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Abstract—Raindrops adhering to windshields or camera lenses
substantially impair visibility, leading to significant camera-based
detection challenges for software-defined vehicles in both daytime
and nighttime conditions. Addressing the impact of raindrops
is thus crucial. This work begins by classifying four prevalent
types of raindrops within the BDD100K dataset, identifying
microsphere raindrops as particularly impactful in rainy con-
ditions. We then conduct a quantitative analysis focusing on the
density and diameter of raindrops, underscoring the pronounced
impacts of small-density raindrops on detection performance.
To mitigate raindrop interference, we introduce and assess the
SR3 model for raindrop removal, applying it to both synthetic
raindrop-degraded data and real-world rainy data. Besides, we
propose YOLO-RA, a novel and fast model to resolve the
issues of missing small-size objects and erroneous detections in
irrelevant regions. Next, a novel pipeline that combines SR3 with
YOLO-RA markedly improves accuracy and processing speed.
Finally, we discuss our experimental observations extensively and
offer detailed explanations, contributing to understanding SDVs’
operational effectiveness in adverse weather conditions.

Index Terms—software-defined vehicles, adverse weather, rain-
drops, computer vision, impact mitigation

I. INTRODUCTION

Software-defined vehicles. With the rapid development of
automotive electronics, automotive hardware systems will
gradually become standardized and unified, while automotive
algorithms will become the core of smart cities [1]. In this
context, software-defined vehicles (SDVs) have attracted mas-
sive attention from both academic and industry leaders [2]. For
instance, Tesla [3], General Motors [4], Ford [5], BMW [6],
Mercedes-Benz [7], Toyota [8], Audi [9], Arm [10], Amazon
[11], and Aptiv [12] brought SDVs to the spotlight.
Camera-based algorithms. These mainstream SDVs, par-
ticularly autonomous vehicles, a popular category within
SDVs, rely heavily on cameras for scenario understanding and
decision-making [13]. A typical example is the ”Tesla Vision
Approach” [14], i.e., only using cameras to ”see” the road and
neural networks that are supposed to mimic the way a human
brain works. Hence, ensuring the performance of camera-
based algorithms under various conditions is paramount.
The influence of raindrops. However, it is widely acknowl-
edged that adverse weather conditions diminish the quality
of captured images, adversely affecting the performance of
algorithms dependent on camera images [13]. Prior research
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Fig. 1. A succinct overview of our structured methodology for understanding
and mitigating the impacts of rain on software-defined vehicles (SDVs). It
includes three main research questions (RQs) related to qualitative analysis
(top-left), quantitative analysis (middle-top), and effective solutions (top-
right). RQ1 examines the effects of four distinct raindrop types under daytime
and nighttime conditions. RQ2 conducts a quantitative assessment based on
the density and diameter of raindrops. As to RQ3, we introduce an advanced
raindrop removal model (SR3) and propose a novel algorithm (YOLO-RA)
for accurate and fast object detection based on raindrop-degraded images. We
also synergize SR3 with YOLO-RA to assess the combined enhancement.

[15], [16] categorizes these conditions into two broad types:
steady (e.g., fog, mist, and haze) and dynamic (e.g., rain,
snow, and hail), in which rain is a common occurrence
and significant source of camera-based perception degrada-
tion [16]–[19]. Raindrops adhering to a vehicle’s windscreen
significantly degrade scene visibility and obstruct the camera’s
view, potentially leading to inaccuracies in object recognition
by computer vision models [20], [21]. This highlights the
critical need for improved systems capable of functioning
optimally, even in adverse weather conditions [16]–[21].

Research gaps. Despite the widespread occurrence of raindrop
disturbances across numerous scenarios and their potential to
severely impair visibility for both humans and algorithms, the
field remains relatively underexplored. Only a few articles
have focused on adherent raindrops recently [22], [23]. While
hardware solutions like glass heaters and wipers can physically
remove raindrops, there is a growing need for algorithm-based
strategies for cost savings and autonomous processing scenes.



Time-sensitive vehicle services. Furthermore, the cornerstone
of SDV systems lies in their ability to make reliable decisions
in real-time. For instance, to effectively avoid an obstacle
5 meters away, the system’s computing latency must not
exceed 164 milliseconds [24]. Excessive delays could result
in significant safety risks [25]. Consequently, any solution
designed to mitigate the impact of raindrops on SDV systems
must not only be effective in enhancing visibility and detection
accuracy but also sufficiently rapid to adhere to the stringent
temporal constraints inherent in real-time vehicular operation.

In this work, we tackle the following three main research
questions (RQs) for SDVs (as shown in Fig. 1).

RQ1: Qualitative Analysis: Which type of mainstream
raindrops causes the most significant impact on camera-
based object detection during both daytime and nighttime
conditions?
RQ2: Quantitative Analysis: For the type of raindrop with
the greatest impact, which characteristic has a greater effect
on camera-based object detection: variations in density or
diameter of the raindrops?
RQ3: Effective Solutions: How can we effectively and
quickly mitigate the impact of raindrops on the performance
of object detection?
The core innovation of our study is in providing experi-

mental evidence to answer the above three research questions
for the SDV’s camera-based detection under rainy conditions.
Specific contributions are listed as follows.

• We first undertake a comprehensive qualitative analysis
to investigate the effects of four distinct raindrop types
on various object detection tasks during daytime and
nighttime. We discover that microsphere raindrops exhibit
the most substantial impact. The experimental results also
underscore the variable impact of raindrop types under
different lighting conditions (described in Sec. IV-C).

• We proceed with a quantitative analysis of the raindrops’
impacts, varying in diameter and density, on diverse
object detection. It reveals that low-density and large-
diameter conditions predominantly influence detection
outcomes. Furthermore, when examining the relative im-
pacts of density and diameter, our results conclusively
show that the effect of density on detection performance
is more pronounced than that of diameter (Sec. V-C).

• To mitigate the impacts of raindrops, we introduce and
assess SR3 for raindrop removal across real-world rainy
datasets and synthetically generated raindrop-degraded
data. Besides, we develop YOLO-RA, a novel algorithm
designed for accurate and fast mitigation of raindrop
impacts, which shows a superior mAP (0.85), F1 score
(0.82), inference time (6.1ms), and FPS (118). The in-
tegration of SR3 with YOLO-RA and subsequent abla-
tion studies further validate the notable improvements
achieved in object detection performance under rainy
conditions for SDVs (presented in Sec. VI-C).

• Finally, we provide an extensive discussion of our exper-
imental observations, offering in-depth explanations for

the results and identified trends. This detailed analysis
enhances the understanding of the intricacies involved in
our experiments and contributes to the broader knowledge
base regarding object detection under adverse weather
conditions (described in Sec. VII).

II. RELATED WORK

A. Rain Streak Removal

Many studies have aimed at enhancing visibility in rainy
conditions by primarily targeting rain streaks [26]–[29]. How-
ever, raindrops possess distinct shapes and physical effects,
setting them apart from streaks. Therefore, techniques opti-
mized for streak removal often fall short when applied to the
more complex challenge of raindrop mitigation.

B. Raindrop Removal

Several previous works focus on raindrop detection. The
principal component analysis (PCA) has been utilized to
learn the raindrop characteristics [30], and the maximally
stable extremal regions have been applied to detect raindrop
candidates [31]. However, these methods primarily emphasize
detection rather than the raindrop removal.

Since 2012, researchers have begun investigating raindrop
removal. For instance, earlier studies have analyzed the color
and texture characteristics of raindrops for identification pur-
poses, followed by employing image inpainting techniques for
their removal [32]. However, this area has been hindered by the
limited availability of datasets and the challenge of controlling
parameters (e.g., shape and refraction).

In this context, generative adversarial networks (GAN) have
been employed to address dataset limitations [33]. However,
the network may become trapped in local minima during
training, resulting in overly similar samples and a reduction
in diversity among the generated images.

Recent studies have increasingly treated rain in single
images as a noise reduction problem. The denoising diffu-
sion probabilistic model (DDPM) [34], [35] shows its strong
capability on image inpaintment, which is designed on U-net
[36]. This balanced structure is akin to that of GAN. Despite
this, only a few researchers have focused on this area, often
due to challenges related to image magnification.

