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Abstract. Selective families of sets, or selectors, are combinatorial tools used
to “isolate” individual members of sets from some set family. Given a set X
and an element x ∈ X , to isolate x from X , at least one of the sets in the
selector must intersect X on exactly x. We study (k, N)-permutation selectors
which have the property that they can isolate each element of each k-element
subset of {0, 1, ..., N − 1} in each possible order. These selectors can be used
in protocols for ad-hoc radio networks to more efficiently disseminate informa-
tion along multiple hops. In 2004, Gasieniec, Radzik and Xin gave a construc-
tion of a (k, N)-permutation selector of size O(k2 log3 N). This paper improves
this by providing a probabilistic construction of a (k, N)-permutation selector of
size O(k2 logN). Remarkably, this matches the asymptotic bound for standard
strong (k, N)-selectors, that isolate each element of each set of size k, but with
no restriction on the order. We then show that the use of our (k, N)-permutation
selector improves the best running time for gossiping in ad-hoc radio networks
by a poly-logarithmic factor.

1 Introduction

Selective families of sets, or selectors, are combinatorial tools used to “isolate” individ-
ual members of sets belonging to a given collection of sets. Given a set X and some
element x ∈ X , to isolate x from X , at least one of the sets in the selector must inter-
sect X on exactly x. Various types of selectors have been constructed in the literature
and used in applications ranging from group testing to coding, bioinformatics, multiple-
access channel protocols, and information dissemination in radio networks.

To illustrate this concept on a concrete example, consider the contention resolution
problem in multiple-access channels (MACs) without feedback: N devices are con-
nected to a shared broadcast channel (say, a radio frequency or ethernet), and each has
a unique identifier from the set U = {0, 1, ..., N − 1}. If exactly one device transmits
in some time slot, then its message will be delivered through the channel to all other
devices. However, if two or more devices transmit simultaneously, then a collision on
the broadcast channel occurs. Channel collisions are indistinguishable from background
noise, and the sender does not receive any feedback about the fate of its transmission.

Suppose that some unknown set of k devices initially activate and have messages to
be transmitted. (See Fig. 1.) We seek a protocol that would allow these k active devices
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Fig. 1. On the left, an illustration of MAC contention resolution, with N = 9 and k = 4. Active
devices are marked with darker colors. On the right, a node v in a radio network, with label 9 and
four in-neighbors.

to transmit successfully, providing that the other devices remain idle. Without any feed-
back, each protocol for this model is non-adaptive, that is, it can be uniquely identified
with the sequence of transmission sets S̄ = S0, S1, ..., Sm−1, where each St is the set of
devices allowed to transmit at time slots t, if active. A trivial protocol would avoid col-
lisions altogether by using singleton transmission sets {0}, {1}, ..., {N − 1}, but this
requires m = N steps to complete k transmissions, which seems wasteful if k is small.

For an active device x to transmit successfully at a slot t of a transmission sequence
S̄, x must be the only active device in set St. Therefore S̄ must satisfy the fol-
lowing property: for any set X ⊆ U of cardinality k and any x ∈ X there is
t ∈ {0, 1, ...,m − 1} such that St ∩ X = {x}. A family S̄ that satisfies this condi-
tion is called a strong (k,N)-selector. In other words, a strong (k,N)-selector isolates
each element of each subset of U of cardinality k. Optimizing the time to complete all
transmissions in the above MAC model is equivalent to constructing a strong (k,N)-
selector of minimum size m.

