
Algorithmica (2025) 87:148–165
https://doi.org/10.1007/s00453-024-01278-5

Better Hardness Results for the Minimum Spanning Tree
Congestion Problem

Huong Luu1 ·Marek Chrobak1

Received: 31 May 2023 / Accepted: 8 October 2024 / Published online: 26 October 2024
© The Author(s) 2024

Abstract
In the spanning tree congestion problem, given a connected graph G, the objective
is to compute a spanning tree T in G that minimizes its maximum edge congestion,
where the congestion of an edge e of T is the number of edges in G for which the
unique path in T between their endpoints traverses e. The problem is known to be
NP-hard, but its approximability is still poorly understood, and it is not even known
whether the optimum solution can be efficiently approximated with ratio o(n). In the
decision version of this problem, denoted K − STC, we need to determine if G has a
spanning tree with congestion at most K . It is known that K − STC is NP-complete
for K ≥ 8, and this implies a lower bound of 1.125 on the approximation ratio
of minimizing congestion. On the other hand, 3 − STC can be solved in polynomial
time, with the complexity status of this problem for K ∈ {4, 5, 6, 7} remaining an
open problem. We substantially improve the earlier hardness results by proving that
K − STC is NP-complete for K ≥ 5. This leaves only the case K = 4 open, and
improves the lower bound on the approximation ratio to 1.2. Motivated by evidence
that minimizing congestion is hard even for graphs of small constant radius, we also
consider K − STC restricted to graphs of radius 2, and we prove that this variant is
NP-complete for all K ≥ 6.

Keywords Combinatorial optimization · Spanning trees · Congestion

1 Introduction

Problems involving constructing a spanning tree that satisfies certain requirements
are among the most fundamental tasks in graph theory and algorithmics. One such
problem is the spanning tree congestion problem, STC for short, that has been studied
extensively for many years. In this problemwe seek a spanning tree T of a given graph
G that roughly approximates the connectivity structure of G, in the following sense:
Embed G into T by replacing each edge (u, v) of G by the unique u-to-v path in T .

B Huong Luu
hluu008@ucr.edu

1 University of California at Riverside, Riverside, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01278-5&domain=pdf

Algorithmica (2025) 87:148–165 149

Define the congestion of an edge e of T as the number of such paths that traverse e. The
objective of STC is to find a spanning tree T in which the maximum edge congestion
is minimized.

The general concept of edge congestionwas first introduced in 1986, under the name
of load factor, as a measure of quality of an embedding of one graph into another [1]
(see also the survey in [2]). The problem of computing trees with low congestion was
studied by Khuller et al. [3] in the context of solving commodities network routing
problems. The trees considered there were not required to be spanning subtrees, but
the variant involving spanning trees was also mentioned. In 2003, Ostrovskii provided
independently a formal definition of STC and established some fundamental proper-
ties of spanning trees with low congestion [4]. Since then, many combinatorial and
algorithmic results about this problem have been reported in the literature — we refer
the readers to the survey paper by Otachi [5] for more information, most of which is
still up-to-date.

As established by Löwenstein [6], STC is NP-hard. As usual, this is proved by
showing NP-completeness of its decision version, where we are given a graph G and
an integer K , and we need to determine if G has a spanning tree with congestion at
most K . Otachi et al. [7] strengthened this by proving that the problem remains NP-
hard even for planar graphs. In [8], STC is proven to be NP-hard for chain graphs and
split graphs. On the other hand, computing optimal solutions for STC can be achieved
in polynomial time for some special classes of graphs: complete k-partite graphs,
two-dimensional tori [9], outerplanar graphs [10], and two-dimensional Hamming
graphs [11].

In our paper, we focus on the decision version of STC where the bound K on
congestion is a fixed constant. We denote this variant by K − STC. Several results
on the complexity of K − STC were reported in [7]. For example, the authors of [7]
show that K − STC is decidable in linear time for planar graphs, graphs of bounded
treewidth, graphs of bounded degree, and for all graphs when K = 1, 2, 3. On the
other hand, they show that the problem isNP-complete for any fixed K ≥ 10. In [12],
Bodlaender et al. proved that K − STC is linear-time solvable for graphs in apex-
minor-free families and chordal graphs. They also show an improved hardness result
of K − STC, namely that it isNP-complete for K ≥ 8, even in the special case of apex
graphs that only have one unbounded degree vertex. As stated in [5], the complexity
status of K − STC for K ∈ {4, 5, 6, 7} remains an open problem.

Very little is known about the approximability of STC. The trivial upper bound for
the approximation ratio is n/2— this ratio is achieved in fact by any spanning tree [5].
As a direct consequence of the NP-completeness of 8 − STC, there is no polynomial-
time algorithm to approximate the optimum spanning tree congestion with a ratio
better than 1.125 (unless P = NP).

Our contributions In this paper, addressing an open question in [5], we provide an
improved hardness result for K − STC:

Theorem 1 For any fixed integer K ≥ 5, K − STC is NP-complete.

The proof of this theorem is given in Sect. 3. Combined with the results in [7],
Theorem 1 leaves only the status of 4 − STC open. Furthermore, it also immediately
improves the lower bound on the approximation ratio for STC:

123

150 Algorithmica (2025) 87:148–165

Corollary 1 For c < 1.2 there is no polynomial-time c-approximation algorithm for
STC, unless P = NP.

We remark that this hardness result remains valid even if an additive constant is
allowed in the approximation bound. This follows by an argument in [12]. (In essence,
the reason is that assigning a positive integer weight β to each edge increases its
congestion by a factor β.)

A common feature of the hardness proofs for STC, including ours, is that they all
use graphs of small constant radius (or, equivalently, diameter). Another property of
STC that makes its approximation challenging is that the minimum congestion value
is not monotone with respect to adding edges. The example graph in [4] showing this
non-monotonicity is also of small radius (in fact, only 2). These observations indicate
that a key to further progress may be in better understanding of STC in small-radius
graphs.

This motivates our additional hardness result presented in Sect. 4, where we focus
on graphs of radius 2. (For radius 1 the problem is trivial.)We prove there that K − STC
remainsNP-complete for this class of graphs, for any fixed integer K ≥ 6. In fact, this
holds even if we further restrict such graphs to be bipartite and have only one vertex
of non-constant degree.

Other related work The spanning tree congestion problem is closely related to
the tree spanner problem, in which the objective is to find a spanning tree T of G
that minimizes the stretch factor, defined as the maximum ratio, over all vertex pairs,
between the length of the path in T and the length of the shortest path in G connecting
these vertices. In fact, for any planar graph, its spanning tree congestion is equal to
its dual’s minimum stretch factor plus one [7, 13]. This direction of research has been
extensively explored, see [14–16]. As an aside, we remark that the complexity of the
tree 3-spanner problem has been open since its first introduction in 1995 [14].