To address the above challenges, we focus on utilizing
Super-Resolution via Repeated Refinement (SR3) [37] for
efficient raindrop removal, a technique that holds promise yet
remains relatively untapped in this specific application domain.
Based on the DDPM structure, SR3 increases residual blocks
and channel multipliers at different resolutions. It works well
with various magnification factors and input resolutions [37].

C. The Gap in Previous Work

While the impact of raindrops on SDVs is widely recog-
nized, there is a limited understanding of the distinct impacts
of various types of raindrops under daytime and nighttime
conditions. Often, both the qualitative and quantitative anal-
yses are overlooked, along with an in-depth exploration of
different raindrop parameters.



Moreover, while current object detection algorithms excel
on general benchmark datasets in identifying specific objects,
they face challenges when dealing with raindrops. For exam-
ple, while PCA [30] focuses on raindrop recognition, it often
mistakenly identifies areas locally similar to raindrops as rain-
drops themselves [23]. Similarly, YOLOv7 [38] demonstrates
high accuracy and speed in typical scenarios but struggles with
the presence of raindrops, resulting in missed detections.

Bearing the above concerns in mind, our research directly
addresses the priorities for problem-solving in diverse rainy
and lighting conditions affecting SDVs. We delve into the
impacts of various factors such as raindrop types, density, and
diameter through comprehensive quantitative analysis. We in-
troduce YOLO-RA, an accurate and fast algorithm specifically
designed for detecting transportation-related objects on rainy
days. We also integrate the SR3 method to establish a synergy
between raindrop removal and object detection. This approach
not only offers novel solutions for enhancing image quality
but also contributes significantly to improving overall object
detection performance in adverse weather.

III. EXPERIMENT DATASETS AND HARDWARE

A. Dataset Selection and Related Issues

In this work, we select the BDD100K dataset [39]. Despite
its broad scope of driving conditions, the dataset notably lacks
substantial data records related to rainy scenarios.

However, purely relying on the BDD100K dataset is un-
reasonable. To the best of our knowledge, only 53 out of
3,000 records are specifically collected under such conditions.
Despite it boasting 100,000 video clips, the data’s value
is somewhat diminished due to the high similarity between
adjacent frames in continuous video collection, leading to
redundancy. Most critically, our research aims to delve into
the influence of raindrop density and size on SDV applica-
tions; however, the BDD100K dataset falls short in offering
specific subsets that account for varying sizes and densities
of raindrops, presenting a challenge in terms of data diversity
and representativeness for rain-related studies.

B. Raindrop-degraded Dataset Generation

To address the aforementioned challenges, we gener-
ate a collection of raindrop-degraded images utilizing the
BDD100K dataset. We first methodically select images from
the 53 rainy records within BDD100K, adopting a one-
frame-per-second approach to ensure diversity and minimize
redundancy. Through this process, we identified four prevalent
types of raindrops that typically adhere to camera lenses during
rainy conditions: flat, elongated, microspherical, and spherical
raindrops, as depicted in Fig. 2(a). These were added to rain-
free BDD100K images, creating a diverse set of raindrop-
degraded images shown in Fig. 2(b). This addition significantly
enriches the dataset with challenging scenarios for robustness
testing and allows for a comprehensive analysis of the different
types of raindrops’ impact on SDV systems.

(𝑖) Flat drops (𝑖𝑖) Elongated drops (𝑖𝑖𝑖) Microspheres drops (𝑖v) Spherical drops
(a) Four common types of raindrops.

(b) An example of the related raindrop degraded images.

Fig. 2. (a) Four typical types of raindrops, (b): An illustration depicting four
distinct types of raindrop-degraded datasets, each based on a different type of
selected raindrop and the original rain-free BDD100K dataset.
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Fig. 3. The configuration of NVIDIA GPU workstation.

C. Raindrop Image Formation

Investigating the effects of raindrop impacts in real-world
situations is challenging because raindrops typically exhibit ir-
regular shapes and are subject to frequent changes. Therefore,
following the classification of predominant raindrop types, we
extend our investigation to encompass a range of raindrop
densities and sizes (diameters). Specifically, we model a
raindrop-degraded image as the combination of a background
image and the effect of raindrops, factoring in the fluctuations
in both raindrop density and diameter:

Iout =

Ng−1∑
h=0

Ng−1∑
w=0

(1−M) • αBhw ⊙ Ihw (1)

Iout =

β∑
i=1

Ng−1∑
h=0

Ng−1∑
w=0

(1−M) •Bhw ⊙ Ihw (2)

Where I represents the rain-free BDD100K image (back-
ground), and B denotes the binary template of the selected
raindrop. In the raindrop-addition module, the image is divided
into Ng grids, and each grid in the input image and the binary
template is iterated. When (1 − M) = 1, it indicates the
presence of raindrops in that grid; conversely, (1 − M) = 0
denotes no raindrops in that region. The variable α represents
the diameter size, ranging from (0, 1]. We use β to illustrate
density, simulating how many times each grid includes rain-
drops, and it is greater than or equal to 1. Operation ⊙ means
element-wise multiplication.

To meticulously manage variables pertinent to raindrop
density and diameter, we adopt specific values for α (0.5 and
1) and β (1 and 4) to emulate varying intensities of raindrop
diameter and density, respectively.

D. Hardware Setup

In this work, we assume that an SDV is equipped with an
NVIDIA GPU Workstation, serving as the powerful vehicle
computing platform (as shown in Fig. 3). It has an AMD



EPYC 7543, which is great for handling complex tasks
efficiently by excelling at multitasking. It incorporates two
NVIDIA GeForce RTX 3090 graphics cards, each with 24 GB
of memory, providing robust parallel processing capabilities
that are essential for tasks such as deep learning and advanced
graphical computations. The RTX 3090 is renowned for its
exceptional performance in professional AI workloads.

IV. QUALITATIVE ANALYSIS OF RAINDROP TYPES DURING
DAYTIME AND NIGHTTIME

In addressing RQ1, this section explores which type
of mainstream raindrops exerts the most significant impact
on camera-based object detection under both daytime and
nighttime conditions.

A. Proposed Methodology

As detailed in Section III-B, this work focuses on four
typical types of raindrops: flat, elongated, microsphere, and
spherical. Besides, we select a fundamental application (object
detection) as our case study in the context of SDVs. The
raindrop-degraded datasets are divided into daytime and night-
time segments to assess object detection performance under
varied lighting conditions, comparing against the performance
in the corresponding original, rain-free dataset (referred to as
”rain-free”).

In practical applications of SDVs, accurate and fast object
detection is imperative, as inaccurate detection and prolonged
latency can significantly contribute to traffic incidents. Re-
cently, YOLOv7 [38] stands out as a recently released model
boasting remarkable advancements in terms of object detec-
tion. Motivated by the discovery that YOLOv7 achieves a sub-
stantial speed improvement, specifically a 120% increase over
YOLOv5 [40], we adopt YOLOv7, a cutting-edge method, as
our primary object detection model.

To be concrete, we employ YOLOv7 on the five sets of data:
rain-free, flat, elongated, microsphere, and spherical, each
under both daytime and nighttime conditions. The objective is
to accurately detect key categories of transportation-related ob-
jects, including cars, traffic lights, trucks, persons, and buses.
We commence by establishing a baseline, quantifying the
number of detected objects in the original, rain-free BDD100K
dataset using YOLOv7. This baseline serves to generate labels
(bounding boxes of targets) and is used as ground truth against

which the detection counts in each category of raindrops are
compared.

B. Evaluation Metrics

We analyze object detection counts between original rain-
free images and their raindrop-degraded counterparts across
different categories. This comparison aims to calculate the
decrease rate, by a metric to quantify the adverse impact
of raindrop interference on object detection accuracy, a fun-
damental aspect of SDV functionality. The decrease rate is
defined by the following formula:

Decrease Rate =
Numtypex −Numbase

Numbase
× 100% (3)

This rate provides a percentage indicating the reduction in
detection (bounding box) counts due to raindrop effects, thus
offering a clear metric for understanding the extent to which
raindrops impair object detection in SDVs.

