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Abstract
We investigate the relation between two different mathematical problems: the con-
struction of bounds on sphere packing density using Cohn–Elkies functions and the
construction of Gabor frames for signal analysis. In particular, we present a gen-
eral construction of Cohn–Elkies functions in arbitrary dimension, obtained from an
approximate Wexel–Raz dual for Gabor frames with Gaussian window.

1 Introduction

In this paper we compare two seemingly different mathematical problems, showing
that they share a deep connection: the construction of bounds on the density of sphere
packings in Euclidean spaces, and the construction ofGabor frames for signal analysis.

The best currently available construction of bounds on the density of sphere pack-
ings is provided by the method introduced in [7], based on the construction of (radial)
functions that vanish at the points of the lattice (or periodic set) with specific decay
conditions and sign conditions on the function and its Fourier transform. We refer
to such functions as Cohn–Elkies functions. This method was especially successful
in Viazovska’s explicit construction, using modular forms, of one such Cohn–Elkies
function proving the optimality of the E8 lattice for the sphere packing problem in
dimension 8, see [19]. This construction was then adapted in [9] to prove the opti-
mality of the Leech lattice in dimension 24. Despite these remarkable achievements,
in general explicit geometric constructions of Cohn–Elkies functions remain elusive,
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through a numerical approximation algorithm using linear programming is described
in [7].

On the other hand, Gabor frames provide systems of filters for signal analysis that
have good encoding and decoding properties, though they do not consist of orthogo-
nal bases [11]. A Gabor system is typically constructed by applying translation and
modulation operators parameterized by the points of a lattice (or more general sets
including periodic sets) to a window function with nice properties (for instance a
Gaussian). The main question then is whether a Gabor system constructed in this
way satisfies the frame condition (hence has good properties for signal analysis). This
property depends crucially on the lattice. A good way of analyzing Gabor frames and
properties equivalent to the frame condition is through Wexel–Raz duality [12]. This
leads to a characterization of the frame condition for a Gabor system in R

n in terms
of an entire function in C

n that vanishes at points of the lattice and is related to the
Bargmann transform of the Wexel–Raz dual window function.

These two problems share the underlying question of the construction of a function
vanishing at points of a lattice, with assigned properties in terms of the closely related
Fourier and Bargmann (or short-time Fourier) transform. In the case of Cohn–Elkies
functions one usually assumes that the function is radial, hence vanishing on spheres
containing lattice points, while in the Gabor frame problem one typically deals with
functions vanishing on hyperplanes containing lattice points, in the sense of the general
construction of [16]. In fact, as remarked in [7], the radial hypothesis in the Cohn–
Elkies case is not necessary, and we will consider more general such functions.

There is another important direct relation between these two questions. A special
class of Gabor frames, called Grassmannian frames [18], have the property that they
minimize (over lattices) the maximal correlation between the functions in the Gabor
system. These are frames that most closely resemble the properties of orthogonal
frames. It turns out that the optimization problem for the construction ofGrassmannian
frames is the same as the optimization problem for lattices achieving maximal sphere
packing density.

Given these relations between the two questions, it is natural to ask whether one can
use techniques from Gabor frame analysis to provide a different geometric approach
to the construction of Cohn–Elkies functions. In this paper we show that this is indeed
the case and that Wexel–Raz duality for Gabor frames provides a new approach to the
construction of Cohn–Elkies functions.

It is important to notice here the role of lattices. In the context of the sphere packing
density problem, it is expected that lattice solutions will be only a low-dimensional
feature, with the maximal density achievable by lattices diverging from the maxi-
mal sphere packing density in higher-dimensions. The known cases of dimensions
1, 2, 3, 8, 24 are the only dimensions where an explicit lattice solution is known, and
may be the only ones. Thus, focusing on the possibility of lattice solutions is clearly
very restrictive. A conjecture of Zassenhaus expects themaximal density in any dimen-
sion to be attainable by periodic packings, that is, sphere packings with sphere centers
on periodic sets (unions of translates of lattices). It is known that periodic packings can
approximate arbitrarily well the greatest packing density. After discussing the case of
lattices, we show in the last section of this paper how to adapt the construction to the
case of periodic sets.
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The construction of Cohn–Elkies functions that we discuss in this paper uses a
lattice L ⊂ R

n (whose dual L∨ is the lattice whose density one wants to probe),
together with a choice of an auxiliary lattice K ⊂ R

n chosen so that � = L × K
gives a Gabor frame for a Gaussian window. It is in general difficult to obtain explicit
constructions ofWexel–Raz dual windows for Gabor frames. Indeed, even for the case
of a Gaussian window, we need to use an approximate dual. It is interesting to notice
that in both the problem of constructing Cohn–Elkies functions and the problem of
constructing Wexel–Raz dual windows, cases where direct explicit constructions are
known involve the use of modular forms: in dimension 8 and 24 for the Cohn–Elkies
problem [9, 19], and for the Wexel–Raz duality in dimension one (that is, for lattices
in R

2), where the canonical dual window is expressible explicitly in terms of lattice
theta functions [15].

In the rest of this introductory section we present these two problems inmore detail,
and we recall the background material that we need for our main construction, which
we present in the following section.

1.1 Cohn–Elkies Functions

In [7], Cohn and Elkies obtained a bound on the density of sphere packings in terms
of radial functions with assigned decay and sign properties of the function and its
Fourier transform. The same concept was independently introduced in [10]. Via-
zovska’s explicit modular forms construction [19] of such a function famously solved
the sphere packing problem in dimension 8, and a generalization of the same method
also gave a solution in dimension 24 [9].

Definition 1.1 A Cohn–Elkies function of dimension n ∈ N and of size � ∈ R
∗+ is a

real-valued Schwartz function f (x) with real valued Fourier transform (F f )(ξ), such
that

(1) f (x) ≤ 0 for all ‖x‖ ≥ �;
(2) (F f )(ξ) ≥ 0 for all ξ ∈ R

n ;
(3) (F f )(0) > 0.

Note that condition (F f )(ξ) ≥ 0, with (F f ) not identically zero, implies f (0) > 0.

Remark 1.2 In [7] the Cohn–Elkies functions are assumed to be real-valued radial
functions, f (x) = f0(‖x‖), for all x ∈ R

n , with f0 ∈ L2([0,∞), rn−1dr) satisfying
a rapid decay condition. In this case the Fourier transform is automatically real-valued
and radial, by the description of Fourier transform of radial functions as Hankel trans-
form. Also in [7] a more general decay condition is assumed for the Cohn–Elkies
functions, weaker than the Schwartz condition we consider here, which suffices for
the use of the Poisson summation formula. In fact, the condition was further general-
ized in [8]. Here we consider the more restrictive class of Schwartz functions, as in
[19], but one can replace this hypothesis with decay conditions as in [7] or [8].

A sphere packing PL based on a lattice L ⊂ R
n is a packing of spheres Sn−1

centered at the lattice points, with sphere diameters equal to the length �L of the
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shortest lattice vector. The density �P of a sphere packingP is the fraction of volume
occupied by spheres, hence in the case of a lattice packing it is given by the ratio

�PL = Vol(Bn
1 (0))

|L|
(

�n
L

2

)n

, (1.1)

where |L| = Vol(Rn/L) is the covolume of the lattice and

Vol(Bn
1 (0)) = πn/2

�( n
2 + 1)

is the volume of the unit ball inR
n . In the case of a periodic lattice, based on a periodic

set consisting of N translations of a lattice L , the density is similarly described, with
|L| replaced by |L|/N in (1.1). The center-density is defined as δP = �P/Vol(Bn

1 (0)).
Thus, for a sphere packing PL based on a lattice L ⊂ R

n , the center-density is given
by

δL =
(

�L

2

)n 1

|L| , (1.2)

with �L the shortest length of L .
Theorem 3.2 of [7] shows that the existence of a Cohn–Elkies function of dimension

n ∈ N and size � ∈ R
∗+ gives a bound on the center-density δP

δP ≤
(

�

2

)n f (0)

(F f )(0)
, (1.3)

for any arbitrary sphere packing P in R
n .

