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Abstract. The question of whether the underlying geometry of a dynam-
ical point cloud is invariant is considered from the perspective of the
algebra of trajectories of the points as opposed to their point-set topol-
ogy. We sketch two approaches to identifying when the geometry remains
invariant, one that accounts for a model of stochastic effects as well, and
a second that is based on a persistence K-theory. Additional geometric
structure in both approaches is made apparent by viewing them as finite
noncommutative spaces (spectral triples) embedded inside the Hodge-de
Rham spectral triple. A general reconstruction problem for such spaces is
posed. The ideas are illustrated in the setting of understanding the depen-
dence of grid cell population activity on environmental input.
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1 Introduction

A dynamical point cloud is a family of point clouds (Dθ) parameterized by time
or other environmental input, θ ∈ Θ. For each θ, the data, Dθ, are assumed to be
sampled from a compact Riemannian manifold, Mθ. Characterizing the change
in geometry and topology defined by the point cloud has important applica-
tions in many fields. Towards this, we study the geometry of a dynamic point
cloud through discrete differential geometry and the persistence of the K0 func-
tor. This algebraic approach naturally connects with viewing the point clouds as
finite spectral triples embedded inside the Hodge-de Rham spectral triple for M .
The connection is provided by the results from [2] on the convergence of point
cloud Laplacians to the Laplace-Beltrami operator and a Hodge theory on metric
spaces developed by [1]. The point cloud Laplacians also allow for considering
a stochastic version of the question with the Laplacian as the generator for the
noise process. We begin by putting forward a model describing the case where
the geometry is invariant over Θ up to stochastic effects and statistical testing
in such a setup. Then we establish a stability theorem for an algebraic persis-
tence theory to complement the topological persistence homology by capturing
the dynamics of individual points without the complexity of multidimensional
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persistence. Finally, we consider the convergence of discrete Dirac operators for
point clouds to the Dirac operator for the ambient Hodge-de Rham spectral
triple. This is needed to be able to argue that the discretely sampled trajectories
are sufficient to understand the geometry. A general reconstruction question is
posed for such embedded finite spectral triples. The underlying motivation is
understanding the modulation of grid cell firing by the environment. We start
by introducing this illustrative example.

1.1 Modulation of Grid Cell Firing by Environmental Input

In the entorhinal cortex grid cells are cells with spatial firing fields organized on
regular grids that form a part of the neural system responsible for navigation
and mapping. Grid cells are organized in modules with structured correlations
between different cells in the module. The neural code used by grid cell net-
works can be probed using persistence homology. In [10], Gardner et al, find
that the activity of grid cell modules lies on a toroidal manifold that persists
across brain states and offers support for continuous attractor models of grid cell
activity. They also show evidence for environmental input-driven deformation of
the geometry of population activity1. This can be thought of as an example
of homeostatic plasticity. The question of the degree of stability of population
dynamics is interesting, and one would like to relate this deformation to mech-
anistic models. A first step in this direction is putting forward a statistical test
for the simplest case where the geometry is invariant and the point clouds evolve
under a diffusion process on this fixed geometry.

We set this question up as follows: suppose that the spike train data from N
neurons measured at K spatial locations x0

k, k ∈ [K], xk ∈ R
N in environmental

conditions E0 at time t0. The environmental conditions are then updated to E1

with firing data (x1
k)k∈[K]. The point cloud M̂ t

K := {xt
k : k ∈ [K]} ⊂ R

N changes
with t ∈ T . The question now is of testing if the geometry M t

K from which the
point cloud M̂ t

K is invariant with respect to environmental input over t ∈ T , that
is, M t

K = M0
K := M , where the sample path of individual points, xk

t , follows
Brownian motion process on the invariant geometry M , that is, the diffusion
generated by the Laplace-Beltrami operator, �M . While K is fixed, data from
multiple runs of the experiment can be pooled to consider large size limit of the
point cloud.

The choice of the process provides a natural null model for testing the pres-
ence of non-Markovian dynamics, as well as for testing synchronization in the
point cloud. The hypothesis being tested is not just that the point cloud lives
on an invariant geometry, that is, it’s sampled from M × [0, T ], but also that the
time evolution follows Brownian motion on M . One can consider more general
diffusion processes for such model testing, with the parameters learned from the
time-series data, however, if the geometry is relevant then the Laplace-Beltrami
operator is expected to play a role.