Very similar challenges arise in information dissemination protocols for ad-hoc
radio networks. A radio network is a directed graph whose nodes represent radio trans-
mitters/receivers and edges represent their transmission ranges. There are n nodes, each
assigned a unique label from U = {0, 1, ..., N − 1}. When a node transmits, its mes-
sage is sent to all its out-neighbors; however, the possibility of collisions at the out-
neighbors can result in the loss of transmitted messages. The ad-hoc property dictates
that the nodes are oblivious to the network’s topology at the beginning. In particular,
in the scenario with a node v having k in-neighbors that attempt to transmit to v, the
challenge is equivalent to the MAC contention resolution. (See Fig. 1.) A protocol that
applies a strong (k,N)-selector will guarantee that in at most m steps all in-neighbors
of v will successfully transmit their messages to it. This property is particularly useful
in the problem of gossiping (full information exchange), where all nodes in the network
have some information that needs to be delivered to all other nodes in the network. (The
formal definition of the gossiping problem is given in Sect. 3.)

Strong (k,N)-selectors have been well studied in the literature (see the discussion
at the end of this section). It is known that there are strong (k,N)-selectors of size
m = O(k2 logN), beating the earlier-mentioned trivial bound of N if k is small.

Our Contribution. We study a new type of selectors called (k,N)-permutation selec-
tors. We earlier saw that a strong (k,N)-selector isolates all elements of each k-element
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set X ⊆ U . The (k,N)-permutation selector guarantees an extra property that for each
possible permutation of X , it isolates all x ∈ X in the order of this permutation.

The motivation comes from radio networks, where, unlike in the MAC contention
resolution problem, a message may need to travel along a path of multiple nodes. At
each node v along the path, the in-neighbors of v need to overcome contention to suc-
cessfully transmit to v. Consider such a path P = v0v1...vs, and suppose that the in-
neighborhood X of P (the set of nodes with edges going to P ) has at most k nodes.
(See Fig. 2 for illustration.) An s-fold repetition of a strong (k,N)-selector will deliver
a message from v0 to vs in time O(sk2 logN) = O(k3 logN). A (k,N)-permutation
selector of size m can achieve this in time m, because it guarantees that in m steps the
nodes v0, v1, ..., vs−1 will successfully transmit, one by one, in this order.
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Fig. 2. An example of a path and its in-neighborhood, with nodes identified by their labels. The
path is P = 30, 11, 22, 42 and its neighborhood (shaded) has 9 nodes.

The concept of (k,N)-permutation selectors is implicit in the work by Gasieniec,
Radzik and Xin [10]. They show that a (k,N)-permutation selector can be constructed
by interleaving other known types of selectors1. Their construction is called a path
selector and it has size O(k2 logN log2 k). Thus, assuming that N is polynomial in the
network size n, a protocol based on their path selector will deliver a message along a
path with in-neighborhood of size at most k in time O(k2 log3 n). They used this idea
to give an O(n4/3 log10/3 n)-time protocol for gossiping in ad-hoc radio networks. This
is the best currently known upper bound for this problem.

The main result of our paper is an improved upper bound on the size of (k,N)-
permutation selectors. Let 2 ≤ k ≤ N . Using a probabilistic construction, we prove the
following theorem in Sect. 2.

Theorem 1. There is a (k,N)-permutation selector of size m = O(k2 logN).

This bound matches the best bound on strong (k,N)-selectors. This seems sur-
prising, as (k,N)-permutation selectors offer more capability: they can isolate any k
elements in any given order, while strong selectors will only do so in some unknown
order. Theorem 1 leads to a poly-logarithmic improvement of the time complexity of

1 We remark that in [10] the authors use a different style for specifying the parameters of selec-
tors. The notation in our paper follows the convention from [7].
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gossiping in ad-hoc radio networks. A further minor improvement can be achieved by
using a faster procedure for broadcasting [6] inside the gossiping protocol. This leads
to the following result:

Theorem 2. If N is polynomial in n, then the gossiping problem in ad-hoc radio net-
works can be solved in time O(n4/3 log2 n(loglog n)2/3).

In Sect. 4 we consider even more general structures that we named (k, q,N)-
permutation selectors. These are defined by the following property: for each permu-
tation of each k-element set X , the selector isolates some q-elements of X in the order
of this permutation. This naturally extends the concept of (k, q,N)-selectors, which
isolate q elements of a k-element set without restricting the order. (See the discus-
sion below.) Extending the proof of Theorem 1, we show that there exists a (k, q,N)-
permutation selector of size O(kq logN).

