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Abstract We study phylogenetic signal present in syntactic information by considering the syntactic structures data
from Longobardi (Linguist Anal 41:517–557, 2017), Collins (Syntactic structures of the world’s language: a cross-
linguistic database. 27 September (2010), Colloquium: https://ling.yale.edu/syntactic-structures-worlds-language-
cross-linguistic-database, 2010), Ceolin et al. (Front Psychol 11:2384, 2020) and Koopman (SSWL syntactic
structures of the world’s languages: an open-ended database for the linguistic community and by the linguistic
community. mit 50, 12. http://sswl.railsplayground.net/, 2011). Focusing first on the general Markov models, we
explore how well the the syntactic structures data conform to the hypothesis required by these models. We do this
by comparing derived phylogenetic trees against trees agreed on by the linguistics community. We then interpret
the methods of Ceolin et al. (2020) as an infinite sites evolutionary model and compare the consistency of the data
with this alternative. The ideas and methods discussed in the present paper are more generally applicable than to
the specific setting of syntactic structures, and can be used in other contexts, when analyzing consistency of data
with against hypothesized evolutionary models.

Keywords Syntactic parameters · Markov models · Evolutionary models · Phylogenetics

Mathematics Subject Classification 91F20 · 62M02 · 37E25

1 Introduction

The focus of the present paper is to investigate the following questions: to what extent syntactic features capture phy-
logenetic relationships and to what extent Markov models are a viable assumption for phylogenetic reconstruction
based on syntactic features. For the second, we also consider an alternative that we argue approximates the infinite
site evolutionary model. These questions are motivated by the fact that at both lexical and syntactic level, Markov
processes are commonly assumed to underlie computational models of language change; for instance, within the
Principles and Parameters setting relevant here, Niyogi and Berwick [36] developed models of language acquisition
and language change based on a Markov process in a space of syntactic parameters. In this paper we focus only on
language change processes, viewed through the lens of phylogenetic trees of language families. While the model
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we consider are not directly related to models of language acquisition and parameter setting, the historical changes
of syntax within and across language families, through the modification of syntactic parameters, can be seen as
an effect of such underlying dynamics. It is therefore important to develop specific methods and measures to test
the extent to which a Markov model assumption is valid. Such methods will also provide tests for the presence of
homologous traits, as we will discuss.

We are specifically interested in investigating the adequacy of Markov processes in modelling phylogenetic trees
of language families, based on data of syntactic “parameters” (or “features”: binarized present/absent syntactic
characters). We will, in particular, also show that syntactic data do not appear to be reliable in reconstructing remote
phylogenetic relationships.

This complements other recent work towards understanding the extent to which linguistic relationships can
be reconstructed based on syntax, discussed with a Bayesian inference approach in Ceolin et al. [7,8]. Typically,
mathematical methods for phylogenetic trees reconstruction are based on an underlying assumption that the stochas-
tic variables involved (in our case syntactic parameters/features) would be ruled by the dynamics described by a
Markov model on a tree. These Markov models on trees usually come in the form of Barry–Hartigan models,
where one assumes that features evolve following a Markov process across each edge and that at each site the
data patterns are independently and identically distributed. While this hypothesis has generally been justified in
the main applications to mathematical biology, some of the limitations in that setting are also understood (see Zou
et al. [60] as an example of such discussions). The question of its direct applicability to syntactic features is more
subtle. Using available databases of syntactic structures of world’s languages (which at present consist largely of
Indo-European languages), we test the validity of this Markov model hypothesis. Additionally, with phylogenetic
reconstruction increasingly relying on complex models/computational approaches that involve large number of free
parameters, it becomes hard to ascertain how likely the evolutionary process described by the model is to actually
occur. Testing how well the evolutionary model describes the data, un-augmented with the extra parameters that
introduce over-fitting concerns is an especially important sanity check.

Our main conclusion is that working with Markov models on trees provides reasonably accurate results for
collections of languages within a given language family, while when the size of the tree grows to include the
simultaneous presence of different language families the tree reconstruction becomes more unreliable. Naturally,
whenever there is weak evidence for phylogeny, tree reconstructions are expected to become unreliable, see for
example the discussion in Pagel and Meade [42]. The point here is more about the role of possible discrepancies
with respect to the Markov model hypothesis. Indeed, this is consistent with what observed using different, coding
theoretic methods in Shu and Marcolli [53], where it is shown that, when one includes different language families
and considers the associated lists of syntactic parameters as a binary code, one obtains codes whose position in
the space of code parameters is not compatible with a random process of code generation of the type implicit in
the usual phylogenetic Markov models. The theoretical problem of identifying a better dynamical model, beyond
the Markov processes on trees, to describe evolution of syntactic features remains to be investigated, as well as the
relation to the models proposed in Niyogi and Berwick [36].

We consider the same data of syntactic structures from Longobardi [27] and Collins [11] that were analyzed in
Shu et al. [54], using phylogenetic algebraic geometry, which depends on a general Markov models hypothesis.
Our goal is to investigate how well the model describes the evolutionary processes on natural language syntax, at
the same time comparing the phylogenetic signal we obtain to that of Ceolin et al. [7]. We also explore the question
of metricizing the space of syntactic structures that is relevant to the persistent homology machinery used by Port
et al. [47] towards questions on the phylogenetics of language families.

Additionally, we note that the methods of Ceolin et al. [7] can be reinterpreted as describing an alternative which
approximates the infinite sites model. We also consider this model, and point out the similarity between the results
from general Markov model and the methods of Ceolin et al. [7].

Ceolin et al. [7] also consider Bayesian methods; indeed, Bayesian methods are common and extremely powerful.
The methods we focus on are distance based for the reason that this minimized the additional assumptions one needs
to make about the process; for instance, the best performing model in Ceolin et al. [7] is a Gamma Site Model with



Syntactic Structures and the General Markov Models Page 3 of 38     4 

Table 1 Summary of the two evolutionary models considered

Model Metric Notes

Approximate infinite sites model Modified Jaccard Does not support back mutation: each site mutates
only once along the branch.

General Markov model Logdet Supports back mutations: each edge evolves
according to the associated Markov matrix. The
model specializes to models reversible process
when edge matrices are of form etQ for a rate
matrix Q with t representing branch length: the
rate matrix is the instantaneous rate of state
transition; over time the transitions accumulate. By
memoryless we will mean the case where this
accumulation is through a memoryless process,
i.e., the transition matrix across a branch of length
t is etQ . Each edge is allowed to have a different
rate matrix. In the general case where edge Markov
matrices are not generated by rate matrices, there’s
no intrinsic notion of distance

Both models assume that the underlying topology is a binary tree and the data at the leaves comes from identical and independent
evolution

a specific substitution rate. To minimize this type of input we restrict to only what is directly computable from the
data. We consider two evolutionary models (Table 1).

Summarizing, there are two main closely related questions that need to be disentangled in this analysis. One is
the question of the reliability of syntactic data alone in performing phylogenetic reconstruction of trees of languages
and the other is the reliability of the hypothesis that syntactic features are governed by an evolutionary process
describable as a Markov model on a tree which we introduce in the next section (and alternatively the approximate
infinite sites model). The way to proceed in the analysis, so as to separate and analyze these questions, consists of
the following steps:

1. We use available datasets of binary syntactic features (discussed in Sect. 4) together with the logdet+njmethod
(described in detail in Sect. 2), which is known to perform well on data that are generated by a Markov model
on a tree.

2. With this method we generate from the data a candidate tree. This is done on different groups of languages
(smaller subfamilies, groups with weaker evidence of relatedness, etc.) to control for known effects of how the
reliability of syntactic information decreases for more remote relationships.

3. The trees generated with this method are then compared with two other classes of trees: either those obtained
from the same syntactic data but with different methods, or trees obtained with other non-syntactic linguistic
information (lexical and morphological).

Comparison with trees obtained from the same data helps understanding the limitations of the Markov model
hypothesis for syntactic features, while comparison with trees obtained with other methods helps identifying the
reliability of working with syntactic information alone.

2 Preliminaries

A phylogenetic tree for a set of species X is a tree T with an identification, φ : X → leaves[T ], of the tree leaves
with the elements of the species set X . The root ρ of the tree is a choice of a vertex of T . Given a rooted tree T on
vertex set V and edge set E , with a partial ordering on the vertices given by distance from root, a Markov process
on T with state set C is a family of random variables {ζv : v ∈ V }, such that if (u, v) ∈ E then

P(ζv = α| ∧w<v ζw) = P(ζv = α|ζu) ,
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where the w with w < v are all the vertices preceding v in the rooted tree T .
Such a Markov process can be thought of as obtained by assigning a Markov transition matrix to each edge,

governing the dynamics across it. More formally, the κ-state general Markov model on a phylogenetic tree consists
of a probability distribution over the state set assigned to the root vertex, together with an assignment of a κ × κ

transition matrix to each edge. The κ-state random variable χ , called a character, evolves from the root to each leaf
based on the transition matrices on the path downwards. The probability distribution of the κ states at the leaves
can be thought of as a tensor, PT , indexed by the possible patterns. This means that the components of the tensor
are the probabilities px1x2...xn (with xi ∈ [κ]) of the character χ having state xi at the leaf i for a n-leaf tree. The
central problem is inferring the phylogenetic n-leaf tree given n sequences of length t , where by sequences we mean
samples of the values the character takes at each of the leaves.

The inference in the Markov model is usually performed assuming that each parameter (often referred to as site
in phylogenetic literature) is evolving identically and independently. While it can reasonably be assumed that the
topology of the tree is identical for the evolution of each site, assuming that tree parameters are identical can be
problematic; selection pressures often induce sites to evolve differently, and the location of the site in the sequence
may carry meaning—specifically here each site is a different syntactic parameter and there is no a priori reason
why they should be independent or evolve identically.

Following Allman and Rhodes [1], for a n-leaf binary tree with |E | = 2n − 3 edges, the parameter space S
for the κ-state Markov model sits inside [0, 1]N with N = κ − 1 + |E |κ(κ − 1), and there is a polynomial map
φr : S → [0, 1]κn which gives the joint distribution of states at the leaves. Allman and Rhodes [1] show that there
exist polynomials, called the phylogenetic invariants, dependent only on the tree topology, which vanish on the
image of S under φr . This implies that, regardless of the exact parameter values, if the data is indeed coming from
a Markov model, then it is straightforward to test if the tree topology is supported by the data. With real data the
invariants do not exactly vanish, as the probabilities are not exact but only estimates; instead, the magnitude of the
invariants is often used as a heuristic to select between tree topologies. Phylogenetic algebraic geometry studies the
map φr and the phylogenetic variants. In general, statistical models where such polynomial maps from parameters
space to observation space are defined can be studied through an algebraic geometry approach. The general Markov
model assumes that the sites are evolving identically and independently. There are modifications that allow other
possibilities, but they require a priori knowledge. There are two assumptions that are implicit in the setup of these
phylogenetic models:

1. The sites of the sequences (i.e., the samples of character values at leaves) are independent and identically
distributed.

2. The interactions between the taxa at the leaves are described by a tree.

The presence of selection pressures and hybridization, which are both common phenomena, are at odds with these
two assumptions. The failure of the first can be thought of as sampling from a mixture of models where the evolution
of the sites is identical, and this can be particularly confounding because of the phenomenon of phylogenetic mimicry:
it is well known in the phylogenetics literature that a mixture of data from different phylogenetic models can mimic
another model, in the sense that leaf pattern frequencies can match pattern frequencies that are not distinguishable
(see Matsen and Steel [32], Štefankovič and Vigoda [56,57]). While Allman et al. [2] show that this mimicking is
unlikely with mixtures of small number models, when the state space is not small this phenomenon is an issue for
2-state models.

We try to quantify the agreement (or the violation) of these two assumptions with the data of syntactic structures.
In the next sections we introduce the key ingredients of our approach: the logdet transform and the flattenings of
phylogenetic tensors.

The discussion is specialized to the setting of binary characters, both because the phylogenetic algebraic geometry
of the 2-state model is the most well developed, and because this is the setting that directly applies to the syntactic
structures datasets. However, the techniques carry over to characters with finite state sets; the ideas developed are
more generally applicable than to the syntactic structures setting and can be used when working with such models.



