ISSN 2070-0466, p-Adic Numbers, Ultrametric Analysis and Applications, 2023, Vol. 15, No. 3, pp. 187-194. © Pleiades Publishing, Ltd., 2023.

RESEARCH ARTICLES

Modular Nori Motives

N. C. Combe!”, Yu. I Manin®*, and M. Marcolli®**

' Max-Planck-Institut fiir Mathematik in den Naturwissenschaften Inselstr. 22, 04103 Leipzig, Germany
?Max-Planck-Institut fiir Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

$Mathematical Department, Mail Code 253-37, Caltech, 1200 E.California Blud.,
Pasadena, CA 91125, USA
Received February 27, 2023; in final form, April 10, 2023; accepted April 10, 2023

Abstract—In a previous article [4], we developed the pioneering Grothendieck approach to the

problem of description of the absolute Galois group Gal(Q/Q) based upon dessins d’enfant.
Namely, we replaced in it dessins d’enfant by graphs encoding combinatorics of strata of modular
spaces of genus zero M ,,, and applied this new category to the study of quantum statistic properties
of the absolute Galois group. In this short paper, we enrich and further develop this approach by
including in this picture the Nori motives of the strata of modular spaces following [10].
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This paper contains a previously unpublished note from 2020. After Yuri Ivanovich Manin
passed away in January 2023, the coauthors decided to maintain the text in its original form,
without changes or additions.

0. INTRODUCTION AND SUMMARY

In the Introduction to [4], we reminded that Grothendieck’s approach to the study of the profinite
completion of “absolute Galois group” G'q of the field of all algebraic numbers started with observation
that for any integral scheme X, Gq acts by outer automorphisms upon étale fundamental group of

X ®q Q via exact sequence

Il > m(X®qQ) = m(X) = Gq—1 (0.1)

In[4], we replaced unramified covers of X = P1\ {0, 1, 0o} producing the classical dessins d’enfant,
by the family of moduli spaces Mg g of stable genus zero algebraic curves with labelled points, and
their forms in the sense of [13]. We have shown that the role of dessins d’enfant can be played by dual
combinatorial graphs T of such curves each of which determines the so called (closed) stratum Mj -
in a respective moduli space.

Here we enrich the combinatorics of strata by passing from it to the Nori motives of strata as in
[10]. Our basic reference for Nori motivic theory is [7].

One of our motivations in [4] was the desire to avoid model structures and homotopy equivalences
used for comparison of Grothendieck-Teichmiiller constructions with modular ones in the works by P.
de Brito, G. Horel and M. Robertson, and most recently in [6]. Our enrichment by Nori motives of strata
does not avoid model structures either, but arguably, uses them in a more natural and condensed context.
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188 COMBE et al.

Concretely, in this context the diagram (0.1 ) is replaced by a subdiagram (generated by modular dessins)
of the “motivic fundamental groups”

1— Gmot(Q7 Q) — Gmot(Q7 Q) — GQ — 17 (02)
see[7], Theorem 9.1.16, and further explanations in this article.
Here is a sketch of the contents of two parts of it.

The first part (Section 1) is a technical survey of general Nori constructions based upon Chapter 9 of
[7]

In the second part (Section 2), we describe our “modular Nori motives” as motives of strata of
genus zero moduli spaces Mg g. This is done in terms of combinatorics of “modular dessins”, encoding
stable degenerations of P! with > 4 marked points. The goal of this study consists in the enrichment

of quantum statistical machinery properties of the Grothendieck-Teichmdiller group that were already
introduced and described in [4].

In order to appreciate Nori’s contribution to algebraic geometry , we recommend to the reader to
look at the last pages of P. Cartier’s essay [2], clarifying the initial Grothendieck’s vision of cohomology
theories in algebraic geometry during his last years at IHES.

Cartier expressed this vision by the following words: “the various known cohomological theories
[...] are what we see, and it is necessary to go back to the source and build the lighthouse which
will unify the representation of the entire” [...] “rocky coastline at night”.

This metaphor is embodied in the Nori’s construction of motives as universal cohomology: see Sec.
1.5 and further on.

1. SURVEY OF NORI MOTIVES

1.1. Categories of diagrams and graphs. In [4], a version of Grothendieck’s dessins in modular
environment was defined as objects of a category of combinatorial graphs. In the definition of Nori
motives in [7], the key role is played by a category of diagrams. Graphs and diagrams are close but
not identical objects, and we will start with a brief description of their interconnections.

a) A diagram D is afamily (in a fixed small universe), consisting of two disjoint sets V(D) (vertices),
E(D) (edges), and a map 0 : E(D) — V(D) x V(D), d(e) = (Oout(€), Oin(e)) (orientation of edges).
An oriented edge is sometimes called an arrow.