STC is also intimately related to problems involving cycle bases in graphs. As each
spanning tree induces a fundamental cycle basis of the given graph, a spanning tree
with low congestion yields a cycle basis for which the edge-cycle incidence matrix is
sparse. Sparsity of such matrices is desirable in linear-algebraic approaches to solving
some graph optimization problems, for example analyses of distribution networks such
as pipe flow systems [17].

STC can be thought of as an extreme case of the graph sparsification problem,where,
given a graphG, the objective is to compute a sparse graph H that captures connectivity
properties of G. See [18–20] (and the references therein) for some approaches to
graph sparsification. Sparsification makes working with large graphs more efficient.
The compressed graph H can be used instead of G to reduce computational costs,
particularly when analyzing large-scale networks.

STC arises naturally in some applications in networking, specifically in network
design and routing problems (see [3, 21], for example). In this context, the weight
of an edge (u, v) represents, say, expected traffic volume between u and v, and the
goal is to design a spanning tree that can handle this traffic efficiently, that is without
overloading any of its links.

The extended version of this paper [22] considers also the problem of computing
minimum-congestion spanning trees of depth 2. (Note that this is a different optimiza-

123

Algorithmica (2025) 87:148–165 151

tion problem, whose optimal solution could be larger than for STC.) The results in [22]
include the proof of NP-hardness and polynomial-time algorithms for some special
cases.

2 Preliminaries

Basic graph terminology Let G be a simple graph with vertex set V and edge set
E . We use notation NG(v) for the neighborhood of a vertex v ∈ V and degG(v) for
its degree. For a vertex v ∈ V , its eccentricity eccG(v) is defined as the maximum
distance from v to any other vertex. The radius of G is rad(G) = minv∈V eccG(v).

Consider a spanning tree T ⊆ E of G. If e = (u, v) ∈ T , removing e from T splits
T into two subtrees. We denote by Tu,v the subtree that contains u and by Tv,u the
subtree that contains v. Let the cut-set of e, denoted ∂G,T (e), be the set of edges in E
that have one endpoint in Tu,v and the other in Tv,u . In other words, ∂G,T (e) consists
of the edges (u′, v′) ∈ E for which the unique (simple) path in T from u′ to v′ goes
through e. Note that e ∈ ∂G,T (e). The congestion of e, denoted by cngG,T (e), is the
cardinality of ∂G,T (e). The congestion of tree T is cngG(T) = maxe∈T cngG,T (e).
Finally, the spanning tree congestion of graph G, denoted by stc(G), is defined as the
minimum value of cngG(T) over all spanning trees T of G.

Weighted edges The concept of the spanning tree congestion extends naturally to
edge-weighted graphs. An edge e = (u, v) with integer weight ω ≥ 1 contributes
ω to the congestion of any edge f for which e ∈ ∂G,T (f). One can think of e as
representing ω parallel edges between u and v. We refer to these parallel edges as a
non-weighted realization of a weighed edge e. Indeed, replacing e by this realization
does not affect the minimum congestion value, because in a multigraph only one edge
between any two given vertices can be in a spanning tree, but all of them belong to
the cut-set ∂G,T (f) of any edge f ∈ T whose removal separates these vertices in T
(and thus all contribute to cngG,T (f)).

We can also realize aweighted graph using a simple graph (withoutmultiple edges).
As observed in [7, Lemma 7.2], edge subdivision does not affect the spanning tree

congestion of a graph, so instead of using parallel edges we can realize an edge of
weight ω using ω parallel disjoint paths.1

(See Fig. 1 for illustration.) We state our results in terms of simple graphs, but we
use weighted graphs in our proofs with the understanding that they actually repre-
sent simple graphs. As all weights used in the paper are constant, the computational
complexity of K − STC is not affected. The proof in Sect. 3 does not depend on what
realization of weighted edges we use, while the proof in Sect. 4 uses a specific real-
ization that we refer to as spintop: an edge (u, v) of weight ω is realized using ω − 1
length-three u-to-v paths in addition to a non-weighted edge (u, v) itself (see Fig. 1b).

Double weights In fact, it is convenient to generalize this further by introducing
edges with double weights. A double weight of an edge e is denoted ω :ω′, where ω

1 The proof of Lemma 7.2 is omitted in [7], but the lemma is quite intuitive and can be shown by a simple
modification of the optimal tree: if the original edge is in the spanning tree, the modified tree traverses all
segments of the subdivided edge. If it isn’t, the modified tree visits all but one segment, chosen arbitrarily.
In both cases, the maximum edge congestion is not affected.

123

152 Algorithmica (2025) 87:148–165

Fig. 1 Two different realizations of an edge (u, v) of multiplicity 4. a A basic realization using paths of
length 2. b The spintop realization used in Sect. 4

Fig. 2 a On the left, an edge (u, v) with double weight 4 :5 in G. On the right, the realization of (u, v) in
G′. If one applies the spintop realization of the edges from v to wi ’s, as in Fig. 1b, then the subgraph on the
right realizing (u, v) is bipartite and all its nodes are within distance 2 from v. Figures (b) and (c) illustrate
the proof of Lemma 1: b the traversal of T ′ and the cut of (u, v) when (u, v) ∈ T , c the traversal of T ′ and
the cut containing (u, v) when (u, v) /∈ T . Solid lines are tree edges and dotted lines are non-tree edges

and ω′ are positive integers such that ω ≤ ω′ ≤ K − 1, and its interpretation in the
context of K − STC is as follows: Given a spanning tree T ,

◦ if e ∈ E \ T then e contributes ω to the congestion cngG,T (f) of any edge f ∈ T
for which e ∈ ∂G,T (f), and

◦ if e ∈ T then e contributes ω′ to its own congestion, cngG,T (e).

The lemma below provides a simple-graph realization of double-weighted edges. It
implies that including such edges does not affect the computational complexity of
K − STC, allowing us to formulate our proofs in terms of graphs where some edges
have double weights.

Lemma 1 Let (u, v) be an edge in G with double weight ω : ω′, where ω ≤ ω′ ≤
K − 1. Consider another graph G ′ obtained from G by removing (u, v), and for each
i = 1, 2, · · · , ω adding a new vertex wi with two edges: edge (u, wi) of weight 1 and
edge (wi , v) of weight ω′ − ω + 1 (see Fig.2a for an example). Then, stc(G) ≤ K if
and only if stc(G ′) ≤ K.

Proof Denote by W = {w1, w2, ..., wω} the set of new vertices, and by Wu =
{(u, wi) | wi ∈ W } and Wv = {(wi , v) | wi ∈ W } the sets of new edges added to
G ′.