1 [10, Tori persist despite grid distortions].
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1.2 A Diffusive Model and Random Matrices

As a prelude to introducing L2 Hodge theory [1], we consider the question of
testing the hypothesis that the point cloud M t

K = M for all t. The Riemannian
manifold (M, g), with dimM = d and metric g, is assumed to be embedded
smoothly and isometrically in an ambient space, φ : M ↪→ R

N , and for each
k ∈ K, xt

k is evolving by �M/2 diffusion on M .
Recalling that on a filtered probability space (Ω,F∗,P) a M -valued, F∗-

adapted, stochastic process (Xt) is a (local-, semi-)-martingale on [0, τ) if f(Xt)
is a real-valued (local-, semi-)-martingale for all f ∈ C∞(M) where τ is a F∗
stopping time (see, for instance, [12]). Brownian motion, X := (Xt), on M is the
�M/2 generated diffusion process, that is, a F∗-adapted process X : Ω → W (M)
(where W (M) is the path space on M) such that for all f ∈ C2(M), ω ∈ W (M),
Mf as defined below is a local martingale:

Mf (ω)t := f(ωt) − f(ω0) − 1
2

∫ t

0

�Mf(Xs)ds (1)

By the results of Belkin-Niyogi [2], the convergence of empirical estimates of
Laplacians on finite metric space to �M is known. This is formulated as follows:
data Xn = (xi)i∈[n] is n samples form M sampled with respect to uniform mea-
sure, μM , dim M = d, giving an increasing sequence of metric spaces X1 ⊂ X2 ⊂
. . . Xi ⊂ Xi+1 · · · ⊂ M . To each Xn is the associated empirical Laplacian, �tn,n,
defined for p ∈ M by �tn,nf(p) :=

∑
i∈[n] Ktn

(p−xi)(f(xi)− f(p))ntd+2
n where

Ktn
(u) = exp(−‖u‖2 /4tn) and tn an appropriate sequence decreasing to 0, ‖·‖ =

‖·‖
RN , c, then we have limn→∞ �tn,nf(x)/tn(4πtn)d/2 = �Mf(x)/Vol(M).
An analogous result holds for any probability measure μM on M . Now

the local-martingale characterization of �M/2-diffusion (Eq. 1) applied to
fi = πi ◦ ψ, the coordinate functions of the smooth embedding ψ to easily
test the question that M t

K = M for all t and Xt
k follows �M/2 diffusion. This

is further simplified by noting that fi(Xs) is uniformly bounded and therefore a
martingale, so the mean at each t is constant. The needed statistical test is just
the test for constancy of the mean estimated by averaging data from l repeated
experiments and using the control on �Mf(x) from [11] which gives a quanti-
tative version of the convergence of the point cloud Laplacian. This is stronger
than testing for stationary, e.g. using the unit root tests, as it’s additionally
required that the generator is the Laplacian.

Simplicial homology of random configurations and dynamical models for ran-
dom simplicial complexes have been studied (for example, [6,8]), the simple
example here suggests that (co)homology, both with rational coefficients and
the α-scale theory of [1] for randomly evolving configurations is also meaningful
from an applications perspective as well.

1.3 Discrete Differential Operators with Heat Kernel Weights

On a finite metric space, (Xn, d), with a probability measure μ, the point cloud
Laplacian can be realized as Hodge Laplacian of a (co)chain complex [1]. Note
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that for a finitely supported measure ν on M , the point cloud Laplacian on M is
an empirical estimate (via concentration bounds) for the functional approxima-
tion to the Laplace-Beltrami operator �tf(x) =

∫
X

(f(x) − f(y))Kt(x, y)dν(y).
We work in the picture that n point metric space X is n samples from M , d is
the distance in ambient euclidean space, dM the geodesic distance on M , and as
n increases we have inclusions in : Xn → Xn+1, |Xn| = n and Xn+1 \ Xn is the
one additional sample from M .

