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Abstract

We investigate the relation between two different mathematical problems: the con-
struction of bounds on sphere packing density using Cohn—Elkies functions and the
construction of Gabor frames for signal analysis. In particular, we present a gen-
eral construction of Cohn—FElkies functions in arbitrary dimension, obtained from an
approximate Wexel-Raz dual for Gabor frames with Gaussian window.

1 Introduction

In this paper we compare two seemingly different mathematical problems, showing
that they share a deep connection: the construction of bounds on the density of sphere
packings in Euclidean spaces, and the construction of Gabor frames for signal analysis.

The best currently available construction of bounds on the density of sphere pack-
ings is provided by the method introduced in [7], based on the construction of (radial)
functions that vanish at the points of the lattice (or periodic set) with specific decay
conditions and sign conditions on the function and its Fourier transform. We refer
to such functions as Cohn—Elkies functions. This method was especially successful
in Viazovska’s explicit construction, using modular forms, of one such Cohn—Elkies
function proving the optimality of the Eg lattice for the sphere packing problem in
dimension 8, see [19]. This construction was then adapted in [9] to prove the opti-
mality of the Leech lattice in dimension 24. Despite these remarkable achievements,
in general explicit geometric constructions of Cohn-Elkies functions remain elusive,
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through a numerical approximation algorithm using linear programming is described
in [7].

On the other hand, Gabor frames provide systems of filters for signal analysis that
have good encoding and decoding properties, though they do not consist of orthogo-
nal bases [11]. A Gabor system is typically constructed by applying translation and
modulation operators parameterized by the points of a lattice (or more general sets
including periodic sets) to a window function with nice properties (for instance a
Gaussian). The main question then is whether a Gabor system constructed in this
way satisfies the frame condition (hence has good properties for signal analysis). This
property depends crucially on the lattice. A good way of analyzing Gabor frames and
properties equivalent to the frame condition is through Wexel-Raz duality [12]. This
leads to a characterization of the frame condition for a Gabor system in R" in terms
of an entire function in C” that vanishes at points of the lattice and is related to the
Bargmann transform of the Wexel-Raz dual window function.

These two problems share the underlying question of the construction of a function
vanishing at points of a lattice, with assigned properties in terms of the closely related
Fourier and Bargmann (or short-time Fourier) transform. In the case of Cohn—FElkies
functions one usually assumes that the function is radial, hence vanishing on spheres
containing lattice points, while in the Gabor frame problem one typically deals with
functions vanishing on hyperplanes containing lattice points, in the sense of the general
construction of [16]. In fact, as remarked in [7], the radial hypothesis in the Cohn—
Elkies case is not necessary, and we will consider more general such functions.

There is another important direct relation between these two questions. A special
class of Gabor frames, called Grassmannian frames [18], have the property that they
minimize (over lattices) the maximal correlation between the functions in the Gabor
system. These are frames that most closely resemble the properties of orthogonal
frames. It turns out that the optimization problem for the construction of Grassmannian
frames is the same as the optimization problem for lattices achieving maximal sphere
packing density.

Given these relations between the two questions, it is natural to ask whether one can
use techniques from Gabor frame analysis to provide a different geometric approach
to the construction of Cohn—Elkies functions. In this paper we show that this is indeed
the case and that Wexel-Raz duality for Gabor frames provides a new approach to the
construction of Cohn-Elkies functions.

It is important to notice here the role of lattices. In the context of the sphere packing
density problem, it is expected that lattice solutions will be only a low-dimensional
feature, with the maximal density achievable by lattices diverging from the maxi-
mal sphere packing density in higher-dimensions. The known cases of dimensions
1,2, 3, 8, 24 are the only dimensions where an explicit lattice solution is known, and
may be the only ones. Thus, focusing on the possibility of lattice solutions is clearly
very restrictive. A conjecture of Zassenhaus expects the maximal density in any dimen-
sion to be attainable by periodic packings, that is, sphere packings with sphere centers
on periodic sets (unions of translates of lattices). It is known that periodic packings can
approximate arbitrarily well the greatest packing density. After discussing the case of
lattices, we show in the last section of this paper how to adapt the construction to the
case of periodic sets.
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The construction of Cohn-Elkies functions that we discuss in this paper uses a
lattice L C R" (whose dual LV is the lattice whose density one wants to probe),
together with a choice of an auxiliary lattice K C R” chosen so that A = L x K
gives a Gabor frame for a Gaussian window. It is in general difficult to obtain explicit
constructions of Wexel-Raz dual windows for Gabor frames. Indeed, even for the case
of a Gaussian window, we need to use an approximate dual. It is interesting to notice
that in both the problem of constructing Cohn—Elkies functions and the problem of
constructing Wexel-Raz dual windows, cases where direct explicit constructions are
known involve the use of modular forms: in dimension 8 and 24 for the Cohn—Elkies
problem [9, 19], and for the Wexel-Raz duality in dimension one (that is, for lattices
in R?), where the canonical dual window is expressible explicitly in terms of lattice
theta functions [15].

In the rest of this introductory section we present these two problems in more detail,
and we recall the background material that we need for our main construction, which
we present in the following section.

1.1 Cohn-Elkies Functions

In [7], Cohn and Elkies obtained a bound on the density of sphere packings in terms
of radial functions with assigned decay and sign properties of the function and its
Fourier transform. The same concept was independently introduced in [10]. Via-
zovska’s explicit modular forms construction [19] of such a function famously solved
the sphere packing problem in dimension 8, and a generalization of the same method
also gave a solution in dimension 24 [9].

Definition 1.1 A Cohn-Elkies function of dimension n € N and of size £ € RY is a
real-valued Schwartz function f (x) with real valued Fourier transform (§ /) (&), such
that

(1) f(x) = 0forall |x|| = ¢
(2 Ff)E) = 0forall§ € R";
3) )0 >0.

Note that condition (F f)(§) > 0, with (§ f) not identically zero, implies f(0) > 0.

Remark 1.2 In [7] the Cohn-Elkies functions are assumed to be real-valued radial
functions, f(x) = fo(llx|), for all x € R", with fy € L2([0, c0), r"~dr) satisfying
arapid decay condition. In this case the Fourier transform is automatically real-valued
and radial, by the description of Fourier transform of radial functions as Hankel trans-
form. Also in [7] a more general decay condition is assumed for the Cohn—Elkies
functions, weaker than the Schwartz condition we consider here, which suffices for
the use of the Poisson summation formula. In fact, the condition was further general-
ized in [8]. Here we consider the more restrictive class of Schwartz functions, as in
[19], but one can replace this hypothesis with decay conditions as in [7] or [8].

