
CPSim: Simulation Toolbox for Security Problems in

Cyber-Physical Systems

MENGYU LIU, University of Notre Dame, Notre Dame, United States

LIN ZHANG, University of Pennsylvania, Philadelphia, United States

WEIZHE XU, University of Notre Dame, Notre Dame, United States

SHIXIONG JIANG, University of Notre Dame, Notre Dame, United States

FANXIN KONG, University of Notre Dame, Notre Dame, United States

There are various applications of Cyber-Physical systems (CPSs) that are life-critical where failure or malfunc-

tion can result in significant harm to human life, the environment, or substantial economic loss. Therefore,

it is important to ensure their reliability, security, and robustness to the attacks. However, there is no widely

used toolbox to simulate CPS and target security problems, especially the simulation of sensor attacks and

defense strategies against them. In this work, we introduce our toolbox CPSim, a user-friendly simulation

toolbox for security problems in CPS. CPSim aims to simulate common sensor attacks and countermeasures

to these sensor attacks. We have implemented bias attacks, delay attacks, and replay attacks. Additionally, we

have implemented various recovery-based methods against sensor attacks. The sensor attacks and recovery

methods configurations can be customized with the given APIs. CPSim has built-in numerical simulators and

various implemented benchmarks. Moreover, CPSim is compatible with other external simulators and can be

deployed on a real testbed for control purposes.1

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; • Secu-

rity and privacy → Systems security;

Additional Key Words and Phrases: cyber-physical system, toolbox, simulation

ACM Reference Format:

Mengyu Liu, Lin Zhang, Weizhe Xu, Shixiong Jiang, and Fanxin Kong. 2024. CPSim: Simulation Toolbox

for Security Problems in Cyber-Physical Systems. ACM Trans. Des. Autom. Electron. Syst. 29, 5, Article 90

(September 2024), 16 pages. https://doi.org/10.1145/3674904

1 Introduction

Cyber-physical systems (CPSs) seamlessly integrate computational resources, physical ele-

ments, sensing, and actuation, enhancing the functionality of critical components and services

1This toolbox has been presented and published at the 29th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS’23) Demo session.

This work was supported in part by NSF CNS-2333980.

Authors’ Contact Information: Mengyu Liu, University of Notre Dame, Notre Dame, Indiana, United States; e-mail: mliu9@

nd.edu; Lin Zhang, University of Pennsylvania, Philadelphia, Pennsylvania, United States; e-mail: cpsec@seas.upenn.edu;

Weizhe Xu, University of Notre Dame, Notre Dame, Indiana, United States; e-mail: wxu3@nd.edu; Shixiong Jiang, Univer-

sity of Notre Dame, Notre Dame, Indiana, United States; e-mail: sjiang5@nd.edu; Fanxin Kong, University of Notre Dame,

Notre Dame, Indiana, United States; e-mail: fkong@nd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1084-4309/2024/09-ART90

https://doi.org/10.1145/3674904

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0002-3532-9506
HTTPS://ORCID.ORG/0000-0003-3708-9056
HTTPS://ORCID.ORG/0000-0003-2466-0241
HTTPS://ORCID.ORG/0009-0004-9137-2359
HTTPS://ORCID.ORG/0000-0001-6488-3488
https://doi.org/10.1145/3674904
mailto:permissions@acm.org
https://doi.org/10.1145/3674904
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3674904&domain=pdf&date_stamp=2024-09-04

90:2 M. Liu et al.

across domains such as healthcare, aviation, transportation, and manufacturing [19, 23]. CPSs

bridge the gap between physical processes and computational systems, allowing for more efficient,

automated, and intelligent interaction with the physical environment. CPSs play a critical role in

emergency management and disaster response, providing essential data for informed decision-

making and automated response mechanisms, thereby enhancing resilience and mitigating the

impact of crisis [1, 12, 17]. However, malicious attacks on CPSs can have severe consequences,

including economic harm, compromised personal safety, and societal disruptions. For instance, an

attack on industrial control systems could lead to machinery malfunction, causing property dam-

age or even catastrophic industrial accidents. Upon its discovery in 2010, the Stuxnet cyber worm,

which specifically targeted programmable logical controllers used in industrial settings, had al-

ready spread to an estimated 60,000 computers globally. This sophisticated malware represented a

significant escalation in cyber threats, demonstrating an unprecedented level of complexity and an

ability to disrupt critical industrial processes [8]. Recently, there have been multiple cases reported

by media about the vulnerability of CPSs [20, 21, 28]. These cases also motivate the development

of new safety and security solutions.

To tackle the above security problem, researchers have developed several algorithms to enhance

the safety of the CPSs [15, 16, 33, 34], but there is no widely used simulation toolbox targeting

security problems in CPSs [26, 27, 30]. CPSs often operate in complex, real-world environments

where physical testing can be costly, dangerous, or impractical. Simulation allows for extensive

testing and validation of the system’s performance under a wide range of conditions without the

risks associated with physical trials. Through simulation, designers can experiment with different

configurations and scenarios to optimize system performance. This is particularly important in

CPS, where the interplay between physical and computational components can lead to unexpected

behaviors. Furthermore, developing and deploying physical prototypes for complex systems can be

extremely expensive. Simulation provides a more cost-effective way to explore design alternatives,

identify problems, and refine system behaviors before investing in physical prototypes.

Compared to existing simulators, most CPS-related simulators [11, 24] focus on enhancing fi-

delity and information accuracy, often neglecting issues related to safety. Among the few that do

address safety [26], they typically concentrate only on the impacts of attacks without considering

aspects of recovery.

However, it is difficult to develop a CPS simulation toolbox for security problems due to two

main challenges:

— The implementation complexity of CPS system security components. Attack detectors aim

to identify attacks early on, while attack recovery methods mitigate their impact and guide

the system’s physical states toward predetermined targets. Yet, assessing the effectiveness

and efficiency of these security measures presents challenges. Gathering benchmark plants,

designing controllers, customizing attacks, constructing defense approaches, and evaluating

performance requires substantial efforts.