123

Algorithmica (2025) 87:148–165 153

(⇒) Suppose that G has a spanning tree T with cngG(T) ≤ K . We will show that
there exists a spanning tree T ′ of G ′ with cngG ′(T ′) ≤ K . We break the proof into
two cases, in both cases showing that cngG ′,T ′(e) ≤ K for each edge e ∈ T ′.
Case 1: (u, v) ∈ T .

Consider the spanning tree T ′ = T \ {(u, v)} ∪ Wv ∪ {(u, w1)} of G ′ (see Fig. 2b).
For every edge (x, y) ∈ E \ {(u, v)}, the x-to-y paths in T and T ′ are the same, except
that if the x-to-y path in T traverses edge (u, v) then the x-to-y path in T ′ traverses
(u, w1), (w1, v) instead. Therefore,

◦ If e ∈ T ′ \ (Wv ∪ {(w1, u)}), then ∂G ′,T ′(e) = ∂G,T (e). So cngG ′,T ′(e) =
cngG,T (e) ≤ K .

◦ If e = (u, w1), then ∂G ′,T ′(e) = ∂G,T (u, v) \ {(u, v)} ∪ Wu . By the definition
of double weights, (u, v) contributes ω′ to cngG,T (u, v) while each edge in Wu

contributes 1 to cngG ′,T ′(e). Hence, cngG ′,T ′(e) = cngG,T (u, v) − ω′ + ω ≤
cngG,T (u, v) ≤ K .

◦ If e = (w1, v), then ∂G ′,T ′(e) = ∂G,T (u, v) \ {(u, v)} ∪ {e} ∪ (Wu \ {(w1, u)}).
Since e contributes ω′ − ω + 1 to its own congestion, we have: cngG ′,T ′(e) =
cngG,T (u, v) − ω′ + (ω′ − ω + 1) + (ω − 1) = cngG,T (u, v) ≤ K .

◦ Lastly, if e ∈ Wv \ {(w1, v)}, then it is a leaf edge, and we have cngG ′,T ′(e) =
ω′ − ω + 2 ≤ ω′ + 1 ≤ K .

Case 2: (u, v) /∈ T .
Let T ′ = T ∪ Wv , which is a spanning tree of G ′ (see Fig. 2c). We consider the

following sub-cases:

◦ If e ∈ T ′ \ Wv and e is not on the u-to-v path in T ′, then ∂G ′,T ′(e) = ∂G,T (e). So
cngG ′,T ′(e) = cngG,T (e) ≤ K .

◦ If e ∈ T ′ \ Wv and e is on the u-to-v path in T ′, then ∂G ′,T ′(e) = ∂G,T (e) \
{(u, v)} ∪ Wu . Since (u, v) contributes ω to cngG,T (e) and Wu also contributes ω

to cngG ′,T ′(e), we have ∂G ′,T ′(e) = ∂G,T (e) ≤ K .
◦ If e ∈ Wv , then e is a leaf edge andwehave cngG ′,T ′(e) = ω′−ω+2 ≤ ω′+1 ≤ K .

We have shown that cngG ′(T ′) ≤ K in all cases, which completes the proof for the
forward implication. We now proceed to the proof of the converse implication.
(⇐) Let T ′ be the spanning tree of G ′ with congestion cngG ′(T ′) ≤ K . We will show
that there exists a spanning tree T ofG with cngG(T) ≤ K . Note that, for anywi ∈ W ,
T ′ traverses at least one of the two edges (u, wi) and (wi , v). Furthermore, at most one
vertex inW is a non-leaf. We consider three cases. In the first two cases the arguments
follow the same pattern as in the proof for the (⇒) implication, in essence reversing
the modification of the spanning tree. Then the third case reduces to the second case.
Case 1: Exactly one vertex in W is a non-leaf in T ′.

Without loss of generality, we can assume w1 is a non-leaf vertex (that is, both
(u, w1) and (w1, v) are in T) and W \ {w1} are leaves. We construct T by adding
(u, v) to T ′ and removing all vertices of W and their incident edges from T . By the
construction, T is a spanning tree of G. We have:

◦ If e ∈ T \ {(u, v)}, then cngG,T (e) = cngG ′,T ′(e) ≤ K .
◦ If e = (u, v), then cngG,T (e) = cngG ′,T ′(v,w1) ≤ K .

123

154 Algorithmica (2025) 87:148–165

Case 2: All vertices in W are leaves and T ′ traverse all edges in Wv .
Let T = T ′ \ Wv , which is a spanning tree of G. Then

◦ If e ∈ T and e is not on the u-to-v path in T , then cngG,T (e) = cngG ′,T ′(e) ≤ K .
◦ If e ∈ T and e is on the u-to-v path in T , then (u, v) and Wu contribute the
same amount ω to the congestion of e in T and T ′, respectively, implying that
cngG,T (e) = cngG ′,T ′(e) ≤ K .

Case 3: All vertices in W are leaves and T ′ traverses at least one edge in Wu .
In this case,we consider another spanning tree T ′′ ofG ′ that traverses all edges inWv

and does not use any edge inWu . It is sufficient to show that cngG ′(T ′′) ≤ cngG ′(T ′),
since it implies that cngG ′(T ′′) ≤ K , and then we can apply Case 2 to T ′′. We examine
the congestion values of each edge e ∈ T ′′:
◦ If e ∈ T ′′ \ Wv and e is not on the u-to-v path in T ′′, then e ∈ T ′ and ∂G ′,T ′′(e) =

∂G ′,T ′(e), implying cngG ′,T ′′(e) = cngG ′,T ′(e).
◦ If e ∈ T ′′ \ Wv and e is on the u-to-v path in T ′′, then for each vertex wi ∈ W
either (u, wi) contributes 1 or (wi , v) contributes ω′ − ω + 1 ≥ 1 to cngG ′,T ′(e).
On the other hand, in T ′′, all edges inWu are in ∂G ′,T ′′(e) and contribute a total of
ω to cngG ′,T ′′(e). Thus, cngG ′,T ′′(e) ≤ cngG ′,T ′(e).

◦ If e ∈ Wv , then cngG ′,T ′′(e) = ω′ − ω + 2 ≤ ω′ + 1 ≤ K .

In all cases, we have proved that there is a spanning tree T of G that has congestion
at most K establishing the validity of the backward implication.

As explained earlier, in Sect. 4 we will use the spintop realization for weighted
edges. Specifically, the realization of an edge e = (u, v) with double weight ω : ω′
uses the spintop realization for the edges of weight ω′ −ω+1 between v and thewi ’s.
The crucial property of this realization, as discussed Sect. 4, is that it is bipartite and
all its nodes are within distance 2 from v.