Syntactic Structures and the General Markov Models Page 5 of 38     4 

2.1 Logdet Transform and Neighbor Joining

An important class of metrics relevant to our setting are tree metrics: these are metrics on the space of leaves for
which there exists a tree with edge lengths such that the distances between leaves correspond to lengths of paths
on the tree. The main reason why these metrics are especially useful is that tree reconstruction algorithms that use
similarity measures between the data at the leaves for constructing the tree are often well behaved for tree metrics.
For example, neighbor joining [51] is a commonly used tree construction method that reconstructs the correct tree
topology given an n-point distance matrix from a tree metric on the tree T .

For neighbor joining, the requirement of being a tree metric can be relaxed so that the reconstruction is still
correct as long as each entry of the distance matrix is no more than half the minimum edge length of T from the
tree metric associated to T (see, for instance, Warnow ([59], Theorem 5.8), Semple et al. ([52], Theorem 7.7.5)).
This means the accuracy of construction is compromised if the pairwise dissimilarity between the taxa has a large
variation, especially if one assumes that larger dissimilarity corresponds to larger evolutionary distances and larger
noise.

Gascuel and Steel [16] note that neighbor joining greedily optimizes a global criterion—the weighted tree length
computed using Pauplin’s formula. This has the effect that two most similar taxa are not necessarily guaranteed to
be placed together as that may not be optimal on the full tree and adding or removing taxa to the set being considered
can change relationships inferred between the remaining taxa. Additionally, if the dissimilarity estimates between
a small number of taxa are noisier than the rest, on adding more taxa we expect the tree construction to improve
because now the outlier has less impact on the tree length. We also empirically observe this in the datasets we
consider.

In the context of the Markov model, the paralinear distance of Lake [23], also known as logdet transform, gives
a natural tree metric. Lake [23] defines the paralinear distance1 d(Si , S j ) for two sequences Si , S j over an alphabet
{ak : k ∈ [n]} as

d(Si , S j ) = − log
det J i j√

det D1 det D2

where J i j is an n × n matrix, with (p, q) entry given by the number of instances of (ap, aq) in the sequence pair
(Si , S j ), and D1, D2 are diagonal matrices with sum of rows and columns of J i j , respectively, on the diagonal.
Because the normalized frequencies approach probabilities, under the assumption that each site of the sequence is
independent, this measures how far the joint distribution is from being the product of marginals.

Chapter 8, Sect. 8.12 of Semple et al. [52] gives a different formulation that is also useful. For a phylogenetic
Markov model on a tree T , with a character χ with state set X evolving on it, and for leaves x, y, define the
matrix J xyα,β = P(χx = α ∧ χy = β), α, β ∈ C , and the matrix Pxy with Pxy

αβ = P(χy = β|χx = α). One has

Pxy = (J xx )−1 J xy , implying that the paralinear distance

d(x, y) = − log
| det J xy |√

det J xx det J yy

becomes

d(x, y) = −1

2
log det Pxy P yx .

From this observation it is easy to see that, if S1, S2 are independent sequences, then d(S1, S2) = ∞, since Pxy has
rank 1.

Felsenstein ([15], page 212) notes that the logdet transform fails to be additive when the stationary distributions
for the edge transition matrices do not agree. More generally, it fails when the distribution at the root is not uniform.
The assumption of a uniform distribution at the root is not very realistic for the syntactic data considered here. We

1 The slight issue with negative determinants in Lake’s definition can be sidestepped using a constant scaling of the metric and moving
it inside the logarithm.
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note that the phylogenetic algebraic geometry analysis of syntactic structures in Shu et al. [54] does not require
uniform distribution at the root. In the setting we consider here the imbalance between the two states is not large,
and we assume neighbor joining is tolerant of this deviation from the assumption of uniform distribution at root.

With this last caveat, we have a natural tree metric on the space of sequences coming from a general Markov
model; combining it with neighbor joining, the tree topology can be recovered. We will work with the tree constructed
using logdet transform and neighbor joining throughout the next sections, and we refer to the tree constructed like
this as the logdet+nj tree.

2.2 Logdet Transform and Rate Matrices

An important special case is when the edge transition matrices have form eQt for a real parameter t and a matrix
Q called the rate matrix.2 Rate matrices characterize the instantaneous rate of transition between the states for
the character and the parameter t can be thought of as time. An important consideration is whether every edge
transition matrix, Me can be given by a single choice of rate matrix, Me = eQte ; such a process is a stationary
process. It is reversible when Q is symmetric, the reason being that the parameter te associated to each edge can now
be interpreted to mean time. Heterotachy is the phenomenon where more than one rate matrix is involved, which
significantly complicates the analysis. Semple et al. [52], Sect. 8.5, notes that for a stationary, reversible process,
the logdet transform is closely related to the expected number of substitutions along the edges, which is considered
as the evolutionary distance.

Consider the covariance Cov(C, B) of character values at the leaves, i.e. Bernoulli random variables B,C that
evolved from the root R on the tree, co-evolving till the interior node to state IBC , then evolving independently.
Assume C = MC IBC , B = MB IBC for Markov transition matrices, MC , MB . By the Law of Total Covariance

Cov(C, B) = E[Cov(C, B|IBC )] + Cov(E[C |IBC ],E[B|IBC ]),
where E[Cov(C, B|IBC ))] vanishes, since conditioned on IBC , B,C are independent, while the covariance
Cov(MC IBC , MB IBC ) becomes proportional to the variance of the internal state IBC , involving the entries of
MC , MB .

When the state space is large, or otherwise when the variance is expected to become proportional to the parameter
t , the covariance at the leaves encodes the topology of the tree that can be recovered by a simple greedy strategy:
compute all pairwise covariances between the n leaves, group the two leaves with largest covariance, and then replace
the leaves that were just grouped by the single node. The covariance between this node and the other leaves is the
minimum of the covariances against the constituents of the node. The process is iterated until every leaf is absorbed
into some node, the covariances between two nodes consisting of multiple leaves being computed analogously. The
correctness of this follows, since if we assume the evolution happens on the tree then, up to estimation errors, the
minima of the covariances between leaves in different nodes should all be the same.

In particular, when appropriate assumptions (stationarity, reversibility, proportionality to the time parameter)
are met, the disagreement between covariance and the logdet+nj tree indicates heterotachy. This suggests that
comparison of the logdet+nj tree and the tree based on covariances can be revealing in general.

2.3 Flattenings, Splits and Phylogenetic Invariants

For a tree T with leaves LT , a split is a partition of the set LT that is induced by deleting an edge of the tree. A partition
into sets A, B of LT , not necessarily a split of the leaves, associates a κ |A| × κ |B| matrix to the partition, called the

2 Rate matrix is any matrix where each row sums to zero, and all entries are positive off diagonal and non-positive on it; each edge is
thought of as a continuous Markov chain associated to the rate matrix.
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flattening of the probability tensor, px1x2...xn , where we are using the sets A = {ai : i ∈ [|A|]}, B = {b j : j ∈ [|B|]}
to index the tensor:

[FlatT (A, B)]s1...s|A|,t1...t|B| = pl1...l|LT |
where lk is either t j or si , depending on whether the leaf k is b j or ai .

The rank of the flattening FlatT (A, B) is κmin(1+e(A,B),|A|,|B|) where e(A, B) is the number of edges shared by
the subtrees of T obtained by restricting to the leaves A and B (see Pachter and Sturmfels [40], Theorem 19.5, and
Allman and Rhodes [1], Sect. 4). If A, B is a split, then the rank is κ , and in particular all (κ + 1) × (κ + 1) minors
have vanishing determinants. Eriksson [14] gives a simple way of constructing phylogenetic trees from character
data for n taxa by iteratively joining pairs of taxa, so that the rank of flattening matrices between the pair and the
rest of vertices is closest to κ .

Allman and Rhodes [1], Theorem 4, shows that for the case of binary trees, for the 2-state general Markov model,
the phylogenetic ideal is generated by the 3 × 3 minors of the flattening matrix for splits induced by each of the
edges of the tree. For examples of calculations of phylogenetic invariants for the some language families see Shu
et al. [54].

3 Testing Consistency with Markov Models

The starting point is a n× t matrix of data, where each of the n sequences, with t sites, are from a single taxon, with
a particular site across sequences representing the evolution of a single character on the tree. Specifically, we work
with the data of syntactic features described in the next section—each feature corresponding to a character. There
are two major checks that are needed: checking if each site represents an independent and identically evolving copy,
and if the tree topology is sufficient.

Note that the character evolution model interacts with the data of the leaf sequences: for instance, if one uses a
stochastic Dollo model as in Nicholls and Gray [34], with a large number of unique traits, the tree will be poorly
resolved. Moreover, the issue of i.i.d. variables in syntax is delicate since it is known that syntactic traits are not
independent. We will return to discuss this issue in §4.

3.1 Maximum Likelihood Statistics

The sufficiency of the tree topology is explored using the maximum likelihood on the logdet+nj tree along with
behavior of the rank of the flattening matrices. The key idea here is that if the Markov model does indeed describe
the data, then the logdet+nj tree reconstruction will in the limit give the correct tree topology, T . Coupled with
a maximum likelihood estimate of the tree parameters, this gives a way to generate an empirical null distribution
against which the statistics can be tested. Generating data from the maximum likelihood model, the distribution of
distances from the flattening to the nearest matrix of appropriate rank (where we know the behavior of the ranks of
flattening matrices from last section) provides the expectation against which we examine the actual data. Testing
identical evolution in the syntactic structures data is theoretically not possible since there is only one sample from
each structure. We do have a proxy that is sufficient (though not necessary) as evidence of failure of independent
evolution, simply by considering the joint distribution of two fixed sites against the product of individual site
distributions. Again, the expectation for this statistic can be empirically estimated using a maximum likelihood
model. The simulated data come from i.i.d. simulated trials on the maximum likelihood trees, this makes z-score
usable to characterize the discrepancy of the actual versus the simulated.

3.2 The Influence of Sites in Leaf Sequences

A secondary question in the syntactic parameter setting is determining if there are parameters that carry higher
relevance than others to determine the relationships between languages in families. We examine this using the idea
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of influence from analysis of boolean functions (see O’Donnell [38]). The tree on n leaves can be represented as a
partially ordered collection of subsets of leaves with the order induced by the tree structure. Any algorithm AlgTree

for tree construction can be thought of as a map into the collection of all subsets of the leaves, taking a value one
if that subset is present in the output tree representation and zero otherwise. Each site in each sequence in the data
affects the output of AlgTree. The influence of the variable is the probability that changing the value of that variable
changes the function.

Intuitively, one expects that a few sites in the data should have a small effect on the reconstruction process.
Moreover, on average over the data distribution, assuming i.i.d. evolution of characters, the expectation is that all
sites would have similar influences. However, given this particular data sample, and absent any statistical evidence
for or against identical evolution, we can hope to get some insight by considering the homogeneity of sites influences.
This can also be revealing about syntactic structures themselves, as well as what structures are key in determining
relationships within language families.

We flesh out these ideas more concretely after introducing syntactic structures in more detail in the next section.

4 Syntactic Structures: Background

Chomsky [9], along with Chomsky and Lasnik [10], introduced the Principles and Parameters model of syntax,
hypothesizing that syntactic structures for natural human languages can be parameterized by a universal set of
binary variables: each variable indicating the validity of a syntactic construction in that language. The Chomskian
theory of generative linguistics is now no longer based on this Principles and Parameters model, after the Minimalist
Program became a viable alternative within the field. Consequently, syntactic features tend to be seen more in a
descriptive role, rather than as claims about Universal Grammar. In subsequent work, including Longobardi [27],
Collins [11] and Dryer and Haspelmath [12], various families of syntactic features that can be formulated in binary
form have been identified and data have been collected on the values of these variables over a significant number of
world’s languages (although at present the Indo–European family is still much more extensively represented in the
data). We consider three independent such sets: the dataset produced by the LanGeLin collaboration Longobardi and
Guardiano [28], Longobardi [26], collecting the values of syntactic parameters based on the Modularized Global
Parameterization approach developed by Longobardi, the more recent data from Ceolin et al. [7] encoding nominal
structures, and the database of Syntactic Structures of World’s Languages (SSWL) by Koopman and collaborators.
For a recent perspective on syntactic parameters see also Biberauer [4].