Fix Xn = X. Barthodi et al. [1] consider (co)chain complexes on L2(X l)
using the coboundary map δl−1 : L2(X l) → L2(X l+1), [δf ](z0, z1 . . . zl) =∑l

i=0(−1)i
∏

i�=j

√
K(zi, zj) f(z0, . . . ẑi . . . zl) where X l =

∏
i∈[l] X, L∞(X2) �

K : X2 → R is symmetric, nonnegative and measurable; K := Kt(·, ·)
is taken the tn scaled heat kernel. The boundary map ∂l : L2(X l+1) →
L2(X l) is defined by [∂g](z0 . . . zl−1) =

∑l
i=0(−1)i

∫
X

∏l−1
j=0

√
K(s, zj)

g(z0 . . . zj−1, s, zj+1 . . . zl−1) dμ(s) and satisfies δ∗
l−1 = ∂l, and the laplacian,

�l = (δ∗
l δl+δl−1δ

∗
l−1) can be defined. The constructions and results also hold for

L2
a(X l) = {f ∈ L2(X l) : f(x0, . . . xl) = (−1)sgn(σ)f(σ(x0), . . . σ(xl)), σ ∈ Sl+1}.

In [1], they also establish that for a Riemannian manifold, (X, g, μ), on restricting
this construction to a suitable neighborhood of the diagonal, de Rham cohomol-
ogy of X can be recovered and a Hodge decomposition exists for each L2(X l).

Observing that �t
0(f(x)) =

∫
X

(f(x) − f(y))Kt(x, y)dμ(y), i.e., �0|L2(X) is
exactly the functional approximation to the Laplace-Beltrami operator which in
the large sample-small t limit approaches the Laplace-Beltrami operator, and
since on restricting to functions, Hodge-de Rham Laplacian agrees with the
Laplace-Beltrami operator up to a sign suggests that in this limit δ(n) associated
to the sequence of n-point metric spaces (Xn) must approach the usual exterior
derivative d acting on Ω0(X). We give a quick proof using covariant Taylor series
with respect to the canonical Riemannian connection ∇.

Theorem 1. Suppose U ⊂ R
N is such that M ∩ U is a normal neighborhood of

x ∈ M , and for any y ∈ M∩U , y �= x, x(t) is the unique unit speed geodesic join-
ing x, y, v := ẋ(0). Then for s = dM (x, y) and Kt(x, y) = exp(−‖x − y‖2N /4t),
s = t + O(t2) implies |δf(x, y)/t − dfx(v)| = O(t).

Proof. Since x(t) is unit speed geodesic with x(0) = x, so x(s) = y. Expanding in
a covariant Taylor series about x(0), f(x(t)) =

∑∞
n=0 tn/n!dn/dτnf(x(τ))|τ=0,

with d/dτ = ẋi(τ)∇i, gives f(y)−f(x) = s·df(v)+O(s2) since first order term is
ẋi(τ)∇if |τ=0 = s·g(v,∇f(x)) = s·dfx(v). We have δf(x, y) =

√
Kt(x, y)(f(y)−

f(x)) =
√

Kt(x, y)sḋfx(v)+
√

Kt(x, y)O(s2). For fixed x, using that there exists
η ≥ 0, such that dM (x, y)2 − ‖x − y‖2N = η(y) with |η(y)| ≤ CdM (x, y)4 for a
constant C on the normal neighborhood U , so ‖x − y‖2N = dM (x, y)−η(y). Using
eα = 1 + O(αeα) for α > 0, 1/(1 + α) ≤ 1 + O(α) yields the following estimate
from which the result follows for s = t + O(t2)∣∣∣√Kt(x, y)

s

t
df(v) − df(v)

∣∣∣ =
∣∣∣
(
eη(y)e−dM (x,y)2/8t s

t
− 1

)
df(v)

∣∣∣
≤

∣∣∣
(s

t
(1 + O(s2/t))(1 + O(s4/t)) − 1

)
df(v)

∣∣∣
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In the large sample limit as the sampled points get closer s/t approaches
identity while sk/t, k > 1 terms vanish, and the exterior derivative is recovered.
This observation is the basis for the attempt in Sect. 3 to formalize how sample
paths, xt

k, (from Sect. 1.1) encode the underlying geometry using Hodge-de Rham
spectral triples. To warm up to the idea of replacing topological spaces (Xn) by
the algebras C(Xn), we consider the persistence theory K0 functor and use it
towards analyzing dynamical geometry in point clouds.

