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AbstractÐIn this paper, we investigate an accurate synchro-
nization between a physical network and its digital network twin
(DNT), which serves as a virtual representation of the physical
network. The considered network includes a set of base stations
(BSs) that must allocate its limited spectrum resources to serve a
set of users while also transmitting its partially observed physical
network information to a cloud server to generate the DNT. Since
the DNT can predict the physical network status based on its
historical status, the BSs may not need to send their physical
network information at each time slot, allowing them to conserve
spectrum resources to serve the users. However, if the DNT does
not receive the physical network information of the BSs over
a large time period, the DNT’s accuracy in representing the
physical network may degrade. To this end, each BS must decide
when to send the physical network information to the cloud
server to update the DNT, while also determining the spectrum
resource allocation policy for both DNT synchronization and
serving the users. We formulate this resource allocation task
as an optimization problem, aiming to maximize the total data
rate of all users while minimizing the asynchronization between
the physical network and the DNT. The formulated problem is
challenging to solve by traditional optimization methods, as each
BS can only observe a partial physical network, making it difficult
to find an optimal spectrum allocation strategy for the entire
network. To address this problem, we propose a method based
on the gated recurrent units (GRUs) and the value decomposition
network (VDN). The GRU component allows the DNT to predict
future status using the historical data, effectively updating itself
when the BSs do not transmit the physical network information.
The VDN algorithm enables each BS to learn the relationship
between its local observation and the team reward of all BSs,
allowing it to collaborate with others in determining whether to
transmit physical network information and optimizing spectrum
allocation. Simulation results show that our GRU and VDN
based algorithm improves the weighted sum of data rates and the
similarity between the status of the DNT and the physical network
by up to 28.96%, compared to a baseline method combining GRU
with the independent Q learning (IQL).

Index TermsÐResources allocation, digital network twin, gate
recurrent units, value decomposition network.
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I. INTRODUCTION

Digital twin (DT) is a virtual representation of a physical

product or process, used to understand and predict the physical

counterpart’s performance characteristics [1]±[3]. Different

from those traditional simulation tools, which use computer-

based models or mathematical concepts to test systems,

processes, and the effects of various variables, a DT utilizes real-

time data from its associated physical object for simulations,

analysis, and online control. The two-way information flow

improves the performance of the predictive analytical model

[4]. Based on the definition of the DT, the concept of the DT

network (DTN), or the digital network twin (DNT), is generated

to describe a network that constructed by multiple one-to-one

DTs. A DNT uses advanced communication technologies to

realize information sharing not only between each physical

object and its twin, but also among different physical objects

and among different twins [1], [5]. According to previous

works, the creation of a DNT presents several challenges.

First, constructing a DNT requires mapping not only physical

objects but also several unique networking factors (i.e., net-

work protocols, wireless channel dynamics, and the network

performance metrics). Hence, it is impractical to directly map

all network features for DNT generation and one must select

appropriate network features for DNT creations [6]. Second,

there is no standardized metrics exist for evaluating the DNT

synchronization [7]. Third, privacy protection in DTNs is a

crucial issue, as they are vulnerable to data breaches and

malicious attacks during information exchange, necessitating

robust security measures to protect users’ private information.

[1], [8].

A number of existing works [8]±[11] have studied the

generation and creations of DNTs. In particular, the authors in

[8] presented several use cases, the design standardization, and

an implementation example of the DNT. In [9], the authors

designed a deep neural network (DNN) based method to create

a DNT for the approximation of the optimal user association

scheme in a mobile edge computing network. The work in

[10] created a DNT using a Bayesian model. In [11], the

authors proposed a DT empowered framework for optimizing

network resource management, where DTs collect real-time

data from users to predict and dynamically allocate network

resources, in order to enhance efficiency of resource utilization

and reduce reconfiguration costs. However, most of these works

[8]±[11] did not consider the similarity and synchronization

between the DNT and a physical network, and assumed that the

DNT is already synchronized with a physical network without
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considering how the DNT collects physical network data to

achieve synchronization.