Technically, the binary variables used in the SSWL database cannot be regarded as genuine “syntactic parameters”
in the sense of the Principles and Parameters model, because of conflation of deep and surface structures. For
example, instead of a basic word order variable (BWO) as in The World Atlas of Language Structures (WALS,
Dryer and Haspelmath [12]) Feature 81A, the SSWL dataset has several surface word order variables such as SVO,
SOV, etc. (For a discussion of deep and surface structure in word order features see Rizzi [50] and also Murawaki
[33].) However, as demonstrated by previous analysis carried out on this data set (see for instance Port et al. [47],
Ortegaray et al. [39]), the SSWL data still provide valid information regarding the distribution of syntactic features
across world’s languages, and historical phenomena of syntactic relatedness. The LanGeLin data can be more
reliably considered as genuine syntactic parameters. For simplicity of notation, we will loosely refer to all of the
syntactic features collected in these databases in the form of binary variables as “syntactic parameters”. This is
partly justified by the fact that modern syntactic theory has moved toward a generalization of the notion of parameter
with respect to universal grammar (UG) specific parameters, by including parameters that are constructed during
language acquisition, or “schemata” in the sense of Longobardi [27], where general operations are UG-specified
rather than individual parameters. For a recent general theoretical discussion of syntactic parameters, we refer
the reader to Rizzi [50]. For a general introduction to syntactic structures and the parameters model, we refer the
reader to Chomsky and Lasnik [10] and to the papers collected in the recent volume, Karimi and Piattelli-Palmarini
[20], which presents an up-to-date overview of the current understanding of syntactic parameters in the linguistics
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community. For a non-technical introduction to syntactic parameters aimed at a general audience of non-linguists,
we recommend Baker [3].

To each language there is an associated vector of syntactic parameter values which gives coordinates in an
ambient metric space, with the choice of metric dependent on the context. A main open question in this parametric
model of syntax is identifying a good set of independent variables, or equivalently understanding relations between
syntactic parameters and constraints on the locus of possible grammars inside the larger ambient space. We refer
to this problem as “the geometry of syntax”. Considerable work has been done towards understanding linguistic
relationships and how syntax is constrained based on this metric space structure. The latter is an interesting question
from the perspective of language acquisition: within this model of syntax, it is assumed that the values of the
parameters are learned in the process of language acquisition, based on exposure to a set of positive examples;
Niyogi [35] gives an overview of mathematical models of language acquisition within this syntactic parameter
model.

4.1 Syntactic Parameters and Phylogenetics

Longobardi and the LanGeLin collaboration introduced the use of syntactic parameters to reconstruct phylogenetic
trees of language families of interest to historical linguistics, Longobardi and Guardiano [28]. Linguistic phyloge-
netic trees based on data of syntactic structures were also analyzed using phylogenetic algebraic geometry in Shu et
al. [54]. Topological data analysis of syntactic structures was used in Port et al. [46] and Port et al. [47] to identify
historical linguistic phenomena not captured by tree structures.

However, as discussed in Shu et al. [55] and in Port et al. [47], prior work addressing linguistic relationships based
on the analysis of syntactic structures shows certain divergences in the structure of phylogenetic trees, with respect
to what is known from historical linguistics. In particular, while the phylogenetic algebraic geometry method of
Shu et al. [54] correctly selects the historically accurate tree among a preselected list of candidates, for languages
belonging to preselected and sufficiently small families, tree reconstruction methods based on the use of 	p metrics
and neighbor joining, or direct application of phylogenetic packages like PHYLIP to the SSWL data, as well as trees
derived from persistent components in the persistent homology computations applied to either SSWL or LanGeLin
data, show some significant amount of misplacement of languages both within and across language subfamilies.

In the linguistic context one does not reasonably expect that all leaves are at the same distance from the root
(this is known as the “clock assumption” in phylogenetics, see e.g. Warnow [59]); for example, in the family of
early European languages we consider, Tocharian and Hittite are not contemporaneous with others like Albanian
and Greek. It is known in the literature that metric space methods are susceptible to failure in absence of the “clock
assumption”. To see intuitively why this failure happens, notice that, when we compute distances between taxa
that are far apart in time, distances measured by Euclidean metrics only see where the vectors describing the taxa
disagree, and miss the differences that arose and were undone during the intervening time. This under-estimation
of evolutionary distances when back mutation is allowed by the frequently used Euclidean metrics, due to missing
unobserved changes in syntactic structures, approximates an unreasonable model for linguistic evolution: if such
metrics are an accurate representation of the metric relationships, then that implies that a syntactic parameter flips
at most once in the evolution process. This makes convergent evolution much less likely and is at odds with known
historical phenomena of multiple reversals in some syntactic parameters. Further, in language evolution we do see
homoplasy phenomena and horizontal transmission in syntax, as discussed for instance in Longobardi [25] and
detected through persistent first homology computation in Port et al. [47] and Port et al. [46].

This leads us to positing that the point of failure here lies in the fact that the metrics used are not capturing
the evolutionary distance. The reason for the good results from phylogenetic algebraic geometry also becomes
clear: the phylogenetic invariants machinery is agnostic of the metric structure and only utilizes the general Markov
model derived invariants. As the logdet metric is the natural metric in the Markov model setting, we move from
using invariants to select phylogenetic trees to using logdet metric to construct them. We first apply the techniques
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introduced to testing how well the data match the general Markov model, and then consider the constructing
phylogenies using this approach.

4.2 General Markov Model and Syntactic Parameters

The phylogenetic algebraic geometry methods of Allman and Rhodes [1], Pachter and Sturmfels [41] appear very
successful when applied, as in Shu et al. [54], to trees of language families, and that in itself is evidence in favor
of Markov models on trees. However, there are reasons why one can expect significant discrepancies from these
models when investigating phenomena of language relatedness at the syntactic level. Markov evolution is a restricted
class of models for how syntax/languages may evolve and one does not necessarily expect the relationship between
any two languages to be well described by such a process. For example, languages evolving in close geographic
proximity as in the case of the microvariation phenomena studied in Guardiano et al. [18], represented in the data of
Romance and Hellenic Southern Italian dialects in the LanGeLin data, can present more interaction than permitted
by tree models. Known historical linguistic phenomena involving influences across different tree subbranches are
well known at the lexical level (the Anglo-Norman bridge for example) but rarer at the syntactic level, although
such structures are visible in the persistent first homology studied in Port et al. [47] and Port et al. [46] (the Gothic-
Slavic-Hellenic loop discussed in Port et al. [47] for example). Such phenomena are beyond what is describable
purely in terms of Markov models on trees. Moreover, different syntactic parameters are not independent variables:
some relations are explicitly known (as discussed in Longobardi and Guardiano [28], Longobardi [26] for instance,
and also in Kazakov et al. [21]), while other relations can be detected through methods of data analysis, as in
Ortegaray et al. [39], Park et al. [43], or through methods of coding theory Shu and Marcolli [53], Marcolli [31].
The presence of dependencies between syntactic parameters violates the Markov models on trees hypothesis that
these variables can be treated as identically distributed independent random variables. Thus, the effectiveness of
the Markov evolution on trees as a model for syntactic relations between languages lingers on how large the effect
of such deviations may be.

Our purpose here is to show that, despite these possible discrepancies, the statistics of the data of syntactic
structures, tested over sufficient diverse language families, are largely consistent with Markov models on trees
when restricting data to within given language subfamilies. We will show that the tree reconstructions obtained by
this method become significantly less reliable when the size of the tree is enlarged to include different language
families, as the effect of deviations from the Markov evolution hypothesis amplifies with the size of the tree. To
be more precise, what we see as the size of the language set grows encompassing different language families is
that misplacement errors within the subfamilies decrease, while significant misplacements across different families
occur. We see this, for example, in §6.2 with the Greco-Romance tree, where some misplacements within this
subtree disappear when instead of considering only this subset of languages, we consider them within the full Indo-
European tree (this subset of languages has a large sampling bias, as it contains a large number of closely related
Italian dialects, considered in the microvariations study of Guardiano et al. [18]). Examples of misplacements across
families can be seen, for instance, in the placement of Welsh within the Germanic tree, in the case of the full Indo-
European tree of §6.5, or the fact that the non-Indo-European Dravidian languages Tamil and Telugu are placed
inside the Indo-Iranian subtree of the Indo-European tree. This points, on the one hand, to an improved performance
of the neighborhood joining within subfamilies, but at the same time to a more visible discrepancy with respect to
the Markov model hypothesis when different subfamilies are simultaneously taken into consideration.

Understanding when the general Markov model applies, servicing the logdet as the natural evolutionary metric,
also gives insight into the Geometry of Syntax paradigm of Port et al. [46] and Ortegaray et al. [39] which grapple
with choice of metric when trying to understand the geometry: we note that when studying evolutionary relationships,
it is the evolutionary distance that should be considered.

We note that these databases have been updated since the analysis of Port et al. [47], Ortegaray et al. [39], with
the SSWL dataset especially being subject to frequent additions and updates of parameter values. This results in
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some minor discrepancies in values of some invariants that we compute with respect to prior results, but these do
not change the main conclusions.

4.3 LanGeLin Dataset

The LanGeLin dataset collects the values of 83 syntactic parameters based on the Modularized Global Parameteri-
zation approach developed by Longobardi, for a set of 62 languages, mostly Indo-European. A complete list of the
languages and parameters included in this database is reported in §1.2 of Port et al. [47].

4.4 Entailment in the LanGeLin Dataset

The syntactic parameters from Longobardi’s LanGeLin collaboration dataset take on values ±1 as well as 0 with
zeroed values indicating dependence on other parameters. To ensure the assumption of independent evolution of
parameters, we disregard all parameters that take on a zero value in the language family in consideration. When
defining a metric based on these parameters, this leads to a bias towards underestimation because, when computing
the dissimilarity, if the parameters underlying the dependent parameters differ then the dependent parameters will
also differ. However, we have disregarded them, leading to a dampening of perceived syntactic difference. This can
be viewed as a special case of not all parameters contributing uniformly to the syntax. We briefly touch on this in the
discussion. This effect is also present on the SSWL dataset, though the dependence there is not explicitly identified.
Note we have only removed dependent parameters that have been explicitly identified, and other dependencies may
still be present in the data.

In the geometry of syntax formalism, the functional dependence of zeroed parameters is exactly what defines
the geometry and is of particular interest from that perspective. Since we expect this functional dependence to be
different for different language families, the scheme of disregarding parameters with zeros only across the language
family considered is sufficient.

4.5 Syntactic Structures of World’s Languages (SSWL) Dataset

The current version of SSWL dataset contains 252 languages and 115 syntactic binary variables. The list of languages
and syntactic features of the SSWL dataset is discussed in detail §1.2 of Port et al. [47]. The set of languages included
in the database range across several non-Indo-European language families: the most represented families are, in
decreasing number of languages: Indo-European, Niger-Congo, Austronesian, Afro-Asiatic.

An issue with the SSWL data is that the syntactic features are very unevenly mapped across the languages in
the database: some languages have 100% of the syntactic features recorded, while others are only 2% mapped. Any
subjectivity that may enter analysis in dealing with this incompleteness is removed by following the approach of
previous work, where one either sets incomplete parameters to 0 (with ±1 the binary values of recorded parameters)
or one chooses to work only with those parameters that are completely mapped for the language family under
consideration (the advantages and disadvantages of these methods are discussed, for instance, in Port et al. [46,47],
Shu and Marcolli [53], Shu et al. [54]). Note that the second method does bias the analysis towards Indo-European
languages, which tend to be more extensively mapped in the SSWL database.

4.6 The Ceolin et al. [7] Nominal Structures Data

The dataset of Ceolin et al. [7] encodes the nominal structures in 69 languages across 13 Eurasian families, using
94 binary variables. The dataset is significantly more complete than either the LanGeLin dataset or the SSWL
dataset. The parameters show entailment like the LanGeLin dataset, with entailed parameters marked by using a
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zero value, as opposed to ± values otherwise. For a more complete description, we refer to Ceolin et al. [7]. We
note that there are sets of languages that are degenerate in this set in the sense that for all languages in these subsets
all syntactic structures are identical; we only keep one representative from each subset while Ceolin et al. [7] use
all; we do this since keeping multiple representative adds no information but can bias neighbor-joining because of
how it minimizes the balanced minimum evolution criterion, see Gascuel and Steel [16].

4.7 Reinterpreting the Ceolin et al. [7] Metric

Ceolin et al. [7] use a modified Jaccard similarity value with Unweighted Pair Group with Arithmetic Mean
(UPGMA) clustering. In their case a parameter only contributes to the syntactic distance between two languages
when it is set in at least one of them:

dmodified_jaccard(l1, l2) := N−+ + N+−
N−+ + N+− + N++

where Nab is the frequency of value a for parameters from language l1 and b for language l2. This can be thought
of as modelling an infinite sites evolutionary model in the sense that it is counting how many events happened
in the evolution of the sequence on the tree and how many of them were different between the pair. There is no
contribution from unobserved changes: in effect parameters once set are not unset till an evolutionary split happens,
and along any branch site a nominal structure may change at most once. Because the number of structures that
separate closely related languages is small with respect to the number of structures, this scheme approximates the
infinite sites model of evolution Ma et al. [30]. Additionally, as all languages in this dataset are currently extant,
the assumption that all languages are at the same distance from the root, and therefore the choice of UPGMA
reconstruction made by Ceolin et al. [7] is reasonable, although this is confounded by rate variation along different
branches. This approximate model is an alternative to the general Markov model, the key difference being the
possibility that the same syntactic feature could undergo multiple updates.