Morphism of diagrams Dy — Dy consists of two maps V(D) — V(Ds), E(D1) — E(D2), com-
patible with orientations.

A diagram with identities is a diagram D in which for every vertex v, exactly one oriented edge from
v to v is given and called the identity edge id,,. Morphism of diagrams with identities must map identities
to identities.

[t is easy to check, that a subset of diagrams and a subset of their pairwise morphisms, stable with
respect to pairwise composition of morphisms, and containing all identity morphisms, forms a category,
because composition of morphisms of diagrams is associative.

b) Similarly, a combinatorial graph T is defined as a family of sets and maps (F:, V;), (05, jr)-
Elements of F are called flags of 7, elements of V; are called vertices of .

Map 9, : F, — V,iscalled the boundary map. Map j, : F. — F;iscalled the structure involution.
It must satisfy the condition j2 = id.

Two-element orbits of j, form the set E; of edges of 7. Elements of one such orbit are sometimes
called “halves" of the respective edge, and two points, — boundaries of a member of this orbit, — the
boundary of the respective edge itself.

One-element orbits of j are called fails, or leaves (we will use both words as synonymous). A graph
T with one vertex and no edges is called corolla.
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MODULAR NORI MOTIVES 189

The detailed definition of morphisms of combinatorial graphs is neither short, nor self-evident: see
details in [1].

Comparing the two definitions (of a diagram and of a graph), one sees that each diagram D is in
fact an oriented graph T, that is a graph, which has no tails, and in which orientation of each edge
is added as a structure element. More precisely, V; := V(D), F; := F(D)u U F(D);, Where

F(D)out :={(v,0out(€)) € € E(D)},  F(D)in := {(v,0in(e)) |e € E(D)},
and j; interchanges (v, 0oyt (€)) With (v, 0in (€)).

Consider now a category of diagrams with identities. One easily sees that when we replace the
diagrams by their combinatorial graphs, morphisms of diagrams become the morphisms of the respective
graphs, so this replacement becomes a functor.

Vice versa, each category C defines a diagram with identities D(€) for which
V(D(@)) :=0be, E(D(C)):= Home,
andd(f: X =-Y):=(X,Y).

Given a diagram D and a category H, any morphism of diagrams D — D(H) is called a repre-
sentation of D. Of course, representations (perhaps, satisfying additional compatibility conditions)
themselves are objects of a category/ vertices of its diagram etc. This is the universe where the
construction of Nori motives is developing.

1.2. Linear representations of diagrams. Start with the following data, that intuitively will encode
a category of geometric objects whose (co)homology theories we want to construct:

a) a diagram D; b) a noetherian commutative ring with unit R and the category of finitely generated
R-modules R-Mod;
¢) a representation T of D in R—Mod.

Let End(T) be defined as the ring
End(T) = {(¢v)vev(p) | oo € Endg(T (v)) such that

Po; (e) o T(E) = T(E) o ganut(e), Ve € E(D)}

An inclusion of diagrams Dy C Dy such that T} = Ty|p, determines a homomorphism End(T2) —
End(Ty), by projecting the product [ ey (p,) Endr(T2(v)) onto the product [T,cy (p,) Endr(T1(v)).

Now produce from the data above the category C'(D, T') defined in the following way:

dl) If D is finite, then C(D,T) is the category End(T)-Mod of finitely generated R-modules
equipped with an R-linear action of End(T). d2) If D is infinite, first consider all of its finite subdiagrams
F'. For each F construct C(F,T|r) as in d1). Then apply the following limiting procedure. Objects of
C(D,T) will be all objects of the categories C(F,T|r). If F C F’, then each object X of C(F,T|r)
gives an object of Xpr of C(F',T|pr), via the map from End(Tr)-Mod to End(Tr/)-Mod determined
by the morphism End(Tg/) — End(TF) as above. Morphisms from X toY in C(D,T) will be defined
as colimits over F' of morphisms from X7 to Y with respect to these extensions. The result is called the

diagram category C(D,T). It is an R-linear abelian category which is endowed with R-linear faithful
exact forgetful functor fp: C(D,T) — R-Mod . This diagram category has the following universal

property.

Given any R-linear abelian category A with a representation F': D — A and R-linear faithful
exact functor f: A — R-Mod with T'= f o F, it factorises through a faithful exact functor L(F) :
C(D,T) — A compatibly with decomposition

T=froT, T:D— C(D,T).
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For proofs and more details, see [7], pp. 140-144.