— The coupling of each component in CPS. Integrating new features or incorporating solutions

into existing simulators is also difficult using existing methods. Additionally, the simulation

of physical system behaviors in tandem with cyber states is crucial [13]. This dual-layered

approach is imperative for understanding the intricate interactions between the physical

components and their digital counterparts within CPSs. By accurately modeling both the

physical and cyber aspects, users can gain a comprehensive insight into the system’s overall

behavior, enabling them to anticipate potential vulnerabilities, optimize performance, and

devise effective countermeasures against cyber threats. Such simulations are particularly

vital in complex environments where the physical and digital realms are deeply intertwined

and where the consequences of system failures or cyber attacks can be far-reaching[14].

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

CPSim: Simulation Toolbox for Security Problems in Cyber-Physical Systems 90:3

To address the above challenges, we propose CPSim, a simulation and security toolbox with

high extensibility and adaptability. CPSim aims to simulate common sensor attacks and counter-

measures to these sensor attacks. The design of CPSim has two main features:

— Users can easily toggle between different experiment parameters and deploy defense proto-

types in response to various attacks.

— CPSim is compatible with existing simulators for CPSs under different scenarios.

The source code of CPSim can be found at https://github.com/lion-zhang/CPSim. The CPSim doc-

umentation can be found at https://sim.cpsec.org/en/latest/.

2 Related Works

Compared to other existing simulators, most CPS-related simulators [11, 18, 24] focus on enhanc-

ing fidelity and information accuracy, often neglecting issues related to safety. Researchers in Ref-

erence [24] proposed a novel high-fidelity simulation framework that provides both Software-in-

the-Loop (SITL) and Hardware-in-the-Loop (HITL) testing. Researchers in Reference [11] de-

veloped the 3D simulator Gazebo, which is the foundation for many simulators. However, Gazebo

does not specifically target security problems in CPS. Ma et al. [18] have developed a wireless CPS

simulator for edge computing that enhances the high-fidelity simulation.

Some of the CPS simulators focus on simulating specific systems such as power sys-

tems [3–5, 29]. In Reference [5], the authors introduced an event-driven co-simulation scheme

employing the network simulator NS2 andOpenDSS for simulatingCyber-Physical Power Systems.

In Reference [3], the researchers developed a co-simulation framework by integrating OpenDSS

and OMNeT++ to perform power system simulations and communication network analyses, aim-

ing to evaluate wide-area monitoring and control applications. In Reference [4], a co-simulation

framework has been developed to simulate power routing algorithms for microgrid applications

by merging OMNeT++ with the Real-Time Digital Simulator (RTDS). While these works offer

significant insights and contributions, they overlook the simulation of attacks and security issues

within these systems. This omission limits their applicability in real-world scenarios, where secu-

rity vulnerabilities and malicious attacks are common. Consequently, further research is needed

to incorporate comprehensive simulation models that evaluate and mitigate potential security

threats.

Among the few that do address security [2, 6, 26], they typically concentrate on the im-

pacts of attacks without considering defending strategies. In Reference [26], the researchers pro-

pose a simulation MATLAB toolbox, epanetCPA. The toolbox provides both demand-driven and

pressure-driven simulations, allowing users to realistically analyze cyber-physical attacks and

their impacts under various conditions. In Reference [2], researchers propose MiniCPS, which

enhances Mininet to offer lightweight real-time network emulation and extends it by incorpo-

rating tools to simulate typical CPS components, such as programmable logic controllers. How-

ever, they only provide a single method to mitigate the attacks by analyzing the traffic of the

network systems. In Reference [6], researchers simulate and observe the effects of a common net-

work attack on the availability of the system. Unfortunately, no defense strategy is included and

discussed.

Some researchers have targeted sensor attacks and defense strategies against them [7, 12, 31, 33,

34]. In Reference [12], researchers systematically introduce how to apply recovery-based methods

to against sensor attacks. In Reference [7], researchers propose a novel framework to create a

software sensor that estimates the system states under sensor attacks. In References [31, 33, 34],

the researchers propose a series of recovery algorithms against sensor attacks under different

scenarios. We have implemented all of them in CPSim.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

https://github.com/lion-zhang/CPSim
https://sim.cpsec.org/en/latest/

90:4 M. Liu et al.

Fig. 1. Design overview of simulation and security toolbox.

3 Architecture

The proposed toolkit consists of three components: a simulator engine, security analysis elements,

and supporting components. Illustrated in Figure 1, the simulator replicates the operations of a

CPS where sensors capture the system’s conditions and transmit measurements to observers. Al-

ternatively, the simulator can be replaced by external simulators for high-fidelity simulation. In

practice, sensor measurements can be affected by external uncertainties and intentional attacks,

depending on the settings and requirements. The observers utilize these measurements to estimate

the current state of the system for the controllers. The controllers, in turn, generate control inputs

that are implemented in physical plants. The plant simulators then update the system states based

on the system dynamics and applied control inputs.

To enhance the security of the CPS, various attack detectors and real-time attack recovery con-

trollers are integrated to identify and respond to potential attacks. Additionally, there are some

reachability analysis tools implemented to help estimate the safety status and deadlines [32]. Fur-

thermore, these reachability analysis tools serve a dual purpose by aiding in the enforcement of

operational deadlines. They provide a temporal analysis to ensure that the system’s responses oc-

cur within acceptable time frames, which is critical for time-sensitive operations where delays

could lead to unsafe conditions or system failures. The integration of these advanced security and

analytical capabilities is imperative for maintaining the integrity, reliability, and safety of the CPS.

By offering both detection and response mechanisms, as well as predictive capabilities, the system

aims to shield itself from the dire consequences of cyberattacks while ensuring that it operates

within safe parameters and adheres to strict temporal constraints.