Remark 1.3 Note that in the sphere packing problem, the lattice covolume |L| is
fixed and can be taken |L| = 1. Here we leave |L| written explicitly to highlight
the dependence of the construction on |L|. The reader should assume that it has a fixed
value.

Definition 1.4 Let L ⊂ R
n be a lattice with shortest length �L . A Cohn–Elkies func-

tion of dimension n ∈ N and size �L is special if in addition to the properties of
Definition 1.1 it also satisfies

1

|L| = f (0)

(F f )(0)
. (1.4)

Lemma 1.5 Given a lattice L ⊂ R
n, suppose there is an associated special Cohn–

Elkies function of dimension n ∈ N and size �L , with �L the shortest length of L. Then
the lattice L realizes the maximal density for sphere packings in R

n.

Proof As in [7], from the Poisson summation formula

∑
λ∈L

f (x + λ) = 1

|L|
∑

λ′∈L∨
e−2π i〈x,λ′〉(F f )(λ′) ,
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with L∨ the dual lattice, one obtains that

∑
λ∈L

f (λ) ≤ f (0)

since each term with λ 
= 0 in the sum is non-positive, as �L is the shortest length of
L . On the other hand

1

|L|
∑

λ′∈L∨
(F f )(λ′) ≥ 1

|L| (F f )(0) ,

as all the other terms are non-negative. Thus, we have

f (0) − 1

|L| (F f )(0) ≥ 0

which gives the estimate

1

|L| ≤ f (0)

(F f )(0)
.

The lattice packing is optimal if it achieves the Cohn–Elkies bound

δL =
(

�L

2

)n f (0)

(F f )(0)

determined by the Cohn–Elkies function, hence if the above inequality is optimized.
��

We also recall the following observation from [7].

Corollary 1.6 Given a lattice L ⊂ R
n with shortest length �L and covolume |L|, a

special Cohn–Elkies function of dimension n ∈ N and size �L vanishes on all the
nonzero vectors of L and its Fourier transform vanishes on all the nonzero vectors of
the dual lattice L∨.

Proof Since (1.4) holds, the Poisson summation formula gives

∑
λ∈L�{0}

f (λ) = 1

|L|
∑

λ′∈L∨
�{0}

(F f )(λ′) ,

but on the left-hand-side all the terms are non-positive while on the right-hand-side
all the terms are non-negative, hence all terms vanish. ��

We have formulated here Lemma 1.5 and Corollary 1.6 in the lattice case. For the
analogous formulation in the case of periodic sets see [7].
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1.2 Gabor Frames

The construction of good frames is a fundamental question in signal analysis. Unlike
orthogonal bases, frames are overdetermined andhave someamount of redundancy, but
they also have important properties, such as optimization of the uncertainty principle
(localization in both position and frequency variables). The frame condition ensures
good encoding (via the frame operator) and decoding properties. In particular, we
focus here on Gabor frames, obtained by acting on a window function via translation
and modulation operators. The crucial question of when a Gabor system obtained
by translation and modulation of a window function satisfies the frame condition
is completely understood in the case of Gabor frames in L2(R) with lattices � ⊂
R
2, while a full characterization in higher dimensions remains a more complicated

problem.

Definition 1.7 (1) Given a window function φ in L2(Rn) and a lattice � ⊂ R
2n , the

Gabor system G(φ,�) = {πλφ}λ∈� consists of the collection of functions

πλφ(x) = e2π i〈η,x〉φ(x − ξ) , (1.5)

for λ = (ξ, η) ∈ �.
(2) The Gabor system G(φ,�) is a frame (satisfies the frame condition) if there are

constants C, C ′ > 0 such that, for all f ∈ L2(Rd)

C ‖ f ‖L2(Rd ) ≤
∑
λ∈�

|〈 f , πλφ〉|2 ≤ C ′ ‖ f ‖L2(Rd ) . (1.6)

(3) The Gabor system G(φ,�) is a Bessel sequence if the upper inequality of (1.6)
holds,

∑
λ∈�

|〈 f , πλφ〉|2 ≤ C ′‖ f ‖2

for all f ∈ L2(Rn).

The frame operator S = Sφ,� associated to the Gabor system G(φ,�) is given by

S f =
∑
λ∈�

〈 f , πλφ〉πλφ . (1.7)

The Gabor system G(φ,�) is a frame iff Sφ,� is both bounded and invertible on
L2(Rn) and a Bessel sequence if it is bounded.

1.3 Adjoint Lattice

The adjoint lattice plays a crucial role in the Wexel–Raz duality for Gabor frames
and in the equivalent characterization of the frame condition in terms of sampling and
interpolation of entire functions.
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Definition 1.8 Given a lattice � ⊂ R
2n , the adjoint lattice �o is given by

�o = {λ′ ∈ R
2n | πλ ◦ πλ′ = πλ′ ◦ πλ , ∀λ ∈ �} . (1.8)

with the translation-modulation operators πλ as in (1.5).

We have the following equivalent description of the adjoint lattice (see Lemma 4.3.3
of [12]).

Lemma 1.9 For � = AZ
2n with A ∈ GL2n(R), the adjoint lattice is given by

�o = J−1 (At )−1
Z
2n (1.9)

with

J =
(

0 In

−In 0

)
. (1.10)

Proof This simply follows from the fact that, for λ = (λ1, λ2) and λ′ = (λ′
1, λ

′
2),

πλ′ ◦ πλ = e2π i(〈λ1,λ′
2〉−〈λ2,λ′

1〉)πλ ◦ πλ′

where the condition 1 = e2π i〈Ak,Jλ′〉 with k ∈ Z
2n holds iff 〈Ak, Jλ′〉 = 〈k, At Jλ′〉 ∈

Z for all k ∈ Z
2n , which gives λ′ ∈ J−1 (At )−1

Z
2n .

Note that the covolume satisfies |�| = V ol(R2n/�) = | det A|, for a lattice of the
form � = AZ

2n for A ∈ GL2n(R), and for the adjoint lattice |�o| = |�|−1.

Remark 1.10 In the case of a split lattice, namely a lattice � ⊂ R
2n of the form

� = L1 × L2, with L1, L2 lattices in R
n , the adjoint lattice is of the form

�o = L∨
2 × L∨

1 , (1.11)

where L∨
i are the dual lattices of the Li in R

n .

1.4 Wexel–Raz Duality for Gabor Frames

The frame condition for a Gabor system G(φ,�) can be characterized in terms of a
duality relation, namely the existence of a dual window function γ with the property
that the Gabor systems G(φ,�) and G(γ,�) are mutually orthogonal (Wexel–Raz
biorthogonality relation).

Definition 1.11 For a Gabor system G(φ,�) in L2(Rn) that is a Bessel sequence,
a Wexel–Raz dual window γ is a window function that satisfies the reconstruction
identity

f =
∑
λ∈�

〈 f , πλφ〉πλγ . (1.12)
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Dual windows are not unique. In particular, the canonical dual window is the one
obtained from the frame operator (1.7) by γφ,� = S−1

φ,�φ. In this case, while the frame
operator (1.7) provides the encoding

Sφ,� : f �→
∑
λ∈�

〈 f , πλφ〉πλφ , (1.13)

the canonical Wexel–Raz dual provides the corresponding decoding operator

S−1
φ,� : f �→

∑
λ∈�

〈 f , πλγφ,�〉πλγφ,� .

Dual windows can be characterized in terms of a vanishing property of their short-
time Fourier transform on the adjoint lattice.

Definition 1.12 For a window function φ ∈ L2(Rn) the short-time Fourier transform
of a function f ∈ L2(Rn) is given by

(Vφ f )(w) :=
∫

R
n

f (t)φ̄(t − u)e−2π i〈v,t〉dt = 〈 f , πwφ〉, (1.14)

for w = (u, v) ∈ R
2n .

The short-time Fourier transform satisfies

Vπwφ(πw f )(z) = e2π i〈z,J ·w〉Vφ f (z) ,

with J as in (1.10), and

〈Vφ f , Vγ h〉L2(R2n = 〈 f , h〉L2(Rn)〈φ, γ 〉L2(Rn) .