Remark Some readers may have noticed that there is a simpler way to realize an edge
(u, v)with a double weightω :ω′: replace it by a length-2 path (u, w), (w, v), wherew

is a new vertex, edge (u, w) has weight ω, and edge (w, v) has weight ω′. This indeed
works, but can be used only when ω + ω′ ≤ K . This is because, in this construction,
if w is a leaf of a spanning tree, the congestion of the tree edge from w will be ω +ω′,
and this congestion value cannot exceed K . This realization of double-weighted edges
would suffice for our proof in Sect. 3, but not the one in Sect. 4. (It may also be useful
for establishing other hardness results for STC.)

3 NP-Completeness Proof of K − STC for K ≥ 5

In this section we prove our main result, theNP-completeness of K − STC. Our proof
uses anNP-complete variant of the satisfiability problem called (2P1N)-SAT [23, 24].
An instance of (2P1N)-SAT is a boolean expression φ in conjunctive normal form,
where each variable occurs exactly three times, twice positively and once negatively,
and each clause contains exactly two or three literals of different variables. The objec-
tive is to decide if φ is satisfiable, that is if there is a satisfying assignment that makes
φ true.

123

Algorithmica (2025) 87:148–165 155

For each constant K , K − STC is clearly inNP. We will present a polynomial-time
reduction from (2P1N)-SAT. In this reduction, given an instance φ of (2P1N)-SAT,
we construct a graph G with the following property:

(∗) φ has a satisfying truth assignment if and only if stc(G) ≤ K .

Throughout the proof, the three literals of xi in φ will be denoted by xi , x ′
i , and x̄i ,

where xi , x ′
i are the two positive occurrences of xi and x̄i is the negative occurrence

of xi . We will also use notation x̃i to refer to an unspecified literal of xi , that is,
x̃i ∈ {

xi , x ′
i , x̄i

}
.

We now describe the reduction. Set ki = K − i for i = 1, 2, 3, 4. (In particular,
for K = 5, we have k1 = 4, k2 = 3, k3 = 2, k4 = 1). G will consist of gadgets
corresponding to variables, with the gadget corresponding to xi having three vertices
xi , x ′

i , and x̄i , that represent its three occurrences in the clauses. G will also have
vertices representing clauses and edges connecting literals with the clauses where
they occur (see Fig. 3b for an example). As explained in Sect. 2, without any loss of
generality we can allow edges in G to have constant-valued weights, single or double.
Specifically, starting with G empty, the construction of G proceeds as follows:

◦ Add a root vertex r .
◦ For each variable xi , construct the xi -gadget (see Fig. 3a). This gadget has three
vertices corresponding to the literals: a negative literal vertex x̄i and two positive
literal vertices xi , x ′

i , and two auxiliary vertices yi and zi . Its edges and their
weights are given in the table below:

edge (x̄i , zi) (zi , xi) (xi , x ′
i) (r , x ′

i) (r , yi) (yi , zi) (yi , x̄i)
weight 1 :k3 1 :k3 1 :k2 k3 k4 k4 1 :k2
the corresponding clause-to-literal edge (c, x̃i) of weight 1 : k2. Importantly, as
all literals in c correspond to different variables, these edges will go to different
variable gadgets.

◦ For each two-literal clause c, add a root-to-clause edge (r , c) of weight 1 :k1.
Note that the edges with double weights satisfy the assumption of Lemma 1 in Sect. 2;
that is, each such weight 1 :ω′ satisfies 1 ≤ ω′ ≤ K − 1.

We now show that G has the required property (∗), proving the two implications
separately.

(⇒) Suppose that φ has a satisfying assignment. Using this assignment, we con-
struct a spanning tree T of G as follows:

◦ For every xi -gadget, include in T edges (r , x ′
i), (r , yi), and (yi , zi). If xi = 0,

include in T edges (x̄i , zi) and (xi , x ′
i), otherwise include in T edges (yi , x̄i) and

(zi , xi).
◦ For each clause c, include in T one clause-to-literal edge that is incident to any
literal vertex that satisfies c in our chosen truth assignment for φ.

By routine inspection, T is indeed a spanning tree of G: each xi -gadget is traversed
from r without cycles, and all clause vertices are leaves of T . Figures4 and 5 show
how T traverses an xi -gadget in different cases, depending on whether xi = 0 or
xi = 1 in the truth assignment for φ, and on which literals are chosen to satisfy each
clause.

123

156 Algorithmica (2025) 87:148–165

Fig. 3 aThe xi -gadget. bAn example of a partial graphG for the boolean expression φ = c1∧c2∧c3∧· · ·
where c1 = x̄1 ∨ x4, c2 = x1 ∨ x2 ∨ x̄3, and c3 = x1 ∨ x̄2. (The weights of edges inside the variable
gadgets are not shown.)

Fig. 4 The traversal of the xi -gadget by T when xi = 0. Solid lines are tree edges, dotted lines are non-tree
edges. a x̄i is chosen by clause c. b x̄i is not chosen by clause c

We need to verify that each edge in T has congestion at most K . All the clause
vertices are leaves in T , thus the congestion of each clause-to-literal edge is k2+2 = K
(this holds for both three-literal and two-literal clauses). To analyze the congestion of
the edges inside an xi -gadget, we consider two cases, depending on the value of xi in
our truth assignment.

When xi = 0, we have two sub-cases (a) and (b) as shown in Fig. 4. The congestions
of the edges in the xi -gadget are as follows:

◦ In both cases, cngG,T (r , x ′
i) = k3 + 3.

◦ In case (a), cngG,T (r , yi) = k4 + 3. In case (b), it is k4 + 2.
◦ In case (a), cngG,T (yi , zi) = k4 + 4. In case (b), it is k4 + 3.
◦ In case (a), cngG,T (x̄i , zi) = k3 + 3. In case (b), it is k3 + 2.
◦ In both cases, cngG,T (xi , x ′

i) = k2 + 2.

On the other hand, when xi = 1, we have four sub-cases. Figure4 illustrates cases
(a)–(c). In case (d) (not shown in Fig. 4), none of the positive literal vertices xi , x ′

i
is chosen to satisfy their corresponding clauses. The congestions of the edges in the
xi -gadget are as follows:

◦ In cases (a) and (b), cngG,T (r , x ′
i) = k3 + 3. In cases (c) and (d), it is k3 + 2.

123

Algorithmica (2025) 87:148–165 157

Fig. 5 The traversal of the xi -gadget by T when xi = 1. By c, c′ and c′′ we denote the clauses that contain
literals x̄i , xi and x ′

i , respectively. a xi and x ′
i are chosen by clauses c

′ and c′′. b x ′
i is chosen by clause c

′′.
c xi is chosen by clause c′

◦ In cases (a) and (c), cngG,T (r , yi) = k4 + 4. In cases (b) and (d), it is k4 + 3.
◦ In cases (a) and (c), cngG,T (yi , zi) = k4 + 4. In cases (b) and (d), it is k4 + 3.
◦ In cases (a) and (c), cngG,T (zi , xi) = k3 + 3. In cases (b) and (d), it is k3 + 2.
◦ In all cases, cngG,T (yi , x̄i) = k2 + 2.