The supporting components are responsible for the data streaming and timing-related sched-

uling. The timer device within the simulation framework plays a pivotal role, as it emulates

the system clock, a central piece in the coordination and synchronization of the CPS’s opera-

tions. It meticulously triggers control steps at predefined intervals, ensuring that the sequence

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

CPSim: Simulation Toolbox for Security Problems in Cyber-Physical Systems 90:5

Fig. 2. An example code of a simulation using CPSim.

of actions within the CPS adheres to the designated schedule. This precise timing is critical for

maintaining the fidelity of the simulation, mirroring real-world operations where timing is of-

ten as crucial as the control actions themselves. The logger records the system’s historical data

from other components. It captures a comprehensive log of key operational data points, includ-

ing state estimates, sensor measurements, and control inputs. By chronicling this data, the logger

provides a valuable archive that can be used for retrospective analysis, troubleshooting, and sys-

tem optimization. It plays a forensic role in the event of system anomalies or failures, allowing

engineers and system analysts to trace back through the event sequence and identify the root

causes.

Figure 2 displays a Python code script example of the simulation of aContinuous Stirred Tank

Reactor (CSTR) system. In each simulation of CPSim, there are three main steps to produce the

simulation results: initialize the simulation, build the main control loop, and output the simulation

results.

Lines 1–3 are responsible for importing necessary Python modules and classes. A CSTR class

is imported from a cyber-physical system modeling package for simulating a continuously stirred

tank reactor. Lines 5–9 set up the parameters for the simulation. The number of simulation steps,

the sampling time, the reference or target state, and the noise settings are defined here. Notably,

noise is set to None, indicating that noise is not currently factored into the simulation. Lines 12–16

represent the main loop where the simulation is executed. For each iteration, it asserts the current

simulation index, updates the reference state, and evolves the system to the next state. Lines 18–27

are responsible for handling the results. Matplotlib is imported for plotting, and arrays for time,

the reference state, system output, and control input are created. The block concludes with the

setup for a plot that would display the system’s response overtime against the reference state.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

90:6 M. Liu et al.

Fig. 3. The OOP layout diagram of CPSim.

4 Features

(i) User-centric Interface: CPSim distinguishes itself with its user-centric design, setting it apart

from many toolboxes that rely on C or C++—languages that can pose a challenge for less experi-

enced researchers. The choice of Python 3 for its development underscores its commitment to sim-

plicity and readability, key factors that enhance its accessibility for a broader range of researchers.

Python’s widespread popularity further augments this aspect.

The design of CPSim using Object-Oriented Programming (OOP) principles represents a

significant stride in developing robust, scalable, and maintainable systems. OOP, characterized by

its use of classes and objects, offers a modular approach that aligns perfectly with the multifaceted

nature of CPS. In these systems, various physical processes and computational elements interact

closely, and OOP allows for each of these components to be encapsulated within individual

objects. This encapsulation not only promotes a clear separation of concerns but also enhances

the reusability of code. Figure 3 is a layout of CPSim design from a lower level. This circular

layout provides a clearer and more consolidated view of the classes and their relationships,

including inheritance and associations. The arrangement should help in visualizing the structure

and connections within CPSim.

By adopting OOP, developers can create models for each physical process and computational

function as distinct objects, each with its own properties and methods. This method greatly simpli-

fies complex system designs, making themmoremanageable and comprehensible. It also facilitates

the simulation and testing of individual components in isolation, as well as in integrated settings,

enhancing the reliability and effectiveness of the entire CPS.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

CPSim: Simulation Toolbox for Security Problems in Cyber-Physical Systems 90:7

Furthermore, OOP’s inheritance feature enables developers to create hierarchical relationships

between objects, which is invaluable in representing real-world systemswhere certain components

naturally share attributes and behaviors. This hierarchical modeling can significantly streamline

the development process, reduce redundancy, and allow for more intuitive system expansions or

updates.

(ii) Customizability and Modularity: One of CPSim’s standout features is its high extensibility.

The simulator engine is designed to function independently from the toolbox’s other components,

a design choice that greatly simplifies the process of adding new elements. This modular approach

allows users to easily integrate additional modules or components into the toolbox, tailoring it to

meet their specific simulation and analysis needs. Such customizability is invaluable in a research

setting, where specific requirements can vary greatly from one project to another. This feature

empowers users to adapt the toolbox to their particular research objectives, enhancing its utility

and effectiveness.

One of the key areas where CPSim allows for user-driven extension is in the creation of cus-

tomized benchmarks. Benchmarks are essential for evaluating the performance and resilience of

CPS under different conditions. Users can design these benchmarks to reflect specific real-world

scenarios or theoretical models, enabling them to conduct more relevant and targeted research.

This capability is particularly valuable for testing systems under a variety of controlled conditions

to understand their behavior and limitations. The user can define the system dynamics in state-

space format for linear models and in ODE format for non-linear models. The new benchmark’s

dynamics and controller must be specified and integrated into the simulation class.

Additionally, CPSim’s architecture supports the integration of custom controllers. Controllers

are at the heart of CPS, dictating the system’s response to input data and environmental condi-

tions. By allowing users to implement their own controllers, CPSim provides a versatile platform

for experimenting with various control strategies. This flexibility is vital for exploring innovative

control algorithms, including those based on emerging technologies such as artificial intelligence

and machine learning. Users can define their own controller class by inheriting the controller

class.

Furthermore, the ability to simulate different types of attacks is an indispensable feature of

CPSim, especially considering the growing importance of cybersecurity in CPS. Users can create

and integrate custom attack scenarios to evaluate the robustness and security of systems. This

feature is critical for identifying vulnerabilities, developing mitigation strategies, and ensuring the

resilience of CPS against malicious cyber threats. The details can be found at the documentation

site under custom components.