The phase factor e2π i〈λ,J ·z〉 satisfies,

e2π i〈λ,J ·z〉 = 1∀λ ∈ � ⇔ z ∈ �o . (1.15)

We then have the following characterization of Wexel–Raz dual windows, see
Theorem 4.4.1 of [12].

Lemma 1.13 For a Gabor system G(φ,�) in L2(Rn) that is a Bessel sequence, a
Wexel–Raz dual window γ is a window function that satisfies

1

|�| 〈γ, πλ′φ〉 = δλ′,0 , ∀λ′ ∈ �o . (1.16)
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Proof We recall briefly the proof that (1.12) implies (1.16), and we refer the reader to
[12] for a more detailed account. One first shows that if for two window functions φ

and γ in L2(Rn) both Gabor systems G(φ,�) and G(γ,�) are Bessel sequences and

∑
λ′∈�o

|Vφγ (λ′)| < ∞ ,

then the Poisson summation formula gives

∑
λ∈�

Vφ f (z + λ)Vγ h(z + λ) = 1

|�|
∑

λ′∈�o

Vφγ (λ′)V f h(λ′)e2π i〈λ′,J z〉 ,

for all z ∈ R
2n and for any f , h ∈ L2(Rn), see Theorem 4.3.2 of [12]. For a dual

window γ one then writes

〈 f , h〉 =
∑
λ∈�

〈π∗
z f , πλφ〉〈πλγ, π∗

z h〉 =
∑
λ∈�

Vφ f (z + λ)Vγ h(z + λ)

where the latter must be a constant function of z ∈ R
2n hence with Fourier coefficients

1

|�| Vφγ (λ′)V f h(λ′) = 〈 f , h〉δλ′,0 ,

see Theorem 4.4.1 of [12]. Thus, dual windows that satisfy (1.12) also satisfy the
relation (1.16). ��

The Gabor frame condition can then be equivalently formulated in terms ofWexel–
Raz duality as follows (see Theorem 4.4.1 of [12]).

Proposition 1.14 For a Gabor system G(φ,�) in L2(Rn) the following properties are
equivalent:

(1) G(φ,�) is a frame;
(2) G(φ,�o) is a Bessel sequence and there is a Wexel–Raz dual window γφ,� ∈

L2(Rn) (satisfying (1.16)) such that G(γφ,�,�) is also a Bessel sequence.

Thus, the problemof verifying the framecondition forGabor systems is equivalently
rephrased as the problem of constructing Wexel–Raz dual windows satisfying the
interpolating condition (1.16) on the adjoint lattice.

1.5 Grassmannian Gabor Frames and Sphere Packings

In [18] a special class of frames is introduced that have the property of minimizing
correlation. Namely, frames {ψα}α∈I such that the maximal correlation |〈ψα,ψβ〉|
over all α 
= β ∈ I is as small as possible for a fixed redundancy. Such frames are
called Grassmannian frames (see Definition 1.18 below).
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This question can be seen as follows; an orthonormal frame has no redundancy and
the basis elements are completely uncorrelated. Frames in general have redundancy
and for a fixed amount of redundancy this minimization problem is addressing the
question of how closely such a frame can resemble an orthonormal frame, in the sense
of having as little correlation as possible among the basis elements.

Remark 1.15 In a finite dimensional Hilbert space of dimension n, a generating set
{ fk}N

k=1 has redundancy ρ = N/n. In this finite dimensional case, the problem of
constructing Grassmannian frames is shown in [18] to be equivalent to the problem of
finding an arrangement of N lines with largest possible angles between them. This is
in turn equivalent to constructing a spherical code with fixed number N of points and
with largest possible minimal angle ϕ.

The notion of redundancy can be extended to the infinite dimensional case in such
a way that it agrees with the simple expression ρ = N/n in finite dimensions, as in
Remark 1.15.

Definition 1.16 Let {zk}k∈N be a fixed choice of points in R
2n and let Bk(zk) = {x ∈

R
n | ‖z − zk‖ ≤ k}. Given a lattice � ⊂ R

2n , let �k = � ∩ Bk(zk). The redundancy
of G(φ,�) is defined as

ρ(φ,�) :=
⎛
⎝ lim

k→∞
1

#�k

∑
λ∈�k

〈πλφ,S−1
φ,�πλφ〉

⎞
⎠

−1

. (1.17)

One defines ρ±(φ,�) as the limsup/liminf when the limit (1.17) does not exist.

It is shown in [1] that the redundancy ρ(φ,�) of a Gabor frame is equal to its
“density of label sets" D(φ,�), which is defined as

D(φ,�) := lim
k→∞

#�k

(2k)2n
. (1.18)

The definition of redundancy recalled above applies to sets � ⊂ R
2n that are not

necessarily lattices. In the case of lattices the notion simplifies.

Remark 1.17 With all the zn = 0 we have the lattice covolume

lim
k→∞

#(� ∩ Bk(0))

V ol(Bk(0))
= 1

|�| ,

so that the redundancy is simply given by

D(φ,�) = V ol(B1(0))

22n |�| ,

where for the unit ball B1(0) ⊂ R
2n we have V ol(B1(0)) = πn

n! . Thus, considering
Gabor framesG(φ,�)withfixed redundancyρ(φ,�) = ρ corresponds to considering



Cohn–Elkies Functions from Gabor Frames Page 11 of 32    93 

lattices � with fixed covolume. The Gabor frame condition implies that the density
D(φ,�) ≥ 1 so we can assume a fixed covolume |�| ≤ 1.

Definition 1.18 For a fixed window function φ ∈ L2(Rn), a Gabor frame G(φ,�) for
a lattice � ⊂ R

2n is a Grassmannian frame if it minimizes the maximal correlation

Corr(φ,�) := max
λ∈��{0} |〈φ, πλφ〉| , (1.19)

with the minimization taken over lattices � with fixed redundancy (fixed covolume).

The relation between the problem of Grassmannian Gabor frames and the problem
of lattice optimizers for the sphere packing problem can then be formulated in the
following way.

Lemma 1.19 When the window φα(x) = e−α‖x‖2 is a Gaussian, for a lattice � ⊂ R
2n

let �α denote the lattice

�α :=
{(

λ1,
π

α
λ2

)
∈ R

2n | λ = (λ1, λ2) ∈ �
}

. (1.20)

For λ = (λ1, λ2) ∈ �, we write λα for the corresponding point λα = (λ1,
π
α
λ2) ∈ �α .

Searching for a lattice optimizer

�opt = arg min
�

max
λ∈��{0} |〈φα, πλφα〉| = arg min

�
Corr(φ,�)

is equivalent to searching for a lattice optimizer

�opt = arg max
�

min
λ∈��{0} ‖λα‖ = arg max

�
��α ,

maximizing the shortest length ��α for fixed covolume of �, hence for an optimizer of
the sphere packing density.

Proof We can write explicitly the correlation as

〈φα, πzφα〉 =
∫

R
n

e−α‖x‖2e−α‖x−u‖2e2π i x ·vdx

= e− α
2 ‖u‖2

∫
R

n
e−2α‖x−u/2‖2e2π i x ·vdx = e− α

2 ‖u‖2eπ iu·v
∫

R
n

e−2α‖x‖2e2π i x ·vdx

= eπ iu·v e− α
2 ‖u‖2 ( π

2α

)n/2
e− π2

2α ‖v‖2 (1.21)

for z = u + iv ∈ C
n , so that we have

|〈φα, πzφα〉| =
( π

2α

)n/2
e
− α

2 (‖u‖2+ π2

α2
‖v‖2)

. (1.22)
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We then have

|〈φα, πλφα〉| =
( π

2α

)n/2
e− α

2 ‖λα‖2 .

