and U, consist of the
left and right singular values of x, respectively. NTOs
within the TDA can thus be obtained via singular value
decomposition,?

0 0 (B6)

UOXU—L TgA (A 0 ) ,
consistent with earlier definitions that considered the
TDA case only.'%193 The more general definitions in
egs. B1 and B2 still hold, however.

Supporting Information

Additional quantitative data assessing various metrics
(PDF).
Coordinates for the systems considered (ZIP).
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