2 Q ⊗ K0-Persistence

Dynamical point clouds have been studied through persistent homology theories
that use multiple persistence parameters for the incomparable space and time
dimensions [13]. However, theories that use independent persistence parame-
ters introduce complexity that intuitively is not necessary. Consider the ques-
tion of detecting synchronization. Suppose in the extreme case, the point cloud
completely synchronizes to evolve by rotation, so that the distance matrices
[Dij ]i,j∈[K], are invariant in time, and persistence homology is constant for every
value of space and time persistence parameters. One can detect this synchro-
nization by analyzing the time persistence, but one now needs to test ranges
of multiple independently varying persistence parameters to assign statistical
confidence.

Since in the setup of the basic question, we are not exploring the development
of new structures in relationships between points in time and are only interested
in the sample paths of the points themselves, one expects that persistence in
time is unnecessary. This intuition can be verified by showing that a persistence
theory with only spatial parameters is sufficient in this setting. Furthermore,
this theory is shown to be equivalent to a topological persistence theory.

2.1 A Category-Theoretic Formulation of Persistence

In [3] Bubenik and Scott formulate persistence homology abstractly in terms of
functor F from a small poset category C into a category D called C-indexed
diagram in D. The space of such functors with natural transformations is the
category DC . Composing a diagram in the category of topological spaces Top
indexed by (R,≥), F ∈ Top(R,≥), F : (R,≥) → Top with the k-th homology
functor Hk into the category of finite dimensional vector spaces Vec gives a
diagram HkF ∈ Vec(R,≥). For a topological space X, a map f : X → R defines
a functor F ∈ Top(R,≥) by F (a) = f−1((−∞, a]), and from this data the p-
persistent k-th homology group for the topological space X is defined as the
image of map HkF (a ≤ a+p) induced on homology by the inclusion HkF (a) ↪→
HkF (a+p). The construction of a persistence K-theory is analogous. We first use
the functor C : Top → C∗

1 , where C∗
1 is the category of unital C∗ algebras, that

associates to compact Hausdorff topological spaces X,Y , the unital C∗-algebras
C(X), C(Y ) and to continuous map φ : X → Y , the pullback, φ∗ : C(Y ) →
C(X), φ∗(h) = h ◦ φ. Note that C reverse the direction of the arrows: for ε > 0,
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the inclusion i : F (a) ↪→ F (a + ε) induces i∗ : C(F (a + ε)) → C(F (A)), we
adjust this by using the opposite category to index, equivalently the diagram
F : (R,≥) → Top the associated diagram is CF : (R,≥) → C∗

1 , −a → C(F (a)).

2.2 The Q ⊗ K0-Functor: Stability and Computation

On diagrams F1, F2 ∈ DC , there exists an extended pseudo-metric, dIL, defined
as dIL(F1, F2) = min{ε : ε > 0, F1, F2 are ε interleaved} where F1, F2 are ε-
interleaved if there exists natural transformations φ12 : F1 ⇒ F2, φ21 : F2 ⇒ F1

such that the following diagrams commute for i, j ∈ {1, 2}, i �= j, the horizontal
arrows being the inclusions of the diagram:

Fi(a) Fi(b) Fi(a) Fi(a + 2ε)

Fj(a + ε) Fj(b + ε) Fj(a + ε)

φji(a+ε)φij(a)φij(a) φij(b)

The K0-functor is the functor from C∗
1 to the category of abelian groups

AbGrp that associates to an unital C∗-algebra its Grothendieck group. We con-
sider the diagrams in AbGrp(R,≥), K0CF . The p K0-persistence is now defined
for the diagram CF as the image of map K0FC(a ≥ a + p) induced on K0-group
by the map K0CF (a) → K0CF (a + p). As for topological persistence, a stabil-
ity theorem is needed that ensures that similar topological spaces have similar
K0 persistence for their continuous function algebras. We have that C is con-
tractive with respect to the interleaving distance even though it reverses the
arrows. And since by [3, Prop 3.6], for any functor H : C∗

1 → E to any category
dIL(HCF1,HCF2) ≤ dIL(CF1, CF2). This yields the needed stability theorem
analogous to [3, Thm 5.1] as a corollary.