Thus, the correlation |〈φα, πλφα〉| monotonically decreases as ‖λα‖ increases. Thus,
the maximum is achieved on the set of shortest vectors in �α . Then optimizing the
lattice � by making the shortest length in �α as large as possible corresponds to
optimizing � by making the largest correlation |〈φα, πλφα〉| over the shortest length
vectors as small as possible. ��

2 Cohn–Elkies Functions fromWexel–Raz Duality

Using an approximate construction of a Wexel–Raz dual window for a Gabor system
with split lattice and Gaussian window, we obtain a general construction of Cohn–
Elkies functions associated to critical lattices in R

n .

2.1 Approximation ofWexel–Raz Dual

Weshow that, given aGaussianwindow functionφα(x) = e−α‖x‖2 , such thatG(φα,�)

is a Gabor frame, there is a (non-canonical) dual window γ that is well approximated
by a superposition of shifted copies of φα .

We first recall briefly an argument given in Theorems 1 and 2 of [6], which our
statement in Proposition 2.1 below generalizes.

For a matrix C ∈ GLn(R) and a function f ∈ L2(Rn) the dilation of f by C is
defined as

(DC f )(x) := | det(C)|1/2 f (Cx) . (2.1)

Let φ be a compactly supported real-valued function in R
n , with supp(φ) ⊆ [0, N ]n

for some N ∈ N, that satisfies the partition of unity condition

∑
k∈Z

n

φ(x − k) = 1 , ∀x ∈ R
n . (2.2)

By Theorems 1 and 2 of [6], if the matrices C, B ∈ GLn(R) satisfy

‖Ct B‖ ≤ 1√
n(2N − 1)

, (2.3)

then there is a finite subset F ⊂ Z
n and a function

γ (x) = | det(Ct B)|
(

φ(x) + 2
∑
k∈F

φ(x + k)

)
, (2.4)
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such that the dilated functions DC−1φ and DC−1γ generate dual Gabor frames

G(DC−1φ,�) and G(DC−1γ,�).

This result shows that γ is a dual window for G(φ,�) by showing that the
biorthogonality relation

〈γ, πλφ〉 = 1

|�|δλ,0 , ∀λ ∈ �o

can be equivalently stated as the property that

∑
k∈Z

n

φ(x − (Bt )−1n − Ck)γ (x − Ck) = | det(B)| δn,0 . (2.5)

Then the key properties needed to show that this relation holds are the partition of
unity relation (2.2) and the identity

1 =
(∑

n∈�

φ(x + n)

)2

= 1

| det(Ct B)|
∑
n∈�

φ(x + n)γ (x + n)

=
∑
n∈�

φ(x + n)(φ(x + n) + 2
∑
�∈F

φ(x + n + �)) . (2.6)

where � = [0, N − 1]n ∩ Z
n . For the vanishing cases of (2.5), one uses the fact

that for ‖B‖ ≤ (
√

n(2N − 1))−1 the vanishing of (2.5) for n 
= 0 is guaranteed by
non-overlapping supports.

The following statement adapts and generalizes this argument.

Proposition 2.1 Let � ⊂ R
2n be a lattice of the form � = L × K with lattices

L, K ⊂ R
n, where L = CZ

n and K = BZ
n for some C, B ∈ GLn(R). Let �� :=

Z
n ∩ [−�,�]n. Let φα(x) = e−α‖x‖2 be a Gaussian window function, such that

G(φα,�) is a Gabor frame. For � > 0 let χ� be the characteristic function of the set
[−�,�]n and let φα,�(x) := χ�(x) φα(x). There exists a function

μ : �� → N with μ−k = μk (2.7)

with the property that, if the matrices B, C satisfy

‖Ct B‖ ≤ 1√
n(2� − 1)

, (2.8)

then the function

γ�(x) := | det(Ct B)|
⎛
⎝φα,�(x) + 2

∑
�∈��

μ� φα,�(x + �)

⎞
⎠ (2.9)
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is a dual frame for G(φα,�,�). Moreover, for any ε > 0 and an � > 0 such that
sup |φα − φα,�| < ε and

2ne− π2
α

n(2�−1)2 < ε ,

if (2.8) holds, then the function

γ (x) := | det(Ct B)|
⎛
⎝φα(x) + 2

∑
�∈��

μ� φα(x + �)

⎞
⎠ (2.10)

satisfies the Wexel–Raz duality forG(φα,�) up to an overall error of size the maximum
between ε and

| det(Ct B)|(1 + 2
∑

μ�)ε .

Proof Weneed to adapt the argument of [6] recalled above in twoways: first towindow
functions supported in a set [−�,�]n and then further extend it from a truncated
Gaussian that is compactly supported to an actual Gaussian.

We consider a window function that is compactly supported inside [−�,�]n . We
want to show that, in this case, the domain F that satisfies (2.6) can be taken to be
symmetric F = F̌ . To this purpose, it suffices to generalize the case of Theorem 1 of
[6], with C = 1, since the general case is then obtained as in Theorem 2 of [6]. We
assume that φ is a compactly supported window function with supp(φ) ⊂ [−�,�]n ,
which satisfies the partition of unity condition (2.2). As described above, we want
to construct a dual window γ that satisfies the Wexel–Raz duality expressed in the
form (2.5) (with C = 1). Let �� := [−�,�]n ∩ Z

n , and let N� := #��. Let
�� � {n1, . . . , nN�} be a choice of an enumeration (ordering) of the set ��. As in
(2.6), we write

1 =
⎛
⎝ ∑

n∈��

φ(x + n)

⎞
⎠

2

= (φ(x + n1) + · · ·

+φ(x + nN�) · (φ(x + n1) + · · · + φ(x + nN�)

= φ(x + n1)(φ(x + n1) + 2φ(x + n2) + · · · + 2φ(x + nN�)

+φ(x + n2)(φ(x + n2) + 2φ(x + n3) + · · · 2φ(x + nN�) + · · ·
+φ(x + nN�)φ(x + nN�) .

To obtain (2.6), we want to rewrite this as

1 = 1

| det(B)|
N�∑
j=1

φ(x + n j ) · γn j (x) ,
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where, as in [6],

γm(x) = | det(B)|
⎛
⎝φ(x + m) + 2

n∑
i=1

∑
k∈Em

i

φ(x + k)

⎞
⎠ ,

where the sets Em
i have the property that

∪i Em
i = {m′ ∈ �� | m′ > m}

in the chosen ordering �� � {n1, . . . , nN�}.
In [6] the lexicographic ordering is used on the positive quadrant [0,�]n , with

{m′ > m} = ∪i {m′ > m}i := ∪i {m′ | m′
i > mi and m′

j = m j for i + 1 ≤ j ≤ n} ,

so that one has Em
i = {m′ > m}i with

Em
i =

⎧⎨
⎩k ∈ Z

n
∣∣∣∣
0 ≤ k j ≤ � j = 1, . . . , i − 1
mi < ki ≤ � j = i
k j = m j j = i + 1, . . . , n

⎫⎬
⎭

Moreover, one then writes

∑
k∈Em

i

φ(x + k) =
∑
k∈Fi

φ(x + k + m) ,

where

Fi =
⎧⎨
⎩k ∈ Z

n
∣∣∣∣
|k j | ≤ � j = 1, . . . , i − 1
1 ≤ ki ≤ � j = i
k j = 0 j = i + 1, . . . , n

⎫⎬
⎭ .

Let ε = (ε1, . . . , εn) ∈ {±}n be a sequence of n signs. In [−�,�]n let Qε denote
the quadrant where each coordinate ki has sign εi . We write Q+ = [0,�]n for the
positive quadrant where all the εi = +. We denote by Yε : Q+ → Qε the bijection
Yε(k) = εk := (εi ki )

n
i=1. We have �� = ∪ε�

ε
�, where �ε

� = �� ∩ Qε . We identify
points of �� with pairs (m, ε)with m ∈ �+

� = �� ∩ Q+. We order the set {ε} = {±}n

lexicographically, with − < +, and we order �� ∩ Q+ lexicographically as in [6], so
that we have in ��

{(m′, ε′) > (m, ε)} = ∪ε′,i {(m′, ε′) | ε′ > ε or ε′ = ε and m′ > m} = ∪i Ẽm,ε
i ,

where we have

Ẽm,ε
i := ∪ε′>ε�

ε′
� ∪ Em,ε

i with Em,ε
i = Yε(Em

i ) .
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We can then again identify the sums

∑
k∈Ẽm,ε

i

φ(x + k) =
∑

k∈F̃ ε
i

φ(x + k + m) ,

where

F̃ε
i := ∪ε′>ε�

ε′
� ∪ Yε(Fi ) .