A sphere packing P based on a lattice L C R” is a packing of spheres S"~!
centered at the lattice points, with sphere diameters equal to the length £; of the
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shortest lattice vector. The density Ap of a sphere packing P is the fraction of volume
occupied by spheres, hence in the case of a lattice packing it is given by the ratio

_ Vol(B} (0)) <z_L>

- (1.1)

IL] 2
where |L| = Vol(R" /L) is the covolume of the lattice and

j.[n/2
2

is the volume of the unit ball in R". In the case of a periodic lattice, based on a periodic
set consisting of N translations of a lattice L, the density is similarly described, with
|L|replaced by |L|/N in(1.1). The center-densityis defined as §p = Ap /Vol(B] (0)).
Thus, for a sphere packing P based on a lattice L C R”, the center-density is given

by
EL"l
o = | — — 1.2
t <2) L] e

with £, the shortest length of L.
Theorem 3.2 of [7] shows that the existence of a Cohn-Elkies function of dimension
n € N and size £ € R’ gives a bound on the center-density ép

o F0)
I} — —_ 1.3
7’5(2> GHO (13

for any arbitrary sphere packing P in R".

Remark 1.3 Note that in the sphere packing problem, the lattice covolume |L| is
fixed and can be taken |L| = 1. Here we leave |L| written explicitly to highlight
the dependence of the construction on |L|. The reader should assume that it has a fixed
value.

Definition 1.4 Let L C R” be a lattice with shortest length £;. A Cohn—Elkies func-
tion of dimension n € N and size £, is special if in addition to the properties of
Definition 1.1 it also satisfies

R
L~ GHO

(1.4)

Lemma 1.5 Given a lattice L C R", suppose there is an associated special Cohn—
Elkies function of dimension n € N and size {1, with £, the shortest length of L. Then
the lattice L realizes the maximal density for sphere packings in R".

Proof As in [7], from the Poisson summation formula
1 o
D= 3 e @),

reL IL] AMeLY



Cohn-Elkies Functions from Gabor Frames Page50f32 93

with LV the dual lattice, one obtains that

D FO) < £0)

rel

since each term with A 7 0 in the sum is non-positive, as £ is the shortest length of
L. On the other hand

1 1
— A — 0),
I A/EZLV@f)( ) > |L|(Sf)( )

as all the other terms are non-negative. Thus, we have

1
f0) - m(&f)(o) >0

which gives the estimate

1 __fO
L~ GHO)

The lattice packing is optimal if it achieves the Cohn—Elkies bound

<€L )" £

op=—=—) =——=

2] @&NHO)

determined by the Cohn—Elkies function, hence if the above inequality is optimized.
O

We also recall the following observation from [7].

Corollary 1.6 Given a lattice L C R" with shortest length £ and covolume |L|, a
special Cohn—Elkies function of dimension n € N and size €1 vanishes on all the
nonzero vectors of L and its Fourier transform vanishes on all the nonzero vectors of
the dual lattice L” .

Proof Since (1.4) holds, the Poisson summation formula gives

> fo) =~ > @HA,
}

L
reL~{0 IL] MeLV {0}

but on the left-hand-side all the terms are non-positive while on the right-hand-side
all the terms are non-negative, hence all terms vanish. O

We have formulated here Lemma 1.5 and Corollary 1.6 in the lattice case. For the
analogous formulation in the case of periodic sets see [7].
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1.2 Gabor Frames

The construction of good frames is a fundamental question in signal analysis. Unlike
orthogonal bases, frames are overdetermined and have some amount of redundancy, but
they also have important properties, such as optimization of the uncertainty principle
(localization in both position and frequency variables). The frame condition ensures
good encoding (via the frame operator) and decoding properties. In particular, we
focus here on Gabor frames, obtained by acting on a window function via translation
and modulation operators. The crucial question of when a Gabor system obtained
by translation and modulation of a window function satisfies the frame condition
is completely understood in the case of Gabor frames in L?(R) with lattices A C
RR2, while a full characterization in higher dimensions remains a more complicated
problem.

Definition 1.7 (1) Given a window function ¢ in L2(R") and a lattice A C R?", the
Gabor system G(¢p, A) = {m¢}rea consists of the collection of functions

g (x) = PN g (x — &), (1.5)

for A = (§,n) € A.
(2) The Gabor system G(¢, A) is a frame (satisfies the frame condition) if there are
constants C, C' > 0 such that, for all f € L>(R%)

Clflr2mey < Y WF mad)® < C I fll2ay - (1.6)

rEA

(3) The Gabor system G(¢, A) is a Bessel sequence if the upper inequality of (1.6)
holds,

Y Uf )P < CNfIP

reA

forall f € L2(R").
The frame operator S = Sy A associated to the Gabor system G (¢, A) is given by
Sf=Y (f.m¢)mo. (1.7)
AEA
The Gabor system G(¢, A) is a frame iff Sy A is both bounded and invertible on

L2(R") and a Bessel sequence if it is bounded.

1.3 Adjoint Lattice

The adjoint lattice plays a crucial role in the Wexel-Raz duality for Gabor frames
and in the equivalent characterization of the frame condition in terms of sampling and
interpolation of entire functions.
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Definition 1.8 Given a lattice A C R?", the adjoint lattice A is given by
A= eRY|momy =myom,, VA€ A). (1.8)

with the translation-modulation operators ) as in (1.5).

We have the following equivalent description of the adjoint lattice (see Lemma 4.3.3
of [12]).

Lemma 1.9 For A = AZ*" with A € GLy,(R), the adjoint lattice is given by
A° =J" bz (1.9)

with

0 I,
J= <_1n 0) . (1.10)

Proof This simply follows from the fact that, for A = (A1, A2) and 2" = (1], A}),

27i (A1, A5 —(A2, A1)

Ty OT) = ¢€ JT) O TTy/

where the condition 1 = ¢271{A4kJ%) with k € Z2" holdsiff (Ak, JA') = (k, A'J)N) €
Z for all k € Z*", which gives A’ € J~! (A")~1 Z2".

Note that the covolume satisfies [A| = Vol (R?*/A) = | det A|, for a lattice of the
form A = AZ*" for A € GL5,(R), and for the adjoint lattice |A°| = |A|~!.

Remark 1.10 In the case of a split lattice, namely a lattice A C R*" of the form
A = L x Lo, with L1, L lattices in R", the adjoint lattice is of the form

A’ =Ly xLy, (1.11)

where LiV are the dual lattices of the L; in R”.

1.4 Wexel-Raz Duality for Gabor Frames

The frame condition for a Gabor system G(¢, A) can be characterized in terms of a
duality relation, namely the existence of a dual window function y with the property
that the Gabor systems G(¢, A) and G(y, A) are mutually orthogonal (Wexel-Raz
biorthogonality relation).