In summary, the congestion of each edge of T is at most K . Thus cngG(T) ≤ K ;
in turn, stc(G) ≤ K , as claimed.

(⇐) We now prove the other implication in (∗). We assume that G has a spanning
tree T with cngG(T) ≤ K . We will show how to convert T into a satisfying truth
assignment for φ. The proof consists of a sequence of claims showing that T must
have a special form that will allow us to define this truth assignment.

Claim 1 Each xi -gadget satisfies the following property: for each literal vertex x̃i , if
some edge e of T (not necessarily in the xi -gadget) is on the r-to-x̃i path in T , then
∂G,T (e) contains at least two distinct edges from this gadget other than (yi , zi).

This claim is straightforward: it follows directly from the fact that there are two
edge-disjoint paths from r to any literal vertex x̃i ∈ {

x̄i , xi , x ′
i

}
that do not use edge

(yi , zi).

Claim 2 For each two-literal clause c, edge (r , c) is not in T .

For both literals x̃i of clause c, there is an r -to-c path via the xi -gadget, so, together
with edge (r , c), G has three disjoint r -to-c paths. Thus, if (r , c) were in T , its con-
gestion would be at least k1 + 2 > K , proving Claim 2.

Claim 3 All clause vertices are leaves in T .

To prove Claim 3, suppose there is a clause c that is not a leaf. Then, by Claim 2, c
has at least two clause-to-literal edges in T , say (c, x̃i) and (c, x̃ j). We can assume that
the last edge on the r -to-c path in T is e = (c, x̃i). Clearly, r ∈ Tx̃i ,c and x̃ j ∈ Tc,x̃i .
By Claim 1, at least two edges of the x j -gadget are in ∂G,T (e), and they contribute at
least 2 to cngG,T (e). We now have some cases to consider.

If c is a two-literal clause, its root-to-clause edge (r , c) is also in ∂G,T (e), by
Claim 2. Thus, cngG,T (e) ≥ k2 + 3 > K (see Fig. 6a). So assume now that c is a

123

158 Algorithmica (2025) 87:148–165

Fig. 6 Illustration of the proof of Claim 3. In a c is a two-literal clause; in Vb and c, c is a three-literal
clause

three-literal clause, and let x̃l �= x̃i , x̃ j be the third literal of c. If T contains (c, x̃l), the
xl -gadget would also contribute at least 2 to cngG,T (e), so cngG,T (e) ≥ k2 + 4 > K
(see Fig. 6b). Otherwise, (c, x̃l) /∈ T , and (c, x̃l) itself contributes 1 to cngG,T (e), so
cngG,T (e) ≥ k2 + 3 > K (see Fig. 6c).

We have shown that if a clause vertex c is not a leaf in T , then in all cases the
congestion of T would exceed K , completing the proof of Claim 3.

Claim 4 For each xi -gadget, edge (r , x ′
i) is in T .

Towards contradiction, suppose that (r , x ′
i) is not in T . Let (x

′
i , c) be the clause-to-

literal edge of x ′
i . If only one of the two edges (x ′

i , xi), (x
′
i , c) is in T , making x ′

i a leaf,
then the congestion of that edge is k3 + k2 + 1 > K . Otherwise, both (x ′

i , xi), (x
′
i , c)

are in T . Because c is a leaf in T by Claim 3, e = (xi , x ′
i) is the last edge on the r -to-x

′
i

path in T . As shown in Fig. 7a, cngG,T (e) ≥ k3 + k2 + 2 > K . This proves Claim 4.

Claim 5 For each xi -gadget, edge (r , yi) is in T .

To prove this claim, suppose (r , yi) is not in T . We consider the congestion of the
first edge e on the r -to-yi path in T . By Claims 3 and 4, we have e = (r , x ′

i), all vertices
of the xi -gadget have to be in Tx ′

i ,r
, and Tx ′

i ,r
does not contain literal vertices of another

variable x j �= xi . For each literal x̃i of xi , if a clause-to-literal edge (c, x̃i) is in T ,
then the two other edges of c contribute 2 to cngG,T (e), otherwise (c, x̃i) contributes
1 to cngG,T (e). Then, cngG,T (e) ≥ k4 + k3 + 3 > K (see Fig. 7b), proving Claim 5.

Claim 6 For each xi -gadget, exactly one of edges (zi , xi) and (xi , x ′
i) is in T .

By Claims 4 and 5, edges (r , yi) and (r , x ′
i) are in T . Since the clause neighbor c′

of xi is a leaf of T , by Claim 3, if none of (zi , xi), (xi , x ′
i) were in T , xi would not be

reachable from r in T . Thus, at least one of them is in T . Now, assume both (zi , xi) and
(xi , x ′

i) are in T (see Fig. 8a). Then, edge (yi , zi) is not in T , as otherwise we would
create a cycle. Let us consider the congestion of edge e = (r , x ′

i). Clearly, xi and x ′
i

are in Tx ′
i ,r
. The edges of the two clause neighbors c′ and c′′ of xi and x ′

i contribute
at least 2 to cngG,T (e), by Claim 3. In addition, by Claim 1, besides e and (yi , zi),
∂G,T (e) contains another edge of the xi -gadget which contributes at least another 1
to cngG,T (e). Thus, cngG,T (e) ≥ k4 + k3 + 3 > K — a contradiction. This proves
Claim 6.

123

Algorithmica (2025) 87:148–165 159

Fig. 7 a Illustration of the proof of Claim 4. b Illustration of the proof of Claim 5. Dot-dashed lines are
edges that may or may not be in T

Fig. 8 a Illustration of the proof of Claim 6. b Illustration of the proof of Claim 7

Claim 7 For each xi -gadget, edge (yi , zi) is in T .

By Claims 4 and 5, the two edges (r , x ′
i) and (r , yi) are in T . Now assume, towards

contradiction, that (yi , zi) is not in T (see Fig. 8b). By Claim 6, only one of (zi , xi)
and (xi , x ′

i) is in T . Furthermore, the clause neighbor c′ of xi is a leaf of T , by
Claim 3. As a result, (zi , xi) cannot be on the yi -to-zi path in T . To reach zi from
yi , the two edges (yi , x̄i), (x̄i , zi) have to be in T . Let us consider the congestion
of e = (yi , x̄i). The edges of the clause neighbor c of x̄i contribute at least 1 to
the congestion of e, by Claim 3. Also, by Claim 1, besides e and (yi , zi), ∂G,T (e)
contains another edge of the xi -gadget which contributes at least 1 to cngG,T (e). In
total, cngG,T (e) ≥ k4 + k2 + 2 > K , reaching a contradiction and completing the
proof of Claim 7.