Related Work. Combinatorial structures closely related to selectors have been studied
in different settings and under different terminology, with connections between these
concepts not always obvious. Some of these structures are equivalent to strong (k,N)-
selectors, while others are related to the concept of weak (k,N)-selectors, which only
isolate any one element of each k-element set. Examples include superimposed codes
used in information retrieval [12], cover-free set families [9], as well as protocols for
non-adaptive group testing [11] and for MAC contention resolution [13]. The use of
selectors in protocols for ad-hoc radio networks was initiated in [1,3], and various forms
of selectors have been used in essentially all deterministic protocols for information
dissemination in such networks.

One classical example of applications of selectors outside of networking is group
testing, a method used in fields such as medical diagnostics, quality control, or bioinfor-
matics. The goal in group testing is to efficiently identify individuals who test positive
for a specific trait, such as a disease. Instead of testing these individuals separately,
group testing works by pooling individuals into groups for collective testing. With this
approach, selectors can be employed to minimize the number of required tests. For more
thorough discussion of applications of selectors, see [7] and the references therein.

For strong (k,N)-selectors, the upper bound of O(k2 logN) can be established by
a probablistic construction [9,12,13]. An explicit construction matching this bound can
be found in [16]. Note that such bounds are of interest only for k = O(

√
N/ logN),

because for larger values of k a trivial construction using N singletons is better. This
O(k2 logN) bound is essentially tight, given a lower bound of Ω(k2 log−1 k logN)
(for k = O(

√
N)) established in [2,5,8].

De Bonis et al. [7] introduced a more general model of selectors called (k, q,N)-
selectors. A (k, q,N)-selector has the property that it can isolate at least q elements
from each k-element subset of U . A strong (k,N)-selector is a special case when q = k,
and a weak (k,N)-selector is a special case when q = 1. They proved that there are
(k, q,N)-selectors of size O(k2/(k − q + 1) logN).

2 Permutation Selectors

The objective in this section is to prove Theorem 1, namely to show that there is a
(k,N)-permutation selector of size m = O(k2 logN).
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We start with a more formal definition of our permutation selectors. Recall that
U = {0, 1, ..., N − 1}, and let 2 ≤ k ≤ N . Consider a sequence S̄ = S0, S1, ..., Sm−1

of subsets of U . We call S̄ a (k,N)-permutation selector if it has the following property:

(PS) For every X ⊆ U with |X| = k and for each permutation π = x1, x2, ..., xk of X ,
there exists an increasing sequence of indices 0 ≤ i1 < i2 < ... < ik ≤ m − 1 such
that Sil isolates xl from X for each l = 1, 2, ..., k.

If S̄ satisfies this property for a set X and a permutation π, we will say that it isolates
X in order π, or simply that S̄ isolates π. Thus S̄ is a (k,N)-permutation selector if it
isolates each k-permutation of U .

The proof idea is to choose each set Si randomly, by having each label in U , inde-
pendently, add itself to Si with probability 1

k . This way, for any fixed set X of cardi-
nality k, each Si will isolate some element of X with probability γ = (1 − 1/k)k−1,
so γ is in the range 1

e < γ ≤ 1
2 . (Recall that k ≥ 2.) We then show that the probability

that X is not isolated in order π is exponentially small with respect to m/k. This, using
the union bound, will give us that the probability that S̄ is not a (k,N)-permutation
selector is less than 1 if m = Θ(k2 logN), with a sufficiently large constant hidden
behind the big-Theta. Therefore, some sequence S̄ of length m = O(k2 logN) is a
(k,N)-permutation selector.

We now proceed with the details. As in the first part of the proof we fix X and π,
we can as well assume that X = {0, 1, ..., k − 1} and that the desired permutation of X
is π = 0, 1, ..., k − 1. Our first goal is to estimate the probability that S̄ does not isolate
X in order π.