Definition 1.11 For a Gabor system G(¢, A) in L>(R") that is a Bessel sequence,
a Wexel-Raz dual window y is a window function that satisfies the reconstruction
identity

f=) (fmd)my. (1.12)

reA
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Dual windows are not unique. In particular, the canonical dual window is the one
obtained from the frame operator (1.7) by yp A = Sd;lAd). In this case, while the frame
operator (1.7) provides the encoding

Spn: f o D (fmd) mad, (1.13)

rEA

the canonical Wexel-Raz dual provides the corresponding decoding operator

Syl f > ) (e n) TaVsa -
AEA

Dual windows can be characterized in terms of a vanishing property of their short-
time Fourier transform on the adjoint lattice.

Definition 1.12 For a window function ¢ € L%(R") the short-time Fourier transform
of a function f € L?(R") is given by

Vo) i= [ F0d6 -0 = (fomp), 1

forw = (u, v) € R,

The short-time Fourier transform satisfies

Vg (T ) (2) = 27Ty, £(2)

with J as in (1.10), and

(Vo f s Vyh) p2qen = (s h) L2y (@5 V) L2 meny -

27i (A, J -z

The phase factor e ) satisfies,

I — Vi e A & zeA°. (1.15)

We then have the following characterization of Wexel-Raz dual windows, see
Theorem 4.4.1 of [12].

Lemma 1.13 For a Gabor system G(¢, A) in L2(R") that is a Bessel sequence, a
Wexel-Raz dual window y is a window function that satisfies

1
m(% ) =8, YA € A°. (1.16)
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Proof We recall briefly the proof that (1.12) implies (1.16), and we refer the reader to
[12] for a more detailed account. One first shows that if for two window functions ¢
and y in L?(R") both Gabor systems G(¢, A) and G(y, A) are Bessel sequences and

D WVey ()l < oo,

NEA®
then the Poisson summation formula gives

1 o
A > Vey (VR )

MeA°

Y Ve f@+nVyhz+h) =
reA

for all z € R?" and for any f,h € L2(R"), see Theorem 4.3.2 of [12]. For a dual
window y one then writes

(fohy =) (alfomlmy, wih) =Y Vo f @+ Vyh(z+2)

reA rEA

where the latter must be a constant function of 7 € R?" hence with Fourier coefficients

1 [
WV(;;)/()»/)th()»/) =(f, w0,

see Theorem 4.4.1 of [12]. Thus, dual windows that satisfy (1.12) also satisfy the
relation (1.16). O

The Gabor frame condition can then be equivalently formulated in terms of Wexel—
Raz duality as follows (see Theorem 4.4.1 of [12]).

Proposition 1.14 For a Gabor system G(¢, A) in L*>(R") the following properties are
equivalent:

(1) G(¢, A) is a frame;
(2) G(¢, A°) is a Bessel sequence and there is a Wexel-Raz dual window yg n €
L>(R™) (satisfying (1.16)) such that G(¥p,n, N) is also a Bessel sequence.

Thus, the problem of verifying the frame condition for Gabor systems is equivalently
rephrased as the problem of constructing Wexel-Raz dual windows satisfying the
interpolating condition (1.16) on the adjoint lattice.

1.5 Grassmannian Gabor Frames and Sphere Packings

In [18] a special class of frames is introduced that have the property of minimizing
correlation. Namely, frames {4 }qcz such that the maximal correlation [{¥y, ¥g)]
over all @ # B € T is as small as possible for a fixed redundancy. Such frames are
called Grassmannian frames (see Definition 1.18 below).
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This question can be seen as follows; an orthonormal frame has no redundancy and
the basis elements are completely uncorrelated. Frames in general have redundancy
and for a fixed amount of redundancy this minimization problem is addressing the
question of how closely such a frame can resemble an orthonormal frame, in the sense
of having as little correlation as possible among the basis elements.

Remark 1.15 In a finite dimensional Hilbert space of dimension n, a generating set
{ fk},](\’:1 has redundancy p = N/n. In this finite dimensional case, the problem of
constructing Grassmannian frames is shown in [18] to be equivalent to the problem of
finding an arrangement of N lines with largest possible angles between them. This is
in turn equivalent to constructing a spherical code with fixed number N of points and
with largest possible minimal angle ¢.

The notion of redundancy can be extended to the infinite dimensional case in such
a way that it agrees with the simple expression p = N /n in finite dimensions, as in
Remark 1.15.

Definition 1.16 Let {zx }1cy be a fixed choice of points in R?" and let By (zx) = {x €
R™ | lz — zx |l < k}. Given a lattice A C R?", let Ay = A N By (zx). The redundancy
of G(¢, A) is defined as

—1

P, A) = | lim ——— B (m¢. Sy hme) | (1.17)

One defines pi(qb, A) as the limsup/liminf when the limit (1.17) does not exist.

It is shown in [1] that the redundancy p(¢, A) of a Gabor frame is equal to its
“density of label sets" D (¢, A), which is defined as

. H#A
D(¢, A) ;== lim

k=00 (2k)2n (1.18)

The definition of redundancy recalled above applies to sets A C R that are not
necessarily lattices. In the case of lattices the notion simplifies.

Remark 1.17 With all the z,, = 0 we have the lattice covolume

#ANB(0) 1
koo Vol(B(0)) Al

so that the redundancy is simply given by

Vol(B1(0))

D, ) =~

’

where for the unit ball B;(0) C R?" we have Vol (B1(0)) = 7;—7 Thus, considering
Gabor frames G(¢, A) with fixed redundancy p(¢, A) = p corresponds to considering



Cohn-Elkies Functions from Gabor Frames Page 11 of 32 93

lattices A with fixed covolume. The Gabor frame condition implies that the density
D(¢, A) > 1 so we can assume a fixed covolume |A| < 1.

Definition 1.18 For a fixed window function ¢ € L?(R"), a Gabor frame G (¢, A) for
alattice A C R?" is a Grassmannian frame if it minimizes the maximal correlation

Corr(¢, A) = AJR"E{{O} (¢, T30}, (1.19)

with the minimization taken over lattices A with fixed redundancy (fixed covolume).

The relation between the problem of Grassmannian Gabor frames and the problem
of lattice optimizers for the sphere packing problem can then be formulated in the
following way.

Lemma 1.19 When the window ¢y (x) = eI s g Gaussian, for a lattice A C R*"
let Ay denote the lattice

Ay = {(xl,gxz) eRZ"u:(M,M)eA]. (1.20)

For» = (A1, A2) € A, wewrite Ly for the corresponding point Ay = (A1, %kz) € Agy.
Searching for a lattice optimizer

A,p; = arg min max , T = arg min Corr(¢, A
opr = arg min max (6. 7:6)| = arg min Corr(. A)

is equivalent to searching for a lattice optimizer

Aypr = arg max min ||Ay|| = arg max £
opt g N )LeA\{O}” all g N Ay >

maximizing the shortest length £ 5, for fixed covolume of A, hence for an optimizer of
the sphere packing density.