(iii) Versatility and Integration Capabilities: CPSim’s flexibility extends beyond mere numerical

simulations. The toolbox is designed for easy deployment in well-regarded high-fidelity simulators

such as AirSim and CARLA, making it a versatile choice for a wide array of simulation environ-

ments. Additionally, its compatibility with the Robot Operating System (ROS)—a collection of

open-source software libraries and tools for robot development—broadens its applicability. This

integration demonstrates CPSim’s adaptability in diverse simulation contexts, ranging from au-

tonomous vehicle research to robotic system development.

Additionally, users can replace the simulator engine with a real testbed. CPSim’s capability to

be deployed on testbeds adds another layer of versatility and practicality to its already robust set

of features. Testbeds are essential in the field of CPS, as they provide a controlled yet realistic en-

vironment for validating the performance, reliability, and security of these systems under various

conditions.

Deploying CPSim on a testbed allows for real-time, hands-on testing and experimentation

with actual hardware and software configurations. This is crucial for bridging the gap between

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

90:8 M. Liu et al.

theoretical simulations and real-world applications. In a testbed setting, researchers and devel-

opers can observe how CPS behaves in scenarios that closely mimic their intended operational

environments. This includes testing under various physical conditions, network configurations,

and different types of hardware.

The use of a testbed also enables comprehensive stress testing of CPS under extreme or unex-

pected conditions, which might be difficult to replicate in a purely simulated environment. This

includes testing the resilience of systems against physical disruptions, cyber attacks, and network

failures. Such real-world testing is vital for identifying and rectifying potential issues that might

not be evident in a simulation-only environment.

5 Attacks and Noises

It is important to simulate the noises in the system and potential attacks injected by malicious at-

tackers for security problems in CPS. Simulating attacks helps identify potential vulnerabilities in

CPS. These systems often integrate physical devices with digital networks, making them suscepti-

ble to various attack vectors. By simulating attacks, weaknesses can be discovered and addressed

before they can be exploited by malicious actors. Moreover, simulating attacks enables organiza-

tions to develop effective response strategies. This includes not only technical responses but also

procedural and human responses, ensuring that all aspects of the system can react appropriately

to mitigate damage from a real attack. Many industries have regulatory requirements for cyber-

security. Simulating attacks can help ensure that CPS meets these standards, reducing legal and

financial risks associated with non-compliance.

Simulating noises helps in testing the system’s reliability and its ability to operate correctly in

the presence of such interferences, which are common in real-world environments. Furthermore,

by introducing noise into the system during testing, engineers can evaluate the error and fault

tolerance capabilities of CPS. This helps in designing systems that can continue to operate correctly

or fail safely in the presence of unexpected disturbances. In the CPSim toolbox, we simulate attacks

that compromise the integrity or availability of sensor measurements.

5.1 Attack Types

We have implemented three common attacks in this toolbox: bias attack, delay attack, and replay

attack. A bias attack usually refers to the intentional introduction of systematic errors or biases

into the system. This type of attack is particularly relevant in systems that rely on sensor data

or algorithmic decision-making. For example, in a navigation system using GPS data, an attacker

might introduce a small, consistent error in the GPS readings, causing the system to slowly drift

off course. A delay attack targets the timeliness of information in CPS. The attacker deliberately

delays the transmission of critical data or commands, disrupting the normal operation of the sys-

tem. In an industrial control system, delaying the communication between sensors and controllers

could result in machinery operating on outdated information, potentially causing safety hazards

or production issues. A replay attack involves capturing valid data transmissions and retransmit-

ting them later. The key aspect of this attack is that the data itself is legitimate but is reused or

replayed at an inappropriate time or in an incorrect context. The details of these three attacks can

be found in Reference [31].

In all these attacks, the integrity and reliability of the CPS are compromised. The subtlety of bias

and delay attacks makes them particularly insidious, as they may not be immediately detectable.

Replay attacks exploit the lack of temporal validation in communication protocols. These attacks

highlight the importance of robust security measures, including encryption, authentication, and

real-time monitoring, to protect against various forms of cyber threats.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

CPSim: Simulation Toolbox for Security Problems in Cyber-Physical Systems 90:9

We have implemented Gaussian noises in the toolbox and will implement more noises in the

future. Since the noises can vary depending on the scenario, we make the noise distribution as an

argument when initializing the simulation class.

It should be noted that our system is not specifically designed to counter cyber attacks; instead,

it focuses on sensor attacks. More specifically, these attacks involve adversaries manipulating the

values entered into the system by sensors, either through physical means or via the network. We

do not have a network layer in our toolbox; instead, we try to simulate attacks from the software

level.

6 Recovery Controllers

Recovery in CPS is vital due to the deeply interconnected nature of these systems, which blend com-

putational elements with physical processes. In environments where CPSs are integral—ranging

from automotive systems and medical devices to industrial controls—recovery mechanisms are

essential to ensure safety, preventing malfunctions or anomalies from leading to unsafe condi-

tions. Moreover, the reliability of these systems is paramount; they must operate without fail even

amidst hardware failures, software glitches, or unexpected environmental changes. This reliability

is further challenged by the growing threat of cyber attacks, making robust recovery processes a

shield against potential security breaches that could compromise the integrity and confidentiality

of operations. It is important to react to the attacks to maintain the safety of the CPSs. Therefore,

we have implemented several recovery controllers to recover the system from a risky status to a

safe state.

Software-sensor-based recovery refers to the process of restoring the normal operation of a

system using software sensors after a disruption, such as a cyber attack or a fault [7, 12]. After

the detection of sensor attacks, the baseline replaces the corrupted physical sensor data with the

software sensor data predicted by the linear system model.

Linear programming (LP)-based recovery is a mathematical approach used to restore the op-

timal operation of a system following a disruption, such as equipment failure, resource depletion,

or a cyber attack[31]. This baseline approach constructs the issue of system recovery as an op-

timization problem that can be solved using linear programming. The objective of solving this

optimization problem is to determine a sequence of control actions that will guide the system’s

state back to a predefined acceptable range, ensuring that this is achieved within a specified time

frame that is considered safe.