To this end, we start by considering an auxiliary problem, which is basically a
variant of coupon collection: Suppose that we generate uniformly a random sequence
r̄ = r0, r1, ..., r�−1 of elements of {0, 1, ..., k − 1}, where � ≥ k ≥ 2. We want to
compute the probability p�,k of the event “r̄ does not contain π as a subsequence”.
To compute p�,k, we reason as follows. For a given j ∈ {0, 1, ..., k − 1}, if r̄ con-
tains 0, 1, .., j − 1 as a sub-sequence, associate with r̄ the unique lexicographically-first
appearance of 0, 1, .., j −1, namely the increasing sequence i0, i1, ..., ij−1 of positions
in r̄, where i0 is the position of the first 0, i1 is the first position of 1 after i0, and so
on. The number of r̄’s that contain 0, 1, 2, ..., j −1 but not 0, 1, 2, ..., j can be computed
by multiplying the number of choices,

(
�
j

)
, for the lexicographically-first appearance of

0, 1, ..., j − 1, and the number of ways for filling the remaining � − j positions, which
is (k − 1)�−j . This yields the formula for p�,k, given below, for which we then derive
an upper bound estimate.

p�,k =
1
k�

·
k−1∑

j=0

(
�

j

)
(k − 1)�−j

= (1 − 1/k)� ·
k−1∑

j=0

(
�

j

)
(k − 1)−j

< e−�/k ·
k−1∑

j=0

(
�

k − 1

)j

≤ e−�/k(2�/k)k, (1)
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where the last step follows from �/(k − 1) ≤ 2�/k and
∑k−1

j=0 (2�/k)j =
(2�/k)k/(2�/k − 1) ≤ (2�/k)k, as � ≥ k.

Next, still with X and π fixed as above, we estimate the probability that S̄ does
not isolate X in order π. Let h be the random variable representing the number of
sets Si that isolate some element of X (with repetitions counted). As stated earlier, the
probability that some element of X is isolated by a given Si is γ ∈ ( 1e , 1

2 ]. So h is a
binomial random variable with success probability γ and mean μ = γm. Therefore,
letting δ = 1 − 1/(4γ) (note that δ ∈ [12 , 1 − e/4)) and using the Chernoff bound for
the lower tail of h’s distribution, we get

Pr[h ≤ m/4] = Pr[h ≤ (1 − δ)μ] ≤ e−δ2μ/2 = e−δ2γm/2 = αm, (2)

where α = e−δ2γ/2 ∈ (0, 1).
Consider now the length-h sequence consisting of elements of X (with repetitions)

that are isolated by S̄, in order in which they are isolated. For an integer � ≥ k, let
E� be the event that the first min(�, h) elements of this sequence do not contain our
permutation π as a subsequence. Then Pr[E�|h ≥ �] = p�,k, so

Pr[S̄ does not isolate X in order π] ≤ Pr[h ≤ m/4] + Pr[Em/4 |h ≥ m/4 ]
≤ αm + pm/4,k

≤ αm + e−m/4k(m/2k)k

≤ βm/k(m/k)k , (3)

for β = max(α, e−1/4). (We can assume that m ≥ 2k.) Clearly, β ∈ (0, 1).
Let m = ck2 logN , for some constant c that will be specified later. To upper bound

the probability that S̄ is not a (k,N)-permutation selector, we apply the union bound.
We have

(
N
k

)
choices of k-element sets X , and each can be permuted in k! ways. So,

using the bound (3), we obtain

Pr[S̄ is not a (k,N)-permutation selector] ≤ (
N
k

) · k! · [βm/k(m/k)k]

≤ (
N
k

) · k! · βck log N · (ck logN)k

≤ Nk · Nk · βck log N · ck log N · Nk · Nk

= N4k · (cβc)k log N < 1 , (4)

where the last inequality holds if c is large enough so that cβc < 1
16 . This proves that

for this c and m = ck2 logN there exists a (k,N)-permutation selector S̄ of length m.