As noted by Ceolin et al. [7], there are asymmetries in state transitions, with transitions primarily only observed
in one direction (we see also this asymmetry in the maximum likelihood model we obtain). This asymmetry makes
unobserved changes across an edge unlikely, so we expect that a highly asymmetric model will approximate this
model. Pushing this a step further, if the evolutionary process is well described by such a model, then dmodified_jaccard

would be approximately additive. We will use neighbor joining with this metric, to get the correct reconstruction
guarantees that it offers, and use that to test if there is an alternative that better fits the data compared to the general
Markov model.

Ceolin et al. [7] also present a reconstruction using Bayesian phylogenetics (built on the Markov model approach
with rate matrices) obtaining results that can be considered arguably better than the UPGMA approach, giving weight
to the Markov model. The point we want to make is that one does not expect the evolutionary process along any
branch to be necessarily memoryless, that is, with an underlying rate matrix: the evolutionary process for syntactic
parameters is less like molecular sequence evolution, which provides motivation for Bayesian phyologenetics. The
closer analog in biology is stem cell differentiation, which has been modelled as a non-Markov, in the sense that
the process is not memoryless—we do not get substitutions accumulating as the exponential of a rate for the length
of the branch Stumpf et al. [58]. In the linguistics setting, Gray et al. [17] relate the linguistic diversification to
population expansion, and social and geographical constraints on the population. From this perspective as well, it
is reasonable to suppose that linguistic evolutionary processes have memory over larger timescales; the success of
models with varying rates can be viewed as encoding this in the parameters that govern the rates. An approach that
does not introduce this added complexity would offer robustness at the expense of some of the descriptive power
of complicated models. This tempers the concerns about use of the extra parameters, and provide a way to validate
the more complex models. For this reason, one would like to evaluate the Gamma site model of Ceolin et al. [8]
against a rate matrix agnostic alternative.
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4.8 Other Linguistic Data

As discussed above, our analysis in this paper is based entirely on syntactic data, organized in the form of syntactic
features, which are binarized (present/absent) syntactic characters. The properties of the model depend on the
nature of the character data. For example, using binary as opposed to multistate characters leads to different
mathematical properties of the corresponding phylogenetic model. When lexical data are used for phylogenetic
analysis in linguistics, these aspects have a significant impact on the analysis and are discussed in depth. For a
detailed discussion of Bayesian phylogenetic analysis based on lexical data see for instance Hoffmann et al. [19].
Morphological data have also been used for phylogenetic analysis in linguistics, in a binarized form, for example
in Ringe et al. [49]. There is a significant difference in the use of syntactic data, namely the fact that syntactic
features are two-state reversible, unlike lexical features, as we have discussed at length above. We will return in the
following sections to point out where this needs to be taken into consideration in the analysis.

5 Markov Evolution in Language Families

The LanGeLin and SSWL datasets are still active projects and only partially complete, with Indo-European languages
being most completely defined. So considerable prior analysis has focused on Indo-European languages. To test the
ideas put forward in the previous section, we consider the following five groups of languages studied in Ortegaray
et al. [39], Port et al. [47], Shu and Marcolli [53], which include three sub-families of the Indo-European family,
one hypothetical macro-family, and a small set of early attested Indo-European languages,

1. Germanic: Dutch, German, English, Faroese, Icelandic, Swedish.
2. Slavic: Russian, Polish, Slovenian, Serb-Croatian, Bulgarian.
3. Romance: Latin, Romanian, Italian, French, Spanish, Portuguese.
4. North Eurasian: Finnish, Estonian, Hungarian, Khanty, Udmurt, Yukaghir, Turkish, Buryat, Yakut, Even, Evenki
5. Early Indo-European: Hittite, Tocharian, Albanian, Armenian, Greek.

5.1 The Choice of Language Sets

The last family listed above includes some of the early branchings of the Indo-European family tree. Clearly, it
might have been preferable to select a different subset of early attested Indo-European languages, perhaps including
Sanskrit, Avestan, Old Church Slavonic (OCS), etc. Unfortunately, these are at present not included (or extremely
incompletely mapped) in the available syntactic databases, so they could not be used. Currently, the only languages
in this early IE group that have enough syntactic features data for any kind of comparative analysis are those listed
above. However, the choice of this specific set of languages is significant for the following reason. There has been
some debate in recent years in the linguistic community (see Perelysvaig and Lewis [44]) around computational
reconstructions of the structure of the Indo-European tree near the root. In particular, this subset of languages was
chosen in Shu et al. [54] in order to compare the relative positions of the Anatolian and Tocharian branches and
the Albanian, Armenian, and Hellenic branches, between two candidate trees, one obtained in Bouckaert et al. [5]
on the basis of lexical data and one, generally regarded by linguists as more reliable, obtained in Ringe et al. [49]
including morphological data. The phylogenetic algebraic geometry method, applied in Shu et al. [54] to the SSWL
syntactic data for this set of languages, slightly favors the tree of Ringe et al. [49]. While some of these ancient
languages, like Ancient Greek, are very completely mapped in the SSWL database, others like Hittite and Tocharian
are only very coarsely mapped. This implies that there are only 22 variables in the SSWL dataset that are fully
mapped for all of these ancient languages. Since the analysis in this case is based on a very small set of syntactic
features, it should be regarded as less reliable than the cases of the other families above, for which a larger set of
completely mapped parameters is available. We use the combined set of parameters from SSWL and LanGeLin
datasets when the languages in consideration are present in both databases. For Romance and Slavic families which
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Fig. 1 The Germanic
logdet+nj tree, showing
the East and West Germanic
split, with the root placed
according to the historically
accepted tree

are present in both databases we use the combined parameter values from both, restricting to parameters which are
set in all languages only. So, this is the analysis that is based on the most complete set of data; although still having
to drop partial unset parameters is not ideal. For the other families too, as in Shu et al. [54], we only use parameters
that are set for all languages. The results obtained in this way are discussed in the following subsections; we defer
the discussion of romance family to the end, as here we find that not only is the logdet+nj tree different from
historically correct tree, but also has a lower phylogenetic invariant.

Working in the setting of binary syntactic structures, the general Markov model setup is specialized to binary
characters. The sequences at leaves are also binary and the transition matrices are 2 × 2. One could consider the
unset parameter to be a third symbol, however, the statistics when a parameter is unset in both languages under
consideration become ambiguous, so working only with those parameters that are completely mapped for the
selected subfamily of languages is favored.

We first construct logdet+nj trees for these families and evaluate how consistent these are with what is accepted
in the linguistics community. Note that the trees constructed are unrooted. This is the case also when one applies
the phylogenetic algebraic geometry methods (this issue for linguistic phylogenetic trees is discussed in detail in
Shu et al. [54]). In particular, the placement of the root is related to the knowledge about ancient languages in the
database. While for the Indo-European language family, several ancient languages are represented in the data, and
this information can be used to correctly root the trees, for language families where only the modern languages are
represented in the data one can obtain the information on the tree topology but not as a rooted tree.

By the arguments outlined above, under the assumption of general Markov model (including the uniform dis-
tribution at the root), the logdet+nj tree will recover the correct tree. The reconstructions for Germanic, Slavic
and Uralic and Altaic languages are briefly discussed before we focus on the two cases which lend themselves to a
richer analysis.

5.2 Germanic Languages

The logdet+nj tree constructed for the Germanic family using the 89 completely mapped syntactic parameters
correctly identifies the separation between West Germanic (Dutch, German), and the East Germanic (Swedish,
(Icelandic, Faroese)). The logdet+nj trees are unrooted. A common method of rooting trees by choosing an
outgroup representative is not meaningful here, since the outgroup element may not be evolutionarily related, or
the evolutionary distance may be so large that the noise in estimating it will significantly affect the results. Thus,
we have simply placed the root in the tree where it is known to be from historical linguistic information, while the
logdet+nj tree is simply providing the tree topology (Fig. 1).

The reconstruction is very robust and with ≈ 60% of the data, we can recover this topology with probability
approximately 0.7.

We note that using various euclidean (	p) metrics (with UPGMA tree construction) fails to recover the East/West
Germanic split, as does in the tree of the persistent connected components of §6.4 of Port et al. [47] which
mixes North and West Germanic languages. The logdet transform is a better proxy for evolution distance than 	p
metrics. Specifically, 	p metrics do not account for unobserved changes in the syntactic structures. This observation
underscores using evolutionary distance to explore the geometry of syntax over embedding into other metric spaces.
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Table 2 Loget distance matrix for Slavic family including Slovenian

Russian Polish Slovenian Serb-Croatian Bulgarian

Russian 0.000000 0.127036 0.000000 0.029729 0.092947

Polish 0.127036 0.000000 0.127036 0.160433 0.232805

Slovenian 0.000000 0.127036 0.000000 0.029729 0.092947

Serb-Croatian 0.029729 0.160433 0.029729 0.000000 0.126210

Bulgarian 0.092947 0.232805 0.092947 0.126210 0.000000

Fig. 2 Slavic languages
tree

5.3 Slavic Languages

For the Slavic family, there are 68 parameters that are fully mapped between the two datasets: 45 for LanGeLin and
23 for SSWL. With the most recent version of the SSWL data, these parameters do not separate Slovenian from
Russian, so for this reason we have excluded Slovenian. The previous version of the data used in the phylogenetic
algebraic geometry analysis of Shu et al. [54] correctly placed Slovenian close to Serb-Croatian, in the South Slavic
subbranch, while with the later version of the data used in the persistent components tree of Port et al. [46], the
current ambiguity is resolved by (incorrectly) placing Slovenian next to Russian.

There are still 68 parameters across SSWL and Longobardi datasets that are mapped for the four remaining
languages. The SSWL parameters for this family are very poorly mapped, and the distance matrix for the SSWL
data alone is highly degenerate (Fig. 2). We work with the full collection of 68 parameters spanning the two datasets.
Constructing the logdet+nj tree we get Table 2

Here again the tree is unrooted, and we have chosen to draw it so that the root is placed consistent with historical
linguistic knowledge. Since there are only four branches, the only information contained in the tree topology
is the placement of the unique internal edge, namely splitting of the leaves into two pairs of adjacent vertices,
{Polish, Russian} and {Bulgarian, Serb-Croatian}, which here correctly reflects the grouping together of the South
Slavic branch.

With Slovenian excluded, all three Longobardi et al. [29], Shu et al. [54], Nurbakova et al. [37] agree on this tree.
On the other hand, the position of Slovenian in these trees is not consistent: both Longobardi et al. [29] and Shu et
al. [54] place it adjacent to Serb-Croatian and separated from the Russian and Polish subtree, while Nurbakova et
al. [37] places Slovenian as an early branch separated from both the subtree with Serb-Croatian and Bulgarian and
the subtree with Russian and Polish.

The reconstruction is robust: with approximately 60% of the parameters sampled uniformly randomly, this
topology appears with a probability in excess of 0.6. An alternate topology which places Russian with Bulgarian
also appears in some subsamplings; this proximity of Bulgarian to Russian is also observed in the tree of persistent
connected components from Port et al. [46].

5.4 North Eurasian Languages

We consider here a collection of languages encompassing the Uralic, Altaic, and Tungusic languages available
in the databases. These are languages that are not usually grouped together as a family. In fact, the evidence for
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affinity is very weak (even for the Uralic group). The hypotheses for the Markov model are likely violated in this
collection, especially that the assumption they descend from a single root. Given this, the logdet+nj performs less
well, although one still recovers the phylogenetic signal for large-scale structures in this collection.

As in Port et al. [47], we consider the languages belonging to the Uralic family (Estonian, Finnish, Hungarian,
Udmurt, Yukaghir, Khanty) and to the more hypothetical Altaic family (Buryat, Turkish, Yakut, including the
Tungusic languages Even and Evenki). As we discuss below, Yukaghir is usually considered an independent language
which is likely to be related to the Uralic family.