Linear-Quadratic Regulator (LQR)-based recovery is a control strategy used in systems engi-

neering to bring a system that has experienced disturbances or deviations back to its desired state

or trajectory [34]. This approach is grounded in control theory and uses state feedback to ensure

the system’s performance optimally meets a set of criteria.

MPC-based recovery controller using MPC methods to bring the system back to a safe state

after the attacks have been detected [33]. This approach uses data-driven methods to identify a

local linear model for the MPC problem and generate a control sequence for the recovery. The

MPC’s ability to adhere to various constraints, such as operational limits and safety requirements,

is also a critical feature, especially during recovery phases. The entire system operates within

a closed-loop feedback mechanism, enabling continuous monitoring and real-time adjustments,

ensuring that control actions are consistently effective and relevant. This data-driven approach

to developing an MPC-based recovery controller provides a sophisticated solution for managing

systems with complex dynamics. It offers enhanced predictive accuracy, flexibility in handling

nonlinear behaviors, and adaptability to changing operational conditions, making it an invaluable

tool in maintaining system stability and efficiency, especially in environments that demand rapid

responses to disturbances.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

90:10 M. Liu et al.

Fig. 4. Recovery examples of three non-linear benchmarks in CPSim. The systems are under sensor attacks.
The red vertical line indicates the start time of the sensor attack sequence, the green vertical line represents
when the detector triggers an alarm and the system initiates recovery, and the blue vertical line signifies
the deadline for recovery. The green regions are safe sets. “none” refers to no recovery, “lp” refers to linear
programming recovery, “lqr” refers to linear quadratic regulator recovery, “ssr” refers to software sensor
recovery, and “MPC” refers to model predictive control recovery.

7 Experiments

In this section, we will show the results of the algorithms described in Section 6 on various bench-

marks in the toolbox. Additionally, we will show some results that integrate this toolbox with

high-fidelity simulators and a real four-wheel testbed. We have implemented several common lin-

ear benchmarks in CPSim. In the real world, most systems are non-linear, therefore, to demonstrate

the capabilities of CPSim (Cyber-Physical System Simulator) for non-linear systems, it is es-

sential to provide example codes that users can refer to as a starting point. These example codes

cover a range of non-linear system characteristics to showcase the versatility and robustness of

CPSim in handling complex dynamics.

The Continuous Stirred Tank Reactor (CSTR) [10] is a common benchmark problem in the

field of process control and chemical engineering. It serves as an important example for testing

and demonstrating the capabilities of control systems, including those used in CPS. The CSTR

benchmark typically involves controlling the concentration and temperature within the reactor.

Maintaining the desired temperature is crucial for the efficiency and safety of the reaction. The

heat generated or absorbed by the reaction, along with the heat exchange with the environment,

contributes to the system’s non-linearity.

The quadrotor benchmark [22] is a significant and challenging problem in the field of robotics

and control systems, particularly relevant to computer science and real-time systems. Quadrotors,

also known as quadcopters, are a type of unmanned aerial vehicle (UAV)with four rotors. They

are widely used for various applications, including aerial photography, surveillance, and research.

The dynamics of quadrotors are complex and highly non-linear, making them an ideal benchmark

for testing control algorithms and real-time system performance. In this benchmark, the task is

to control the altitude of the quadrotor. Altitude control is directly related to the thrust generated

by the quadrotor’s rotors. Adjusting the rotor speeds precisely to achieve the desired altitude is

challenging and important to real-world applications.

The vessel benchmark [9, 25] is designed to simulate the dynamics of naval vessels and control

them for autonomous surveys. Designing CPS that can operate autonomously for extended peri-

ods without human intervention is critical. This involves ensuring not just operational endurance

but also the ability to make decisions and adapt to new situations over time. Implementing control

systems to manage the vessel’s propulsion and maintain stability in varying sea conditions is

challenging. This involves controlling rudders, thrusters, and other propulsion systems. Figure 4

provides an example of recovering non-linear systems from sensor attacks. The settings can be

found in Table 1. It is convenient to set the attack state, reference, time frequency, and other

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

CPSim: Simulation Toolbox for Security Problems in Cyber-Physical Systems 90:11

Table 1. Settings Used in Each Benchmark

CSTR Quadrotor Naval Vessel

attack state Temperature Altitude Speed

reference 300 K 4 m 1.03 m/s

dt 0.1 s 0.01 s 1 s

noise
uniform distribution

[0, 0.1]

uniform distribution

[0, 5e-6]

uniform distribution

[0, .015]

detection delay 1 s 0.2 s 10 s

bias −30 K −1.5 m −0.3 m/s

safe set (250, 360) K (0, 200) m (0, 150) m/s

target set (299, 301) K (4.8, 5.2) m (0.8, 1.2) m/s

control limits (200, 300) K (−50, 200) N [(0, 4), (−2, 2)]

MPC frequency 10 Hz 10 Hz 1 Hz

Orig Controller

P = 0.50

I = 1.33

D = −0.05

P = 100

I = 0

D = −19

P = 0.45, 0.1

I = 0.05, 0

D = 0, −3.5

Fig. 5. Sensitivity analysis of recovery for CSTR in CPSim. The systems are under bias sensor attacks. The
bias values are {−25,−30,−35}.

parameters using the built-in API of CPSim. This provides a user-friendly interface to simulate

and test customized security algorithms on CPS benchmarks. The recovery control algorithms

introduced in Section 6 have been tested on these systems to show the capabilities of CPSim.

CPSim can simulate the dynamics of non-linear CPSs under attack and during the recovery, it is

efficient to design security experiments and implement them using CPSim.