3 Gossiping in Ad-Hoc Radio Networks

In this section we prove Theorem 2. We start by giving a formal description of the ad-
hoc radio network model. The gossiping protocol we use is essentially identical to the
one in [10], but we include its high-level description and sketch the analysis, for the
sake of completeness.
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Ad-Hoc Radio Network Model. A radio network can be naturally modeled as a
directed graph G = (V,E) whose nodes represent processing elements equipped
with radio transmitters/receivers. Each node has a unique label from the set U =
{0, 1, . . . , N − 1}. The directed edges represent the nodes’ transmission ranges, that
is (u, v) ∈ E iff v is in the range of the transmissions from u. If (u, v) ∈ E then v is
called an out-neighbor of u and u is an in-neighbor of v.

Initially, all nodes know only their own label and the upper bound N on the number
of labels. They do not have any information about the network’s topology. The time
is discrete, divided into equal-length time steps. If a node u transmits a message, this
message is sent to all its out-neighbors at the same time step. If v is one of these out-
neighbors, and u is the only in-neighbor of v transmitting at this step, then v will receive
u’s message. But if some other in-neighbor of v transmits at the same step, a collision
occurs. The model does not assume any collision detection capability, so u will not
receive any collision notification and v will not know that u transmitted. There are no
restrictions on message size or local computation.

The two most basic information dissemination primitives in this model are broad-
casting and gossiping. In broadcasting (or one-to-all communication) the goal is to
deliver a message from a designated source node to all other nodes. In gossiping (or
all-to-all communication) each node starts with its own piece of information that we
call a rumor, and the rumors from each node must be delivered to all other nodes. For
these problems to be well defined, G must satisfy appropriate connectivity assumptions:
in broadcasting all nodes must be reachable from the source node, and in gossiping the
network must be strongly connected.

The Gossiping Protocol. We describe the protocol under the assumption that N = n,
and later we will show how to extend it to the general case, when N is polynomial in
n. With this assumption, a trivial gossiping protocol would broadcast the rumors from
nodes labeled 0, 1, . . . , n − 1 one by one. Denoting by B(n) the running time of a
broadcasting protocol, this would take time O(nB(n)). To speed this up, the gossiping
protocols in [4,10,14] work by grouping rumors in some nodes so that these nodes can
broadcast the collected rumors in a single message.

To reduce the number of such broadcasts, the idea is to broadcast from nodes that
have many rumors. We call a rumor active if it has not been broadcast yet, and a node
is active if its rumor is active and dormant otherwise. We use procedure DISPERSE(μ),
which repeatedly chooses a node with at least μ active rumors and then broadcasts from
this node. Choosing such a node can be accomplished with broadcasting and binary
search [4]. The number of chosen nodes will be O(n/μ), so the total running time of
DISPERSE(μ) is O((n/μ)B(n) log n).

One clever observation in [10] is that it is sufficient to give a protocol for a task
called quasi-gossiping, where each node needs to either become dormant itself or have
its rumor delivered to a dormant node. This is because a single repetition of the trans-
mission sequence from the quasi-gossiping protocol will in fact complete full gossip-
ing. The pseudo-code for the quasi-gossiping protocol is given in Algorithm 1. It uses
a parameter κ whose value will be determined later.

The correctness of Protocol QUASIGOSSIP is justified by focussing on active paths,
which are paths consisting only of active nodes. For any active path, define its active in-
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Algorithm 1. QUASIGOSSIP

1: for v = 0, 1, ..., n − 1 do
2: transmit from node v
3: DISPERSE(κ)
4: repeat log κ + 1 times
5: the active nodes transmit according to a (κ, n)-permutation selector
6: DISPERSE(κ/2)

neighborhood to be the set of active in-neighbors of the nodes on this path. Let � be the
largest number such that each active path with � nodes has its active in-neighborhood
size (strictly) smaller than κ. After the execution of DISPERSE(κ) in Line 3, each node
will be left with fewer than κ active in-neighbors, so at this point we have � ≥ 1.
Each iteration of the repeat loop at least doubles the value of �. Since all nodes (except
possibly the last) on an active path belong to the active in-neighborhood, the value of �
cannot exceed κ. So after log κ iterations there cannot be any active paths left of length
at least κ, and then the last iteration will complete the quasi-gossiping task.