C. Experiment Results

Figure 4 illustrates the variation in object detection decrease
rate between the original rain-free dataset and the four types
of raindrop-degraded datasets during both daytime (Fig. 4 (a))
and nighttime (Fig. 4 (b)). A significant decrease in detection
rates of various objects, such as vehicles, traffic lights, and
pedestrians, is observed across all types of raindrop conditions,
with the most pronounced effect seen in datasets impaired by
microsphere raindrops. Specifically, the vehicle detection rate
decreases by 25% during daytime and 36% during nighttime
under the influence of microsphere raindrops, underscoring the
substantial impact of raindrop morphology on the efficacy of
object detection systems in SDV applications.

Following microsphere raindrops, spherical raindrops ex-
hibit the second-highest impact, though their effect is less
severe, causing approximately 11% and 8% reduction in
vehicle detection rates during daytime and nighttime, respec-
tively. Notably, the flat raindrop-degraded dataset shows an
anomalous increase in detected traffic lights compared to
the baseline (rain-free scenario) by 32%, particularly during
nighttime, highlighting that flat raindrops also exert a signif-
icant influence. Therefore, addressing the challenges posed
by microsphere and spherical raindrops should be prioritized,
followed by mitigating the effects of flat raindrops, to enhance
the reliability of object detection in SDVs.

(a) Detection quantity during daytime.

Car Traffic light Truck Person Bus
Flat 7% 32% 0% 7% 47%
Elongated 5% 3% 25% 94% 29%
Microsphere 36% 94% 100% 97% 41%
Spherical 8% 16% 13% 71% 59%
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(b) Detection quantity during nighttime.

Car Traffic light Truck Person Bus
Flat 3% 5% 2% 1% 22%
Elongated 6% 6% 1% 1% 0%
Microsphere 25% 81% 31% 73% 65%
Spherical 11% 10% 1% 25% 24%
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Fig. 4. The decrease rate of detection for vehicles, traffic lights, trucks, persons, and buses via YOLOv7: baseline (rain-free BDD100 dataset) versus the
other four distinct types of raindrop-degraded image datasets in daytime and nighttime.



V. QUANTITATIVE ANALYSIS OF DENSITY AND DIAMETER

Next, we address RQ2: For the raindrop types identified
as having the most substantial impact (namely, microsphere
and sphere raindrops, as detailed in Section IV-C), we aim
to ascertain which characteristic exerts a greater influence on
camera-based object detection — the density or the diameter of
the raindrops. Understanding and quantifying the influence of
these factors is crucial to comprehending the specific impact
of raindrops on the performance of SDV detection systems.

A. Experiment Design

1) Comparative Baselines: Recognizing the significant im-
pact of microsphere raindrops (abbreviated as ”MR”) and
spherical raindrops (abbreviated as ”SR”) on object detection
performance, we focus on the density of MR and the diameter
of SR as our comparative metrics. Specifically, we define:

(a) Low density: the standard density of MR,
(b) High density: four times the standard density of MR,
(c) Small diameter: half the standard diameter of SR,
(d) Large diameter: the standard diameter for SR.

2) Five Groups: Drawing from the defined baselines for
varying levels of density and diameter, we divide five groups
of datasets for the comprehensive evaluation. These include:

• Rain-free dataset during sunny and daytime conditions,
• Low-density raindrop-degraded dataset,
• High-density raindrop-degraded dataset,
• Small-diameter raindrop-degraded dataset,
• Large-diameter raindrop-degraded dataset.

B. Proposed Methodology

1) YOLOv7 Structure: YOLOv7 is a sophisticated object
detection model consisting of three primary components: i)
the backbone network to extract image features; ii) the feature
pyramid network (FPN) [28] to generate multiscale feature
maps that effectively integrate both high-level semantic and
low-level spatial features, thereby maintaining adequate spatial
resolution across different object scales [41]; and iii) the head
network to output the object classification and location.

Initially, the input image is resized to 640 × 640 and fed
into the backbone network. The backbone integrates several
architectural advancements, including CBS modules, Efficient
Layer Aggregation Networks (ELAN) modules [42], and
MP modules. Here, ”CBS” is an acronym for a series of
operations: convolution, batch normalization (BN), and the
sigmoid-weighted linear unit (SiLU), while ”MP” denotes a
combination of Maxpool and CBS. The head network then
produces three layers of feature maps of dimensions 20× 20,
40 × 40, and 80 × 80 to capture objects at different scales.
To enhance interfacing speed without compromising accuracy,
a RepConv [43] operation is incorporated. Finally, each layer
outputs detection results in the form of (x, y, w, h, cls), where
x, y, w, and h represent the coordinates and dimensions of the
bounding box, and cls indicates the class probability.

2) YOLO-RA: In the dynamic and complex driving environ-
ment of SDVs, the system frequently encounters a wide array
of objects, including smaller, more difficult-to-detect items like
traffic signs [44]. While FPN fuses features from different
receptive fields, its effectiveness largely depends on the quality
of features derived from the backbone network.

To bolster detection capabilities, particularly for small-scale
vehicles, we implement a dual strategy: i) applying the Mosaic
data augmentation technique [45] and ii) refining the ELAN by
adding a Convolutional Block Attention Module (CBAM) [46]
within the backbone of YOLOv7, culminating in an enhanced
model named YOLO-RA (You Only Look Once-Raindrop
Analysis). The respective advantages of the Mosaic method
and CBAM are listed below.

Mosaic: it randomly merges four images into a single com-
posite. The Mosaic method is able to minimize the presence
of irrelevant targets within the image, significantly boosts
the accuracy of detecting small-scale objects, and enhances
the model’s resilience to complex backgrounds. To ensure
an equitable performance comparison with YOLO-RA, we
exclusively integrate the Mosaic technique into YOLOv7,
referred to as YOLO-Mosaic in Section VI.

CBAM: Since integrating attention mechanisms has been
proven to enrich feature acquisition, we incorporate a
CBAM into the ELAN module of YOLOv7 to address
the limited contextual understanding associated with small
objects. According to prior research, 7× 7 convolutions in
CBAM outperform 3× 3 convolutions [46]. Therefore, we
employ a 7 × 7 kernel in the spatial attention module of
CBAM, enhancing the model’s potential for improved per-
formance. Similarly, for a direct comparison with YOLO-
RA, we exclusively implement CBAM in YOLOv7, and
this variant is referred to as YOLO-CBAM in Section VI.

Integrate CBAM with ELAN: To be specific, we integrate
CBAM with the ELAN module to get a modified ELAN
denoted as ELAN-CBAM (as shown in Fig. 5), which is
designed to optimize the network’s gradient length using a
stacked structure within the computational block.

Figure 5 showcases the integration of the CBAM into the
ELAN module. The process begins with the input image

1x1
(Kernel=1; Stride=1)

3x3
(Kernel=3; Stride=1)

conv BN SiLu

(a) Input

(b) CBS

Feature Map

CBS

CBAM

X Multiplication

Addition+
X X

Channel Attention Spatial Attention

Ϝ t1 Ϝ t2

Ϝ t0 Ϝ t3

(c) CBAM

+

conv BN SiLu

CBAM + ELAN Module 

(d) Output(c) CBAM

Fig. 5. Integration of CBAM with the ELAN module (ELAN-CBAM). (a)
represents the input feature map alongside corresponding legends; (b) details
the high-level CBS operations;(c) depicts the dual attention mechanisms
within CBAM; and (d) shows the resulting output feature after processing.



passing through a series of convolutional layers, specifically
through two types of CBS modules. The first CBS module em-
ploys a 1×1 kernel size, and the second uses a 3×3 kernel size.
After these initial convolutions, the feature map F (t0) is pro-
cessed by the CBAM’s channel attention mechanism, which
produces a dedicated attention map F (t1). Subsequently, it is
refined by the spatial attention mechanism within CBAM and
produces F (t2). Parallel to this, additional branches of the
network with various kernel-sized CBS operations merge with
the main flow. The network narrows down into four branches,
and the final output feature map is synthesized through a
concluding 1× 1 kernel CBS operation.

C. Experiment Results

1) Density: We first train both YOLOv7 and the proposed
YOLO-RA models using a standard dataset degraded by
microsphere raindrops. Subsequently, we then test the models
on the unseen datasets affected by low-density and high-
density microsphere raindrops to determine their efficacy in
identifying transportation-related objects under varied rain
conditions. As a benchmark, we consider the detection results
of YOLOv7 on the corresponding rain-free datasets as the
ground truth (referred to as GT-Sunny).