Proof We can write explicitly the correlation as

2 2 :
u et = [ el Pemetbeoal nive g

n

—2yyu? — — 2 ix- —2Nul?® wiu- — 2 ix-
—e 5 Nl / e 20| x—u/2|| e27rlx Vdy = e 5 lull emuv/ e 20| x]| eme Uy
n Rn

_ iy g= % ul? (21)”/2 Al (1.21)
o

forz =u +iv € C", so that we have

2
1)"/2 o~ S U+ 23 o))

(o mede)| = (5

(1.22)
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We then have

T\"/2 & R
(o i) = (=) e E V.
2a

Thus, the correlation |(¢q, 75¢ )| monotonically decreases as || Ay || increases. Thus,
the maximum is achieved on the set of shortest vectors in A,. Then optimizing the
lattice A by making the shortest length in A, as large as possible corresponds to
optimizing A by making the largest correlation |{¢q, )¢y )| Over the shortest length
vectors as small as possible. O

2 Cohn-Elkies Functions from Wexel-Raz Duality

Using an approximate construction of a Wexel-Raz dual window for a Gabor system
with split lattice and Gaussian window, we obtain a general construction of Cohn—
Elkies functions associated to critical lattices in R”.

2.1 Approximation of Wexel-Raz Dual

We show that, given a Gaussian window function ¢, (x) = eI ”2, such that G(¢y, A)
is a Gabor frame, there is a (non-canonical) dual window y that is well approximated
by a superposition of shifted copies of ¢y, .

We first recall briefly an argument given in Theorems 1 and 2 of [6], which our
statement in Proposition 2.1 below generalizes.

For a matrix C € GL,(R) and a function f € L*(R") the dilation of f by C is
defined as

(Dc f)(x) == |det(C)|"/? f(Cx). @2.1)

Let ¢ be a compactly supported real-valued function in R”, with supp(¢) < [0, N]"
for some N € N, that satisfies the partition of unity condition

Y px—k =1, VxeR". (2.2)

kez"

By Theorems 1 and 2 of [6], if the matrices C, B € GL,(R) satisfy

1
C'B| < —, 2.3
IC'BI <~ 2.3)
then there is a finite subset 7 C Z" and a function
y(x) = | det(C'B)| <¢(X)+22¢(X+k)) , 2.4)
keF
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such that the dilated functions D--1¢ and D1y generate dual Gabor frames
G(Dc-1¢,A) and G(Dco-1y, A).

This result shows that y is a dual window for G(¢, A) by showing that the
biorthogonality relation

1
(y, mnp) = mfsx,o , VA e A’

can be equivalently stated as the property that

Z ¢d(x — (BY 'n— Ck)y(x — Ck) = | det(B)| 8,.0. (2.5)
keZ

Then the key properties needed to show that this relation holds are the partition of
unity relation (2.2) and the identity

2
1
1= <Z¢(x+n)> = m;¢(x+n)y(x+n)

nel’ el
=) pr+m)Px+n+2) dpx+n+0). (2.6)
nel LeF

where I' = [0, N — 1]* N Z". For the vanishing cases of (2.5), one uses the fact
that for | B|| < (/n(2N — 1))~! the vanishing of (2.5) for n # 0 is guaranteed by
non-overlapping supports.

The following statement adapts and generalizes this argument.

Proposition 2.1 Ler A C R>* be a lattice of the form A = L x K with lattices
L,K C R", where L = CZ" and K = BZ" for some C, B € GL,(R). Let I'q :=
7" N [—2, Q" Let ¢u(x) = ef"‘”x”2 be a Gaussian window function, such that
G(¢py, M) is a Gabor frame. For Q > 0 let xq be the characteristic function of the set
[—2, Q" and let ¢po.0(x) := xQ(x) ¢ (x). There exists a function

w:To—=> N with pu_p = ug 2.7

with the property that, if the matrices B, C satisfy

1
t -
IC'B| < oa=D (2.8)

then the function

va(x) i=[det(C'B)| | ¢o.0(x) +2 Z e da,@(x +£) (2.9
lelq
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is a dual frame for G(¢pq @, A). Moreover, for any € > 0 and an Q > 0 such that
SUp g — Pa,@l < € and

2 00-1)?

2ne” < €,

if (2.8) holds, then the function

y(x) :=|det(C'B)| | ¢o(¥) +2 D e dpu(x +0) (2.10)
lellg

satisfies the Wexel-Raz duality for G(¢y, ) up to an overall error of size the maximum
between € and

|det(C"B)|[(1+2) " po)e .

Proof We need to adapt the argument of [6] recalled above in two ways: first to window
functions supported in a set [—€2, Q]" and then further extend it from a truncated
Gaussian that is compactly supported to an actual Gaussian.

We consider a window function that is compactly supported inside [—£2, 2]". We
want to show that, in this case, the domain F that satisfies (2.6) can be taken to be
symmetric F = F. To this purpose, it suffices to generalize the case of Theorem 1 of
[6], with C = 1, since the general case is then obtained as in Theorem 2 of [6]. We
assume that ¢ is a compactly supported window function with supp(¢) C [—£2, R2]7,
which satisfies the partition of unity condition (2.2). As described above, we want
to construct a dual window y that satisfies the Wexel-Raz duality expressed in the
form (2.5) (with C = 1). Let I'q = [—R, Q)" N Z", and let N := #I'q. Let
I'q >~ {n1,...,nny} be a choice of an enumeration (ordering) of the set I'g. As in
(2.6), we write

2

=Y ¢Gc+n| =@&+n)+-

nelg
+o(x +nng) - (p(x +n)+ -+ d(x +nng)
=¢(x+n)(@x+n)+2¢(x +n2)+---+2¢(x +nng)
+o(x +n2)(P(x +n2) +2¢(x +n3) + -+ 2¢(x + nyg) + - -
+o(x +nng)p(x +nng) .