In line 5 we use the (κ, n)-permutation selector from Theorem 1, so the total
cost of these selectors will be O(κ2 log2 n). The cost of all calls to DISPERSE() is
O((n/κ+log n)B(n) log n). Thus the overall running time of Protocol QUASIGOSSIP

is asymptotically bounded by:

(n/κ + log n)B(n) log n + κ2 log2 n

Letting κ = (nB(n)/ log n)1/3, and using the bound B(n) = O(n log n loglog n)
from [6,15] on the complexity of broadcasting, we obtain a gossiping protocol with
running time O(n4/3 log2 n(loglog n)2/3).

To extend Protocol QUASIGOSSIP to the case when N is polynomial in n, we
first replace n by N in all invocations of selectors. After this, the only problem-
atic part of Protocol QUASIGOSSIP is the for loop in Lines 1–2 that reduces the
active in-neighborhoods of the individual nodes. Instead of this loop, the protocol
in [10] uses (s, s/4, N)-selectors for geometrically decreasing values of s, combined
with operations DISPERSE(s/4), to gradually reduce these in-neighborhoods. (This
is similar to the method in [13].) The running time of this process amortizes to
O((n/κ)B(n) log n)—same time as for the case of small labels. So the overall run-
ning time also remains the same, completing the proof of Theorem 2.

4 (k, q,N)-Permutation Selectors

In Sect. 2 we defined (N, k)-permutation selectors, a family of sets that isolates all
elements of any k-permutation π of the label set U = {0, 1, . . . , N − 1}, meaning that
all elements in π are isolated in their listed order in π.

We now generalize this concept analogously to the way (k, q,N)-selectors general-
ize standard selectors, by requiring that some q elements of each k-permutation π are
isolated in the order of π. Formally, let S̄ = S0, S1, . . . , Sm−1 be a sequence of subsets
of U . S̄ is called a (k, q,N)-permutation selector if the following property holds:
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(PS’) For each X ⊆ U with |X| = k, and for each permutation π = x1, x2, ..., xk of
X , there are increasing sequences of indices 0 ≤ i1 < i2 < ... < iq ≤ m − 1 and
d1 < d2 < ... < dq such that, for all l = 1, 2, ..., q, set Sil isolates xdl

from X .

This section provides a probabilistic construction of a (k, q,N)-permutation selector,
proving the following theorem. Let 2 ≤ k ≤ N and 1 ≤ q ≤ k.

Theorem 3. There exists a (k, q,N)-permutation selector S̄ = S0, S1, · · · , Sm−1 of
size m = O(kq logN).

Proof. As in the proof of Theorem 1, we use a probabilistic argument. The construction
is the same: for each j = 0, 1, ...,m − 1, we let Sj be a random subset of U obtained
by each element x ∈ U adding itself to Sj , independently, with probability 1

k . We then
need to prove that if c is a sufficiently large constant and m = c · qk logN , then

Pr[S̄ is not a (k, q,N)-permutation selector] < 1. (5)

The proof’s high-level strategy is the same as in the proof of Theorem 1. We use the
Chernoff bound to reduce the problem to a version of the coupon collection problem.
We consider the following variant of the coupon collection problem: For a random
sequence r̄ = r0, r1, ..., r�−1 of coupons from {0, 1, ..., k − 1}, where � ≥ k ≥ 2, let
p′

�,k,q be the probability of the event “r̄ does not contain an increasing subsequence of
length q”. To show (5), it is sufficient to prove that

p′
�,k,q ≤ γ�/q(2�/q)q , (6)

for some constant γ ∈ (0, 1). Indeed, this is analogous to (1). We can then use the
Chernoff-based bound (2), to obtain a bound of δm/q(m/q)q , for some 0 < δ < 1,
on the probability that S̄ does not isolate q elements of π in order, analogously to (3).
For the union-bound estimate, we then take m = ckq logN , with large enough c. Since
then δm/q(m/q)q = δck log N (ck logN)q ≤ δck log N (ck logN)k, the derivation for the
union bound (4) will be essentially the same, with δ instead of β.