Claim 8 For each xi -gadget, if its clause-to-literal edge (x̄i , c) is in T , then its other
two clause-to-literal edges (xi , c′) and (x ′

i , c
′′) are not in T .

Assume the clause-to-literal edge (x̄i , c) of the xi -gadget is in T . By Claim 5 and 7,
edges (r , yi) and (yi , zi) are in T . If (yi , x̄i) is also in T , edge (x̄i , zi) cannot be in T ,
and it contributes 1 to cngG,T (yi , x̄i). As shown in Fig. 9a, cngG,T (yi , x̄i) = k2 +3 >

K . Thus, (yi , x̄i) cannot be in T . Since c is a leaf of T , edge (x̄i , zi) has to be in T ,
for otherwise x̄i would not be reachable from r . By Claim 6, one of edges (zi , xi) and
(xi , x ′

i) is in T . If (zi , xi) is in T (see Fig. 9b), cngG,T (yi , zi) ≥ k4 + 5 > K . Hence,
(zi , xi) is not in T , which implies that (xi , x ′

i) is in T .

123

160 Algorithmica (2025) 87:148–165

Fig. 9 Illustration of the proof of Claim 8

Now, we proceed by contradiction assuming that at least one other clause-to-literal
edge of the xi -gadget is in T . If edge (xi , c′) is in T , cngG,T (xi , x ′

i) ≥ k2 + 3 > K ,
as shown in Fig. 9c. Similarly, if (x ′

i , c
′′) is in T , cngG,T (r , x ′

i) ≥ k3 + 4 > K (see
Fig. 9d). So we reach a contradiction in both cases, thus proving Claim 8.

We are now ready to complete the proof of the (⇐) implication in the equivalence
(∗). We use our spanning tree T of congestion at most K to create a truth assignment
for φ by setting xi = 0 if the clause-to-literal edge of x̄i is in T , otherwise xi = 1. By
Claim 8, this truth assignment is well-defined. Each clause has one clause-to-literal
edge in T which ensures that all clauses are indeed satisfied.

4 NP-Completeness Proof of K − STC for Bipartite Graphs of Radius 2
and K ≥ 6

In this section we establish the following result:

Theorem 2 For any fixed integer K ≥ 6, K − STC isNP-complete for bipartite graphs
of radius 2, even if they have only one vertex of degree greater than max(6, K − 2).

First, we introduce a restricted variant of the satisfiability problem, which we name
(M2P1N)-SAT, that is used in the reduction. An instance of (M2P1N)-SAT is a boolean
expression in conjunctive normal form with the following properties:

◦ Each clause either contains three positive literals (a 3P-clause), or two positive
literals (a 2P-clause), or two negative literals (a 2N-clause). Also, literals in the
same clause are of different variables.

◦ Each variable appears exactly three times: once in a 3P-clause, once in a 2P-clause
and once in a 2N-clause.

◦ Two clauses share at most one variable.

Lemma 2 (M2P1N)-SAT is NP-complete.

Proof It is clear that (M2P1N)-SAT belongs toNP. To demonstrateNP-completeness,
we show a polynomial-time reduction from the NP-complete problem called
BALANCED-3SAT [25]. BALANCED-3SAT is a restriction of the satisfiability prob-
lem to boolean expressions in conjunctive normal form where, for each variable x ,

123

Algorithmica (2025) 87:148–165 161

the positive literal x appears the same number of times as the negative literal x̄ . We
can further assume that every variable appears at least four times, and that, for each
clause, all variables that appear in this clause are different.

Given an instance ψ of BALANCED-3SAT, we construct an instance φ of
(M2P1N)-SAT as follows:

◦ For each variable x in ψ , if x appears 2t times (for some integer t ≥ 2), create 2t
new variables x0, x1, . . . , x2t−1.

◦ Replace the t positive occurrences of x byeven-indexedvariables x0, x2, . . . , x2t−2,
and replace its t negative occurrences by odd-indexed variables x1, x3, . . . , x2t−1.

◦ Add t clauses of the form (xi ∨ xi+1) for i = 0, 2, . . . , 2t − 2, and t clauses of
the form (x̄i ∨ x̄(i+1) mod 2t) for i = 1, 3, . . . , 2t − 1.

By the construction, φ is a correct instance of (M2P1N)-SAT. For each variable x of
ψ , its corresponding “cycle” of the newly added two-literal clauses in φ ensures that
x0 = x̄1 = x2 = x̄3 = . . . = x2t−2 = x̄2t−1. Thus, a truth assignment that satisfies ψ

can be converted into a truth assignment that satisfies φ by setting the even-indexed
variables to the truth value of the original variable inψ , and the odd-indexed variables
to the opposite value. Conversely, a truth assignment that satisfies φ can be converted
into a truth assignment that satisfies ψ by reversing this process. This shows that ψ is
satisfiable if and only if φ is satisfiable, completing the proof of the lemma. ��

In order to prove Theorem 2, we show a polynomial-time reduction from (M2P1N)-
SAT. Given an instance φ of (M2P1N)-SAT, we construct a graph G such that

(∗) φ has a satisfying truth assignment if and only if stc(G) ≤ K .

Graph G will be bipartite, of radius 2, and will have only one vertex of degree
larger than max(6, K − 2). We will describe G using some double-weighted edges,
that we refer to as fat edges. As previously discussed in Sect. 2, here we need a specific
realization of these double weighted edges, in which weights are realized using the
spintop graph. (See Figs. 1 and 2.) For i ∈ {1, 2, 3, 4, 5}, let ki = K − i . We start with
an empty graph G and proceed as follows:

◦ Add a root vertex r .
◦ For each variable x of φ, add a variable vertex x and a root-to-vertex edge (r , x).
◦ For each clause c, add a clause vertex c, and add edges from c to the vertices
representing variables whose literals (positive or negative) appear in c. If clause
c contains all positive literals, we call its clause-to-variable edges positive-clause
edges, otherwise its clause-to-variable edges are negative-clause edges.

◦ For each 2P-clause vertex c, add a fat edge (r , c) of double weight k5 :k1.
◦ For each 2N-clause vertex c, add a fat edge (r , c) of double weight k4 :k1.
It is important to note that all edges with double-weights ω : K − 1 satisfy

1 ≤ ω ≤ K − 1, as mentioned in Sect. 2. See Fig. 10a for an example of a partial
graph constructed using the above rules. By routine inspection, taking into account
the spintop realizations of weighted edges, G is bipartite, all vertices are at distance
at most 2 from r , and r is the only vertex of degree larger than max(6, K − 2). We
now proceed to show that G satisfies property (∗).