Lemma 1. For F1, F2 ∈ Top(R,≥), dIL(CF1, CF2) ≤ dIL(F1, F2)

Proof. This follows since if F1, F2 are ε-interleaved then CF1, CF2 are as well:
the associated natural transformation obtained by composing φij ◦ C and the as
C simply reverse the arrows the interleaving relations still hold.

Corollary 1. If F1, F2 ∈ Top(R,≥) are such that Fi(a) = f−1
i ((−∞, a]), then

dIL(K0CF1,K0CF2) ≤ dIL(CF1, CF2) ≤ ‖f1 − f2‖∞

Proof. From the proof of [3, Thm 5.1], dIL(F1, F2) ≤ ‖f1 − f2‖∞, and the rest
follows.

For increasing finite metric spaces arising by sampling from a manifold M ,
X1 ↪→ X2 . . . ↪→ M , the inclusions Xn ↪→ Xn+1 induce maps C(Xn+1) → C(Xn).
Recovering the algebra C(M) in large n limit of such systems is difficult as
projective limits of C∗-algebras are more general pro C∗-algebras. Even K0 may
not be continuous under the projective limits. Keeping in mind that the goal is
simply a statistical test for the invariance of the underlying geometry, one can
use the following observation to derive the test.
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Lemma 2. Q ⊗ K0(C(X))⊗ ∼= Heven(X,Q)

Proof. This is obvious from results in topological K-theory [16] : K0(X) ⊗ Q ∼=
Heven(X,Q) for any topological space X where K0(X) is topological K0 group
associated to isomorphism classes of vector bundles over X. When X is compact
Hausdorff space, as abelian groups K0(C(X)) ∼= K0(X), and on taking the tensor
product with Q, they are isomorphic as Q-vector spaces.

This reduces the algebraic K-theoretic persistence to the persistence of the
even rational cohomology of the topological space X for which the sample paths
approximate C(X). We offer a candidate space next such that the a topological
persistence parameter can be obtained from K-persistence parameter.

Notice that if the time evolution is constrained to be by a possibly random
isometry, then the hypothesis that the geometry of the point cloud is invariant
translates to the null model being that the time evolution of the topological Rips
simplicial complex at persistence parameter ε is simply the mapping cylinder M1,
formed by gluing (xt

k, t) ∼ (xt+1
k , t+1). Since the evolution is isometric, the maps

are simplicial under the null hypothesis, and l-cells in complexes, Xt
ε ,X

t+1
ε , at

times t, t + 1, can be glued. Confidence in how well the true data conforms to
the hypothesis can be quantified by testing the cohomology of the time-evolved
complex XT for actual data against the expected.

If the evolution is not isometric, then picking a single persistence parameter is
difficult as distances in various parts of the geometry will change differently. This
can be accounted for by using that as in the Brownian motion diffusive model,
the generator is the Laplace-Beltrami operator, �, which is being approximated
by the point cloud Laplacian, �PC, the evolution will be isometric in expectation
after adjusting for the eigenvalues of �PC; we will work with this rescaled metric.
The rescaling does not affect the cohomology and allows for using a uniform
spatial persistence parameter for the time-evolved complex. The actual data can
now be tested against the simulated data or against the expectation to see if the
null hypothesis of a diffusive model can be accepted.

The presence of stochastic effects is measured by the distribution of lifetimes
of the simplices in this process since if the data is not evolving by a process
generated by the Laplacian, then rescaling by the eigenvalues of the point cloud
Laplacian will not yield isometric evolution, leading to simplices splitting and
merging. At the same time, longer than expected lifetimes for simplices for the
unscaled metric indicate likely synchronized sub-populations and possible home-
ostatic plasticity in the population response to input, which is of interest.

3 Embedded Finite and Hodge-de Rham Spectral Triples

For T large, the data of Brownian motion sample paths γ : [0, T ] → M on a finite
point cloud, composing with coordinate functions of the embedding ψ : M ↪→ R

N

gives a discretized version of the algebra C(M) because of the asymptotics of
the time taken to get within r of each point, the r-covering time [7]. If this
is enough to recover the geometry of M is central to the program we have
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outlined. This is best viewed as a question in noncommutative geometry: we
recall how commutative geometry is encoded in the noncommutative language.
The Hodge-de Rham spectral triple, AM , for Riemannian manifold (M, g) is the
data (C∞(M), Ω•(M), d+d†) where d+d† is the Hodge-de Rham Dirac operator,
d the exterior derivative on differential forms Ω•(X), d† the Hodge dual. By
Connes’ spectral characterization of manifolds [4], (M, g) can be recovered from
AM . A finite spectral triple is the triple, AF := (AF ,HF ,DF ), where AF is an
unital ∗-algebra represented faithfully on a Hilbert space HF ,dim HF finite, and
D a symmetric operator on HF subject to some additional requirements. There’s
a standard representation of a finite metric space as a finite spectral triple.