To be noticed, sometimes, the recovery algorithms may not find any feasible solutions from

the optimization. From Figure 4(c), we can see linear programming does not provide any solu-

tion for the vessel benchmark. Real-time systems often have stringent constraints related to time,

resources, and performance. If these constraints are too rigid or conflicting, then it may render

the optimization problem infeasible. For example, if the time constraints for a task are tighter than

what the system can physically achieve, then the optimization algorithmmay fail to find a solution

that satisfies all constraints. Moreover, CPSs can have a large and complex problem space, espe-

cially in systems with a high degree of concurrency or those requiring intricate synchronization.

In such cases, the sheer complexity of the problem can make it difficult for recovery algorithms to

find a feasible solution, particularly within the time limits imposed by real-time requirements.

Figure 5 shows the recovery performance on the CSTR benchmark under different levels of at-

tacks. The values of the bias attacks are set to {−25,−30,−35}. The image shows that as the bias

values increase, the deviation of the system state at the time of the detector’s alarm (indicated

by the green vertical line) becomes larger, making recovery more challenging and the deadline

for recovery (indicated by the blue vertical line) closer. It is important to test the robustness of

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

90:12 M. Liu et al.

Fig. 6. Sensitivity analysis of recovery for CSTR in CPSim. The systems are under bias sensor attacks. The
noise upper bounds are {0.05, 0.1, 0.15}.

Fig. 7. Sensitivity analysis of recovery for quadrotor in CPSim. The systems are under bias sensor attacks.
The noise upper bounds are {0.01, 0.05, 0.2} × 10−4.

the algorithms under attacks to identify and mitigate potential vulnerabilities. Additionally, un-

der real-time scenarios, testing the algorithms under various attacks can evaluate the temporal

performance of the algorithms such as deadlines and recovery delay. Under attack conditions, the

ability of these systems to maintain deadline adherence is a crucial measure of their robustness

and reliability. Testing how algorithms perform under attack can reveal their ability to prioritize

critical tasks and maintain functionality even when under attack. Figure 6 shows the recovery

performance on the CSTR benchmark under different levels of noise. The upper bounds of the

uniform noises are set to {0.05, 0.1, 0.15}. We visualize how the recovery algorithms from CPSim

work on the CSTR benchmark when the system is in a more and more noisy environment. The

image shows that as the noise upper bounds increase, the deadline for recovery (indicated by the

blue vertical line) becomes closer. Different recovery algorithms have different levels of resistance

to noise. For example, we can see the MPC recovery algorithm has a more robust performance

under noises compared to SSR recovery.

CPSs are often deployed in critical applications where failure or incorrect operation can have se-

vere consequences. Testing these systems under different noise conditions ensures they can main-

tain their performance and reliability even in the presence of disturbances. This is especially impor-

tant for systems that operate in unpredictable or harsh environments. Exposure to different noise

conditions during testing allows developers to evaluate and enhance the system’s error detection,

handling, and recovery mechanisms. This is critical for ensuring system stability and continuity of

operation under adverse conditions. Testing under various noise scenarios provides a more com-

prehensive understanding of the system’s performance limits. It helps in identifying performance

bottlenecks and areas where the system might fail or degrade under stress, leading to more in-

formed design and optimization decisions. Similarly, we have implemented sensitivity analysis on

the quadrotor as well. Figure 7 shows the recovery performance for the quadrotor benchmark;

the noise upper bounds are set to {0.01, 0.05, 0.2} × 10−4. Similar to Figure 6, the MPC algorithm

demonstrates robust performance across different noise upper bounds.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

CPSim: Simulation Toolbox for Security Problems in Cyber-Physical Systems 90:13

Fig. 8. Simulation example of the connection between CPSim and SVL simulator. The car is under sensor
attack and being recovered.

The LG SVL Simulator is a powerful tool for the development and testing of autonomous vehicle

systems, particularly within the domain of CPS [24]. This simulator offers a comprehensive envi-

ronment for researchers, engineers, and developers to rigorously test and validate various aspects

of autonomous vehicle technology, from individual components to full system integration. SVL

Simulator provides a highly realistic and detailed simulation environment. This includes accurate

representations of urban and rural landscapes, diverse weather conditions, and varied traffic sce-

narios. Such a rich simulation environment is crucial for testing autonomous vehicles in a wide

range of realistic conditions, which they are likely to encounter in the real world. One of the

key strengths of the LG SVL Simulator is its ability to simulate a wide array of sensors used in

autonomous vehicles. This includes LiDAR, cameras, radar, GPS, and IMUs. The fidelity of these

sensor simulations is essential for developing effective sensor fusion algorithms, which are critical

for the perception systems in autonomous vehicles.

CPSim is compatible with external high-fidelity simulators such as SVL. SVL Simulator provides

a highly realistic environment, including detailed urban and rural scenarios, diverse traffic condi-

tions, and variable weather. Integrating this with CPSim can significantly improve the realism of

simulations for autonomous vehicle systems. By combining CPSim’s focus on CPS security with

SVL’s dynamic and richly detailed environments, developers can test autonomous systems in more

complex and realistic scenarios than what might be achievable with either tool alone.

Figure 8 shows the interface of STL while connecting to CPSim through ROS. In the left subfig-

ure, the car started to experience a bias sensor attack. In the middle figure, the car is recovering

using the LQR recovery algorithms. In the right figure, the car is recovered and stopped at the

shoulder of the road. For more details about this high-fidelity simulator experiment, please check

the demo video on the documentation website.

It is also possible to deploy CPSim on a real testbed. Autonomous vehicles sense states and

environments, make decisions, and control mobility. Our robotic vehicle testbeds, whose hardware

architecture is shown in Figure 10, simulate these functions through the following stages:

Our testbed is equippedwith an InertialMeasurement Unit (IMU),Ultra-wideband (UWB),

and encoder sensors that measure attitude, position, and velocity, respectively. We can also use

cameras and LiDAR to collect additional environmental data. However, these sensors are vulner-

able to sensor attacks. A Raspberry Pi 4B with Robot Operating System (ROS2) serves as the

main controller. It collects sensor data, estimates vehicle states, and generates control signals. The

system uses different controllers for longitudinal and lateral control. For cruise control, a PID

controller stabilizes the testbed’s velocity based on encoder feedback. For lane-keeping, a Stanley

Controller uses the front axle as its reference point, considering both heading error and cross-track

error. We can also deploy the proposed attack detection and recovery algorithms on this system.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

90:14 M. Liu et al.