123

162 Algorithmica (2025) 87:148–165

Fig. 10 a An example of a partial graph G for φ = c1 ∧ c2 ∧ c3 ∧ · · · where c1 = (x̄1 ∨ x̄3), c2 =
(x2 ∨ x3 ∨ x4), c3 = (x3 ∨ x5). Bold lines represent fat edges with given double weights. b An example of
a partial tree T of G where x1 is chosen by c1, x2 by c2, x5 is by c3. Solid lines are tree edges, dotted lines
are non-tree edges, and dot-dashed lines are edges that may or may not be in T . Non-tree double-weighted
edges contribute the indicated weights to edge congestion

Fig. 11 By c, c′, c′′, we denote the 2N-clause, 3P-clause and 2P-clause of xi respectively. In a, xi is not
chosen by any clause, it is chosen by c′ in b, by c′′ in c, by both c′ and c′′ in d, and by c in e

(⇒) Assume that φ has a satisfying truth assignment. From this assignment we con-
struct a spanning tree T of G by adding all root-to-vertex edges, and, for each clause
c, adding to T an edge from c to any variable vertex whose literal satisfies c (see
Fig. 10b). By the construction, T is a spanning tree of G. Note that all clause vertices
in T are leaves and all fat edges are non-tree edges.

Now, we proceed to verify that all tree edges of T have congestion at most K . We
start with leaf edges of T . The congestion of the leaf edge of a 3P-clause vertex is 3.
For a 2P-clause vertex, the congestion of its leaf edge is K − 3, because its fat edge
contributes k5 = K − 5. For a 2N-clause vertex, the congestion of its leaf edge is
K − 2, because its fat edge contributes k4 = K − 4.

Next, consider the root-to-vertex edge of a variable xi . If xi is not chosen to satisfy
any clauses, then cngG,T (r , xi) = 4 (see Fig. 11a). If it is chosen to satisfy only its
3P-clause, then cngG,T (r , xi) = 5 (see Fig. 11b). If it is chosen to satisfy only its 2P-
clause, then cngG,T (r , xi) = k5 + 4 = K − 1 (see Fig. 11c). If it is chosen to satisfy
both its 3P-clause and its 2P-clause, then cngG,T (r , xi) = k5 + 5 = K (see Fig. 11d).
Finally, if it is chosen to satisfy its 2N-clause, then cngG,T (r , xi) = k4 + 4 = K (see
Fig. 11e).

There are also edges inside the realizations of fat edges, but their congestion does
not exceed K , by Lemma 1. We have thus shown that the congestions of all edges in
T are at most K ; that is, stc(G) ≤ K .

123

Algorithmica (2025) 87:148–165 163

(⇐) Assume T is a spanning tree of G with cngG(T) ≤ K . From T , we will
construct a satisfying truth assignment for φ. The argument here, while much shorter,
has a subtle aspect that was not present in the proof in Sect. 3, namely now it is not
necessarily true that all clause vertices in T are leaves.2

We present two claims showing that T must have a special form that will allow us
to define the truth assignment for φ.

Claim 9 For each two-literal clause vertex c, its fat edge (r , c) is not in T .

For each literal of c, there is an r -to-c path via the variable vertex of this literal. So,
together with edge (r , c), G has three disjoint r -to-c paths. Thus, if (r , c) were in T ,
its congestion would be at least k1 + 2 > K , proving Claim 9.

Claim 10 For each variable vertex xi , if its negative-clause edge is in T then its two
positive-clause edges are not in T .

Denote by c, c′, c′′ the 2N, 3P, 2P-clause vertices of xi respectively. Since c, c′, c′′
all contain variable xi , they cannot share any other variables (by the definition of
(M2P1N)-SAT). Therefore, the four literals in c, c′, c′′ other than xi and x̄i must all
involve different variables.

Toward contradiction, suppose (xi , c) and at least one of (xi , c′), (xi , c′′) are in T .
We will estimate the congestion of the first edge e = (r , v) on the r -to-c path in T .

By Claim 9, fat edge (r , c) contributes k4 to cngG,T (e). The rest of the argument
is based on the following two observations: (i) If a clause c̃ ∈ {

c, c′, c′′} is in Tv,r ,
and some variable x is in c̃, then either (r , x) or (x, c̃) is in ∂G,T (e); that is, this x
contributes 1 to cngG,T (e). (This is true whether or not v = x . And if x = xi and
c̃ = c, then (r , xi) is the edge that contributes to cngG,T (e).) On the other hand, (ii) if
a clause c̃ ∈ {

c′, c′′} is not in Tv,r , then (xi , c̃) contributes 1 to cngG,T (e).
Now we have some cases to consider. First, if c′ ∈ Tv,r and c′′ /∈ Tv,r , by the above

observations, four different variables in c, c′ contribute 4 to cngG,T (e) and (xi , c′′)
contributes 1. In total, cngG,T (e) ≥ k4 + 4 + 1 > K . On the other hand, when
c′′ ∈ Tv,r and c′ /∈ Tv,r , the three different variables of c, c′′ contribute 3 while (xi , c′)
contributes 1 to cngG,T (e). Also, the fat edge (r , c′′) contributes k5, by Claim 9. Thus,
cngG,T (e) ≥ k4 + k5 + 3 + 1 > K . Lastly, when both c′, c′′ are in Tv,r , the five
different variables of c, c′, c′′ contribute to cngG,T (e), so cngG,T (e) ≥ k4 + 5 > K .
We have thus shown that the congestion of e exceeds K in all cases, completing the
proof of Claim 10.

We are now ready to describe the truth assignment for φ using T . For each variable
xi , assign xi = 0 if its negative clause edge is in T , otherwise, xi = 1. By Claim 10,
the truth assignment is well-defined. By Claim 9, each clause vertex has at least one
edge to a variable vertex, which ensures all clauses are satisfied. This completes the
proof of Theorem 2.

2 For large K , it is possible that a single branch out of r may visit multiple variable gadgets via 3P-clause
vertices. For example, a 3P-clause vertex c can have tree edges to two literal vertices, and the congestion
of the first edge on the r -to-c path may be as small as 7.

123

164 Algorithmica (2025) 87:148–165

5 Final Comments

The complexity status of K − STC for K = 4 remains open. Our efforts to extend our
construction to K = 4 by refining the xi -gadget in Fig. 3 were not successful. One can
think of this variable gadget as a black-box subgraph, with edges connecting it to the
rest of the graph, that satisfies certain properties. We formalized this concept and were
able to prove that such a gadget does not in fact exist when K = 4. For this reason, we
believe that the NP-hardness proof, if at all possible, would require substantial new
insights and approaches. It may be easier to use a reduction from a different NP-hard
problem, not necessarily a version of SAT.