To address this issue, a number of existing studies [12]±

[15] have focused on the DT synchronization optimization. In

particular, the authors in [12] proposed a continual learning

framework to build a synchronized DNT of a autonomous

vehicle network so as to make vehicle driving decisions. In [13],

the authors proposed a DT-empowered framework for resource

allocation in UAV-assisted edge mobile networks, leveraging

a deviation model to address discrepancies between the DT

and physical states. In [14], the authors aimed to optimize data

synchronization in vehicular DT networks by developing a

deep learning model that predicts relay waiting times. In [15],

the authors designed a dynamic hierarchical synchronization

framework for IoT-assisted DTs in the Metaverse, and the

framework optimizes synchronization intensities through a

multi-level game-theoretic approach. However, these works

[12]±[15] did not consider how the generation of DNTs affect

the physical network performance since DNT generations

require the transmission of a large amount of data, which

will also introduce significant communication overhead.

The main contribution of this work is to design a novel DNT

framework that jointly optimizes the performance of a physical

network and the synchronization between the DNT and the

physical network. Our key contributions include:

• We consider a DNT enabled network that consists of a

physical network with a set of base stations (BSs), several

users, and a DNT. The DNT is a virtual representation

of the physical network and can predict physical network

dynamics. Each BS must use limited spectrum resources

to serve the users and transmit the information of the

physical network to a cloud server to generate the DNT.

Since the DNT can predict the physical network status,

the BSs may not need to transmit the information to the

server at every time slot, and thus conserving spectrum

resources to better serve the users. To this end, each BS

in the physical network needs to determine whether to

transmit the physical network information to the cloud

server for updating the DNT, and optimize spectrum

resource allocation for the users and physical network

information transmission. We formulate this problem as

an optimization problem aiming to maximize the data

rates of all users while minimizing the gap between the

states of the physical network and the DNT.

• The formulated problem is challenging to solve since each

BS cannot fully observe the entire status of the physical

network. To solve this problem, we proposed a machine

learning (ML) method that integrates the gate recurrent

units (GRUs) [16], [17] and the value-decomposition based

reinforcement learning (VD-RL) method [18]. The GRUs

allow the DNT to predict its future status using historical

data and to update its status when the DNT cannot receive

the information of the physical network. The VD-RL

method can learn from the GRU prediction accuracy to

enable each BS to decide its associated users, whether

to send the physical network information to the cloud

Fig. 1. The considered DNT enabled network.

server, and RB allocation, optimizing the data rate of all

users in the physical network and ensuring an accurate

synchronization between the physical network and the

DNT. Compared to other RL methods [19], the VD-RL

method allows each BS to use its partial observation,

specifically, the locations of the users in its coverage, to

collaboratively find a globally optimal solution for both

physical network and DNT.

Simulation results show that our proposed method improves

the weighted sum of data rates and the the similarity between

the status of the DNT and the physical network by up to

28.96%, compared to a baseline method combining GRU with

the independent Q learning (IQL).

The rest of this paper is organized as follows. The system

model and problem formulation are introduced in Section II.

The design of the GRU and VD-RL integrated method will be

introduced in Section III. The analysis of the complexity, the

convergence, and the implementation of the designed method

are studied in Section IV. Simulation results are presented

and discussed in Section V. Finally, conclusions are drawn in

Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a DNT enabled network which consists of:

1) a physical network including a set U of U mobile users

and a set M of M BSs, and 2) a DNT that is generated

and controlled by a cloud server, as shown in Fig. 1. Each

BS can provide communication service to the users that are

located in its coverage. Meanwhile, each BS must transmit

the physical network information collected from its associated

users to the cloud server for the generation of the DNT. We first

introduce the mobility model of each user. Next, we introduce

the transmission model. Then, we describe the DNT model.

Finally, we present our considered optimization problem. Table

I provides a summary of the notations used hereinafter.