1.3. Multiplicativity. Here we sketch the basic constructions introducing multiplicative structures
on categories of Nori motives, following [7]. More detailed discussion of multiplicative structures (called
tensor structures there) the reader can find in [8], Chapter 4 and further on. Consider two diagrams with

identities Dy, Do. We define the diagram D1 x Dy in the following way. Its vertices are ordered pairs of
vertices of Dy, Dy

V(Dl X DQ) = V(Dl) X V(DQ)
[ts edges are ordered pairs of edges of the form (e, id) or (f,id), with obvious boundary map 0.

The standard list of axioms can be found in [7], 8.1.3. What is called “graded diagram” and “graded
multiplication” there, we would prefer to call “supergrading”. Anyway, in our treatment of modular Nori
motives below, these restrictions may be omitted, essentially, because cohomology of modular motives
vanishes in odd dimensions.

1.4. Rigidity. The first important result is that the multiplicative structure of the category of diagrams
induces the multiplicative structure of the category of its representations C'(D,T). If R is a field or a
Dedekind domain, then C'(D, T') is equivalent to the category of comodules of finite type over a coalgebra
A(D,T): see [7], Theorem 7.1.12. Moreover, A(D,T) carries a natural structure of commutative
bialgebra, with unit and counit.

The scheme M := Spec(A(D,T)) is faithfully flat unital monoid scheme over SpecR. Notice that
here the coefficient ring of cohomology theory k enters the game, because its spectrum becomes the
final object of the relevant geometric realisations of (co)homology theories.

The notion of rigidity is the last important property of relevant multiplicative categories of diagrams
C, needed for the construction of the exact sequence (0.2).

Briefly, it requires the existence of a dualisation functor V'~ V related to the multiplication (here
written as ®) by natural identifications

Hom(X ® V,Y) = Hom(X,V®Y)

and V V.
For further details and the definition of the motivic groups Gt in (0.2), see Section 9.5 of [7].

1.5. Nori geometric diagrams and Nori motives. Consider a geometric category € of
spaces/varieties/schemes, in which one can define morphisms of closed embeddings Y < X (or Y C
X) and morphisms of complements to closed embeddings X \ Y — X. We can then define the Nori
diagram of effective pairs D(C) in the following way (see [7], pp. 207—208).

a). One vertex of D(C) is a triple (X,Y,7) where Y — X is a closed embedding, and i is an integer.

b). Besides obvious identities, there are edges of two types.

bl). Let (X,Y) and (X', Y”) be two pairs of closed embeddings. Every morphism f : X — X’ such
that f(Y) C Y’ produces functoriality edges f* (or rather (f*,4)) going from (X', Y”,i) to (X,Y,4).

b2). Let (Z C Y C X) be a stair of closed embeddings. Then it defines coboundary edge 0 from
(Y, Z,i)to (X,Y,i+1).

We can now pass to (co)homological representations of Nori geometric diagrams. If we start not just
from the initial category of spaces €, but rather from a pair (€, H) where H is a cohomology theory, then
assuming reasonable properties of this pair, we can define the respective representation T of D(€) that
we will call a (co)homological representation of D(C).

For a survey of such pairs (€, H) that were studied in the context of Grothendieck’s motives, see
[7], pp. 131—133. The relevant cohomology theories include, in particular, singular cohomology, and
algebraic and holomorphic de Rham cohomologies.
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MODULAR NORI MOTIVES 191

Below we will consider the basic example of cohomological representations of Nori diagrams that
leads to Nori motives.

1.6. Effective Nori motives. ([7], pp. 207—208.) Take as the starting object a category € of varieties
X defined over a subfield k C C.

We can then define the Nori diagram D(@) as above. This diagram will be denoted Pairs®ff from
now on.

1.7. Other main categories of Nori motives. We introduce categories MM of mixed Nori motives,
denoted also MM(k) when we want to stress the base field/ring. In[7], Definition 9.1.3, they are denoted
MMNOI‘ia MMNori(k)7 etc.

Namely, by definition, MM . (k) is C(Pairs®, H*), and MMnori (k) is the localisation of MMSE . (k)
by the Lefschetz motive.

1.8. Theorem. If k is a subfield of C, MM(k) is a rigid tensor category equivalent to the
category of representations of a faithfully flat proalgebraic group scheme Gyt (k, R).