We instead define an alternative representation using theorem 1 to obtain
a finite Dirac operator. Suppose . . . Xi ⊂ Xi+1 . . . is an increasing sequence of
metric space sampled from M , with Xn = {xi : i ∈ [n]}. Then using the L2-
Hodge theory, with a uniform measure on Xn (except weighed multiply if xi =
xj , i �= j), we associate to it the restriction of the algebra C∞(M) and Ω•(M).
Ω•(M) is permissible as the space of co-chains is alternating, that is, La(X•

n).
Similar to theorem 1 it’s possible to show that for the operator δ

(n)
l−1 on L2(X l),

δf(x0 . . . xl) converges to dfx0(v1 . . . vl) where vi is the tangent at x0 to the unit
speed geodesic to xi, the idea being to fix l − 1 of xi’s to get back to 1-cochain
setting, although it needs to be checked that this is well defined regardless of
order and number of fixed xi’s. This can be achieved using continuity of f as in
the limit we restrict to infinitesimal neighborhoods of x0. From this, the result
below follows which for transparency can be roughly stated as –

Theorem 2. The finite Dirac operators, Dn := δ(n) +(δ(n))∗, for Xn converges
to the Hodge-de Rham Dirac operator d + d† for M .

To reconstruct the full Hodge-de Rham spectral triple from finite spectral
triples (and (M, g) by [4]) the knowledge of C∞(M) and Ω•(M) cannot be
assumed. For recovering the algebra of the spectral triple, instead of taking
the projective limit of C(Xn), we use a classical result in PL-topology [14]: M
being smooth implies there exists a homeomorphism φ : K → M , where K is a
polyhedron with triangulation {σi} and φ is a piecewise diffeomorphism on σi,
and therefore, C(M) ∼= C(K).

For the polyhedron K, viewed as the geometric realization |Σ| of an abstract
simplicial complex Σ on the finite vertex set VΣ = i ∈ [N ] for {σi}, define Cab

Σ

as the abelianization of the universal C∗-algebra generated by positive gener-
ators hi, i ∈ VΣ , hi1hi2 . . . hik

= 0 whenever {ij : j ∈ [k]} ⊂ Σ and for all
m ∈ VΣ ,

∑
k∈VΣ

imik = im with the dense subalgebra generated algebraically
on the same generators and relations. Then from [5], Cab

Σ
∼= C0(|Σ|) where |Σ|

is the geometric realization of Σ. As M,K are compact, Cab
Σ

∼= C(M). The last
ingredient needed to recover the Hodge-de Rham spectral triple is how the Dirac
operator acts on C(K), but this is given by the homeomorphism φ, although some
care is required as φ is only a piece-wise diffeomorphism (so the action of Dirac
operator is not everywhere defined and we need to restrict to a differentiable
subalgebra).
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Finally, from d and C∞(M), Ω•(M) can be constructed. The Dirac operators
for the finite spectral triples we have used are weighed by the Euclidean heat
kernel of the ambient space and are not standard finite spectral triples. This
spectral triple with the Dirac operator coming from the L2 Hodge theory is
defined as an embedded finite spectral triple. The details of convergence to the
Hodge-de Rham spectral triple2 are developed in forthcoming work [9].

We end this article by posing the question of computationally reconstructing
the Hodge-de Rham spectral triple, that is, recovering K and φ from the point
cloud data, (Xn), in the large n limit. In particular, one does not expect to have
access to the Euclidean embedding ψ : M → R

N , but can only construct the
simplicial complex from sampled points, and the discrepancy of the action of
Dirac operator on constructed simplex and M needs to be bound in terms of the
geometry (e.g. M ’s maximum sectional curvature).
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