Figure 6 illustrates the detection quantities of five preva-
lent transportation-related objects (such as vehicles, traffic
lights, trucks, pedestrians, and buses) within both low-density
(Fig. 6(a)) and high-density (Fig. 6(b)) microsphere raindrop-
degraded datasets. These quantities are compared against the
ground truth (GT-Sunny).

Upon comparing Fig. 6 (a) and Fig. 6 (b), it becomes
evident that for both YOLOv7 and YOLO-RA, the differences
in detection quantities for each object category under the low-
density raindrop condition relative to the ground truth (GT-
Sunny) are more pronounced than those under the high-density

condition. For instance, vehicle detection rates increase by
approximately 14% in low-density scenarios, highlighting the
significant impact of raindrop density on object detection.

Moreover, when comparing the performance of YOLO-RA
and YOLOv7 across the five object types in Fig. 6 (a) and (b),
our YOLO-RA model consistently detects more objects than
YOLOv7. For example, YOLO-RA detects approximately 120
more vehicles than YOLOv7, underlining the superior efficacy
of our proposed YOLO-RA model.

2) Diameter: Mirroring our approach in assessing the im-
pact of raindrop density, we evaluate the trained YOLOv7 and
YOLO-RA models on datasets affected by both small-diameter
and large-diameter spherical raindrops, as illustrated in Fig. 7.

The comparison between Fig. 7 (a) and Fig. 7 (b) reveals
that for both YOLOv7 and YOLO-RA, an increase in raindrop
diameter corresponds to a decrease in the number of detected
objects. For instance, in scenarios involving large-diameter
raindrops (Fig. 7(b)), YOLOv7 fails to detect over 100 ve-
hicles and 40 traffic lights, suggesting that larger raindrops
significantly impair object detection for SDVs.

Additionally, when comparing the performance of YOLO-
RA and YOLOv7 across various object categories in Fig. 7 (a)
and (b), the YOLO-RA model demonstrates a consistent ability
to detect more objects than YOLOv7. Notably, the YOLO-
RA model significantly reduces missed detections to only 56
vehicles and closely approaches the ground truth in detecting
smaller objects and traffic lights, affirming the effectiveness of
our proposed model.

3) Density versus Diameter: To be short, the analysis of
Fig. 6 versus Fig. 7 reveals the following three insights:

(i) Raindrop diameter has a lesser impact on object de-
tection, compared to the more pronounced impact of
raindrop density.

(a) Detection results on low-density raindrop-degraded datasets.  

Car Traffic Light Truck Person Bus
GT-Sunny 1051 177 130 124 37
YOLO-RA (Our) 1020 184 119 74 19
YOLOv7 975 89 78 99 22
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(b) Detection results on high-density raindrop-degraded datasets.  

Car Traffic Light Truck Person Bus
GT-Sunny 1051 177 130 124 37
YOLO-RA (Ours) 953 143 101 82 17
YOLOv7 830 130 89 60 23
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Fig. 6. Detection quantities of five transportation objects (cars, traffic lights, trucks, persons, buses) using YOLO-RA and YOLOv7 on low-density (a) and
high-density raindrop-degraded datasets (b), compared to the ground truth (GT) of the corresponding sunny dataset (denoted as GT-Sunny). Here, we treat
the detection results of YOLOv7 on the original datasets without any raindrops as the ground truth.

(a) Detection on small-diameter raindrop-degraded datasets.  (b) Detection on large-diameter raindrop-degraded datasets.  
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Fig. 7. Detection quantities of five transportation objects (cars, traffic lights, trucks, persons, buses) using YOLO-RA and YOLOv7 on small-diameter and
large-diameter raindrop-degraded datasets, compared to the ground truth (GT) of the corresponding sunny dataset (denoted as GT-Sunny). Here, we treat the
detection results of YOLOv7 on the original datasets without any raindrops as the ground truth.



(ii) Low-density and large-diameter conditions individually
exert greater disruptive influences on detection perfor-
mance, as opposed to their respective counterparts, high-
density and small-diameter.

(iii) Across five primary categories of transportation-related
objects, our YOLO-RA model consistently outperforms
YOLOv7 in terms of the number of objects detected.

VI. RAINDROP IMPACT MITIGATION

In this section, we address RQ3: How can we effectively
and quickly mitigate the impact of raindrops on the perfor-
mance of object detection?

A. Proposed Methodology

1) Raindrop Removal for Visibility Enhancement: To en-
hance the performance and robustness of vision algorithms in
SDVs during rainy conditions, we initially focus on identifying
and implementing effective techniques to remove raindrops
from degraded images, thereby restoring them to a clean state.
These rain-free images are then input into the SDV’s vision
algorithms, such as the proposed YOLO-RA, to facilitate
decision making under rainy scenarios. The objective is to de-
termine whether this integrated approach, combining raindrop
removal with our newly proposed object detection method,
effectively enhances performance in rainy environments.
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Fig. 8. An illustration of SR3’s forward diffusion (destruction) and reverse
diffusion (denoising) processes. The destruction process introduces Gaussian
noise into the initial raindrop-degraded image X0, and the denoising process
restores the image to its rain-free state X′

0 through the reversible Markov
chain [47]. The variable t represents an arbitrary point in the timeline.

To remove raindrops, we adopt SR3, solving the generation
slow problem for large target resolution tasks in DDPM,
through adapting techniques from [48]. Fig. 8 presents the
raindrop removal process of SR3, which consists of forward
diffusion (destruction) and reverse diffusion (denoising) pro-
cesses.

2) SR3-Enhanced YOLO-RA Processing: To further en-
hance the performance of object detection in images impaired
by raindrops, which are commonly captured by cameras during
inclement weather, we integrate SR3 with YOLO-RA. Specif-
ically, we first remove raindrops using SR3 and then feed
the SR3 output into YOLO-RA. This results in more accurate
object detection while still maintaining a fast processing speed
for SDV applications.

Figure 9 illustrates a comprehensive raindrop removal pro-
cess integrated with a modified ELAN denoted as ELAN-
CBAM, which is part of our proposed YOLO-RA network.
The pipeline begins with the raindrop-addition module, where
a video is segmented into one-second frames. These frames are
subsequently merged with representative raindrop templates
to simulate raindrop effects. Following this, the images pass
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Fig. 9. A pipeline of raindrop removal and enhanced object detection. Initially,
in the raindrop-addition module (a), video images are amalgamated with
representative raindrop templates. Subsequent to the raindrop removal process
(b), four SR3 outputs are combined in the Mosaic stage (c) to form a single
image. This pre-processed composite then proceeds to the YOLO-RA module
(d) to facilitate precise and fast object detection.

through the raindrop removal process and yield four SR3 out-
puts, which are then fed into a mosaic algorithm. This mosaic
step amalgamates four images into one composite image. The
purpose of this mosaic formation is to bolster the model’s
robustness against complex and cluttered backgrounds. Finally,
the images enter the YOLO-RA model, which uses the pre-
processed and enhanced images to train for more accurate
object detection under raindrop-degraded conditions.

B. Evaluation Metrics

1) Raindrop Removal Metrics: Raindrops are often catego-
rized as a source of visual noise in images. Therefore, we
consider the PSNR of the SR3 as the key evaluation metric for
raindrop removal. Here, PSNR [49] refers to the peak-signal-
to-noise ratio between the original image and the raindrop-
removed image), and we use it to evaluate the performance
of the raindrop removal model (SR3) [37]. More specifically,
given a clean image I of size m × n and a noisy image K,
the mean squared error (MSE) is defined as follows, and the
average PSNR of the video group is given by:

PSNR = 10 · log10(
MAX2

I

MSE
) (4)

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i− j)−K(i− j)]2 (5)

Where MAX2
I denotes the maximum possible pixel value

in the image I , i and j are indices that are used to iterate
over the pixels. This formulation allows for the adaptation of
the PSNR calculation to various image formats by accurately
defining the maximum pixel intensity based on the bit depth.

The aforementioned formulas pertains to grayscale images.
For color images, it is imperative to calculate the PSNR for
each of the RGB channels independently and subsequently
compute the average. Usually, the higher the PSNR (smaller
error), the better the quality of the SR3 output.