Since there are overlaps between the sets F̃ε
i , the points have finite non-negative

integer multiplicities if we view the F̃ε
i as subsets of ��, or we count all points with

multiplicity one, and consider the disjoint unions

Fε
i := �ε′>ε�

ε′
� � Yε(Fi ) .

Note that the set

F := �ε,iFε
i

is invariant under the symmetry ε ↔ −ε. Thus, the corresponding set

∪ε,i F̃ε
i

consists of �� with the appropriate multiplicites assigned to each of the points, and
these multiplicites are invariant with respect to the symmetry k �→ −k. We can then
write points of this set as (k, μk) with k ∈ �� and μk ∈ N the resulting multiplicity,
namely the cardinality

μk = #�−1
� (k) (2.11)

of the fiber under the projection

�� : F = �ε,iFε
i � ∪ε,i F̃ε

i = �� ,

satisfying μ−k = μk . The assignment (2.11) determines a function μ : �� → N as
in (2.7) with the desired properties. Indeed, we obtain the identity

1 =
⎛
⎝ ∑

n∈��

φ(x + n)

⎞
⎠

2

= 1

| det(B)|
∑
k∈Z

n

φ(x + k + n)γ (x + n) ,

where

γ (x) = | det(B)|
⎛
⎝φ(x) + 2

∑
m∈��

μm φ(x + m)

⎞
⎠ .
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This shows that we can obtain in this way a Wexel–Raz dual window for G(φα,�,�),
with the truncated Gaussian window φα,�, given by (2.9).

We then need to further extend this result to the case of the Gaussian window φα .
While Gaussians are not compactly supported and do not satisfy the partition of unity
property, they can be well approximated by functions that satisfy both, with arbitrarily
small error. In particular, for a one-dimensional Gaussian of the form

u(t) = � ·
(α

π

)1/2
e−αt2 ,

with � > 0, the partition of unity relation (2.2) holds up to an error term (see [2])

∑
k∈Z

u(t − k�) = 1 + 2 cos

(
2π t

�

)
e
− π2

α�2 . (2.12)

The error terms add in the case of a multidimensional Gaussian. The approximation
(2.10) is then obtained by applying (2.9) to a truncation DCχ� · φα , where χ� is the
characteristic function of a set [−�,�]n . Thus, for the Gaussian φα we have an error
term on the partition of unity

|1 −
∑
k∈Z

n

φα(x + Ct Bk)| ≤ 2ne
− π2

α ‖Ct B‖2 .

Under the assumption that

‖Ct B‖ ≤ 1√
n(2� − 1)

,

this error in the partition of unity relation is bounded by

2ne− π2
α

n(2�−1)2 .

Thus, for a given ε > 0 we can choose an � > 0 such that both

sup |φα − φα,�| < ε ,

and the error in the partition of unity relation is 2ne− π2
α

n(2�−1)2 < ε, so that the
window function

γ (x) := | det(Ct B)|
⎛
⎝φα(x) + 2

∑
m∈��

μm φα(x + m)

⎞
⎠

satisfies theWexel–Raz duality up to an error termof size atmostmax{ε, det(Ct B)(1+
2

∑
μ�)ε}. ��
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Remark 2.2 Given a lattice � = L × K and Gabor frames G(φα,�), if γ is an
approximate Wexel–Raz dual window constructed as above, for a chosen error size
ε and a corresponding cutoff of size �, we refer to the pair (ε,�) as the size of the
approximation.

2.2 Hermite Constant

As in (1.20), for a lattice � ⊂ R
2n , we denote by �2σ the lattice

�2σ :=
{(

λ1,
π

2σ
λ2

)
∈ R

2n | λ = (λ1, λ2) ∈ �
}

. (2.13)

We also write �o
2σ := (�o)2σ where �o is the adjoint lattice of �. (Note that this is

not the same as (�2σ )o, the adjoint lattice of �2σ .) We set

C�,σ :=
(
4σ

π

)n/2

Corr(φ2σ ,�o) , (2.14)

withCorr(φ2σ ,�o) defined as in (1.19), with aGaussianwindowφ2σ (x) = e−2σ‖x‖2 .

Remark 2.3 The shortest length �� of a lattice in R
2n is bounded by

�2� ≤ γ2n · |�|1/n ,

where γ2n is the Hermite constant in R
2n . A lattice � is critical if �2� = γ2n|�|1/n .

These realize the maximum lattice-packing density.

Lemma 2.4 For a lattice � ⊂ R
2n such that �o

2σ is a critical lattice we have

C�,σ ≤ e−n
σ |�o

2σ |1/n

πe . (2.15)

Proof As in (1.21), we have

〈φ2σ , πzφ2σ 〉 = eπ iu·v e−σ‖u‖2 ( π

4σ

)n/2
e− π2

4σ ‖v‖2 , (2.16)

so that we have

|〈φ2σ , πzφ2σ 〉| =
( π

4σ

)n/2
e−σ(‖u‖2+ π2

4σ2
‖v‖2)

. (2.17)

Thus, from (2.14) we obtain

C�,σ = e
−σ�2

�o
2σ .
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For a critical lattice we then have

C�,σ = e−σγ2n |�o
2σ |1/n

.

Thus, an upper bound on C�,σ is obtained from a lower bound on the Hermite con-
stant γ2n . The Minkowski–Hlawka theorem [14] gives a lower bound for the Hermite
constant of the form

γ2n ≥
(

2ζ(2n)

V ol(B2n
1 (0))

)1/n

,

where

ζ(2n) = (−1)n+1 (2π)2n B2n

2(2n)! → 1

for n → ∞, with the Bernoulli numbers satisfying |B2n| ∼ (2n)!2
(2π)2n . This results in a

linear estimate

γ2n ≥ n

πe
.

��
We consider lattices � ⊂ R

2n of the form � = L × K with lattices L, K ⊂ R
n ,

where L = CZ
n and K = BZ

n for some C, B ∈ GLn(R), with �2σ = L × π
2σ K . In

this case we have �o
2σ = (�o)2σ = K ∨ × π

2σ L∨, while (�2σ )o = 2σ
π

K ∨ × L∨. In
this case we set

Corr(φ2σ , L∨) := max
�∈L∨ |〈φ2σ , πi�φ2σ 〉| , (2.18)

CL,σ :=
(
4σ

π

)n/2

Corr(φ2σ , L∨
2σ ) , (2.19)

with L∨
2σ := (L∨)2σ = π

2σ L∨.

Corollary 2.5 For a lattice L ⊂ R
n such that L∨

2σ is a critical lattice in R
n, we have

CL,σ ≤ e−n
σ |L∨

2σ |1/2n

2πe . (2.20)

If L∨ is a critical lattice in R
n, we correspondingly have

CL,σ ≤ e−n
π2
4σ |L∨|1/2n

2πe . (2.21)
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Proof As in (2.17) we have

|〈φ2σ , πi xφ2σ 〉| =
( π

4σ

)n/2
e− π2

4σ ‖x‖2 , (2.22)

with

max
�∈L∨ |〈φ2σ , πi�φ2σ 〉| =

( π

4σ

)n/2
e
−σ �2

L∨
2σ .

If we assume that L∨
2σ is a critical lattice in R

n , we have �2L∨
2σ

= γn · |L∨
2σ |1/2n , while

if we assume that L∨ is a critical lattice, we have �2L∨ = γn · |L∨|1/2n . Moreover,
�L∨

2σ
= π

2σ �L∨ and |L∨
2σ | = (

π
2σ

)n |L∨| so in this case we have

�2L∨
2σ

=
( π

2σ

)2
�2L∨ = γn ·

( π

2σ

)2 |L∨|1/2n =
( π

2σ

)3/2
γn · |L∨

2σ |1/2n .