To obtain (2.6), we want to rewrite this as

1

Nq
1= mmen,-)-yn,-(x),

j=l1
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where, as in [6],
n
Y () = |detB)| | p(x +m)+2) " Y p(x+k) | .
i=1 keE"
where the sets E}" have the property that
UE" ={m' eTq|m' > m)

in the chosen ordering I'q >~ {n1, ..., nyng}.
In [6] the lexicographic ordering is used on the positive quadrant [0, 2]7, with

{m’>m}=U,~{m’>m},~::Ui{m’lm;>m,~andm/j=mjfori+1§j§n},
so that one has EI" = {m’ > m}; with
0<kj<Q j=1....i-1
E;n: keZ' |\ m; <ki<Qj=i
kamj j=i+1,...,n

Moreover, one then writes

dopth =) ox+k+m),

keE™ keF;
where
kjl<Q j=1,...,i—-1
Fi=3keZ"| 1<k <Qj=i
kj =0 j=i+1,...,n
Lete = (€1, ..., €,) € {£}" be a sequence of n signs. In [—2, 2]" let Q. denote

the quadrant where each coordinate k; has sign €;. We write Q4 = [0, 2]" for the
positive quadrant where all the €; = 4. We denote by Y, : O+ — Q. the bijection
Ye(k) = €k := (€ik;)}_;. We have I'q = U I'g,, where I', = I'g N Q.. We identify
points of I'q with pairs (m, €) withm € F;g =TqN Q4. Weorder the set {¢} = {£}"
lexicographically, with — < 4, and we order I'g N Q4 lexicographically as in [6], so
that we have in '

m,e

{(m',€") > (m,e)} =Ug i{(m',€') |e > eore’ =ecandm’ > m} = UiEi ,

where we have

EM€ = Ugo TG UEM™ with EMC =Y (EM).

1
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We can then again identify the sums
Yo px+b =) ¢Gx+k+m),
keE"* keFf
where

«7":1'6 = Ue’>er§2 UYe(F).

Since there are overlaps between the sets ]j"f, the points have finite non-negative

integer multiplicities if we view the .7:"f as subsets of I'q, or we count all points with
multiplicity one, and consider the disjoint unions

Ff = U TG U Yo (Fh) .
Note that the set
Fi=Ue,; Ff
is invariant under the symmetry € <> —e. Thus, the corresponding set
Ue,iﬁf

consists of I'g with the appropriate multiplicites assigned to each of the points, and
these multiplicites are invariant with respect to the symmetry k +— —k. We can then
write points of this set as (k, ug) with k € ' and uy € N the resulting multiplicity,
namely the cardinality

[ = #15 (k) 2.11)

of the fiber under the projection

Mo : F=uU;F - U Ff =Tq,

satisfying p_; = pux. The assignment (2.11) determines a function u : 'q — N as
in (2.7) with the desired properties. Indeed, we obtain the identity

2
1

1= Z¢(x+n) =m

nelq

Z¢>(X+k+n)y(x+n),

keZ

where

y () =|detB) [ p(x) +2 Y pmp(x +m)

melg
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This shows that we can obtain in this way a Wexel-Raz dual window for G(¢y.q, A),
with the truncated Gaussian window ¢4 @, given by (2.9).

We then need to further extend this result to the case of the Gaussian window ¢y, .
While Gaussians are not compactly supported and do not satisfy the partition of unity
property, they can be well approximated by functions that satisfy both, with arbitrarily
small error. In particular, for a one-dimensional Gaussian of the form

a1/2
u() = A - (—) s
T

with A > 0, the partition of unity relation (2.2) holds up to an error term (see [2])

22

2wt =
> u(t —kA) =1+ 2cos <T)e aa? (2.12)

keZ

The error terms add in the case of a multidimensional Gaussian. The approximation
(2.10) is then obtained by applying (2.9) to a truncation D¢ xq - ¢o, Where xg is the
characteristic function of a set [—2, Q]". Thus, for the Gaussian ¢, we have an error
term on the partition of unity

n2
11— Z b (x + C'Bk)| < 2ne «IC'BI
kez"

Under the assumption that

C'B| < —,
181 <~

this error in the partition of unity relation is bounded by

2
dne~an@2=1?*

Thus, for a given € > 0 we can choose an 2 > 0 such that both

sup [Py — da,@l < €,

2
I n(2Q—1)2

and the error in the partition of unity relation is 2ne™ < €, so that the

window function
y(x) := | det(C'B)| | ¢po(x) +2 Z Hm o (X +m)
melq

satisfies the Wexel-Raz duality up to an error term of size at most max{¢, det(C' B) (1+

2 pwe)el. O
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Remark 2.2 Given a lattice A = L x K and Gabor frames G(¢y, A), if y is an
approximate Wexel-Raz dual window constructed as above, for a chosen error size
€ and a corresponding cutoff of size €2, we refer to the pair (e, 2) as the size of the
approximation.

2.2 Hermite Constant

As in (1.20), for a lattice A C R we denote by Ay, the lattice
Asy 1= {(M,zl/\z) e R¥ |5 = (1, 12) eA}. (2.13)
o

We also write Ag - = (A2, where A? is the adjoint lattice of A. (Note that this is
not the same as (A, )?, the adjoint lattice of Aj,.) We set

4o \"?
Cpro = <?> Corr(¢ys, A%, (2.14)

with Corr (¢ay, A°) defined as in (1.19), with a Gaussian window ¢, (x) = e~ 20 I¥I1°,
Remark 2.3 The shortest length £, of a lattice in R?" is bounded by
G < yan - AV

where y», is the Hermite constant in R2" . A lattice A is crifical if 63\ = Yo |A|1/ n
These realize the maximum lattice-packing density.

Lemma 2.4 For a lattice A C R*" such that A‘Z’U is a critical lattice we have

g,
Cro <e ETEE (2.15)
Proof Asin (1.21), we have
. n/2 72
(25, T P25 ) = 7Y e*”““\lz (%) e*EHUHZ , (2.16)

so that we have

/2 2, 72 2
l)” e o (lull™+ = llvll ). (2.17)

(620 7220 = (5

Thus, from (2.14) we obtain
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For a critical lattice we then have

Cro = e ralAg 1"

Thus, an upper bound on Cy , is obtained from a lower bound on the Hermite con-
stant y,,,. The Minkowski—Hlawka theorem [14] gives a lower bound for the Hermite

constant of the form
1/n
- 2¢(2n)
A P 0

where
1 27)* By
(@n) = ()2
2(2n)!
for n — oo, with the Bernoulli numbers satisfying | By, | ~ ((22;;'2% . This results in a

linear estimate
Y2n = .
e

O

We consider lattices A C R?" of the form A = L x K with lattices L, K C R",
where L = CZ" and K = BZ" for some C, B € GL,(R), with Ay, = L x %K In
this case we have A = (A% = K x 5oL, while (A2,)? = %"KV x LY. In
this case we set

Corr(¢ao, L") := max [{¢20, Tietao)| s (2.18)
40 \"?
CrLo = <7> Corr(¢as, L3,), (2.19)

with Ly = (LY)2 = 55 L".
Corollary 2.5 For a lattice L C R”" such that Ly_ is a critical lattice in R", we have

v (1/2n
B oLy |1/

Cro <e " e . (2.20)