Fig. 9. Deploy CPSim on a real testbed.

Fig. 10. Deploy CPSim on a real testbed.

An STM32 microcontroller with a FreeRTOS system receives control signals from the Raspberry Pi

through a Universal Asynchronous Receiver/Transmitter (UART) protocol. Running a real-

time operating system, it performs time-sensitive tasks such as generating Pulse Width Modu-

lation (PWM) signals to drive actuators. The actuator stage includes components such as motors

and servos that execute vehicle movements according to control signals.

Figure 9 illustrates the process of our deployed algorithm recovering the testbed from a sen-

sor attack. Figure 9(a) shows the testbed operating normally on the track. Figure 9(b) depicts the

testbed beginning to deviate upwards due to a bias sensor attack. Figure 9(c) represents the testbed

during the recovery process. Figure 9(d) shows the testbed after it has been recovered to the target

set, which in this case is set to be the shoulder on the lower side of the road.

It is important to note that in Figures 8, 9, and 10, we merely demonstrate the functionality

of integrating CPSim with high-fidelity simulators such as SVL and real testbeds. For detailed

experimental procedures and parameters, please refer to Reference [32]. It should be noted that

there are some limitations in this version of CPSim, such as the recovery methods deployed being

based solely on reachability analysis [33]. Additionally, the number of benchmarks is relatively

small, with only three types available. However, the system does support users adding their own

benchmarks conveniently.

8 Conclusion

In conclusion, we proposed a user-friendly simulation toolbox, CPSim, for security problems

in CPS. Users can customize their benchmarks and controllers inheriting the built-in classes.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

CPSim: Simulation Toolbox for Security Problems in Cyber-Physical Systems 90:15

Moreover, we provide comprehensive experiments and examples of how to use the built-in

recovery algorithms against sensor attacks. We believe this open-source toolbox can benefit

many researchers in CPS fields, especially junior students without expertise in implementing

experiments from scratch.

Acknowledgement

The views and conclusions contained herein are those of the authors and should not be interpreted

as necessarily representing the official policies or endorsements, either expressed or implied, of the

National Science Foundation (NSF).

References

[1] Francis Akowuah and Fanxin Kong. 2021. Real-time adaptive sensor attack detection in autonomous cyber-physical

systems. In Proceedings of the IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS’21).

IEEE, 237–250.

[2] Daniele Antonioli and Nils Ole Tippenhauer. 2015. MiniCPS: A toolkit for security research on CPS networks. In

Proceedings of the 1st ACM Workshop on Cyber-physical Systems-security and/or Privacy. 91–100.

[3] Dhananjay Bhor, Kavinkadhirselvan Angappan, and Krishna M. Sivalingam. 2016. Network and power-grid co-

simulation framework for smart grid wide-area monitoring networks. J. Netw. Comput. Applic. 59 (2016), 274–284.

[4] Kianoosh Boroojeni, M. Hadi Amini, Arash Nejadpak, Tomislav Dragičević, Sundaraja Sitharama Iyengar, and Frede

Blaabjerg. 2016. A novel cloud-based platform for implementation of oblivious power routing for clusters of micro-

grids. IEEE Access 5 (2016), 607–619.

[5] Gianni Celli, PaoloAtillio Pegoraro, Fabrizio Pilo, Giuditta Pisano, and Sara Sulis. 2014. DMS cyber-physical simulation

for assessing the impact of state estimation and communication media in smart grid operation. IEEE Trans. Power Syst.

29, 5 (2014), 2436–2446.

[6] Rohan Chabukswar, Bruno Sinopoli, Gabor Karsai, Annarita Giani, Himanshu Neema, and Andrew Davis. 2010. Sim-

ulation of network attacks on SCADA systems. In Proceedings of the 1st Workshop on Secure Control Systems.

[7] Hongjun Choi, Sayali Kate, Yousra Aafer, Xiangyu Zhang, and Dongyan Xu. 2020. Software-based realtime recovery

from sensor attacks on robotic vehicles. In Proceedings of the 23rd International Symposium on Research in Attacks,

Intrusions and Defenses (RAID’20). 349–364.

[8] James Farwell and Rafal Rohozinski. 2011. Stuxnet and the future of cyber war. Survival 53, 1 (2011), 23–40.

[9] Thor I. Fossen. 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons.

[10] John D. Hedengren. 2008. A nonlinear model library for dynamics and control. Yeast 7 (2008), 24.

[11] Nathan Koenig and Andrew Howard. 2004. Design and use paradigms for Gazebo, an open-source multi-robot simula-

tor. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’04). IEEE, 2149–2154.

[12] Fanxin Kong, Meng Xu, James Weimer, Oleg Sokolsky, and Insup Lee. 2018. Cyber-physical system checkpointing

and recovery. In Proceedings of the ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS’18). IEEE,

22–31.

[13] Edward A. Lee. 2008. Cyber physical systems: Design challenges. In Proceedings of the 11th IEEE International Sympo-

sium on Object and Component-Oriented Real-Time Distributed Computing (ISORC’08). IEEE, 363–369.

[14] Edward A. Lee. 2021. Determinism. ACM Trans. Embed. Comput. Syst. 20, 5 (2021), 1–34.

[15] Mengyu Liu, Lin Zhang, Pengyuan Lu, Kaustubh Sridhar, Fanxin Kong, Oleg Sokolsky, and Insup Lee. 2022. Fail-

safe: Securing cyber-physical systems against hidden sensor attacks. In Proceedings of the IEEE Real-Time Systems

Symposium (RTSS’22). IEEE, 240–252.