��

2.3 Preliminary Estimates

We discuss here some preliminaries for the main construction of Sect. 2.4.
For a function f ∈ L2(Rn) and u ∈ R

n we denote by Tu f the translate

(Tu f )(x) = f (x − u). (2.23)

Let φα(x) = e−α‖x‖2 , with

ψα(x) :=
(π

α

)n/2
e− π2

α
‖x‖2 = F(φα) . (2.24)

Lemma 2.6 Consider a translate gα = T�φα , for some � ∈ R
n, and let φβ(z) =

e−β‖x‖2 with ψβ := Fφβ . Let

κn,�,β,σ := exp

(
−n

σβ�1/2n

2πe

)
. (2.25)

For β = π2

4σ 2 and α and σ in the range

α ≤ q · π with q :=

⎧⎪⎨
⎪⎩

σ

e
� � ≤ 1

σ

e
� > 1 ,

(2.26)
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the following estimate holds:

∫
R

n
gα(y)ψβ(x − y) dy ≥ κn,�,β,σ gα(x) . (2.27)

Proof We have

ψβ(x) =
(

π

β

)n/2

e− π2
β

‖x‖2

and for gα(x) = e−α‖x−�‖2

(
π

β

)n/2 ∫
R

n
gα(y)e− π2

β
‖x−y‖2dy =

(
π

β

)n/2 ∫
R

n
e−(α‖y‖2+ π2

β
‖y−(x−�)‖2)dy

=
(

π

β

)n/2

e
− α π2

β

α+ π2
β

‖x−�‖2 ∫
R

n
e
−(α+ π2

β
)‖y− α

α+ π2
β

(x−�)‖2
dy

=
(

π

β

)n/2
⎛
⎝ π

α + π2

β

⎞
⎠

n/2

e
− α π2

β

α+ π2
β

‖x−�‖2

=
(

π2

βα + π2

)n/2

exp

(
− απ2

βα + π2 ‖x − �‖2
)

.

In order to verify the condition

(
π2

βα + π2

)n/2

· exp
(

− απ2

βα + π2 ‖x − �‖2
)

≥ exp

(
−n

2

σβ �1/2n

πe

)
· exp

(
−α‖x − �‖2

)

note that

απ2

βα + π2 < α

is always verified since α, β > 0 hence απ2 < απ2 + βα2. Thus, it suffices to check
when

log

(
1 + βα

π2

)
≤ σβ �1/2n

πe
. (2.28)
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We are assuming that β = π2

4σ 2 , so the above gives

log
(
1 + α

4σ 2

)
≤ π �1/2n

4σe
.

When α and σ are in the range (2.26) this is satisfied. ��

Remark 2.7 We will be interested in the case where � = |L∨| for a lattice L ⊂ R
n

with

κn,�,β,σ := exp

(
−n

σβ|L∨|1/2n

2πe

)
.

Checking (2.28) is then equivalent to checking when

(
π2

βα + π2

)n/2

≥ exp

(
−n

2

σβ |L∨
2σ |1/2n

πe

)

and this is satisfied with q = qL in the range

α ≤ qL · π with qL :=

⎧⎪⎨
⎪⎩

σ

e
|L∨| |L∨| ≤ 1

σ

e
|L∨| > 1 .

(2.29)

2.4 Construction of Cohn–Elkies Functions

As above, let φα(x) = e−α‖x‖2 with ψα = F(φα) as in (2.24). Let � ⊂ R
2n be a

lattice, with �2σ the lattice (2.13) and �o
2σ = (�o)2σ . We assume that the lattice �

is such that the Gabor system G(φα,�2σ ) satisfies the frame condition.
We consider in particular lattices � = L × K , as above, with �2σ = L × π

2σ K
and �o

2σ = K ∨ × π
2σ L∨.

For � = L × K , let F ⊂ L be a finite subset and let μ : F → N be a function that
assigns multiplicities to the points of F . Let DF ,μ be the function

DF ,μ(x) = 1 + 2
∑
�∈F

μ� e2π i〈�,x〉 . (2.30)

For example, for n = 1 andF = ([−N , N ]� {0})∩Z, with all multiplicities equal
to one, this is related to the usual Dirichlet kernel by

D([−N ,N ]�{0})∩Z,1(t) = 2
N∑

k=−N

e2π ikx − 1 = sin((2N + 1)πx)

sin(πx)
− 1 .
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We write

e�(x) := e2π i〈�,x〉 , (2.31)

so that DF ,μ = 1 + 2
∑

�∈F μ� e�.
For a function f ∈ L2(Rn) and u ∈ R

n we denote by Tu f the translate as in (2.23)
and we write

TF ,μ f := f + 2
∑
�∈F

μ� T� f . (2.32)

Consider then functions of the form

h�,σ (x) :=
(
4σ

π

)n/2

|〈φ2σ , πi xφ2σ 〉| − CL,σ (2.33)

with CL,σ as in (2.19), and φσ (x) := e−σ‖x‖2 , and

fF ,μ(x) := 〈TF ,μγ, πi xφα〉 · h�(x) . (2.34)

with γ = γφα,�2σ a Wexel–Raz dual window for G(φα,�2σ ).

Theorem 2.8 Let � = L × K be a lattice in R
2n such that L∨ is a critical lattice

in R
n and the lattice K ⊂ R

n is chosen so that the Gabor system G(φα,�2σ ) satis-
fies the frame condition and (2.8) is satisfied. Let γ = γφα,�2σ be the approximation
to a Wexel–Raz dual window with approximation size (ε,�) (see Remark 2.2) con-
structed as in Proposition 2.1. Consider a datum (F , μ) given by the pair (��,μ) of
Proposition 2.1. Then, for α and σ in the range (2.29), the function (2.34),

f��,μ(x) := 〈T��,μγ, πi xφα〉 · h�(x)

is a Cohn–Elkies function of dimension n and size �L∨ , the shortest length of L∨.

Proof Wefirst show that f��,μ is a real valued Schwartz function that satisfies f��,μ ≤
0 for ‖x‖ ≥ �L∨ . We have as in (2.22)

|〈φ2σ , πi xφ2σ 〉| =
( π

4σ

)n/2
e− π2

4σ ‖x‖2 ,

so that we have

h�(x) = φ π2

4σ2
(x) − CL,σ = φσ

( π

2σ
x
)

− CL,σ .

Since CL,σ = e
−σ�2

L∨
2σ , we have

h�(x) ≤ 0 for ‖x‖ ≥ �L∨
2σ

2σ

π
= �L∨ .
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For z = u + iv ∈ C
n , we have

〈γ, πzφα〉 =
∫

R
n
γ (x)e2π i x ·vφα(x − u) dx = F(γ · Tuφα) = F(γ )�(eu · F(φα)) ,

with eu as in (2.31). Thus, we have

〈γ, πzφα〉|iRn = 〈γ, πivφα〉 = F(γ · φα)(v) .

and we obtain

〈T��,μγ, πi xφα〉 = 〈γ, πi xφα〉 + 2
∑
�∈F

〈T�γ, πi xφα〉 = F(γ )�F(φα)

+2
∑
�∈F

μ�F(T�γ )�F(φα) .

We also have

F(T��,μγ ) = F(γ ) + 2
∑
�∈F

μ�F(T�γ ) = DF ,μ · F(γ ) .

We consider here the case where the pair (F , μ) is given by (��,μ) as in (2.7)
in Proposition 2.1. Since both the set �� and the multiplicity function μ : �� → N

are invariant under the symmetry x �→ −x , the function D��,μ also satisfies the
symmetry

D��,μ(−x) = D��,μ(x) .

Since ē�(x) = e�(−x), we also have D̄��,μ(x) = D��,μ(−x), hence D��,μ is a
real-valued even function.

We use as γ (x) the Wexel–Raz dual window approximation of Proposition 2.1,
given by (2.10). We then have

F(γ ) = | det(Ct B)| (F(φα) + 2
∑
�∈��

μ� F(T�φα)) = | det(Ct B)|D��,μ · F(φα) .