Compared to what was obtained by the topological method of Port et al. [47], for the North Eurasian logdet+nj

recovers a tree that appears more consistent with known linguistic relations. We first consider the full set of Altaic-
Uralic-Tungusic languages listed above, using 28 parameters from the LanGeLin dataset to obtain the (unrooted)
tree:

Buryat Turkish
Yakut

Evenki Even
Yukaghir

Udmurt

Khanty

Hungarian
Estonian Finnish

The logdet+nj tree is unrooted: it’s drawn for convenience so that the root is placed at the divide between the
Uralic and the Altaic-Tungusic languages, but it is important to keep in mind that this is not meant to represent a
correct historical linguistic rooting of the tree, only a graphical convenience. Notice that here the two groups of
languages are separated, with the only misplacement, with respect to this divide, consisting of the Uralic language
Yukaghir which is placed together with the Tungusic languages Even and Evenki. This tree indicates that the
large-scale structure of the family is consistent with the data.

However, several misplacements are present within the tree. Udmurt separates out from the rest in the Uralic
subtree (Khanty, Hungarian, Finnish, Estonian), which is sensible as it is the lone representative of the Permic
branch of Uralic languages, while in Port et al. [47] it was placed into the Altaic subtree. The rest of the Altaic
subtree (without the Tungusic languages and the misplaced Yukaghir) appears in the form (Yakut (Buryat, Turkish)).
This is not as expected, since it does not group together the two languages (Turkish and Yakut) that belong to the
Turkic subgroup, but rather groups Turkish with Buryat, which belongs to the Mongolic subgroup. Regarding the
misplacement of Yukaghir, note that this language is considered sufficiently distinct from the Uralic languages to
form an Uralo-Yukaghir meta-family and the extent of the relationship between Uralic and Yukaghir is a subject
of active investigation (see for instance Piispanen [45]). Its placement close to the Tungusic languages Even and
Evenki is more consistent with geography (Even, Evenki, and Yukaghir all belong to parts of Eastern Russia) than
reflecting the Uralo-Yukaghir relation. The position of Khanty in the Uralic subtree is not as expected: Hungarian
and Khanty should separate from the Balto-Finnic subtree (as they do in the topological analysis of Port et al. [47]).
This can be compared with the historically agreed tree for the Uralic family:

Udmurt

Estonian Finnish Khanty Hungarian

Examining the robustness of this construction, the topology of the logdet+nj tree can be recovered in the case
of Uralic with probability a half. There are three topologies that appear in the simulated data, including the correct
topology.
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An analysis of the type carried out for the romance languages in Sect. 5.6 can be used to assign a significance to
the phylogenetic signal observed: simulated data from a model with maximum likelihood estimate of parameters for
the logdet tree can be used to approximate the probability of recovering the linguistically correct and the observed
trees. But because of the small number of parameters available for this language collection, the results are unlikely
to be stable. The Markov model and its validity in this particular context is an open question till more complete data
is available. The lack of support from historical linguistics for an ancestral root for this collection suggests that the
model should not be applicable. While on the other hand, the recovery of a crude signal posits that it may be valid
within the individual subfamilies.

5.5 Early Indo-European Languages

In this case the sparseness of data—there are only 22 parameters that are completely set for this set of languages—
makes this dataset difficult to work with, and conclusions drawn from the analysis should not be regarded as very
reliable. There are additional issues: for example, the values of one parameter each for Hittite and Tocharian have
been updated.3 since the analysis of Shu et al. [54], and this renders the Hittite and Tochrian degenerate on the space
of the parameters that are completely set. We use this dataset after rolling the update back for comparison with Shu
et al. [54], but this does confound the results.

We note that without rolling back the two parameters, the logdet+nj tree, Torig, for Early Indo-European
languages rooted appropriately near the Anatolian-Tocharian split is the same as the one obtained with purely
lexical data by Bouckaert et al. [5]. The logdet+nj tree after rolling back the updates is T4 (Fig. 3). A different
tree topology, restricted to the same subset of languages, was obtained in Ringe et al. [49], based on a combination
of lexical and morphological data. In Shu et al. [54] phylogenetic invariants based on the SSWL syntactic data are
computed for the two tree topologies obtained by Ringe et al. [49] and by Bouckaert et al. [5] and it is observed
that the tree of Ringe et al. [49] has a smaller resulting phylogenetic invariant. The disagreement with logdet+nj

tree could be interpreted as implying that the evolutionary processes acting on syntax are again not Markov, but
this is not confirmed by the phylogenetic invariants computation (also based on the Markov model) that favor the
tree of Ringe et al. [49]. It is possible that the discrepancy between the logdet+nj approach and the phylogenetic
approach here may reflect the fact that phylogenetic invariants, in the model of Allman and Rhodes [1], allow
for a nonuniform distribution at the root, while as observed earlier the logdet transform fails to be additive when
the distribution at the root is non-uniform (Felsenstein ([15]), page 212). Since we are looking here at a group of
languages that branched out very close to the putative root of the Indo–European tree, this issue may be significant.

On exploring this further we find that there exists a set of 17 parameters4 from this set of 22 that gives the tree
from Rexová et al. [48], see Fig. 4.

Adding any other parameter to this set of 17, or removing too many, makes the tree approach the Bouckaert et
al tree. This shift suggests that there is an influential (in the sense of being one of the few discriminants of pairs
in the family) set of parameters that does not behave like the rest. This indicates that the requirement of identical
evolution does not hold. Such anomalies are precisely of interest to the linguists studying syntax (Fig. 5).

The Rexová et al. [48] construction is based on lexicographic data, like the tree of Bouckaert et al. [5], while
the tree of Ringe et al. [49] includes both lexicographic and morphological data. None of these previous analyses,
with the exception of Shu et al. [54], are based on syntactic parameters, so the syntactic input can be seen as an
independent verification. We find that the tree of Rexova et al. lies between the tree of Bouckaert et al., and that of

3 In the updated SSWl Hittite has “11 Adposition Noun Phrase” set to value 0 and Armenian (Western Armenian) has “Neg 01 Standard
Negation is Particle that Precedes the Verb” set to value 1.
4 01 Subject Verb, 06 Subject Object Verb, 11 Adposition Noun Phrase, 13 Adjective Noun, 15 Numeral Noun, 17 Demonstrative Noun,
19 Possessor Noun, 21 Pronominal Possessor Noun, Neg 03 Standard Negation is Prefix, Neg 08 Standard Negation is Tone plus Other
Modification, Neg 10 Standard Negation is Infix, Neg 12 Distinct Negation of identity, Neg 13 Distinct Negation of Existence, Neg
14 Distinct Negation of Location, Order N3 01 Demonstrative Adjective Noun, Neg 04 Standard Negation is Suffix, 12 Noun Phrase
Adposition.
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Fig. 3 Bouckaert et al. [5]
tree, T1, that agrees with
logdet+nj tree Torig, and
the logdet+nj tree, T4

T1 =

Hittite

Tocharian Armenian Albanian Greek

T4 =

Hittite

Armenian

Tocharian
Albanian Greek

Fig. 4 The tree from
Rexová et al. [48] obtained
on restricting to 17 out of
the 22 parameters that are
recorded for this set of
languages. Note that the
Rexová et al. [48] is almost
the Ringe et al. [49] tree,
except that Armenian and
Albanian are switched

Fig. 5 Ringe et al. [49] tree
based on morphological
data

Ringe et al. when evaluated with phylogenetic invariants: Shu et al. [54] compares T1 of Bouckaert et al. [5] and T2

Ringe et al. [49], computing T3 and T4 invariants (on rolled back parameters) yields

‖
T1(P)‖	∞ = 8

1331
≈ 0.0060, ‖
T1(P)‖	1 = 61

2662
≈ 0.0229.

‖
T2(P)‖	∞ = 8

1331
≈ 0.0060, ‖
T2(P)‖	1 = 18

1331
≈ 0.0135.

‖
T3(P)‖	∞ ≈ 0.0060, ‖
T3(P)‖	1 ≈ 0.0185.

‖
T4(P)‖	∞ ≈ 0.0060, ‖
T3(P)‖	1 ≈ 0.0199.

Thus, phylogenetic invariants still favor the tree of Ringe et al. [49]. There is an interesting point here, in the
discrepancy between the result of phylogenetic invariants computation, which is directly based on a geometric
formulation of the Markov model hypothesis, and the Markov model based logdet tree that diverges from Ringe
et al. [49]. As very few syntactic parameters separate Hittite and Tocharian, statistical inference for any model, not
just the Markov model, becomes difficult. This difficulty in placing closely related languages is a theme that we
explore further in the romance family in the following section.

However, note that if the trees appearing were completely random, then one would class that as noise and inherent
instability due to sparseness of data, but with support in literature it appears to be more interesting, and suggests
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Fig. 6 The clustered heatmap showing how parameters group based on their influences: a cluster of parameters with high influence
separates out from the rest, for k = 3

that same signals that appear in other data are present here as well; particularly that syntactic structures data are
consistent with combined lexicographical and morphological data. Next, we try to explore the presence of highly
influential structures that seem to be hinted at as noted previously.

5.5.1 Influence Analysis

To explore the effect of linguistic parameters on determining how distinct each language is from the others in the
group we do an influence analysis. A tree is thought of as a boolean function by fixing a root and then considering
each of the subsets of the leaves that appear under each interior vertex. We are interested in quantifying how likely
the tree is to change on applying noise to a parameter: we pick a random set S of parameters, including the parameter
of interest, i ; given the parameter vector vl = (vl,x )x for a language l, we flip all coordinates of vl that are in S
to obtain a new vector vS

l . We bound the size of the noise sets to have intersection of size at most k with the sets
{x : vl,x = 1} and {x : vl,x = 0}, so as not to wash out the parameter of interest i . We define the influence of i by

ηki =
∑

S∈�k
i :Tree[v]	=Tree[vS ]

1

|S|

where �k
i = {S : i ∈ S, max(|S ∩ {x : vl,x = 0}|, |S ∩ {x : vl,x = 1}) ≤ k}. The normalization by |S| adjusts the

contribution towards the sensitivity of i . We tabulate the parameters which carry largest sensitivity for each member
l of the family and for varying k (Fig. 6); the influences (where we think of highly sensitive parameters as having a
higher influence) can also be used to collect parameters to which the family is more sensitive, see 6.
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Table 3 The table of influences with k = 1

Albanian Greek Hittite wt_Armenian

01_Subject Verb 0.0 15.5 4.5 16.5

06_Subject Object Verb 13.0 17.5 5.5 17.5

11_Adposition Noun_Phrase 2.0 17.5 6.5 18.5

12_Noun_Phrase Adposition 3.0 19.5 7.5 19.5

13_Adjective Noun 16.0 19.5 8.5 20.5

15_Numeral Noun 5.0 20.5 9.5 21.5

17_Demonstrative Noun 6.0 21.5 10.5 22.5

19_Possessor Noun 19.0 23.5 11.5 23.5

21_Pronominal Possessor Noun 20.0 24.5 12.5 24.5

A 01_Attributive Adjective Agreement 9.0 24.5 13.5 24.5

A 02_Predicate Adjective Agreement 10.0 25.5 14.5 25.5

Neg 01_Standard Negation is Particle that Prece... 11.0 26.5 15.5 26.5

Neg 03_Standard Negation is Prefix 24.0 28.5 18.5 28.5

Neg 04_Standard Negation is Suffix 25.0 29.5 19.5 28.5

Neg 07_Standard Negation is Tone 26.0 30.5 20.5 29.5

Neg 08_Standard Negation is Tone plus Other Mod... 27.0 31.5 21.5 30.5

Neg 09_Standard Negation is Reduplication 28.0 32.5 22.5 31.5

Neg 10_Standard Negation is Infix 29.0 33.5 23.5 32.5

Neg 12_Distinct Negation of identity 30.0 34.5 24.5 33.5

Neg 13_Distinct Negation of Existence 31.0 35.5 25.5 34.5

Neg 14_Distinct Negation of Location 32.0 36.5 26.5 35.5

Order N3 01_ Demonstrative Adjective Noun 21.0 36.5 25.5 37.5

Because Hittite and Tocharian are separated by only one parameter, we only consider Hittite in this analysis; the
large similarity between the two will not give any meaningful insight.

Based on the influences that the syntactic structures carry (Tables 3, 4 and 5), it is apparent that there are two
classes of syntactic structures that are distinct in how much information they encode about the structure of the
family.