If LY is a critical lattice in R", we correspondingly have

2
%‘Lv‘l/zn

CrLo <e " me . (2.21)
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Proof As in (2.17) we have

2

T \"/2 —T k2
|<¢2(r, ﬂix¢2cr>| = (E) e 4o Il s (2.22)

with

|< )| ( T )n/2 7O'Ki\/

max {2y, Tied =(— e 20

terv 2o il P |

If we assume that LZU is a critical lattice in R”, we have Eiv = VYn- |L2VG |1/2”, while

(o}
if we assume that LV is a critical lattice, we have E%v = Vn- ILVII/ 21 Moreover,
_ Vo (T \" Vv : :
by = 3glrvand |Ly | = (£)" ILY| so in this case we have

T \2 T \2 T \3/2
G = () = (B w = (2) e

20 20 20
O
2.3 Preliminary Estimates
We discuss here some preliminaries for the main construction of Sect. 2.4.
For a function f € L>(R") and u € R” we denote by T}, f the translate
(Tu H(x) = fx —u). (2.23)
Let o (x) = e~I*1? | with
TN\/2 222
Vo) = (2) e T = 5@ (2.24)
Lemma 2.6 Consider a translate g4 = Ty@qy, for some £ € R", and let pg(z) =
e P11 sith g == Fpp. Let
ops (2.25)
Kn. g =exp|l—-n——) . .
nE.f.0 P 2me
2
For g = 477 and o and o in the range
o
—EE=<I1
a<q-m with q:= 5 (2.26)
— E>1,
e
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the following estimate holds:

/ﬂén 8aMVp(x —y)dy > kn 5,80 8a(X) . (2.27)

Proof We have

B

and for g4 (x) = e—lx—el?

7[”/2 22y 7Tn/2 B 2&,772
<E> /n ga(y)e P lx=yl dy = (E) /,, o~ @Y IP+ I ly= (=0 )dy

z2

o 2
T\"?2 — ﬁz llx—e]? (eI lly——5 =02
o+ a+ s
n

B
2
2 X
N2 N e
=<E) ) 7
O[+7

7T2 n/2 Ol7'L'2 2
=(——=) ep(-——1=lx—a).
Ba+m Ba+m

In order to verify the condition

2 n/2 2
b4 am
(—2) exp (——2 lx — enz)
Ba+m Boa+ 1

51/2n
> exp (—'21 "’3—) exp (—allx — 1)

e

note that

an?
— — <«
Ba + 72

is always verified since «, 8 > 0 hence an? < ax?+ ,30[2. Thus, it suffices to check
when

e

g1/2n
log (1 n ﬁ—‘j) LopET (2.28)
T
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. 2 .
We are assuming that = -5, so the above gives

o ) w gl/2n
— )<

| (1
og +402

4oe
When « and o are in the range (2.26) this is satisfied. O

Remark 2.7 We will be interested in the case where & = |LV| for a lattice L C R”"
with

0,3|Lv|1/2")

Kn,8,B,0 ‘= €Xp (—n e

Checking (2.28) is then equivalent to checking when

7.’:2 ”l/2>ex _E O’,3|L£/O-|1/2n
Ba + w2 =P\ 73 Te

and this is satisfied with ¢ = g, in the range

Tl LY <1
o <gqp-m with ¢q := (2.29)
ILV] > 1.

[N IS TN

2.4 Construction of Cohn-Elkies Functions

As above, let ¢y (x) = eI with ¥, = F(by) as in (2.24). Let A € R be a
lattice, with Ay, the lattice (2.13) and Ag . = (A%)2,. We assume that the lattice A
is such that the Gabor system G(¢,, Aoy ) satisfies the frame condition.

We consider in particular lattices A = L x K, as above, with Ay, = L % %K
and A, = K" x ;- LY.

For A =L x K,let 7 C L be afinite subset and let « : 7 — N be a function that
assigns multiplicities to the points of . Let Dx , be the function

Dr () =1+2 e (2.30)
teF

For example, forn = 1 and F = ([—N, N]~\ {0}) NZ, with all multiplicities equal
to one, this is related to the usual Dirichlet kernel by

N

D(—N. NI~ opnz,1(t) =2 Z L
k=N

sin(2N + 1)mx) B
sin(7 x)
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We write
eq(x) := 20N (2.31)

sothat D\, = 1423 o7 1 eq.
For a function f € L*(R") and u € R" we denote by T, f the translate as in (2.23)
and we write

Truf=f+2) meTef. (2.32)
teF

Consider then functions of the form
4o n/2
hA,a(x) = (7) (P20, TixP2s)| — CL,O' (2.33)

with C o as in (2.19), and ¢, (x) := e~I¥I* and

JFu @) = A(TF uy, Tixba) - ha(x). (2.34)

with y = yg,, A,, @ Wexel-Raz dual window for G(¢y, A2s).

Theorem 2.8 Let A = L x K be a lattice in R*" such that L" is a critical lattice
in R" and the lattice K C R" is chosen so that the Gabor system G(¢y, Aoy ) satis-
fies the frame condition and (2.8) is satisfied. Let y = vy, a,, be the approximation
to a Wexel-Raz dual window with approximation size (€, Q2) (see Remark 2.2) con-
structed as in Proposition 2.1. Consider a datum (F, n) given by the pair (I'q, 1) of
Proposition 2.1. Then, for o« and o in the range (2.29), the function (2.34),

Jraun(®) == (Trg,uy, TixPa) - ha(x)

is a Cohn—Elkies function of dimension n and size £ v, the shortest length of L.

Proof We first show that fr, , is areal valued Schwartz function that satisfies frg, , <
0 for ||x|| = £,v. We have as in (2.22)

TNR2 222
|<¢20’7 T[ixd)za')l = (—) e %o x|l ,
4o

so that we have

T
haG) =2 () = Cro = b (5%) = CLo

40

. _Ueiv
Since Cr , = e 20, we have

Ba() SO for ¥l = €y = =trv.
T
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Forz =u +iv € C", we have

(Y, . ¢a) = /R Y () Vo (x —u)dx = F(y - Tupa) = T )*(ew - F(da))
with ¢, as in (2.31). Thus, we have

(v, Te@a) lirn = (v, Tivda) =S¥ - ¢a) (V) .

and we obtain

(Tra.u¥s Tixda) = (¥, Tixda) +2 Y _(Tey, Tixta) = F()*F ($a)
LeF

+2 Z weS(Tey )*S(Pa) -
LeF

We also have

F(Tro.uy) =80) +2 Y wd(Tey) =Dr - 3¥).
LeF

We consider here the case where the pair (F, ) is given by (I'q, ) as in (2.7)
in Proposition 2.1. Since both the set I'q and the multiplicity function u : I'q — N
are invariant under the symmetry x +— —x, the function Dr, , also satisfies the
symmetry

Drg,u(=x) = Drg . (x) .