It remains to estimate p′
�,k,q. We reason as follows. First, to avoid clutter in the

calculations below, we will assume that q is a divisor of k. (If it is not, the values of
k/q in the calculations below need to be rounded up or down. This does not affect our
asymptotic estimate.)

We now consider a special type of increasing sub-sequences that we refer to as
q-jump sub-sequences. Partition the set of coupons {0, 1, ..., k − 1} into q equal size
blocks B0, B1, ..., Bq−1, each having k/q consecutive coupons. That is, the h-th block

is Bh =
{

hk
q , hk

q + 1, ..., (h + 1)k
q − 1

}
, for h = 0, 1, ..., q − 1. For j ≤ q, a jump

sub-sequence is a sequence of j coupons a0, a1, ..., aj−1 such that ah ∈ Bh for each
h = 0, ..., j − 1.

Define now p′′
�,k,q to be the probability of the event “r̄ does not contain a jump

sub-sequence of length q”. Since p′′
�,k,q ≥ p′

�,k,q, it is sufficient to prove that the same
inequality (6) holds for p′′

�,k,q instead of p′
�,k,q. We do this by refining the argument

in the proof of Theorem 1. For a given j ∈ {0, 1, ..., q − 1}, if r̄ contains a length-j
jump sub-sequence then associate with r̄ the unique lexicographically-first appearance
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of a length-j jump sub-sequence. The number of r̄’s that contain a length-j jump sub-
sequence but not a length-(j + 1) jump sub-sequence can be obtained by choosing the
lexicographically first length-j jump sub-sequence in

(
�
j

) · (k/q)j ways and multiplying

it by the number of ways of filling the remaining �−j positions, which is (k−k/q)�−j .
We thus have

p′
�,k,q ≤ p′′

�,k,q =
1
k�

q−1∑

j=0

(
�

j

)
· (k/q)j · (k − k/q)�−j

= (1 − 1/q)�
q−1∑

j=0

(
�

j

)
(q − 1)−j

≤ (1 − 1/q)�
q−1∑

j=0

(2�/q)j

≤ e−�/q(2�/q)q.

This proves (6) (with γ = 1/e), completing the proof.

For q = k, the bound in Theorem 3 matches the bound from Theorem 1 and the best
bound for strong (k,N)-selectors. For q = 1, it also matches the O(k logN) bound for
weak (k,N)-selectors. We are not sure about the optimum size of (k, q,N)-permutation
selectors for intermediate values of q. The case when q =

√
k is particularly interesting.

From the bound in [7], (k,
√

k,N)-selectors have size O(k logN). Can some prob-
abilistic construction produce a (k,

√
k,N)-permutation selector of size m = Õ(k)?

For such m, a random sequence of coupons from {0, 1, ..., k − 1} can be thought of
as a “noisy” permutation. We would need to show that the probability that this random
sequence does not contain an increasing sub-sequence of length

√
k is exponentially

small. This question is closely related to Ulam’s Problem about the distribution of the
longest increasing subsequence (LIS) in a random permutation. Ulam’s Problem has
been extensively studied, and it is known that for permutations of 0, 1, ..., k − 1 the
expected length of LIS is 2

√
k + O(k1/6). (See [17], for example.) To our knowledge,

however, the published concentration bounds are not sufficient for refining the proba-
bilistic construction in the proof of Theorem 3 to yield a better bound.
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