2) Detection Metrics: Regarding detection metrics, a com-
mon way is to compute the intersection-over-union (IoU) [50]
between ground truth and prediction:

IoU =
area (BBoxp ∩BBoxgt)

area (BBoxp ∪BBoxgt)
, (6)

Where BBoxgt represents the bounding box of the ground
truth (GT), and BBoxp refers to the predicted bounding box.
Predictions whose IoUs are larger than 0.5 are considered as
true positives (TP).

Precision =
TP

TP+FP
=

TP

all detections
, (7)

F1 score = 2×
TP

(TP+FN) ×
TP

(TP+FP )

TP
(TP+FN) +

TP
(TP+FP )

, (8)

Where TP is the number of detection frames with IoU
> 0.5 and FP represents the number of detection frames
with IoU ⩽ 0.5 detection frames, or the number of redundant
detection frames detecting the same GT. FN refers to the
number of missing detections.

3) Processing Speed Metrics: As the safety-critical sys-
tems, near real-time inference speed is crucial for SDV. To
this end, we assess the processing speed of models. We define
the total processing time (ms) as Ttotal = Tinf + TNMS . The
term Tinf (ms) specifies the time required for the model to
process an input image and generate an output, exclusive of
any additional post-processing duration. TNMS denotes the
time taken for the NMS operation, a critical post-processing
phase where the model consolidates its predictions to guar-
antee singular object detection within multiple bounding box
forecasts. Ttotal encompasses the entire processing interval
from input to the finalized output after NMS. Besides, we
consider another evaluation metric of frame per second (FPS),
which signifies the quantity of images processed by the model
per second. A higher FPS indicates a faster processing speed,
which is desirable for real-time applications of SDVs.

C. Experiment Results

1) Raindrop Removal: We first aim to assess the perfor-
mance of raindrop removal. Hence, we train and test the
SR3 based on the raindrop-degraded datasets and the real-
world rainy BDD100K datasets, and we denote the output of
the raindrop removal as the SR3 outputs. During the training
phase, we discover that during the 80,000 iterations, the value
of PSNR was at its peak of 18.75 dB, indicating a significant
enhancement in image quality. This peak performance model
was subsequently applied to the datasets for raindrop removal.

Figure 10 showcases the performance of the SR3 model in
addressing raindrop interference in images. It presents a side-
by-side comparison of the original inputs and the resulting
clarity SR3 outputs across two distinct datasets: a raindrop-
degraded dataset designed for controlled testing (Fig. 10(a))
and the real-world rainy BDD100K dataset, known for its chal-
lenging conditions (Fig. 10(b)). The efficacy of our raindrop
removal method is further emphasized through close-up views
within the blue and yellow circles.

Input SR3 output

(a) Raindrop removal results of SR3 on raindrop-degraded dataset

Input

(b) Raindrop removal results of SR3 on real-world rainy dataset

SR3 output

Raindrop-degraded Raindrop-removed

Real-world Rainy Raindrop-removed

Fig. 10. Comparative examples of raindrop removal effectiveness of SR3 on
raindrop-degraded data (a) and real-world rainy BDD100K dataset (b). The
blue and yellow circles draw attention to specific areas, magnifying the details
to showcase the successful removal of raindrops that previously obscured
critical features of the scene.

Specifically, Fig. 10(a) displays the transformation achieved
on the synthetic raindrop-degraded dataset. The images on the
left demonstrate the initial quality of the visuals marred by
raindrops, while the images on the right reveal the enhanced
clarity following SR3 processing. This stark contrast highlights
the model’s ability to effectively discern and eliminate rain-
drop distortions.

Fig. 10 (b) further validates the model’s capabilities under
real-world conditions, featuring images from the BDD100K
dataset. The left images show the complex scenes as captured
under natural rainy circumstances, where obtaining a clear
rain-free image is inherently difficult due to the consistent
presence of raindrops. In comparison, the right images depict
a remarkable improvement in visibility after SR3 processing.

Overall, the before-and-after comparisons in Fig. 10 not
only demonstrate the SR3 model’s ability to purge the smallest
raindrops but also its effectiveness in recovering important de-
tails in both simulated and real-world rainy visuals. The model
proves to be invaluable in enhancing image clarity, thereby
extending the potential for more accurate object detection and
scene interpretation in adverse weather conditions.

2) Detection under Rainy Scenarios: In our study, we ini-
tially train the YOLOv7 and YOLO-RA models using mi-
crosphere raindrop-degraded images to detect objects across
80 classifications. Preliminary results from these experiments
reveal that a significant detection error in rainy conditions is
the false recognition of non-existent objects in vehicle driving
scenarios. With this insight, we refine our focus to three critical
types of object detection for SDVs: cars, persons, and traffic
lights. For our purposes, the ”car” category encompasses both
trucks and buses, allowing for a more streamlined and targeted
analysis in these prevalent SDV contexts.

Exemplar Visualization Results. Before performing a statis-
tical analysis of the performance of our object detection model
(YOLO-RA), we first compare it with the detection results of
YOLOv7 based on both the raindrop-degraded dataset and the
real-world rainy dataset.

Figure 11 illustrates a comparative analysis of object de-
tection performance between our proposed model, YOLO-RA,
and the baseline model, YOLOv7, under conditions of raindrop
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Fig. 11. The effectiveness comparison of object detection between YOLOv7
and the proposed YOLO-RA on the raindrop-degraded dataset (a) and real-
world rainy datasets (b).

interference. This comparison is critical to understanding the
enhancements in detection accuracy that YOLO-RA offers
over existing methods.

Figure 11(a) highlights a scenario where YOLO-RA ac-
curately identifies a traffic light within a raindrop-degraded
dataset, a detail that YOLOv7 fails to detect. This demonstrates
YOLO-RA’s superior ability to discern relevant objects amidst
visual distortions caused by rain on the lens. Fig. 11(b)
showcases detection examples from a real-world rainy dataset.
Here, YOLOv7 incorrectly attributes the presence of cars to
distortions created by raindrops on the camera lens, resulting
in false positives. In contrast, YOLO-RA exhibits a more
discerning judgment, correctly ignoring the raindrops and
reducing the incidence of such false identifications.

Figure 11 effectively captures the enhanced detection ca-
pabilities of YOLO-RA, particularly in challenging weather
conditions where rain can significantly degrade the quality of
visual data. By mitigating the impact of raindrops, YOLO-RA
shows promise in improving the reliability and accuracy of
object detection systems in real-world applications.

Statistical Analysis. To rigorously assess the performance of
our proposed YOLO-RA model, we undertake an ablation
study [51], which involves the strategic removal of components
from the model to observe the resultant effects on its efficacy.

As previously explained in Section V-B2, to bolster de-
tection capabilities, particularly for small-scale vehicles, we
implement a dual strategy based on YOLOv7 to obtain YOLO-
RA: i) the integration of the Mosaic method and ii) the refine-
ment of the ELAN module with the inclusion of the CBAM.
Therefore, to ensure an equitable performance comparison,
our ablation study involves the evaluation of four parts:
YOLOv7 (baseline), YOLO-Mosaic (exclusively integrated the
Mosaic technique into YOLOv7), YOLO-CBAM (exclusively
implement CBAM in the ELAN module of YOLOv7), and our
full-fledged YOLO-RA (integrate both Mosaic and CBAM).

Throughout the training iterations, the mean average preci-
sion (mAP) progression is monitored for YOLOv7, YOLO-
Mosaic, YOLO-CBAM, and YOLO-RA. A peak in mAP
is observed near the 50th epoch, succeeded by a decline
indicative of early training instability. Hence, the selection

of model weights based on this early performance would be
premature. As training advances, mAP increases gradually,
with YOLO-RA ultimately exhibiting superior performance,
and YOLOv7, YOLO-Mosaic, and YOLO-CBAM trailing.

For testing, the Intersection over Union (IoU) threshold is
set at 0.45, and the non-maximum suppression (NMS) [52]
threshold is maintained at 0.6. NMS plays a crucial role in
object detection by reducing redundant bounding boxes; when
multiple bounding boxes are detected around the same object,
NMS algorithmically selects the one that most accurately en-
capsulates the target, enhancing the precision of the detection.

Table I. Evaluation metrics of YOLOv7, YOLO-Mosaic, YOLO-CBAM, and
YOLO-RA for three types of object detection.