A. Mobility Model

For simplicity, we use a random walk model to describe the

mobility of each user [20]. At each time slot t, each user u can

choose from five possible movements: 1) stay at the current

location, 2) move forward, 3) move backward, 4) move left,

and 5) move right. The probability of each user u choosing
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TABLE I
LIST OF NOTATIONS

Notation Description Notation Description

N Number of RBs of each BS U Number of users

N Set of RBs U Set of users

pu Probability vector of user u chooses each possible movement lU
u,t The position of user u at time slot t

cumt Data rate of BS m transmitting data to user u at time slot t ∆l Distance a user can move in one time slot

dumt Distance between user u and BS m at time slot t xumt,ymt RB allocation vector

IU
umt,n, I

C
mt,n Interference caused by other BSs that use RB n B Bandwidth of each RB

cC
mt Data rate of BS m transmitting data to the cloud server P Transmission power

hm
(

lU
u,t

)

Channel gain between user u and BS m at time slot t ou Rayleygh fading parameter

hm
(

lC
)

Channel gain between BS m and the cloud server lC The position of the cloud server

Dm The size of data needed to be transmitted to the cloud server lM
m The position of BS m

Tmt Transmission delay of BS m transmitting data to the cloud server st Physical network status at time slot t

smt Partial physical network status observed by BS m smt A mapping of smt
ŝmt The status of BS m estimated by the DNT ϵ Weight parameter

ht Hidden states of the GRU at time slot t α Threshold of the transmission delay

W r,W h,
W z,W o Weight matrix of the GRU U r,Uh,U z Weight matrix of the GRU

Nh Number of units in the hidden layer of the GRU rG
t The reset gate of the GRU

K Length of the GRU input sequence h̃τ Candidate hidden state

zmt Association users vector of BS m at time slot t zG
τ The update date of the GRU

λG Learning rate of the GRU am
t The action of BS m at time slot t

at The joint action of all BSs at time slot t πm (am
t |smt ) The policy of BS m

ξut Number of BSs that serve user u at time slot t r (st,at) The team reward

ρ Penalty for one user obtaining RBs from multiple BSs Gm Bipartite graph of BS m

Um Set of vertices represent the associated users of BS m Nm Set of vertices represent the RBs of BS m

Em Set of edges that connect vertices from Um and Nm emun The edge in Em

Xm
t A subset of Em ψm

un The weight of edge emun
θm The parameters of BS m’s Q network θ̃m The parameters of BS m’s target network

Dg Set of transitions used to train the Q networks in epoch g G Number of the Q networks training epoch

D Transitions collected in one training epoch λQ Learning rate of the Q networks

θh Size of the hiddent states of the Q networks

each possible movement is pu = [pu,1, pu,2, pu,3, pu,4, pu,5].
We assume that the position of user u at time slot t is lU

u,t =
[

lUu,t,1, l
U
u,t,2

]

. Thus, the position of user u at time slot t+1 is

lU
u,t+1 =































[

lUu,t,1, l
U
u,t,2

]

with probability pu,1,
[

lUu,t,1, l
U
u,t,2 +∆l

]

with probability pu,2,
[

lUu,t,1, l
U
u,t,2 −∆l

]

with probability pu,3,
[

lUu,t,1 −∆l, l
U
u,t,2

]

with probability pu,4,
[

lUu,t,1 +∆l, lUu,t,2
]

with probability pu,5,

(1)

with ∆l being the distance each user can move in one time

slot.

B. Transmission Model

In our considered network, each BS m utilizes an orthogonal

frequency division multiple access (OFDMA) technique to

serve its associated users and transmit the information of the

physical network over a set N of N resource blocks (RBs).