In particular, note how the top half of the tree in Fig. 6 consists entirely of negation features, which are set to
zero on languages where negation is a separate word and not expressed via prefix, suffix, or infix. So it is clearly not
surprising that those features are not significant in comparison to the one negation feature (negation as a particle)
that is present in those languages.

5.6 Romance Languages

For the romance languages we obtain the following tree, which we have drawn with the root placed next to Latin
(Fig. 7):

The logdet matrix (Table 6) correctly shows that Spanish is indeed closest to Portuguese. However, the raw
logdet value is not what neighbor joining optimizes, so the expected (Spanish, Portuguese) subtree does not emerge.
Additionally, the logdet values involving Spanish and Portuguese show high degree of asymmetry.

The similar misplacement of Spanish next to (Romanian, Latin) subtree also appears in Shu et al. [55]. We
note that geographic proximity, the related history of Portuguese and Spanish, and likely coevolution, makes it a
candidate for violating the evolution on tree assumption: we expect these two to have much more similarity and
interaction than possible on a tree.
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Table 4 The table of influences with k ≤ 2

Albanian Greek Hittite wt_Armenian

01_Subject Verb 26.0 86.166667 52.500000 209.0

06_Subject Object Verb 127.0 107.500000 53.500000 210.0

11_Adposition Noun_Phrase 28.0 88.166667 54.500000 211.0

12_Noun_Phrase Adposition 29.0 109.500000 55.500000 212.0

13_Adjective Noun 130.0 90.166667 56.500000 213.0

15_Numeral Noun 31.0 91.166667 57.500000 214.0

17_Demonstrative Noun 32.0 92.166667 58.500000 215.0

19_Possessor Noun 133.0 113.500000 59.500000 216.0

21_Pronominal Possessor Noun 134.0 114.500000 60.500000 217.0

A 01_Attributive Adjective Agreement 35.0 95.166667 61.500000 217.0

A 02_Predicate Adjective Agreement 36.0 96.166667 62.500000 218.0

Neg 01_Standard Negation is Particle that Prece... 37.0 97.166667 63.500000 219.0

Neg 03_Standard Negation is Prefix 138.0 118.500000 107.166667 221.0

Neg 04_Standard Negation is Suffix 139.0 119.500000 108.166667 221.0

Neg 07_Standard Negation is Tone 140.0 120.500000 109.166667 222.0

Neg 08_Standard Negation is Tone plus Other Mod... 141.0 121.500000 110.166667 223.0

Neg 09_Standard Negation is Reduplication 142.0 122.500000 111.166667 224.0

Neg 10_Standard Negation is Infix 143.0 123.500000 112.166667 225.0

Neg 12_Distinct Negation of identity 144.0 124.500000 113.166667 226.0

Neg 13_Distinct Negation of Existence 145.0 125.500000 114.166667 227.0

Neg 14_Distinct Negation of Location 146.0 126.500000 115.166667 228.0

Order N3 01_ Demonstrative Adjective Noun 47.0 107.166667 73.500000 230.0

Fig. 7 The logdet+nj

Romance tree using 85
parameters from across
SSWL and Longobardi
completely set for the
family

Fig. 8 The historically
accepted tree for the
Romance family Latin

Romanian

Italian

French
Spanish Portuguese
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Table 5 The table of influences with k ≤ 3

Albanian Greek Hittite wt_Armenian

01_Subject Verb 2255.066667 2386.733333 52.500000 1199.0

06_Subject Object Verb 1793.800000 1922.800000 53.500000 1200.0

11_Adposition Noun_Phrase 2257.066667 2388.733333 54.500000 1201.0

12_Noun_Phrase Adposition 2258.066667 1924.800000 55.500000 1202.0

13_Adjective Noun 1796.800000 2390.733333 56.500000 1203.0

15_Numeral Noun 2260.066667 2391.733333 57.500000 1204.0

17_Demonstrative Noun 2261.066667 2392.733333 58.500000 1205.0

19_Possessor Noun 1799.800000 1928.800000 59.500000 1206.0

21_Pronominal Possessor Noun 1800.800000 1929.800000 60.500000 1207.0

A 01_Attributive Adjective Agreement 2264.066667 2395.733333 61.500000 1252.0

A 02_Predicate Adjective Agreement 2265.066667 2396.733333 62.500000 1253.0

Neg 01_Standard Negation is Particle that Prece... 2266.066667 2397.733333 63.500000 1254.0

Neg 03_Standard Negation is Prefix 1804.800000 1933.800000 135.166667 1211.0

Neg 04_Standard Negation is Suffix 1805.800000 1934.800000 136.166667 1256.0

Neg 07_Standard Negation is Tone 1806.800000 1935.800000 137.166667 1257.0

Neg 08_Standard Negation is Tone plus Other Mod... 1807.800000 1936.800000 138.166667 1258.0

Neg 09_Standard Negation is Reduplication 1808.800000 1937.800000 139.166667 1259.0

Neg 10_Standard Negation is Infix 1809.800000 1938.800000 140.166667 1260.0

Neg 12_Distinct Negation of identity 1810.800000 1939.800000 141.166667 1261.0

Neg 13_Distinct Negation of Existence 1811.800000 1940.800000 142.166667 1262.0

Neg 14_Distinct Negation of Location 1812.800000 1941.800000 143.166667 1263.0

Order N3 01_ Demonstrative Adjective Noun 2276.066667 2407.733333 73.500000 1220.0

Table 6 Raw logdet values for the Romance family

Latin Romanian Italian French Spanish Portuguese

Latin 0.000000 0.418368 0.526778 0.686986 0.513258 0.561157

Romanian 0.418368 0.000000 0.180652 0.237485 0.123650 0.152100

Italian 0.526778 0.180652 0.000000 0.098833 0.047602 0.023741

French 0.686986 0.237485 0.098833 0.000000 0.100617 0.073974

Spanish 0.513258 0.123650 0.047602 0.100617 0.000000 0.023861

Portuguese 0.561157 0.152100 0.023741 0.073974 0.023861 0.000000

This tree misplaces Spanish. On moving Spanish in proximity of Portuguese, we obtain the historically accepted
tree (Fig. 8):

The logdet+nj tree obtained is also not stable when attempting reconstruction after subsampling down to
approximately 60% of the data: it’s recovered with probability approximately 1/2 and the correct topology appears
with probability approximately 1/50 where the probabilities are computed across 1000 trials. Computing phyloge-
netic invariants, we find that the 
	∞ ≈ 0.00156 invariant does not separate the two topologies, but 
	1 does in
fact separate them and surprisingly selects the logdet+nj tree, taking a value ≈ 0.0094 as versus ≈ 0.0111 for the
historically accepted tree.

A natural question to ask is what parameters are the primary drivers of the ambiguity in the tree reconstruction.
Compared to the Early Indo-European languages case, there are more syntactic parameters for which data are
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available, but at the same time there are very few parameters that separate members of this family. This sparsity,
coupled with a larger parameter set, makes the influence analysis techniques used in Sect. 5.5.1 computationally
infeasible. However, the simple clustering-based approach of Fig. 9 is revealing.

5.6.1 Maximum Likelihood Model

Building the tree using the greedy scheme optimizing covariances, we obtain the following tree that misplaces
French, Spanish and Italian (Fig. 10).

With a comparatively larger set of available parameters, this family lends itself to a richer analysis along the
lines we have sketched; we examine this family in more detail. We begin by constructing the maximum likelihood
estimate for the tree parameter using the topology of the logdet tree, which would give the correct topology under
the assumption that the data come from a general Markov model.

Starting with the matrix of data with one column for each of the m = 85 syntactic parameters, and each
column containing the values the parameter takes at the leaves of the phylogenetic tree for the Romance family
(L:Latin, R:Romanian, S:Spanish, I:Italian, F:French, P:Portuguese). Under the assumption that all parameters are
independent, the likelihood of the data matrix, Z = [z1, z2 . . . zm], is the product of individual likelihoods of each
column zi ,

L(Z) =
∏

i∈[m]
L(zi ) .

The likelihood for a column of data for the logdet+nj tree model can be computed by assigning a probability
distribution over {0, 1} parameter values at the root, π = [π0, 1 − π0]T , and 2-dimensional transition matrices,

Mk =
[

θ0
k 1 − θ0

k
1 − θ1

k θ1
k

]

to each edge (the pendant edges are labeled by leaves, the interior edges by the left vertex) for k ∈
{L , R, S, I, F, P, iR, iS, i I , iL} in the L rooted tree of Fig. 11.

For a given vector z ∈ {0, 1}5, we are interested in the probability of seeing z at the leaves as a function of the
parameters: P(z) ≡ P(R = z1, S = z2 . . . P = z5) = f (Mk, π). The likelihoods can be computed using dynamic
programming but here we explicitly sum over the internal states at il , l ∈ {R, S, I, F} ≡ Int and the state x at the
root. For simplicity we use the identification R = 1, S = 2, I = 3, F = 4, P = 5 i.e. MR = M1 etc.

P(z) =
∑

x∈{0,1}

∑

v∈{0,1}4

P(z|ik = vk, k ∈ [4], x)P(v, x)

The probabilities at the leaves can be read off the transition matrices once the interior states are fixed (where we
use independence). This gives:

P(z|ik = vk, k ∈ [4], x) = MR[v1, z1] · MS[v2, z2] · MI [v3, z3] · MF [v4, z4] · MP [v4, z4]
All that remains to estimate is P(v, x). This follows similarly, since

P(v, x) = P(v4|v3)P(v3|v2)P(v2|v1)P(v1, x) = MiI [v3, v4] · MiS [v2, v3] · MiR [v1, v2] · P(v1, x),

where we used that vi only depends on vi−1. Now P(v1, x) = P(v1|x)P(x) = ML [x, v1]π [x], so that

P(z) =
∑

x,v

∏

i∈[4]
Mi [vi , zi ] · MP [v4, z4] · MiI [v3, v4] · MiS [v2, v3] · MiR [v1, v2] · ML [x, v1] · π [x] .

This will give likelihood of the data as a polynomial in the model parameters after taking the product over all
parameters. We maximize this using gradient descent to get the maximum likelihood estimate for the parameters
and simulated 10,000 evolutions on this tree. Collecting into groups of 85 (which is the number of parameters used
for the logdet+nj tree), this gives approximately 110 trials. Since the simulated evolutions are independent, the
distribution of distances between any two leaves for all trials are identical; their distribution approaches a Gaussian
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Fig. 9 Clustering analysis of syntactic features for the Romance languages. (Blue indicates unset parameters.) This can be compared
with the cluster analysis of syntactic features over the entire database of languages, as discussed in Port et al. [47] and Ortegaray et al.
[39]. The two colors denote the two states of the parameters (Color figure online)
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Fig. 10 Tree based on
covariance

Latin

Romanian

French

Spanish
Italian Portuguese

Fig. 11 The logdet+nj

tree of Fig. 7 with
{L , R, S, I, F, P, iR, iS, i I , iL }
labelled

Table 7 z-score table for actual logdet distances compared to the maximum likelihood model

l1 l2 Mean std z d

I/P I P 2.78336 0.893444 −3.08875 0.0237408

F/I F I 2.87366 0.946365 −2.93209 0.0988331

F/S F S 2.85387 0.973022 −2.82959 0.100617

F/R F R 2.8915 0.997764 −2.65996 0.237485

P/R P R 2.90869 1.04035 −2.64968 0.1521

P/S P S 2.92124 1.12043 −2.58596 0.0238608

F/L F L 2.81107 1.01573 −2.09119 0.686986

L/P L P 2.84234 1.22816 −1.8574 0.561157

R/S R S 0.131869 0.0597361 −0.137579 0.12365

F/P F P 0.0765047 0.0436683 −0.0579418 0.0739745

I/L I L 0.520308 0.129903 0.0498074 0.526778

I/R I R 0.172632 0.0677208 0.11843 0.180652

L/R L R 0.40522 0.104813 0.125442 0.418368

I/S I S 0.0420906 0.033077 0.166614 0.0476017

L/S L S 0.479633 0.122479 0.274532 0.513258

by the central limit theorem.5 For the leaves i, j , we used the estimated standard deviation, σ i j , and mean, μi j ,
from the simulated data to assign a z-score (zi j = (di j − μi j )/σ i j ) to the distances seen in the actual data, di j .
The distance between pairs are not independent, so coalescing the data into single statistics is not straightforward,
and as the table of z-scores demonstrates, different subtrees within the tree behave differently; for example, any
distances computed between the subgroup of (French, Portuguese) and the rest of the family are overestimated by
more than two standard deviations in the model, while other distances are within tolerance (one standard deviation
of the mean). This gives support to the idea of there being more interaction in this family than tree models permit
(Table 7).