Model YOLOv7 Mosaic CBAM Precision mAP F1
YOLOv7 ✓ 0.78 0.82 0.81

YOLO-Mosaic ✓ ✓ 0.71 0.67 0.65
YOLO-CBAM ✓ ✓ 0.85 0.83 0.78

YOLO-RA (Ours) ✓ ✓ ✓ 0.89 0.85 0.82

Table I presents the comparative results. YOLO-RA emerges
as the leading model, securing the highest scores in pre-
cision and mAP. Notably, when contrasted with YOLOv7,
YOLO-RA shows superior mAP and F1 scores (84.6% and
81.9%, respectively), evidencing the pronounced impact of the
Mosaic augmentation. These findings affirm the effectiveness
of YOLO-RA in object detection, substantiated by rigorous
statistical analysis.

3) Combining SR3 with YOLO-RA: After proving the ef-
fectiveness of YOLO-RA methods for the object detection on
raindrop-degraded images, we next explore the performance
in object detection when combining SR3 for raindrop removal
with our YOLO-RA model. This integrated pipeline, referred
to as ”SR3 + YOLO-RA,” is tasked with initially cleansing
the images of raindrop artifacts and subsequently deploying
the refined images for object detection.

Table II. Evaluation metrics of YOLOv7 and ”SR3 + YOLO-RA”.

Model Raindrop Removal mAP F1 score
YOLO-RA (Ours) 0.68 0.67

SR3 + YOLO-RA (Ours) ✓ 0.76 0.73

Table II illustrates a clear improvement in performance
metrics when employing the SR3 pre-processing step. Specif-
ically, the integration of SR3 with YOLO-RA leads to an
increase in the mAP and the F1 Score compared to using
YOLO-RA alone. The mAP sees a boost from 0.68 to 0.76,
while the F1 Score is elevated from 0.67 to 0.73. These
increments translate to a substantial 12% improvement in mAP
and a 10% enhancement in the F1 score, indicating that the
preprocessing of images with SR3 not only aids in the removal
of raindrops but also significantly enhance the subsequent
object detection efficacy of YOLO-RA. This synergy between
SR3’s raindrop removal and YOLO-RA’s detection capabilities
underscores the potential of our composite pipeline in dealing
with weather-degraded imagery.

4) Processing Speed: Accurate and fast processing model
is the key to the success of SDVs. Table III provides a
comparison of processing times and frame rates for several



object detection models and pipelines (YOLOv7, YOLO-RA,
SR3 + YOLOv7, and SR3 + YOLO-RA), all of which are
critical for SDVs systems that require both accuracy and
speed. Each model is evaluated under consistent conditions,
using a kernel size of 7 × 7 and an inference image size
of 640 × 640. The kernel size refers to the dimensions of
the convolutional filters within the layers, which are matrices
utilized to perform convolutional operations on the input
images for feature extraction.

Table III. Comparative processing times of different models using identical
Kernel (7× 7) and inference image size (640× 640).

Models Tinf (ms) TNMS (ms) Ttotal (ms) FPS
YOLOv7 8.1 3.4 11.5 86.96

YOLO-RA (Ours) 6.1 2.4 8.5 117.65
SR3 + YOLOv7 8.2 3.6 11.8 84.75

SR3 + YOLO-RA (Ours) 6.4 4.2 10.6 94.34

We define the total processing time (ms) as Ttotal =
Tinf +TNMS . The term Tinf (ms) specifies the time required
for the model to process an input image and generate an
output, exclusive of any additional post-processing duration.
TNMS denotes the time taken for the NMS operation, a
critical post-processing phase where the model consolidates
its predictions to guarantee singular object detection within
multiple bounding box forecasts. Ttotal encompasses the entire
processing interval from input to the finalized output after
NMS. Besides, we consider another evaluation metric of frame
per second (FPS), which signifies the quantity of images
processed by the model per second. A higher FPS indicates a
faster processing speed, which is desirable for SDVs.

The results in Table III reveal that the YOLO-RA model,
without additional preprocessing, is exceptionally efficient,
boasting the lowest total processing time at 8.5 ms and the
highest frames per second (FPS) at 117.65. This performance
suggests that YOLO-RA is highly suitable for real-time object
detection, a necessity in SDV applications.

Furthermore, when SR3 is used in conjunction with YOLO-
RA for pre-processing raindrop-degraded images, the com-
posite model ”SR3 + YOLO-RA” not only diminishes the
total processing time Ttotal but also sustains a high FPS rate.
With a Ttotal of 10.6 ms and 94.34 FPS, ”SR3 + YOLO-
RA” outperforms the ”SR3 + YOLOv7” configuration, which
underscores the efficiency and potential of our YOLO-RA
model even when dealing with adverse weather conditions. In
addition, to balance the image quality and time consumption,
we find that 512×512 size is the best choice in our work.

VII. OBSERVATIONS AND DISCUSSIONS

In this section, we present and summarize our answers to
RQ1, RQ2, and RQ3, discuss the key observations, and give
our explanation for our experiment results and observed trends.

A. Observations and Discussions for RQ1

First, we present and discuss our answers to RQ1, drawing
upon the outcomes of our experimental investigations. The
supporting evidence is referenced in Section IV-C.

1) Observations and Answers: We make several interesting
observations and answers:
⋆ Microsphere raindrops exhibit the most pronounced effect

on camera-based object detection, with spherical and flat
raindrops following in severity (Fig. 4).
⋆ Both microsphere and spherical raindrops similarly im-

pede the detection of vehicles and traffic lights, albeit with
diminishing severity in that order (Fig. 4(a)).
⋆ During the daytime, the influence of flat raindrops on

detection results is marginal; however, at night, these raindrops
considerably degrade the visibility of traffic lights, under-
scoring the variable impact of raindrop types under different
lighting conditions (Fig. 4(a) and Fig. 4(b)).

2) Explanations and Discussions: Microsphere impact.
Our analysis of raindrop impact, as visualized in Fig. 4,
suggests that small and densely distributed raindrops can exert
a considerable adverse effect on camera-based object detection
systems. This is particularly pertinent for SDVs, which face
the challenge of detecting smaller objects at greater distances,
where the object’s representation is constrained to a minimal
number of pixels. YOLO typically struggles with small target
detection due to the paucity of contextual information these
targets present [53]. Raindrops further compound this issue
by masking the real object data and potentially introducing
misleading information to the detection model.
Raindrop impacts during daytime. The impact of raindrops
on object detection varies significantly between daytime and
nighttime conditions. Models from the YOLO series are typi-
cally trained on extensive public datasets such as COCO [54]
and VOC [55], which comprise over 300,000 images and 1.5
million object instances, predominantly captured during day-
light. Consequently, these models are well-equipped with prior
knowledge to mitigate the effects of flat raindrops encountered
during daytime scenarios. However, microsphere and spherical
raindrops are underrepresented in these datasets, leading to a
lack of critical information for the model to learn from.
The impacts of flat raindrops during nighttime: At night,
the primary difficulty arises from the inherently low-light
environment, which is a separate concern from any dataset-
related issues. Flat raindrops can severely exacerbate visibility
problems, often causing the model to erroneously identify a
vehicle’s rear lights as a red traffic light. This misinterpretation
is frequently due to the facula effect created by light reflecting
off the raindrops, which the model inadvertently captures.

B. Observations and Discussions for RQ2

Next, we present our responses to RQ2. The related sup-
porting evidence is referenced in Section V-C.

1) Observations and Answers: We make several interesting
observations and answers related to the density and diameter:
⋆ As to the raindrop density, low-density (scattered) rain

has a more detrimental effect on detection efficacy compared
to high-density scenarios (Fig. 6).
⋆ Regarding the raindrop size, the effect of small diameters

is less significant than that of large diameters (Fig. 7).



⋆ The impact of raindrop diameter is notably less significant
than that of raindrop density (Fig. 6(b) and Fig. 7(a)).

⋆ YOLO-RA consistently outperforms YOLOv7 across the
board, demonstrating superior capability in accurately detect-
ing five categories of transportation-related objects, irrespec-
tive of raindrop density or size (Fig. 6 and Fig. 7).