Thus, we obtain

f��,μ = | det(Ct B)|D2
��,μ · ψα · (φ π2

4σ2
− CL,σ ) ,

with ψα = F(φα). It is clear from this expression that f��,μ is a real valued Schwartz
function. Since | det(Ct B)|D2

��,μ(x) · ψα(x) ≥ 0 for all x ∈ R
n , while φ π2

4σ2
(x) ≥

CL,σ iff ‖x‖ ≤ �L∨ , we have

f��,μ(x) ≤ 0 for ‖x‖ ≥ �L∨
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and f��,μ(x) ≥ 0 otherwise.
When computing Fourier transforms, we interpret the Fourier transform F(h�) in

the distributional sense, so that we have

F(h�) = ψ π2

4σ2
− CL,σ δ0 ,

with δ0 the Dirac delta distribution centered at 0. The convolution product of the Dirac
delta distribution δ0 with a test function ϕ leaves the test function unchanged,

(ϕ�δ0)(x) =
∫

R
n
ϕ(x − u)δ0(u) du = ϕ(x) .

Thus, we obtain

F( f��,μ) = | det(Ct B)|F(D2
��,μ)�φα�(ψ π2

4σ2
− CL,σ δ0)

= | det(Ct B)|F(D2
��,μ)�φα�ψ π2

4σ2
− CL,σ | det(Ct B)|F(D2

��,μ)�φα .

We have

D2
��,μ =

⎛
⎝1 + 2

∑
�∈��

μ�e�

⎞
⎠

2

= 1 + 4
∑
�∈��

μ�e� + 4
∑

�,�′∈��

μ�μ�′e�+�′

so that the Fourier transform F(D2
��,μ), also interpreted in the distributional sense,

gives

F(D2
��,μ) = 1 + 4

∑
�∈��

μ�δ� + 4
∑

�,�′∈��

μ�μ�′δ�+�′ ,

with δx0 the Dirac delta centered at x0.
The convolution product F(D2

��,μ)�φα is then given by

F(D2
��,μ)�φα = φα + 4

∑
�∈��

μ�T�φα + 4
∑

�,�′∈��

μ�μ�′ T�+�′φα .

Thus, we obtain a non-negative Fourier transform F( f��,μ)(x) ≥ 0 for all x ∈ R
n if

the following inequality holds, for all � ∈ �� and all x ∈ R
n :

(T�φα�ψ π2

4σ2
)(x) ≥ CL,σ T�φα(x) . (2.35)

Since we are assuming that L∨ is a critical lattice in R
n , we have as in (2.21)

CL,σ ≤ e− n
2

π
4σe |L∨|1/2n

.
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Then for α and σ in the range (2.29), we obtain from Lemma 2.6 that (2.35) is verified.
��

2.5 Lattice Solutions

The Cohn–Elkies functions constructed above are associated to a lattice L ⊂ R
n with

the property that its dual L∨ is a critical lattice, namely one whose sphere packing
density ismaximal among lattices. TheVoronoi algorithmprovides away to enumerate
all these locally optimal solutions of the lattice-packing problem, by describing the
space of lattices up to isometry in terms of positive definite quadratic forms and the
identifying the local maxima of the density function with the vertices of the Ryshkov
polyhedron [17]. In general these local maxima will not be actual solutions of the
sphere packing problem, as the actual solution may not be achievable by a lattice. In
terms ofCohn–Elkies functions, the property that the critical lattice L∨ is also an actual
solution of the sphere packing problem is reflected in whether the additional property
(1.4) can also be satisfied, as this provides a sufficient condition for the optimality of
the lattice for the sphere packing problem (see Lemma 1.5).

In the case of the Cohn–Elkies functions of Theorem 2.8, this optimality condition
can be described more explicitly as follows.

Proposition 2.9 Setting

ϒα,F ,μ := 1 + 4
∑
�∈F

μ�e−α‖�‖2 + 4
∑

�,�′∈F
μ�μ�′e−α‖�+�′‖2 (2.36)

we obtain that the condition

f��,μ(0) = 1

|L∨| (F f��,μ)(0) (2.37)

is given by

ϒα
2 ,��,μ ·

(
(1 − e

−σ�2
L∨
2σ )

( π

2α

)n/2 + 1

|L∨|e
−σ�2

L∨
2σ

)

= ϒ 4σ2α

α+4σ2
,��,μ

· 1

|L∨| ·
(

4σ 2

α + 4σ 2

)n/2

.

(2.38)

Proof We have

f��,μ(0) = 〈T��,μγ, φα〉 · h�(0) = 〈T��,μγ, φα〉 (1 − e
−σ�2

L∨
2σ )

= (1 − e
−σ�2

L∨
2σ )| det(Ct B)|

(
〈γ, φα〉 + 2

∑
�∈F

μ�〈T�γ, φα〉
)
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= (1 − e
−σ�2

L∨
2σ )| det(Ct B)|

⎛
⎝〈φα, φα〉 + 4

∑
�∈��

μ�〈T�φα, φα〉

+4
∑

�,�′∈��

μ�μ�′ 〈T�+�′φα, φα〉
⎞
⎠ .

Writing e−(α‖x‖2+α‖x−�‖2) = e−α‖�‖2/2 e−2α‖x− �
2 ‖2 we get

f��,μ(0) = (1 − e
−σ�2

L∨
2σ )| det(Ct B)|

( π

2α

)n/2

⎛
⎝1 + 4

∑
�∈��

μ�e− α
2 ‖�‖2

+4
∑

�,�′∈��

μ�μ�′e− α
2 ‖�+�′‖2

⎞
⎠ .

On the other hand we have

(F f��,μ)(0) = | det(Ct B)|
⎛
⎝〈φα,ψ π2

4σ2
〉 + 4

∑
�∈��

μ�〈T�φα, ψ π2

4σ2
〉

+4
∑

�,�′∈��

μ�μ�′ 〈T�+�′φα,ψ π2

4σ2
〉
⎞
⎠

−| det(Ct B)| e
−σ�2

L∨
2σ

⎛
⎝1 + 4

∑
�∈��

μ�e− α
2 ‖�‖2

+4
∑

�,�′∈��

μ�μ�′e− α
2 ‖�+�′‖2

⎞
⎠ .

We have

(
4σ 2

π

)n/2 ∫
R

n
e−α‖x−�‖2e−4σ 2‖x‖2dx =

(
4σ 2

α + 4σ 2

)n/2

e
− 4σ2α

α+4σ2
‖�‖2

,

hence we obtain

(F f��,μ)(0) = | det(Ct B)|
(

4σ 2

α + 4σ 2

)n/2
⎛
⎝1 + 4

∑
�∈��

μ�e
− 4σ2α

α+4σ2
‖�‖2

+4
∑

�,�′∈��

μ�μ�′e
− 4σ2α

α+4σ2
‖�+�′‖2

⎞
⎠
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−| det(Ct B)| e
−σ�2

L∨
2σ

⎛
⎝1 + 4

∑
�∈��

μ�e− α
2 ‖�‖2

+4
∑

�,�′∈��

μ�μ�′e− α
2 ‖�+�′‖2

⎞
⎠ .

Thus, using (2.36) we can write (2.37) in the form (2.38), where

|L∨|−1 = |L| = | det(C)|.

��
Note that, while we always have the vanishing at lattice points of the function

〈γ, πzφ〉 by the Wexel–Raz duality, in general we do not have the vanishing of the
〈π�γ, πzφ〉, hence of f��,μ. This vanishing occurs in the case when this is a special
Cohn–Elkies function (by Corollary 1.6) that is, when the identity of Proposition 2.9
holds.

3 From Lattices to Periodic Sets

The construction presented above uses essentially the fact that the sphere packing con-
sidered is a lattice sphere packing. Since one expects that only in very few dimensions
the optimal sphere packing will be realized by a lattice, one would like to extend this
method of construction of Cohn–Elkies functions adapted to lattices to the case of
periodic sets, which are known to approximate the maximal density in any dimen-
sion. The Zassenhaus conjecture predicts that in every dimension the maximal density
sphere packing can be realized by a periodic packing.