[16] Mengyu Liu, Lin Zhang, Vir Phoha, and Fanxin Kong. 2023. Learn-to-respond: Sequence-predictive recovery from

sensor attacks in cyber-physical systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS’23). IEEE.

[17] Pengyuan Lu, Lin Zhang, Mengyu Liu, Kaustubh Sridhar, Oleg Sokolsky, Fanxin Kong, and Insup Lee. 2024. Recovery

from adversarial attacks in cyber-physical systems: Shallow, deep, and exploratory works. Comput. Surv. 56, 8 (2024),

1–31.

[18] Yehan Ma, Chenyang Lu, Bruno Sinopoli, and Shen Zeng. 2020. Exploring edge computing for multitier industrial

control. IEEE Trans. Comput.-Aid. Des. Integ. Circ. Syst. 39, 11 (2020), 3506–3518.

[19] Naser Hossein Motlagh, Tarik Taleb, and Osama Arouk. 2016. Low-altitude unmanned aerial vehicles-based internet

of things services: Comprehensive survey and future perspectives. IEEE Internet Things J. 3, 6 (2016), 899–922.

[20] Automotive News. 2023. Tesla Model 3 hacked by cybersecurity team in minutes. Retrieved from https://www.

autonews.com/mobility-report/tesla-model-3-hacked-cybersecurity-team-minutes

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

https://www.autonews.com/mobility-report/tesla-model-3-hacked-cybersecurity-team-minutes

90:16 M. Liu et al.

[21] The Hacker News. 2016. Hacker Hijacks a Police Drone from 2 Km Away with $40 Kit. Retrieved from https:

//thehackernews.com/2016/04/hacking-drone.html

[22] Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman, Alvaro Cardenas, and Zhiqiang Lin. 2020. SAVIOR: Securing

autonomous vehicles with robust physical invariants. In Proceedings of the 29th USENIX Security Symposium (USENIX

Security’20). 895–912.

[23] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-physical systems: The next computing

revolution. In Proceedings of the Design Automation Conference (DAC’10). IEEE, 731–736.

[24] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke, Mārtin, š Možeiko, Eric Boise, Geehoon

Uhm, Mark Gerow, Shalin Mehta, Eugene Agafonov, Tae Hyung Kim, Eric Sterner, Keunhae Ushiroda, Michael Reyes,

Dmitry Zelenkovsky, and Seonman Kim. 2020. rongLgsvl simulator: A high fidelity simulator for autonomous driving.

In Proceedings of the IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC’20). IEEE, 1–6.

[25] Asgeir J Sørensen. 2005. Marine cybernetics. Lecture Notes for TMR4240 Marine Control Systems, Dept. Of Marine

Tehcnology, NTNU, Citeseer. Trondheim, Norway. http://www.ivt.ntnu.no/imt/courses/tmr4240

[26] Riccardo Taormina, Stefano Galelli, H. C. Douglas, Nils Ole Tippenhauer, Elad Salomons, and Avi Ostfeld. 2019. A

toolbox for assessing the impacts of cyber-physical attacks on water distribution systems. Environ. Model. Softw. 112

(2019), 46–51.

[27] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and Georgios Fainekos. 2021. PSY-TaLiRo:

A Python toolbox for search-based test generation for cyber-physical systems. In Proceedings of the 26th International

Conference on Formal Methods for Industrial Critical Systems (FMICS’21). Springer, 223–231.

[28] WIRED. 2022. Security News This Week: Attackers Keep Targeting the US Electric Grid. Retrieved from https://www.

wired.com/story/attacks-us-electrical-grid-security-roundup/

[29] Rajaa Vikhram Yohanandhan, Rajvikram Madurai Elavarasan, Premkumar Manoharan, and Lucian Mihet-Popa. 2020.

Cyber-physical power system (CPPS): A review onmodeling, simulation, and analysis with cyber security applications.

IEEE Access 8 (2020), 151019–151064.

[30] Massimiliano Zanin, Ernestina Menasalvas Ruiz, Alejandro Rodríguez-González, Christian Wolff, Juana Wendt,

Elisa A. Herrmann, and Pavel Smrz. 2020. Developing a data analytics toolbox to support CPS-based services. In

Proceedings of the 9th Mediterranean Conference on Embedded Computing (MECO’20). IEEE, 1–7.

[31] Lin Zhang, Xin Chen, Fanxin Kong, and Alvaro A. Cardenas. 2020. Real-time recovery for cyber-physical systems

using linear approximations. In Proceedings of the 41st IEEE Real-Time Systems Symposium (RTSS’20). IEEE.

[32] Lin Zhang, Mengyu Liu, and Fanxin Kong. 2023. Demo: Simulation and security toolbox for cyber-physical systems.

In Proceedings of the IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS’23) Brief Pre-

sentations. IEEE.

[33] Lin Zhang, Kaustubh Sridhar, Mengyu Liu, Pengyuan Lu, Xin Chen, Fanxin Kong, Oleg Sokolsky, and Insup Lee.

2023. Real-time data-predictive attack-recovery for complex cyber-physical systems. In Proceedings of the IEEE 29th

Real-Time and Embedded Technology and Applications Symposium (RTAS’23). IEEE, 209–222.

[34] Lin Zhang, Zifan Wang, Mengyu Liu, and Fanxin Kong. 2022. Adaptive window-based sensor attack detection for

cyber-physical systems. In Proceedings of the 59th ACM/IEEE Design Automation Conference. 919–924.

Received 30 November 2023; revised 5 June 2024; accepted 12 June 2024

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 90. Publication date: September 2024.

https://thehackernews.com/2016/04/hacking-drone.html
http://www.ivt.ntnu.no/imt/courses/tmr4240
https://www.wired.com/story/attacks-us-electrical-grid-security-roundup/