2) Explanations and Discussions: Low-density impact:
Low-level features, such as edges and angles, are more likely
to be obscured by isolated raindrops, offering challenges to
extract key visual information. Conversely, while a high-
density raindrop scenario packs more raindrops into each grid,
it tends to create a uniformly cluttered visual field, which
may not disrupt low-level feature detection to the same extent.
This highlights the necessity for models to effectively handle
a range of conditions, including the less intuitive scenarios
where sparser raindrops can also impact detection abilities.

Large-diameter impact: Large size of raindrops, especially
over a temporal sequence where these raindrops coalesce and
grow, covering larger portions of the visual field. As the
raindrops expand, they blur and obscure objects within the
frame, consequently diminishing detection accuracy. Addi-
tionally, raindrops can act as lenses that refract and scatter
incoming light, often resulting in glare, a phenomenon well-
documented in studies [56].

Diameter versus Density: Raindrop diameter’s impact is less
pronounced than that of raindrop density. This is attributed
to the fact that large-diameter raindrops may only partially
obscure target objects, thereby affecting their recognition prob-
ability to a lesser extent. Conversely, low-density raindrops,
being sparse and scattered, interrupt the model’s ability to
understand the context of neighboring regions. This disruption
can mislead the detection algorithm into falsely identifying
raindrops as objects, leading to a more substantial decrease in
detection accuracy.

The effectiveness of YOLO-RA: The YOLO-RA model is
specifically designed to overcome the limitations that YOLOv7
has with detecting small-sized objects. Leveraging an ad-
vanced attention mechanism, YOLO-RA allows for the ef-
fective extraction of intricate features and reducing the loss
of low-level feature information. This strategic focus also
aids in avoiding the misidentification of irrelevant areas or
noise within the image. In tasks involving different raindrop
diameters, the enhanced detection capability of YOLO-RA
can be attributed to the model’s ability to discern strong
relational patterns even in the presence of microsphere rain-
drops. YOLO-RA is better equipped to address and resolve
the challenges posed by adverse weather conditions.

C. Observations and Discussions for RQ3

Finally, we discuss our observations for RQ3. The corre-
sponding supporting evidence is referenced in Section VI-C.

1) Observations and Answers: We make several interesting
observations related to the algorithms:

⋆ SR3 demonstrates its effectiveness in eliminating rain-
drops from both raindrop-degraded images and real-world
rainy dataset (Fig. 10).
⋆ YOLO-RA achieves superior performance in terms of

mAP, also completing detection tasks more swiftly (Fig. 11).
⋆ ”SR3 + YOLO-RA” boosts the mAP and F1 score, and

speeds up the FPS as well (Table II and Table III).
2) Explanations and Discussions: Effectiveness of SR3:

The success of SR3 depends on the similarity between mi-
crosphere raindrop-degraded data patterns to real-world rain-
drops, enabling the model to remove raindrops effectively. It
describes the possibility of integration of image quality with
multi-tasking. Besides, SR3 utilizes an iterative refinement
approach by identifying raindrops as noise and integrating this
aspect into the destruction phase. Consequently, it successfully
removes raindrop interference.
Effectiveness of YOLO-RA: It effectively resolves the chal-
lenges associated with small-sized object detection and miti-
gates the errors commonly observed in YOLOv7, thus affirm-
ing the advanced capabilities of YOLO-RA in object detection
amidst adverse weather conditions. Besides, the ELAN archi-
tecture effectively addresses the issue of gradient propagation
length, allowing for the preservation of high inference speeds
due to its well-designed computational blocks. Concurrently,
the integration of CBAM in place of the original CBS modules
enables more efficient feature extraction, contributing to the
rapid processing capabilities of YOLO-RA.

VIII. CONCLUDING REMARKS

In this work, we first conduct a comprehensive qualitative
and quantitative analysis to understand the influence of rain-
drops on camera-based object detection, a critical application
of SDVs, under varying conditions of daytime and nighttime.
Our exploration into the effects of four characteristic raindrop
types across different diameters and densities provides valu-
able insights into their impact on diverse object detection. Sig-
nificantly, we introduced the SR3 model for raindrop removal
and evaluated its effectiveness across real-world rainy datasets
and synthetically generated raindrop-degraded data. Furthering
our contribution, we developed and proposed YOLO-RA, a
novel algorithm designed for rapid and accurate mitigation of
raindrop impacts. The integration of SR3 with YOLO-RA and
subsequent ablation studies have effectively demonstrated the
enhancements in object detection, as evidenced by improved
metrics in mAP, F1 score, and FPS (or processing time).

ACKNOWLEDGEMENT

This work is supported in part by the National Science
Foundation (NSF) grant CNS-2348151 and Commonwealth
Cyber Initiative grant HC-3Q24-048.

REFERENCES

[1] S. Lu and W. Shi, “Vehicle computing: Vision and challenges,” Journal
of Information and Intelligence, vol. 1, no. 1, pp. 23–35, 2023.

[2] S. Lu and W. Shi, “Vehicle as a mobile computing platform: Opportu-
nities and challenges,” IEEE Network, 2023.



[3] L. Lowery, “OEMshift to OTArecall fixes predicted to occur by 2028
(online),” https://www.repairerdrivennews.com/2023/05/09/oem-shift-t
o-ota-recall-fixes-predicted-to-occur-by-2028/, accessed: 2023-05-09.

[4] L. VanHulle, “GM joins collaborative for vehicle software development
(online),” https://www.autonews.com/automakers-suppliers/gm-joins-e
ffort-develop-shared-software-auto-industry, accessed: 2023-04-27.

[5] E. Himes, “NHTSA up in the clouds: The formal recall process & over-
the-air software updates,” Mich. Tech. L. Rev., vol. 28, p. 153, 2021.

[6] J. Henle, M. Gierl, H. Guissouma, F. Müller, G. B. Ramesh, and E. Sax,
“Concept for an approval-focused over-the-air update development pro-
cess,” SAE Technical Paper, Tech. Rep., 2023.

[7] O. Haslam, “Mercedes-Benz rolls its flagship EV’s infotainment
system out to other cars via ota update (online),” https:
//www.pocket-lint.com/mercedes-benz-rolls-its-flagship-evs-infotai
nment-system-out-to-other-cars-via-ota-update/, accessed: 2023-02-10.

[8] S. Lu, N. Ammar, A. Ganlath, H. Wang, and W. Shi, “A comparison of
end-to-end architectures for connected vehicles,” in 2022 Fifth Interna-
tional Conference on Connected and Autonomous Driving (MetroCAD).
IEEE, 2022, pp. 72–80.

[9] F. Bonomi and A. T. Drobot, “Infrastructure for digital twins: Data, com-
munications, computing, and storage,” in The Digital Twin. Springer,
2023, pp. 395–431.

[10] K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragki-
adakis, “Firmware over-the-air programming techniques for IoT
networks-a survey,” ACM Computing Surveys (CSUR), vol. 54, no. 9,
pp. 1–36, 2021.

[11] J. Ohlsen, “The software-defined vehicle is overwhelming the automo-
tive industry,” ATZelectronics worldwide, vol. 17, no. 6, pp. 56–56, 2022.

[12] APTIV, “White paper: Smart vehicle architecture overview (on-
line),” https://www.aptiv.com/en/insights/article/white-paper-smart-veh
icle-architecture-overview, accessed: 2020-03-10.

[13] S. Lu, R. Zhong, and W. Shi, “Teleoperation technologies for enhancing
connected and autonomous vehicles,” in 2022 IEEE 19th International
Conference on Mobile Ad Hoc and Smart Systems (MASS). IEEE, 2022,
pp. 435–443.

[14] I. Dnistran, “Elon musk overruled tesla engineers who said
removing radar would be problematic: Report (online),”
https://insideevs.com/news/658439/elon-musk-overruled-tesla-autop
ilot-engineers-radar-removal/, accessed: 2023-05-22.

[15] K. Garg and S. K. Nayar, “Vision and rain,” International Journal of
Computer Vision, vol. 75, pp. 3–27, 2007.

[16] Y. Hamzeh and S. A. Rawashdeh, “A review of detection and removal
of raindrops in automotive vision systems,” Journal of imaging, vol. 7,
no. 3, p. 52, 2021.

[17] T. Brophy, D. Mullins, A. Parsi, J. Horgan, E. Ward, P. Denny, C. Eising,
B. Deegan, M. Glavin, and E. Jones, “A review of the impact of rain on
camera-based perception in automated driving systems,” IEEE Access,
2023.