Definition 3.1 A periodic set � in R
n is a set for which there exist a finite collection

{a1, . . . , aN } of vectors ai ∈ R
n and a lattice L ⊂ R

n such that

� =
N⋃

i=1

ai + L . (3.1)

The lattice L can be taken to be the maximal period lattice for�. The size of a periodic
set is the minimal number N of translations such that the set can be represented in
the form (3.1). A periodic set � ⊂ R

n of size N is critical if it is a maximizer of the
sphere packing density in R

n among all periodic packings of size at most N .

The center density of a sphere packing with sphere centers places at the points of
a periodic set � is given by

δ� = N �n
�

2n|L| , (3.2)
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with the minimal length �� , which is given by

�� = min{‖� + ai − a j‖ | � ∈ L, i, j = 1, . . . , N } .

Definition 3.2 A periodic set � ⊂ R
n of size N is critical if it is a maximizer of the

sphere packing density δ� of (3.2) in R
n , among all the periodic packings of size at

most N , with fixed ratio N/|L|, that is, if it maximizes �� among all periodic sets of
size at most N .

Gabor frames G(φ,�) where � is not a lattice have been considered in signal
analysis, though a lot less is known about them than in the lattice case. For Gabor
frames with irregular and semi-regular � ⊂ R

2 see for instance [3, 5, 13].
Here we need to consider a special type of irregular Gabor frames, namely semireg-

ular frames with � = � × K ⊂ R
2n where � ⊂ R

n is a periodic set and K ⊂ R
n is

a lattice, and with a Gaussian window function.

Definition 3.3 A Gabor multisystem G(φ1, . . . , φN ,�1, . . . , �N ) is defined as the
union of the Gabor systems

G(φ1, . . . , φN ,�1, . . . , �N ) :=
N⋃

i=1

G(φi ,�i ) .

A multi-window Gabor system is a multisystem of the form
G(φ1, . . . , φN ,�1, . . . , �N ) where �i = � for all i = 1, . . . , N . We write G(φ,�)

in this case.

Remark 3.4 Note that theGabor systemG(φ,�)with� = �×K for� = ∪N
i=1ai +L

is the same as the multi-window system given by the union of the G(φi ,�i ) where
φi = πai φ and with �i = L × K for all i = 1, . . . , N .

Remark 3.5 Theorem 5.1 of [4] shows that a necessary condition for completeness of
the Gabor multi-window system G(φ, L × K ), with φi = πai φ and φ a Gaussian,
is the condition that det(A) × det(B) < N , where L = AZ

n and K = BZ
n for

A, B ∈ GLn(R) and with N the number of translations of the periodic set �.

In the case of a periodic set (3.1) we define

�∨ :=
N⋃

i=1

ai + L∨ , (3.3)

where L∨ is the dual lattice of L and the {ai }N
i=1 are the same translations as in �. We

then set

Corr(φ2σ ,�∨) := max
�,�′∈�∨,� 
=�′ |〈πi�φ2σ , πi�′φ2σ 〉| , (3.4)
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which directly generalizes (2.18) for lattices. We also define as before

C�,σ :=
(
4σ

π

)n/2

Corr(φ2σ ,�∨
2σ ) , (3.5)

with �∨
2σ := (�∨)2σ = π

2σ �∨.

Proposition 3.6 Let � ⊂ R
n be a periodic set of size N with �∨ critical, and let

K ⊂ R
n be a lattice such that the G(φ j,α, L × K ) for j = 1, . . . , N are Gabor

frames. Then a Cohn–Elkies functions in dimension n with size ��∨ is given by f��,μ =∑N
j=1 f j,��,μ, with

f j,��,μ(x) := 〈T��,μγ j , πi xφ j,α〉 · h�(x) ,

h�(x) = φ π2

4σ2
(x) − C�,σ ,

with α, σ in the range (2.29).

Proof In general a multi-window Gabor system G(φ, L × K ), with � ⊂ R
2n a lattice,

satisfies the frame condition if there are constants C, C ′ > 0 such that for all f ∈
L2(Rn)

C‖ f ‖2L2(Rn)
≤

N∑
j=1

∑
λ∈L×K

|〈 f , πλπa j φ〉|2 ≤ C ′‖ f ‖2L2(Rn)
.

Thus, if the individual Gabor systems G(φ j , L × K ) satisfy the Gabor frame condition
then the multi-window system also does.

Since only the translations part � ⊂ R
n is a periodic set, while the modulation

part K ⊂ R
n is an actual lattice, we have that the functions of the multi-window

φ j = πa j φ = Ta j φ are translates of the Gaussian φ along the translations a j of the
periodic set � = ∪ j a j + L .

Given the periodic set � ⊂ R
n , suppose that the lattice K ⊂ R

n is chosen so
that the condition of Remark 3.5 holds and the Gabor systems G(φ j,α, L × K ), with
φ j,α = Ta j φα and φα a Gaussian are Gabor frames for all i = 1, . . . , N .

Then proceeding as in Proposition 2.1, with � >> ‖a j‖ for all i = 1, . . . , N , we
obtain approximateWexel–Raz duals γ j for eachG(φ j,α, L×K ). Note that the sets��

and the multiplicity function μ : �� → N are unchanged, and we have approximate
Wexel–Raz duals for the Gabor systems G(φ j,α, L × K ) of the form

γ j = | det(At B)| (φ j,α + 2
∑
�∈��

μ�T�φ j,α) = | det(At B)| T��,μφ j,α .

As in (2.22) we have

|〈πi�φ2σ , πi�′φ2σ 〉| =
( π

4σ

)n/2
e− π2

4σ ‖�−�′‖2 , (3.6)
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hence we obtain

C�,σ = max
�,�′∈�∨,� 
=�′ e− π2

4σ ‖�−�′‖2 = e− π2
4σ �2

�∨ . (3.7)

We can assume without loss of generality that the lattices L × K we consider all
have L ⊂ R

n with |L| = 1, with conditions such as Remark 3.5 for the Gabor frames
property formulated as conditions on the choice of the auxiliary lattice K ⊂ R

n .
Assuming that the periodic set �∨ is critical, we have

�2�∨ ≥ γn ≥ n

2πe
,

since �∨ maximizes density among all packings by periodic sets of size at most N ,
hence its density is not worse than the optimal density among lattices. We use the
same lower bound for the Hermite constant γn as in Corollary 2.5. Thus, we obtain

C�,σ ≤ e−n π
8σe , (3.8)

as in (2.21). We can then use the same estimates of Lemma 2.6 and Remark 2.7 (with
|L| = |L∨| = 1).

Lemma 2.6 holds for each g j,α = T�φ j,α , hence the same argument used in
Theorem 2.8 shows that the functions

f j,��,μ(x) := 〈T��,μγ j , πi xφ j,α〉 · h�(x) ,

with

h�(x) = φ π2

4σ2
(x) − C�,σ ,

with the parameters α, σ in the same range as in Theorem 2.8, are Cohen-Elkies
functions in dimension n with size ��∨ , as in Definition 1.1, hence so is their sum
f��,μ = ∑N

j=1 f j,��,μ. ��
We showed in this section that our construction of Cohn–Elkies functions in arbi-

trary dimension extends from the case of Gabor frames based on lattices to the case of
periodic sets. In all cases we use a window function that is a multidimensional Gaus-
sian. It is possible that a similar construction may extend to other classes of window
functions: for example, a natural generalization of the Gaussian case would be win-
dows obtained from multidimensional Hermite functions. Our argument depends on
the Gaussian shape of the window function in two ways: first in the relation between
correlation and length, used in (1.22) in Lemma 1.19 and in (2.17) in Lemma 2.4, and
then in the fundamental estimate of Lemma 2.6, where the Fourier transform prop-
erties of Gaussians play a crucial role. Thus, the present argument does not directly
extend to non-Gaussian windows, though this does not exclude that a modification
of the argument will lead to a more general construction for other classes of Gabor
windows.
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