Since e;(x) = eg(—x), we also have @rg,u(x) = Drg,u(—x), hence Drg, , is a
real-valued even function.

We use as y(x) the Wexel-Raz dual window approximation of Proposition 2.1,
given by (2.10). We then have

F() =1det(C'B)| (F(a) +2 Y 1eF(Tegpa)) = | det(C' B)| Drg, i - F(ba) -

telq

Thus, we obtain

frou =1det(C'B)| DY, Vo (¢ 2 — CLio)

s
with ¥4 = §(dy). It is clear from this expression that fr, , is a real valued Schwartz
function. Since |det(C'B)| D2 (x) - Yo (x) > 0 for all x € R”, while ¢ 2 (x) =

Fo,u
. 402
CL,o iff [|x]| < £Lv, we have

er,/L(x) <0 for x| >£rv
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and frg, . (x) > 0 otherwise.
When computing Fourier transforms, we interpret the Fourier transform § (%, ) in
the distributional sense, so that we have

S(hp) = I/szz —CrLs0,
40

with &g the Dirac delta distribution centered at 0. The convolution product of the Dirac
delta distribution §p with a test function ¢ leaves the test function unchanged,

(pxdp) (x) = /R o(x —u)do(u) du = ¢(x).
Thus, we obtain

F(frg.u) = |det(C' B)| F(Dp, ,)*Pa*(W 22 — CL.o80)

402
= [det(C' B)| §(Dftg j)*0ur¥ 22 — CLo | det(C' B F(DRy )b
We have
2
Dig.=|1+2 Z peeg | =1+4 Z weee + 4 Z ety eppp
Lellg tellg Ll'elg

so that the Fourier transform S(D%Q M), also interpreted in the distributional sense,
gives

FDtg, ) =144 wde+4 > menedere .

tellg L0'elg

with 8y, the Dirac delta centered at xo.
The convolution product § (D%ﬂ’ wW*Pa is then given by

S(Dtg %t = b +4 D iTeda +4 Y pereTorode -
tellg Ll'elg

Thus, we obtain a non-negative Fourier transform §( fro,,,)(x) > 0 for all x € R" if
the following inequality holds, for all £ € I'q and all x € R":

(Tepar ¥ 2 )(x) = CLo Tedpa(x) . (2.35)

402
Since we are assuming that L" is a critical lattice in R”, we have as in (2.21)

n o_mw Vv 1/2
CLo < e 2aellVI"™
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Then for « and o in the range (2.29), we obtain from Lemma 2.6 that (2.35) is verified.
O

2.5 Lattice Solutions

The Cohn-Elkies functions constructed above are associated to a lattice L C R" with
the property that its dual LV is a critical lattice, namely one whose sphere packing
density is maximal among lattices. The Voronoi algorithm provides a way to enumerate
all these locally optimal solutions of the lattice-packing problem, by describing the
space of lattices up to isometry in terms of positive definite quadratic forms and the
identifying the local maxima of the density function with the vertices of the Ryshkov
polyhedron [17]. In general these local maxima will not be actual solutions of the
sphere packing problem, as the actual solution may not be achievable by a lattice. In
terms of Cohn—Elkies functions, the property that the critical lattice L" is also an actual
solution of the sphere packing problem is reflected in whether the additional property
(1.4) can also be satisfied, as this provides a sufficient condition for the optimality of
the lattice for the sphere packing problem (see Lemma 1.5).

In the case of the Cohn—Elkies functions of Theorem 2.8, this optimality condition
can be described more explicitly as follows.

Proposition 2.9 Setting

_ 2 _ 12
Yo =1+4Y e +4 3" pyppe 1 (2.36)
LeF LUeF

we obtain that the condition

1

fran(® = 77

(S fra,w)(0) (2.37)

is given by

—ol, /2 1 e,
T%»FQ,M' (1_e 20)(£> —+ |L\/|e 20

| 402 \"? (2.38)
= T - _— _—
S Ta |LY] <a+402>

Proof We have

2

—otlsy,
Jro.u(0) = (Tro 1y, ¢a) - ha(0) = (Trg uy, ¢a) (1 —e  "2)

—at?,
=(l—e "2)|det(C'B)| ((7/, $a) +2 ) melTey, ¢a)>

teF
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—O'Zz\/
=(l—e "9)|det(C'B)| | (o, po) + 4 Z welTeba, Pa)
lellg

+4 D oo (Toroda, do)
Ll'elg

Writing e~ @I¥IP+alx—t1%) — o—alltl?/2 20X =517 e get

—Uézv T \"/2 _a 2
fron© = —e  H)det(C'B)| (E) 1+4€; ezt
Q

S pappe S
L,0'elg

On the other hand we have

§ fro,w)(0) = |det(C'B)| | (pas ¥ 52 ) +4 Z welTe@o, ¥ 12 )

2 2
40 EEFQ 4o

+4 ) terte {Toredas ¥ 22 )

0,0elg do

_ sz N
—ldet( @ B)le o [ 1443 pee 81
telq

T
L,0'elg

We have

2\ 112 4o? N

o _ 4oca 2

(40 ) / palx—tIP —do?xI . _ (T) R
4 n o o

hence we obtain

2
40? )"/ 3 — o g2
[ 1+4 e a+do?

2
a+4o feTg

(§ fro.n)(0) = | det(C' B)| (

_ 402q 12
S e Y

L,0'elg
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_ sz N
—det(CB)le " Ve [ 1443 et
telq

(,0elg

Thus, using (2.36) we can write (2.37) in the form (2.38), where
ILYI7 = |L] = | det(O).
O

Note that, while we always have the vanishing at lattice points of the function
(y, m;¢) by the Wexel-Raz duality, in general we do not have the vanishing of the
(mey, m,@), hence of frq . This vanishing occurs in the case when this is a special
Cohn-Elkies function (by Corollary 1.6) that is, when the identity of Proposition 2.9
holds.

3 From Lattices to Periodic Sets

The construction presented above uses essentially the fact that the sphere packing con-
sidered is a lattice sphere packing. Since one expects that only in very few dimensions
the optimal sphere packing will be realized by a lattice, one would like to extend this
method of construction of Cohn-Elkies functions adapted to lattices to the case of
periodic sets, which are known to approximate the maximal density in any dimen-
sion. The Zassenhaus conjecture predicts that in every dimension the maximal density
sphere packing can be realized by a periodic packing.

Definition 3.1 A periodic set X in R” is a set for which there exist a finite collection

{ai, ..., an} of vectors ¢; € R" and a lattice L C R" such that
N
E:Um+L. (3.1
i=1

The lattice L can be taken to be the maximal period lattice for 2. The size of a periodic
set is the minimal number N of translations such that the set can be represented in
the form (3.1). A periodic set ¥ C R” of size N is critical if it is a maximizer of the
sphere packing density in R” among all periodic packings of size at most N.