[18] C. Zhang, Z. Huang, M. H. Ang, and D. Rus, “LiDAR degradation
quantification for autonomous driving in rain,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 3458–3464.

[19] J. Hu, J. Li, Z. Hou, J. Jiang, C. Liu, L. Chu, Y. Huang, and Y. Zhang,
“Potential auto-driving threat: Universal rain-removal attack,” Iscience,
vol. 26, no. 9, 2023.

[20] S. You, R. T. Tan, R. Kawakami, and K. Ikeuchi, “Adherent raindrop
detection and removal in video,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 1035–1042.

[21] D. He, X. Shang, and J. Luo, “Adherent mist and raindrop removal from
a single image using attentive convolutional network,” Neurocomputing,
vol. 505, pp. 178–187, 2022.

[22] D. Eigen, D. Krishnan, and R. Fergus, “Restoring an image taken
through a window covered with dirt or rain,” in Proceedings of the
IEEE international conference on computer vision, 2013, pp. 633–640.

[23] R. Qian, R. T. Tan, W. Yang, J. Su, and J. Liu, “Attentive generative
adversarial network for raindrop removal from a single image,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 2482–2491.

[24] B. Yu, W. Hu, L. Xu, J. Tang, S. Liu, and Y. Zhu, “Building the comput-
ing system for autonomous micromobility vehicles: Design constraints
and architectural optimizations,” in 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE, 2020, pp.
1067–1081.

[25] A. Papadoulis, M. Quddus, and M. Imprialou, “Evaluating the safety
impact of connected and autonomous vehicles on motorways,” Accident
Analysis & Prevention, vol. 124, pp. 12–22, 2019.

[26] S. Li, I. B. Araujo, W. Ren, Z. Wang, E. K. Tokuda, R. H. Junior,
R. Cesar-Junior, J. Zhang, X. Guo, and X. Cao, “Single image deraining:
A comprehensive benchmark analysis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
3838–3847.

[27] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley, “Removing
rain from single images via a deep detail network,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 3855–3863.

[28] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown, “Single image rain
streak decomposition using layer priors,” IEEE Transactions on Image
Processing, vol. 26, no. 8, pp. 3874–3885, 2017.

[29] G. Wang, C. Sun, and A. Sowmya, “Erl-net: Entangled representation
learning for single image de-raining,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 5644–5652.

[30] H. Kurihata, T. Takahashi, I. Ide, Y. Mekada, H. Murase, Y. Tamatsu,
and T. Miyahara, “Rainy weather recognition from in-vehicle camera
images for driver assistance,” in IEEE Proceedings. Intelligent Vehicles
Symposium, 2005. IEEE, 2005, pp. 205–210.

[31] K. Ito, K. Noro, and T. Aoki, “An adherent raindrop detection method
using mser,” in 2015 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA). IEEE, 2015,
pp. 105–109.

[32] Q. Wu, W. Zhang, and B. V. Kumar, “Raindrop detection and removal
using salient visual features,” in 2012 19th IEEE International Confer-
ence on Image Processing. IEEE, 2012, pp. 941–944.

[33] X. Yan and Y. R. Loke, “Raingan: Unsupervised raindrop removal via
decomposition and composition,” in Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision (WACV) Workshops,
January 2022, pp. 14–23.

[34] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840–
6851, 2020.

[35] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,”
in International conference on machine learning. PMLR, 2015, pp.
2256–2265.

[36] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18. Springer, 2015, pp. 234–241.

[37] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi,
“Image super-resolution via iterative refinement,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 4713–
4726, 2022.

[38] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 7464–7475.

[39] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “BDD100K: A diverse driving dataset for heterogeneous
multitask learning,” arXiv: 1805.04687, 2018.

[40] L. Cao, X. Zheng, and L. Fang, “The semantic segmentation of standing
tree images based on the yolo v7 deep learning algorithm,” Electronics,
vol. 12, no. 4, p. 929, 2023.

[41] G. Zhao, W. Ge, and Y. Yu, “Graphfpn: Graph feature pyramid network
for object detection,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 2763–2772.

[42] W. Chen, X. Wang, B. Yan, J. Chen, T. Jiang, and J. Sun, “Gas plume
target detection in multibeam water column image using deep resid-
ual aggregation structure and attention mechanism,” Remote Sensing,
vol. 15, no. 11, p. 2896, 2023.

[43] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg: Mak-
ing vgg-style convnets great again,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp.
13 733–13 742.

[44] Q. Xu, R. Lin, H. Yue, H. Huang, Y. Yang, and Z. Yao, “Research
on small target detection in driving scenarios based on improved yolo
network,” IEEE Access, vol. 8, pp. 27 574–27 583, 2020.

https://insideevs.com/news/658439/elon-musk-overruled-tesla-autopilot-engineers-radar-removal/
https://insideevs.com/news/658439/elon-musk-overruled-tesla-autopilot-engineers-radar-removal/
https://insideevs.com/news/658439/elon-musk-overruled-tesla-autopilot-engineers-radar-removal/


[45] P. Kaur, B. S. Khehra, and E. B. S. Mavi, “Data augmentation for object
detection: A review,” in 2021 IEEE International Midwest Symposium
on Circuits and Systems (MWSCAS). IEEE, 2021, pp. 537–543.

[46] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 3–19.

[47] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[48] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan,
“Wavegrad: Estimating gradients for waveform generation,” arXiv
preprint arXiv:2009.00713, 2020.

[49] D. Poobathy and R. M. Chezian, “Edge detection operators: Peak
signal to noise ratio based comparison,” IJ Image, Graphics and Signal
Processing, vol. 6, no. 10, pp. 55–61, 2014.

[50] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 658–666.

[51] B. Zheng, G. Jiang, W. Wang, K. Wang, and X. Mei, “Ablation
experiment and threshold calculation of titanium alloy irradiated by
ultra-fast pulse laser,” AIP Advances, vol. 4, no. 3, 2014.

[52] A. Shapira, A. Zolfi, L. Demetrio, B. Biggio, and A. Shabtai, “Phantom
sponges: Exploiting non-maximum suppression to attack deep object
detectors,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2023, pp. 4571–4580.

[53] G. Chen, H. Wang, K. Chen, Z. Li, Z. Song, Y. Liu, W. Chen, and
A. Knoll, “A survey of the four pillars for small object detection:
Multiscale representation, contextual information, super-resolution, and
region proposal,” IEEE Transactions on systems, man, and cybernetics:
systems, vol. 52, no. 2, pp. 936–953, 2020.

[54] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[55] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, pp. 303–338, 2010.

[56] S. You, R. T. Tan, R. Kawakami, Y. Mukaigawa, and K. Ikeuchi,
“Adherent raindrop modeling, detection and removal in video,” IEEE
transactions on pattern analysis and machine intelligence, vol. 38, no. 9,
pp. 1721–1733, 2015.


	Introduction
	Related Work
	Rain Streak Removal
	Raindrop Removal
	The Gap in Previous Work

	Experiment Datasets and Hardware
	Dataset Selection and Related Issues
	Raindrop-degraded Dataset Generation
	Raindrop Image Formation
	Hardware Setup

	Qualitative Analysis of raindrop types during daytime and nighttime
	Proposed Methodology
	Evaluation Metrics
	Experiment Results

	Quantitative analysis of Density and Diameter
	Experiment Design
	Comparative Baselines
	Five Groups

	Proposed Methodology
	YOLOv7 Structure
	YOLO-RA

	Experiment Results
	Density
	Diameter
	Density versus Diameter


	Raindrop Impact Mitigation
	Proposed Methodology
	Raindrop Removal for Visibility Enhancement
	SR3-Enhanced YOLO-RA Processing

	Evaluation Metrics
	Raindrop Removal Metrics
	Detection Metrics
	Processing Speed Metrics

	Experiment Results
	Raindrop Removal
	Detection under Rainy Scenarios
	Combining SR3 with YOLO-RA
	Processing Speed


	Observations and Discussions
	Observations and Discussions for RQ1
	Observations and Answers
	Explanations and Discussions

	Observations and Discussions for RQ2
	Observations and Answers
	Explanations and Discussions

	Observations and Discussions for RQ3
	Observations and Answers
	Explanations and Discussions


	Concluding Remarks
	References