Using the simulated data across 1000 simulations, we again build the tree based on covariance, see Fig. 12.
Again, this tree reports incorrectly the relative positions of French, Italian, and Spanish, with French and Spanish

interchanged with respect to the tree considered historically correct. The fact that the greedy scheme places French
closer to Portuguese is a significant misplacement because it represents that Portuguese and French have higher
covariance than Spanish under the assumption on the Markov model, suggesting that this does not describe the

5 This convergence can be quantified with the Berry–Esseem theorem, see Durrett [13].
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Fig. 12 Covariance based tree using simulated data from the maximum likelihood model. A bipartition support value corresponding
to the probability that a bipartition is observed in simulated data is tabulated for the non-trivial bipartitions. (The root placement here
is only for graphical convenience, while the historical root should be placed next to Latin.)

syntactic evolution well. A pattern showing that the newer Romance languages are often conflated in varied ways
has emerged: the misplacements primarily involve French, Portuguese, and Spanish.

These languages share a history that suggests that the limited interaction possible on a tree fails to describe them.
The close linguistic relatedness also makes it likely that the syntactic structures are not completely independent. This
should be compared, for instance, with the analysis in Sects. 4.4 and 4.5 of Port et al. [47], where the dimensionality
of the space of syntactic parameters is analyzed over different linguistic families, showing a drop in dimension in
certain families, that corresponds to the presence of additional family-specific relations (see Fig. 13 of Port et al.
[47] for the case of the Romance languages).

We move to consider both the sufficiency of the tree topology and independence and identical evolution assump-
tion on the syntactic structures.

5.6.2 Independent and Identical Evolution Assumption

Because of their geographic proximity, French, Spanish and Portuguese are likely to have experienced a higher
degree of interaction, including at the syntactic level, than what normally expected in a Markov model on a tree
(see our general discussion at the beginning of the paper on the model and its assumptions). It also appears that the
syntactic structures within the Romance languages, especially when compared to Latin, are more highly correlated
than what expected in general in terms of the dimensionality of the space of syntactic parameters (see Sects. 4.4 and
4.5 of Port et al. [47]). The more recent evolution of the modern Romance languages also contributes to make their
syntactic parameters less likely to behave like independent/identically evolving. Since we do have the simulated
data from the maximum likelihood model, we can compare the simulated against the actual, and indeed, we find
that this is exactly what we observe.

The possibility of convergent evolution rather than interaction leading to the observed syntactic structure of
the Romance languages is discussed in Longobardi [24]. Other possibilities, beyond interaction and convergent
evolution, include the possibility of long branch attraction due to the languages splitting off from the trunk starting
at Latin in a sort of sequential fashion. A more refined model, such as a more detailed formulation of the infinite
sites model, will be needed to distinguish these hypotheses. For the purpose of the present paper, we provide the
following analysis. We start by randomly ordering the syntactic parameters in a given set S. Then for each triple of
languages, L = {l1, l2, l3}, we consider the probability that the syntactic parameter, si is set in all three, as well as
the probability that the next one in the given ordering, si+1, is also set. We compute:

PrS[∀l ∈ L , si = 1]2

1/|S| + PrS[∀l ∈ L , si = 1 ∧ si+1 = 1] .

The choice |L| = 3 is made because this is the largest size for which the size of the state space, 23 is “small”
compared the the number of syntactic structures that are available. We follow this by computing the same for the
simulated data. Averaging over 100 random orderings of S, we consider the z-score for each triple of languages



Syntactic Structures and the General Markov Models Page 27 of 38     4 

Table 8 The language triples and associated z-score for Latin (L), Spanish (S), French (F), Portuguese (P) and Romanian (R))

z-score

F:S:P 0.222647

I:F:P 0.192141

I:F:S 0.199228

I:S:P 0.180108

L:F:P 0.102739

L:F:S 0.245780

L:I:F 0.223499

L:I:P 0.213800

L:I:S 0.036244

L:R:F 0.167095

L:R:I −0.004172

L:R:P 0.149725

L:R:S −0.004571

L:S:P 0.233173

R:F:P 0.159186

R:F:S 0.210917

R:I:F 0.206196

R:I:P 0.183321

R:I:S 0.041099

R:S:P 0.188342

against the distribution from the simulated data. Since the simulated data come from iid evolutions on the maximum
likelihood model, they give the expected distribution for what the statistics for iid evolution looks like. This is
summarized by Table 8.

In general, the statistics match what is expected from the simulated data, as it all lies within a quarter standard
deviation. This implies that the statistics we will compute next, to test the adequacy of the tree topology, are largely
unconfounded by the deviation from iid evolution.

5.6.3 Subfamily Splits Against Maximum Likelihood Model

The placement of Portuguese and Spanish is one of the confounding factors that repeatedly appears. We consider
the partitions of the family where Portuguese and Spanish are separated, as well as where they form a cherry (while
keeping together the consistent Romanian/Latin pair). If these partitions reflect genuine splits in the data, then the
rank of the flattening for these partitions must be 2. The distance, d, to the closest rank 2 matrix to the flattening
matrix can be computed as the norm of its singular values vector after excluding the top 2. We compute this for
the simulated maximum likelihood data, dsim where the logdet tree topology implies that Portuguese and Spanish
separate. The z-score for the actual data d value, dactual , against the background from the simulated data is tabulated
as in Table 9.

The table shows that the d value implied by the split from the logdet tree, [[L, R, S], [I, F, P]] lies one variance
outside what is expected from the maximum likelihood model. And the [S, P] cherry comes with an order of
magnitude more extreme z-score. This corresponds to data reflecting that Spanish and Portuguese are extremely
likely to form a cherry than what is expected by the iid evolution on the tree, because the distance to the nearest
rank 2 approximation is much smaller than what is obtained from the maximum likelihood model. Overall, the data
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Table 9 Table of d values and z-scores for splittings of the tree

d_actual Mean [d_sim] Std_dev [d_sim] z-score

F,P,S; L,R,I 0.012677 0.035968 0.013168 −1.768730

I,F,P,S; L,R 0.012585 0.031150 0.013502 −1.375018

I,F,P; L,S,R 0.012274 0.034641 0.013497 −1.657230

I,F,S; L,P,R 0.017000 0.220083 0.022537 −9.010975

P,S; F,L,R,I 0.011765 0.223664 0.023124 −9.163532

is at least one variance outside what is expected. The Portuguese–Spanish cherry statistics strongly suggests that
the tree topology is not capturing the full range of interactions.

6 The Logdet Phylogenetic Signal

The richness of the data of Ceolin et al. [7] offers a way to test the scales at which the evolutionary models continue
to be reliable beyond the setting of small-scale examples considered previously. We compare the phylogenetic
tree reconstructed using logdet/general Markov and modified Jaccard index/infinite site model and discuss them
in context of the results of Ceolin et al. [7] using Bayesian phylogenetics (as implemented in BEAST software
package, Bouckaert et al. [6]) as well as UPGMA clustering with modified Jaccard index.

Unlike the LanGeLin and SSWL dataset where we only use the parameters that are independent and known in
all languages for which the construction is being carried out, for the Ceolin et al. [7] dataset, we use all parameters,
only restricting to independent parameters when computing pairwise distances. This means the distance between
different pairs may be based on a different set of parameters. This is done following Ceolin et al. [7], as otherwise we
do not have enough parameters if we discard all that are not independent for any language. Under the assumption that
all sites are i.i.d., this does not make a difference. For the reconstructed trees, because the linguistic evolutionary
processes are not necessarily memoryless, the branch lengths are not meaningful; and we will reroot the trees
with input from what is commonly agreed upon in linguistics literature. To conclude this section, we will make a
quantitative note of the difference between modified Jaccard and logdet based trees using Robinson–Fould metric,
but before that we undertake a qualitative analysis.

6.1 Languages not Included in SSWL and Longobardi Datasets

We first consider language families that are not included in the SSWL and Longobardi datasets.

• The Indo-Iranian family is represented in the Ceolin dataset by Marathi, Hindi, Pashto. We see here an example
of misplacement across language families, as the non-Indo-European Dravidian languages Telugu and Tamil are
placed inside the Indo-Iranian subtree of the Indo-European tree. This appears problematic, since the Dravidian
and Indo-Iranian languages do not share a common Ancestor that can be recovered. However, note that here we
are only evaluating distances, not an evolutionary model.

– Indo-Iranian and Dravidian languages distance relations reconstructed using the Logdet metric:

Marathi

Hindi
Telugu Tamil

Pashto
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– Indo-Iranian and Dravidian languages distance relations reconstructed using the modified Jaccard metric:

Telugu Tamil Marathi Hindi
Pashto

The modified Jaccard index gives a more accurate reconstruction with the pairs Tamil/Telugu and Hindi/Marathi
correctly identified, with the Tamil/Telugu forming a separate grouping of the two Dravidian languages, identical
to the results of Ceolin et al. [7].

• East Asian languages, Korean, Japanese, Cantonese and Mandarin are correctly reconstructed using both and
are in agreement with Ceolin et al. [7]

Korean Japanese Cantonese Mandarin

6.2 Greco-Romance Languages

Data for a superset of the Greco-Romance languages considered in Sect. 5 is available in the Ceolin et al. [7]
dataset. We group the set of Hellenic and Romance languages because the data of syntactic features include the
microvariations of a family of both Romance and Hellenic dialects of Southern Italy (see the specific analysis of
Guardiano et al. [18]).

Restricting to just the Greco-Romance languages in the Ceolin data, both logdet and modified Jaccard similarity
give identical trees; this was expected based on the high degree of asymmetry in maximum likelihood model.
Portuguese and Spanish are now correctly placed. We do see a misplacement of two Italian dialects: Parma and
Casalesco, but we note that this misplacement is also present in the BEAST trees of Ceolin et al. [7], and that it
disappears when we consider the full Indo-European family instead of just the Greco-Romance family (Fig. 13).
This suggests that this is possibly arising from the large sampling bias in this set which contains a disproportionate
number of closely related Italian dialects

As noted, this tree carries some misplacements. In view of these inaccuracies, we are led to conclude that either
sampling biases or failure of assumptions underlying the models are significant. One notes that Greek and Romance
families are quite distinct, and one cannot suppose that a hypothetical root from which these evolve can be recovered
from the data. We will reconsider the Greco-Romance languages in the context of the full Indo-European family in
Sect. 6.5.

As a final check, we revisit the SSWL-LanGeLin data for the Romance family from Sect. 5.6, and apply the
modified Jaccard index construction to see if the change in the model resolves the persistent issues there. We find
that the reconstruction is identical, with modified Jaccard index values similar to the logdet values (Tables 10 and
11).