The center density of a sphere packing with sphere centers places at the points of
a periodic set X is given by
_ N £
2nL|’

Sy 3.2)



Cohn-Elkies Functions from Gabor Frames Page 29 of 32 93

with the minimal length €y, which is given by
s =min{||{ +a; —aj||LeL, i,j=1,...,N}.

Definition 3.2 A periodic set © C R” of size N is critical if it is a maximizer of the
sphere packing density 8y of (3.2) in R”, among all the periodic packings of size at
most N, with fixed ratio N /|L|, that is, if it maximizes £ among all periodic sets of
size at most N.

Gabor frames G(¢, A) where A is not a lattice have been considered in signal
analysis, though a lot less is known about them than in the lattice case. For Gabor
frames with irregular and semi-regular A C R see for instance [3, 5, 13].

Here we need to consider a special type of irregular Gabor frames, namely semireg-
ular frames with A = £ x K C R?" where & C R” is a periodic set and K C R” is
a lattice, and with a Gaussian window function.

Definition 3.3 A Gabor multisystem G(¢y, ..., ¢n, A1, ..., Ay) is defined as the
union of the Gabor systems

N
G@1, o dN, At AN =G A .

i=1

A multi-window Gabor system is a multisystem of the form
G(1,...,0N, A1, ..., ANy) where A; = Aforalli =1,..., N. We write Q(g, A)
in this case.

Remark 3.4 Note that the Gabor system G (¢, A) with A = T x K for X = UlN: ai+L
is the same as the multi-window system given by the union of the G(¢;, A;) where
¢; =mg¢p and with A; = L x K foralli =1,..., N.

Remark 3.5 Theorem 5.1 of [4] shows that a necessary condition for completeness of
the Gabor multi-window system G(¢, L x K), with ¢; = m,;¢ and ¢ a Gaussian,
is the condition that det(A) x det(E) < N, where L = AZ" and K = BZ" for
A, B € GL,(R) and with N the number of translations of the periodic set .

In the case of a periodic set (3.1) we define
N
2Vi=Ja+ LY, (3.3)
i=1
where LV is the dual lattice of L and the {q; }lN | are the same translations as in X. We

then set B

Corr(¢as, T7) = [mietoo, Tig P20 )1, 3.4

max
eV LAY
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which directly generalizes (2.18) for lattices. We also define as before

4o \"?
CZ,J = <?> Corr(¢ae, Ezvg) s (3.5)

with 27 1= (2Y)2 = 752V,

Proposition 3.6 Ler ¥ C R” be a periodic set of size N with £V critical, and let
K C R" be a lattice such that the G(¢j o, L x K) for j = 1,..., N are Gabor
frames. Then a Cohn—Elkies functions in dimension n with size £xv is given by frq , =

N .
Zj:l fi.rq.u with

Sfirau®) = (TrquVj, TixPja) - hs(x),
hs(x) = ¢L22(x) —Cro s
4o

with a, o in the range (2.29).

Proof In general a multi-window Gabor system G (Q, L x K), with A C R?" alattice,
satisfies the frame condition if there are constants C, C’ > 0 such that for all f €
L>(R™)

N
CILF I 2y sZ Z (s 17O < ClLF I 2 gy -
j=lieLx

Thus, if the individual Gabor systems G (¢, L x K) satisfy the Gabor frame condition
then the multi-window system also does.

Since only the translations part ¥ C R” is a periodic set, while the modulation
part K C R” is an actual lattice, we have that the functions of the multi-window
¢j = 7a;¢ = Ta;¢ are translates of the Gaussian ¢ along the translations a; of the
periodic set £ = Uja; + L.

Given the periodic set ¥ C R", suppose that the lattice K C R" is chosen so
that the condition of Remark 3.5 holds and the Gabor systems G(¢; «, L x K), with
Qja = Tajqba and ¢, a Gaussian are Gabor frames foralli = 1,..., N.

Then proceeding as in Proposition 2.1, with 2 >> ||a;| foralli =1,..., N, we
obtain approximate Wexel-Raz duals y; foreach G(¢; o, L x K). Note that the sets I'g
and the multiplicity function i : I'q — N are unchanged, and we have approximate
Wexel-Raz duals for the Gabor systems G(¢; o, L x K) of the form

i = |det(A'B)| (¢, +2 Z weTedjo) = det(A'B)| Trg udj.o -
el

As in (2.22) we have

7T \"n/2 2, 2
(oo medaall = (=) e T, (3.6)
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hence we obtain

20

-0 _ Bty 37

_r?
Cso = max e 4%
LUETY L£L

We can assume without loss of generality that the lattices L x K we consider all
have L C R" with |L| = 1, with conditions such as Remark 3.5 for the Gabor frames
property formulated as conditions on the choice of the auxiliary lattice K C R”.

Assuming that the periodic set ¥V is critical, we have

2 n
L5y = vn = e’
since ¥ maximizes density among all packings by periodic sets of size at most N,
hence its density is not worse than the optimal density among lattices. We use the
same lower bound for the Hermite constant y,, as in Corollary 2.5. Thus, we obtain

Cso < e "o, (3.9)

as in (2.21). We can then use the same estimates of Lemma 2.6 and Remark 2.7 (with
Ll =|LY] =1).

Lemma 2.6 holds for each g; o = T¢¢; o, hence the same argument used in
Theorem 2.8 shows that the functions

firaun®) = (Trg,u¥j TixPj.a) - hz(x),
with

hs(x) =¢ 2 (x) = Crp s

402

with the parameters «, o in the same range as in Theorem 2.8, are Cohen-Elkies
functions in dimension n with size £xv, as in Definition 1.1, hence so is their sum

N
Jrou =2 j=1 fira.u- o

We showed in this section that our construction of Cohn—Elkies functions in arbi-
trary dimension extends from the case of Gabor frames based on lattices to the case of
periodic sets. In all cases we use a window function that is a multidimensional Gaus-
sian. It is possible that a similar construction may extend to other classes of window
functions: for example, a natural generalization of the Gaussian case would be win-
dows obtained from multidimensional Hermite functions. Our argument depends on
the Gaussian shape of the window function in two ways: first in the relation between
correlation and length, used in (1.22) in Lemma 1.19 and in (2.17) in Lemma 2.4, and
then in the fundamental estimate of Lemma 2.6, where the Fourier transform prop-
erties of Gaussians play a crucial role. Thus, the present argument does not directly
extend to non-Gaussian windows, though this does not exclude that a modification
of the argument will lead to a more general construction for other classes of Gabor
windows.
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