2. MODULAR NORI MOTIVES AND QUANTUM STATISTICAL MECHANICS OF THE
ABSOLUTE GALOIS GROUP

In this Section we will use the relevant definitions and notations from Sec. 2 of [4]. We will collect
here only those properties of canonical stratifications of moduli spaces M g that are essential for the
understanding of their Nori motives.

The strata we have in mind are naturally numbered by combinatorial graphs encoding stable curves
of genus zero with a finite subset of marked/labelled nonsingular points. We will start working over the
field of algebraic numbers Q, or more generally, over any algebraically closed subfield of C.

2.1. Moduli spaces and their canonical stratifications. For any a finite set S of cardinality
n+ 1 > 4, the stable genus zero curves with n + 1 points labelled by S are parametrised by points of the

smooth projective irreducible manifold Mg g of dimension n — 2. The subspace of points corresponding

to only irreducible curves is an open Zariski dense submanifold My g C My g. It parametrizes curves
whose graph is a corolla with S tails.

More generally, for any a stable connected tree 7 with the set of tails labelled by S, all stable genus
zero modular curves with graph 7 and their further specialisations/degenerations are parametrised by
the Zariski closed smooth projective manifold Mo, C My s.

Those curves whose graph is exactly T are parametrised by the Zariski open dense submanifold
MOﬂ' - MOﬂ"

We will call the submanifolds M -, resp. My -, closed, resp. open strata of the structure stratification
of MO’S.

In particular, closed stratum My, is a substratum of another one My - of relative codimension one,
iff o can be obtained from 7 by inserting one extra edge in place of a vertex v of 7 and distributing half
edges (or tails) at v according to a two-partition.

More generally, embeddings Mg , C Mg ; of relative codimension d > 1 are classified by subsets of
edges of ¢ of cardinality d such that their “blowing down” produces 7. This implies that they can be
obtained by iterating embeddings of codimension one.

From this discussion, it follows that

MO,T = MO,T \ (U MO,O’)
o

where the union is taken over all substrata of relative codimension one, that in turn bijectively correspond
to edges of 7.
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2.2. Very good pairs of strata. We will call an ordered pair of locally open strata (M, My ;) in
My s (effective) very good pair if My, C My, and

dim 1\/[07(7 = dim Moﬂ- —1.

This is the main part of the Definition 9.2.1, 2, in [7]. In order to use very good pairs for a description
of modular Nori motives, we must check that all Mg, are affine and smooth. This is well known. We
will include in this picture also maximally degenerate cases with dim Mg » = 0 and M, = 0, that is
Moy, = My, = Mp,s.

2.3. Proposition. Every non-empty locally open stratum My ; is the second term of a very good
pair.

Proof. This statement follows from our remark above regarding inclusions of closed strata.

2.4. Nori motives of strata. We see now that diagrams representing only motives of strata have a
nice and compact combinatorial description.

Depending on which of the classic cohomology theory we want to focus, we will land in one of the
categories MM (k) mentioned in Theorem 1.8.

[t is essential to keep in mind the role of coefficient ring R, cf.[7], Remark 9.1.8.

The study of what we call here “symmetries of modular Nori motives” is also based upon the Theorem
1.8 above.

This study proceeds along the same path as in Sec. 4 of [4], however to each stretch of this path we
add its discussion in terms of modular Nori motives.

2.5. Incidence Hopf algebras. We start with a set of (connected) finite stable trees sufficient
to encode all relevant (closed/locally closed) strata of moduli spaces Mg, discussed above, over an
algebraically closed ground field of characteristic zero. We complete it by including all finite forests f
consisting of trees 7 encoding such strata, and denote by O the resulting set of stable graphs.

Introduce on O the following partial order: fo < fi, iff fi can be obtained from a subforest of fy by
grafting some couples of tails of fy (which produces edges in f1). Each poset obtained in this way in
O has a unique minimal element f and a maximal element f’, which is a rooted tree. Such posets are
called “intervals" and denoted [f, f’]. In particular, in the collection of posets constructed in this way
from forests in O, every interval is isomorphic to a product of maximal intervals. We denote intervals in
this partial order by [f, f’]. For more details, see [3].

Starting with such a collection of posets, one can construct an associated commutative Hopf algebra
over Q, the “incidence Hopf algebra”, which we denote here by Ag. The commutative multiplication of
the Hopf algebra is the product of intervals and the coproduct is given by

Alf 1= Y Lol f) (2.1)
f<fr<f!

Later it turns out that in general Ag is a free commutative algebra, spanned by the isomorphism classes
of products of maximal intervals. However, some products of maximal intervals with non-pairwise
isomorphic factors and with different numbers of factors can be isomorphic.