6.3 Germanic Languages

For the Germanic family, the Ceolin et al. [7] data contain the additional North Germanic languages Danish and
Norwegian, and are missing Swedish. Using Icelandic as the outgroup to root the rest we correctly recover the
North/West split with both logdet and modified Jaccard. The interior structures differ, with modified Jaccard placing
Faroese with Danish, where the expected would be Norwegian, while lodget fails to assign Dutch and Afrikaans
together (same as UPGMA from Ceolin et al. [7], which also fails to recover West and North Germanic split, while
Ceolin et al’s BEAST reconstruction places German next to Afrikaans) (Figs. 14 and 15).
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Fig. 13 The Greco-Romance tree obtained from logdet+nj construction that is identical to the modified Jaccard index tree when
restricted to the Greco-Romance languages: Romanian (Rom), French (Fre), Spanish (Spa), Portuguese (Por), Italian (Ita), Parma (Par),
Casalasco (Cas), Teramano (Ter), Campano (Cam), Calabrese-Northern (Cal.N), Calabrese-Southern (Cal.S), Sicilian (Sic), Salentino
(Sal), Greek (Gre), Greek-Calabria N.1 (Gre1), Greek-Calabria N.1 (Gre2); Note the tree lengths are not to scale; we are considering
tree topology only

Table 10 Table for logdet metric

French Italian Latin Portuguese Romanian Spanish

French 0.000000 0.098833 0.686986 0.073974 0.237485 0.100617

Italian 0.098833 0.000000 0.526778 0.023741 0.180652 0.047602

Latin 0.686986 0.526778 0.000000 0.561157 0.418368 0.513258

Portuguese 0.073974 0.023741 0.561157 0.000000 0.152100 0.023861

Romanian 0.237485 0.180652 0.418368 0.152100 0.000000 0.123650

Spanish 0.100617 0.047602 0.513258 0.023861 0.123650 0.000000

Table 11 Table for modified Jaccard index

French Italian Latin Portuguese Romanian Spanish

French 0.000000 0.100000 0.415094 0.076923 0.209302 0.102564

Italian 0.100000 0.000000 0.346154 0.025641 0.162791 0.051282

Latin 0.415094 0.346154 0.000000 0.365385 0.294118 0.352941

Portuguese 0.076923 0.025641 0.365385 0.000000 0.142857 0.026316

Romanian 0.209302 0.162791 0.294118 0.142857 0.000000 0.121951

Spanish 0.102564 0.051282 0.352941 0.026316 0.121951 0.000000

Fig. 14 logdet+nj construction
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Fig. 15 Modified Jaccard construction

Fig. 16 logdet+nj construction: Finnish (Fin), Estonian (Est), Udmurt-2 (Udm2), Mari-2, (Ma2), Khanty-2 (Kha2), Khanty-1 (Kha1),
Hungarian (Hun), Udmurt-1 (Udm1) Mari-1 (Mar1), Buryat (Bur), Eve, Uzbek (Uzb), Yakut (Yak), Turkish, (Tur)

Fig. 17 Modified Jaccard construction for Uralic and Altaic languages

6.4 Balto-Finnic, Ugric and Altaic

For the Balto-Finnic, Ugric and Altaic languages the logdet and modified Jaccard both give very similar structures,
with some disagreement between the two pairs of closely related dialects of Mari (Mar1, Mar2) and Udmurt (Udm1,
Udm2). Similar conflation is observed in the BEAST tree from Ceolin et al. [7]. Compared to the LanGeLin
logdet+nj construction, we correctly recover the relationship between Estonian (Est) and Finnish (Fin), between
Khanty (Kha1, Kha2) and Hungarian (Hun), and that between Turkish (Tur) and Yakut (Yak). We recover the
relations between Evenki (Eve), Uzbekh (Uzb), Yakut and Turkish that are the same as Ceolin et al’s as well. The
modified Jaccard tree provides a better reconstruction as it separates the three Turkic languages—Uzbek, Yakut and
Turkish into their own subtree within the Altaic languages (Figs. 16 and 17).
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Fig. 18 logdet+nj:Germanic, Slavic and Greek languages from the full Indo-European languages set:Dutch (Dut), Afrikaans (Afr),
German (Ger), English (Eng), Faroese (Far), Danish (Dan), Norwegian (Nor), Welsh (Wel), Icelandic (Ice), Slovenian (Slo), Russian
(Rus), Polish (Pol), Bulgarian (Bul), Greek-Calabria N.1 (Gre1), Greek (Gre), Greek-Calabria N.2 (Gre2)

Fig. 19 Modified Jaccard:Germanic, Slavic and Greek languages from the full Indo-European languages set

6.5 The Full Indo-European Family

In the analysis of the full Indo-European tree we see that the modified Jaccard index slightly outperforms the
logdet+nj construction. Both methods misplace Welsh. Note that Irish and Welsh were degenerate in this dataset
(namely they have the same values of all the recorded parameters), so we retained only Welsh. Ceolin et al kept both
and so obtained that Welsh and Irish place together. The logdet+nj tree now loses the West and North Germanic
split, while the modified Jaccard index is more stable (Figs. 18 and 19).

The Romance subtrees now have correct large-scale structure with Italian dialects forming their own group. The
Italian-Portuguese-Spanish conflation that we saw in SSWL-LanGeLin analysis becomes clearer given how these
three separate out (Fig. 20).

We see that modified Jaccard and logdet+nj both correctly recover that the Indo-Iranian languages split off
from the European ones, unlike Ceolin et al. [7] where they are mixed between the Greek and Romance subtrees
(Figs. 21 and 22).

Putting this together we note that both the logdet+nj and modified Jaccard index/infinite site model recover
the large-scale structure in Indo-European languages. Modified Jaccard index with neighbor joining is more stable
than logdet—the asymmetry in how syntactic structure change across language families (and possibly how they
evolved) is hardwired into the modified Jaccard metric, while lodget/general Markov model may overfit, because
of its flexibility. These two methods of reconstruction, reflecting different evolutionary models, are mostly in
agreement, disagreeing on finer scale structures where effects of deviations from the assumptions of the underlying
models affect each differently and to varying significance.

The following table (Table 12) quantifies the observed differences between modified Jaccard and logdet based
trees using the Robinson–Fould metric.
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Germanic
Slavic Greek

Spa Por

Par Cas
Ita

Ter Cam
Cal.N

Sal

Sic Cal.S

Rom Fre

Fig. 20 logdet+nj: Germanic, Slavic and Hellenic languages from the full Indo-European languages set. Note the tree lengths are
not to scale; we are considering tree topology only

Germanic Slavic
Greek

Spa Por

Par Cas Ter Cam

Ita

Cal.N Sic Cal.S
Sal

Rom Fre

Fig. 21 Modified Jaccard: Romance languages from the full Indo-European languages set; the Italian dialects are now correctly forming
their own subtree

Fig. 22 Both modified
Jaccard and logdet place the
Indo-Iranian languages
identically in relation to the
European languages

European
Pashto

Hindi Marathi
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Table 12 Robinson-Fould’s distance (rf) and normalized Robinson-Fould’s distance (rf_normalized) between the modified Jaccard
and logdet trees

Family rf rf_normalized

Indo-Iranian 2 0.500000

Germanic 4 0.400000

Balto-Finnic, Ugric and Altaic 6 0.272727

Indo-European 8 0.307692

Germanic, Slavic and Greek 8 0.307692

languages from the full Indo-European languages set

7 Discussion

This analysis was aimed towards trying to understand how well the general Markov and approximate infinite site
model describe the syntactic structures data to get insight into how human languages change. The point has not been
to derive a metric, possibly abstract, that yields the expected phylogenetic relationships but to understand how well
the phylogenetic relationship can be modelled by a type of processes we do understand well. This is an important
question, since if we know the process is well described by a Markov model, we can have much more confidence
in introducing complexity and fine tuning the models, whereas in cases where we do not know if alternatives to
Markov model are equally applicable, the danger of fitting an incorrect model using an abundance of parameters
becomes real.

We summarize in Tables 13 and 14 some of the comparative analysis and we make a note of how well the
Markov model recovers the expected linguistics relationships. We can therefore gain an insight as to when the
Markov model assumption can be safely applied. Then, using modified Jaccard metric derived alternative, we recap
when the Markov model becomes ill suited.

This is very consequential as it limits the applicability of Markov model-based computational methods developed
for biological sequences to linguistics data, especially as the use of software implementing such techniques is
becoming more commonplace.

As expected we find that family-internal phylogenies return better results, and attempts to go wider run into
violation of assumptions of the underlying model. Homoplasy, or long-standing contact and drift, are all possible
mechanisms through which this can happen. To identify the actual mechanism, one needs models that take into
account these effects and a hypothesis testing framework to test between them. This underscores the importance of
developing evolutionary models that are specialized to linguistics, so reconstructed phylogenies can be qualitatively
examined to draw inference about the process of linguistic change.

Concretely, for the Markov model, there are two primary difficulties that arise in trying to evaluate how well the
syntactic parameters data fits the model which can be interpret as being indicative of how processes underlying the
data are deviating from the Markov model.

• Linguistic relationships across multiple families are often not stably reconstructed.
• Languages with high degree of relatedness are difficult to place.

The first can be addressed by noting that the hypothesis of a single root from which they can be considered to
have evolved may be accurate for linguistic subfamilies, but ancestral languages and proto-languages lying behind
sufficiently different linguistic families are highly hypothetical (the contested Ural-Altaic hypothesis being one
such example), hence simply trying to fit diverse syntactic data across a broad range of language families to such a
model with a single root should not be expected to be very meaningful. The second suggests that the tree topology
is insufficient to capture how they have influenced each other, and the small set of syntactic parameters that separate
them make the reconstruction statistically not very robust.
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Table 13 Table summarizing the comparative analysis against phylogenetic trees from linguistics literature

Tree I Tree II Results/Insight

Gemanic family: logdet+nj tree UPGMA trees with 	p metrics,
persistent connected components
of §6.4 of Port et al. [47]

logdet+nj tree recovers the
North/West Germanic split while
others fail. This can be
interpreted as support for a
Markov model

Slavic family: logdet+nj tree Longobardi et al. [29], Shu et al.
[54], Nurbakova et al. [37]

There is disagreement on the
position of Slovenian; however,
the character data does not
separate Slovenian from Russian
indicating close syntactic
proximity. The Markov model is
equally well supported as the
alternatives

North Eurasian languages:
logdet+nj

Topological method of Port et al.
[47]

logdet+nj is in better agreement
with known linguistic
relationships and correctly
recovers the large-scale structure
of the family

Early Indo-European languages:
logdet+nj tree

Trees from Bouckaert et al. [5],
Ringe et al. [49], Rexová et al.
[48]

logdet+nj tree, Torig, agrees with
Bouckaert et al. [5] while T4 does
not. The sensitive dependence on
a small number of parameters
and disagreement with
phylogenetic invariants suggests
that the parameters are not well
described by a Markov model,
but the phylogenetic invariants
derived from the Markov model
still select the correct Ringe et al.
[49] tree

Romance languages: logdet+nj
tree

Historically accepted trees, tree
from Shu et al. [55]

Misplacement similar to what Shu
et al. [55] observed; exploration
of parameter values reveals very
few parameters separate
languages in this family. The
phylogenetic invariants select
logdet+nj tree over historically
correct tree suggesting that
general Markov model does not
describe this family well, likely
dues to high degree of
relatedness (cf. Sect. 9). The
syntactic parameters here are
likely not well described by a
Markov model

Syntactic parameters for languages that are too closely related are not well described by logdet+nj/general Markov models
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Table 14 Summarizing the comparative analysis between
logdet+nj trees and trees using neighbor joining with the modi-
fied Jaccard metric of Ceolin et al. [8] which can be interpreted as

describing an infinite site evolutionary model: the modified Jac-
card outperforms the Markov model-based approach for closely
related languages

Family logdet+nj vs. modified Jaccard results

Indo-Iranian+Dravidian Modified Jaccard correctly separates out the two
Dravidian languages while logdet+nj fails

Greco-Romance Both metrics produce identical trees

Germanic Modified Jaccard places Danish with Faroese
(versus expected Norwegian) while logdet+nj

fails to place Dutch with Afrikaans, and also
mixes Faroese-Norwegian-Danish. Ceolin et
al’s BEAST construction also places German
with Afrikaan. The close linguistic
relationships are not well modelled by the
Markov model

Balto-Finnic, Ugric and Altaic Modified Jaccard outperforms logdet+nj;
misplacements by logdet+nj are similar to
those from Ceolin et al’s BEAST tree

Indo-European Modified Jaccard slightly ourperforms
logdet+nj; the subtree of Germanic languages
is the same for modified Jaccard, but not so for
logdet+nj; both correctly recover the splitting
off of Indo-Iranian languages from
Indo-European. The correct large scale
structure within the Romance family is also
recovered by both

We hypothesize that the ability to mutate a site more than once afforded by the Markov model is not useful, making it less suited than
modified Jaccard

There’s also a type of sampling problem present: the representatives of language families are not generated as
random samples from the process acting on the family; with a single close relationship in a family, coupled with the
small size of the families, the biases become extremely significant. An algorithm, like neighbor joining, that uses
both local information (the pairwise distances) and global information (pairwise distances to the rest of the tree), is
likely to be thrown off by these biases. This is evident from the example where, while Spanish and Portuguese share
the highest similarity in terms of the logdet metric, their placement does not reflect this. This is also supported by
the observation that larger sets from within the same family tend to give a more correct picture of the phylogenetic
relationships, even though there is a tradeoff that the larger collection may be less likely to be described by a simple
model.

This leads us to conclude that phylogenetic inference at larger scales, across many families, using syntactic
structures data alone is unlikely to be better than a crude approximation of the underlying truth. Based on our
results, the phylogenetic signal from syntactic structures is only reliable when the languages being considered
belong to the same family—the assumption that they come from a single root is reasonable, but at the same time
not so closely related that their interaction cannot be described by a tree topology—for example Portuguese and
Spanish in the Romance family.

We believe that more significant theoretical work is needed on dynamical models of language change at the
syntactic level, that can replace the Markov hypothesis with a more accurate model—and possibly different models
for different syntactic structures, tailored to linguistic needs, that can be used for better phylogenetic inference of
relevance to historical linguistics.
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