At the same time, we also would not exclude the possibility that 4 − STC may be
solvable in polynomial time. (We have also done some work in this direction.) Given
our still limited understanding, we are not prepared to make a conjecture in favor or
against NP-hardness.

The complexity status of K − STC on graphs of radius 2 also remains open when
K ∈ {4, 5}. Resolving this problem could give some insights into the complexity of
4 − STC.

Notes A preliminary version of this paper, containing only the results in Sect. 3,
appeared in [26].

Author Contributions All authors wrote and reviewed the manuscript.

Funding The authors’ work was partially supported by National Science Foundation grant CCF-2153723.

Declarations

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bhatt, S., Chung, F., Leighton, T., Rosenberg,A.:Optimal simulations of treemachines. In: Proceedings
of the 27th Annual Symposium on Foundations of Computer Science. SFCS ’86, pp. 274–282. IEEE
Computer Society, USA (1986)

2. Rosenberg, A.L.: Graph embeddings 1988: Recent breakthroughs, new directions. In: Reif, J.H. (ed.)
VLSI Algorithms and Architectures, pp. 160–169. Springer, New York, NY (1988)

3. Khuller, S., Raghavachari, B., Young, N.: Designing multi-commodity flow trees. Inf. Process. Lett.
50(1), 49–55 (1994)

4. Ostrovskii, M.I.: Minimal congestion trees. Discret. Math. 285(1), 219–226 (2004)
5. Otachi, Yota: A survey on spanning tree congestion. In: Fomin, FedorV., Kratsch, Stefan, van Leeuwen,

Erik Jan (eds.) Treewidth, Kernels, and Algorithms: Essays Dedicated to Hans L. Bodlaender on the

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2025) 87:148–165 165

Occasion of His 60th Birthday, pp. 165–172. Springer International Publishing, Cham (2020). https://
doi.org/10.1007/978-3-030-42071-0_12

6. Löwenstein, C.: In the complement of a dominating set. PhD thesis, Technische Universität at Ilmenau
(2010)

7. Otachi, Yota, Bodlaender, Hans L., van Leeuwen, Erik Jan: Complexity results for the spanning tree
congestion problem. In: Graph Theoretic Concepts in Computer Science, pp. 3–14. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_3

8. Okamoto, Yoshio, Otachi, Yota, Uehara, Ryuhei, Uno, Takeaki: Hardness results and an exact expo-
nential algorithm for the spanning tree congestion problem. In: Ogihara, Mitsunori, Tarui, Jun (eds.)
Theory and Applications of Models of Computation, pp. 452–462. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-5_44

9. Kozawa, K., Otachi, Y., Yamazaki, K.: On spanning tree congestion of graphs. Discret. Math. 309(13),
4215–4224 (2009)

10. Bodlaender, H.L., Kozawa, K., Matsushima, T., Otachi, Y.: Spanning tree congestion of k-outerplanar
graphs. Discret. Math. 311(12), 1040–1045 (2011)

11. Kozawa, K., Otachi, Y.: Spanning tree congestion of rook’s graphs. Discussiones Mathematicae Graph
Theory 31(4), 753–761 (2011)

12. Bodlaender, H., Fomin, F., Golovach, P., Otachi, Y., Leeuwen, E.: Parameterized complexity of the
spanning tree congestion problem. Algorithmica 64, 1–27 (2012)

13. Fekete, Sándor. P., Kremer, Jana: Tree spanners in planar graphs. Discr. Appl. Math. 108(1–2), 85–103
(2001). https://doi.org/10.1016/S0166-218X(00)00226-2

14. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discret. Math. 8(3), 359–387 (1995)
15. Dragan, F.F., Fomin, F.V., Golovach, P.A.: Spanners in sparse graphs. J. Comput. Syst. Sci. 77(6),

1108–1119 (2011)
16. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs.

SIAM J. Comput. 38(5), 1761–1781 (2009)
17. Alvarruiz Bermejo, F., Martínez Alzamora, F., Vidal Maciá, A.M.: Improving the efficiency of the

loop method for the simulation of water distribution networks. J. Water Resour. Plan. Manag. 141(10),
1–10 (2015)

18. Benczúr, A.A., Karger, D.R.: Approximating s − t minimum cuts in Õ(n2) time. In: Proceedings of
the 28th Annual ACM Symposium on Theory of Computing, pp. 47–55 (1996)

19. Fung, W.S., Hariharan, R., Harvey, N.J., Panigrahi, D.: A general framework for graph sparsification.
In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 71–80 (2011)

20. Spielman, D.A., Teng, S.-H.: Spectral sparsification of graphs. SIAM J. Comput. 40(4), 981–1025
(2011)

21. Chandran, L.S., Cheung, Y.K., Issac, D.: Spanning Tree Congestion and Computation of Generalized
Györi-Lovász Partition. In: 45th International Colloquium onAutomata, Languages, and Programming
(ICALP 2018), 107, 32–13214 (2018)

22. Luu, H., Chrobak, M.: Better hardness results for the minimum spanning tree congestion problem.
CoRR (2022) https://doi.org/10.48550/arXiv.2209.08219https://arxiv.org/abs/2209.08219

23. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of
multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

24. Yoshinaka, Ryo: Higher-order matching in the linear lambda calculus in the absence of constants is
NP-complete. In: Term Rewriting and Applications, pp. 235–249. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_18

25. Hägele, Klemens, Ó Dúnlaing, Colm, Riis, Søren.: The complexity of scheduling TV commer-
cials. Electron. Notes Theor. Comput. Sci. 40, 162–185 (2001). https://doi.org/10.1016/S1571-
0661(05)80043-X

26. Luu, H., Chrobak, M.: Better hardness results for the minimum spanning tree congestion problem.
In: Proceedings of 17th International Conference and Workshop on Algorithms and Computation
WALCOM’23, pp. 167–178 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-030-42071-0_12
https://doi.org/10.1007/978-3-030-42071-0_12
https://doi.org/10.1007/978-3-642-16926-7_3
https://doi.org/10.1007/978-3-642-20877-5_44
https://doi.org/10.1016/S0166-218X(00)00226-2
https://doi.org/10.48550/arXiv.2209.08219
https://arxiv.org/abs/2209.08219
https://doi.org/10.1007/978-3-540-32033-3_18
https://doi.org/10.1016/S1571-0661(05)80043-X
https://doi.org/10.1016/S1571-0661(05)80043-X

	Better Hardness Results for the Minimum Spanning Tree Congestion Problem
	Abstract
	1 Introduction
	2 Preliminaries
	3 mathbbNP-Completeness Proof of K-STC for K ge5
	4 mathbbNP-Completeness Proof of K-STC for Bipartite Graphs of Radius 2 and K ge6
	5 Final Comments
	References