For studies of geometric and Galois symmetries, it is important to connect this definition of Hopf
algebra with Connes-Kreimer construction of Hopf algebra of rooted trees in [5]. This was done in
Section 6.3 of [3].

As an algebra, this is the commutative polynomial ring generated by the rooted trees 7, in which a
product of rooted trees 7; is identified with a forest f =7 LI -+ LU 7,.

In order to define the coproduct, we must first introduce the so called admissible cuts. One
admissible cut ¢ of a rooted tree 7 is a subset ¢ C E; (possibly empty) such that intersection of ¢ with
any path from a the root to leaf of 7 contains < 1 edge. Such a cut ¢ determines a new tree p.(7) (the
part of 7 that remains attached to the root after the cut) and a forest 7.(7) (the union of branches that
are pruned by the cut) in the following way.
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If ¢ =0, then p.(7) := 7, and 7.(7) is the empty tree. If ¢ consists of one edge e, then in terms of
geometric realisations, p.(7) is the result of cutting this edge in two halves and taking the one half
containing the root of 7 as p.(7), and the remaining part as w.(7). The root of 7.(7) is the remaining half
of e. In the case of a more general tree 7 each path from the root to one of the leaves that contains a cut
of ¢ gives rise to a component of the forest 7.(7).

Let Cuts(7) be the set of admissible cuts of 7. Then the coproduct is defined by the following formula
(extended multiplicatively to forests):

Ar)= > po(r)@me(r), (2.2)

CeCuts(t)
One can check that it admits the antipode w satisfying identities w(1) = 1,
w(r) = —m(w @ id — te) A(T)
where m is the multiplication, ¢ the unit and e the counit.

2.6. Hopf algebras of modular motives. We can now construct the map from the set of Nori
motives of strata to the Hopf algebra of trees, using the basic definitions in 1.2.

2.7. Groups of symmetries. Now we want to include the action of a group GG upon the set of trees
0. Let v € G maps 7 to y7.

2.7.1. G-balanced cuts. In order to incorporate the Galois action in the construction of the Hopf
algebra, we can proceed as in Definition 4.3 of [4] where a notion of G—balanced cuts is considered.
These are admissible cuts of 7 with the property that, for each v € G, the pair (ypc (1), ymc (7)) is an
admissible cut of the tree y7. Denote the set of such cuts Cutsg(y).

As in [4], the action 7 € G is the action of v on the tree components of the forest w¢(7). The Hopf
algebra Ag ¢ is defined as above as a commutative algebra over Q, with coproduct

A(XT) = Z XPC(T) X XWC(T) . (23)
CECutsG(T)

2.7.2. Lemma. /f the G-action does not change combinatorics of trees themselves and acts on
the labelings of the flags then all admissible cuts are G—balanced, hence Ag g = Aop.

Proof. In this situation the grafting operations of trees are compatible with the G-action. Thus, for
all v € G we have

fYTl*(’Ytlrytz)’YD = ’Y : Tl*(t17t2)7—2 . (24)
This shows as in Lemma 4.4 of [4] that the G—balanced condition holds.

From now on, appearance of modular Nori motives adds nothing to the discussion of quantum sta-
tistical mechanics of the relevant versions of Galois and Grothendieck-Teichmdiller groups in Sections
3—4 of [4], and we will stop here.

2.8. Connes-Kreimer Hopf algebras in the operadic context. After having read the first draft of
this article, Bruno Vallette made the following remark that he kindly allowed us to include in the final
lines of it.

The Connes-Kreimer Hopf algebra actually comes from a general construction which associates
a commutative Hopf algebra to any cooperad under the assignment €+ S(€D, €(n)>), where the

product is iree and where the coproduct is induced by the cooperad structure. The Connes-Kreimer
Hopf algebra is the one obtained from the linear dual of the operad PreLie. But one could consider as

well the cohomology cooperad H* (Mg ,,+1), which “loses” nothing since the topological operad Mg ;11
is formal. This is not what we do here, but it should give a related construction.

2.9 Nori motives and quantum statistical mechanical systems. In [9] it was shown that the
endomorphisms of the Bost-Connes quantum statistical mechanical system can be lifted to the category
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of Nori motives with a residually finite action of Z. On the other hand, in [11] the Bost-Connes system
was extended to the non-abelian Galois theory by enriching the Bost-Connes algebra through the
Drinfeld-Thara involution. This suggests that the lifting of the Bost-Connes system to Nori motives of[9]
would extend to a lift of this enriched structure with the absolute Galois group action when considering
the modular Nori motives described in the present paper.
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