Each user can only be served by one BS and each BS will only

allocate one RB to a user at each time slot. The transmission

rate of BS m transmitting data to user u at time slot t is

cumt

(

xumt,X(−m)t,Y (−m)t

)

=

N
∑

n=1

xumt,nB log2

(

1 +
Phm

(

lU
u,t

)

IU
umt,n +BN0

)

, (2)

where X(−m)t = [xujt]u∈U ,j∈M,j ̸=m
, xumt =

[xumt,1, ..., xumt,N ] is an RB allocation vector,

with xumt,n ∈ {0, 1} indicating whether RB n of

the BS m is allocated to user u at time slot t;

Y (−m)t =
[

y1t, . . . ,y(m−1)t,y(m+1)t, . . . ,yMt

]

with

ymt = [ymt,1, ..., ymt,N ] being the RB allocation vector of

BS m for the physical network information transmission,

with ymt,n ∈ {0, 1} indicating whether RB n of BS m is

allocated for the physical network information transmission;

B is the bandwidth of each RB; P is the transmit power;

hm
(

lU
u,t

)

= oud
−2
umt is the channel gain between user u

and BS m, with ou being the Rayleigh fading parameter,

dumt =
√

∥lU
u,t − lM

m∥2 being the distance between user u

and BS m at time slot t, lM
m being the position of BS m; N0

is the noise power spectral density; hj

(

lC
)

is the channel

gain between BS j and the cloud server, with lC being the

position of the cloud server; and IU
umt,n is the interference

caused by other BSs that use RB n for serving users and

physical network information transmissions, which is given by

IU
umt,n =

∑

i∈U,i ̸=u

∑

j∈M,j ̸=m

(

xijt,nPhj
(

lU
u,t

)

+yjt,nPhj
(

lU
u,t

))

. (3)
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Similarly, the transmission rate of BS m transmitting physical

network information to the cloud server at time slot t is

cC
mt

(

ymt,X(−m)t,Y (−m)t

)

=

N
∑

n=1

ymt,nB log2



1 +
Phm

(

lC
)

IC
mt,n +BN0



 , (4)

where IC
mt,n is the interference caused by other BSs that use

RB n for serving users and physical network information

transmission, which is given by

IC
mt,n =

∑

i∈U

∑

j∈M,j ̸=m

(

xijt,nPhj

(

lC
)

+ yjt,nPhj

(

lC
))

.

(5)

We assume that the data size of the physical network infor-

mation that is needed to be transmitted to the cloud server is

Dm. Given the data rate cC
mt, the transmission delay of BS m

transmitting physical network information to the cloud server

at time slot t can be represented as

Tmt =
Dm

cC
mt

(

ymt,X(−m)t,Y (−m)t

) . (6)

C. Digital Network Twin Model

As a virtual representation of the physical network, the DNT

should have the same status and the network management

strategy with the physical network, even when some BSs do

not transmit the physical network information. We first define a

vector st to represent the status of the physical network at time

slot t. In our considered network, the positions of all U users

are used to describe the status of the physical network. Since

each BS has its service area, it can only serve a subset Um
t of

users that are located in its coverage. Thus, the entire physical

network status st is partially observed by each BS m. We use

smt =
[

lU
u,t

]

u∈Um
t

to denote physical network status observed

by BS m at time slot t. Then, we have st =
[

s1t , ..., s
M
t

]

.

Accordingly, the DNT status at time slot t can be defined as

st =
[

s1t , ..., s
M
t

]

, with smt being a mapping of the physical

network status smt . Given ymt and smt , smt is given by

smt (ymt) =























smt , if

N
∑

n=1

ymt,n = 1,

ŝmt if

N
∑

n=1

ymt,n = 0,

(7)

where ŝmt =
[

l̂
U

u,t

]

u∈Um
t

is the status estimated by the DNT at

time slot t. From (7), we can see that if each BS m allocates

an RB to transmit its partially observed physical network

information to the cloud server (i.e.,
∑N

n=1 ymt,n = 1), the

status of the DNT and the status of the physical network is

similar, since the DNT can obtain the physical network status

from BS m directly. Otherwise, if BS m does not allocate any

RBs to the cloud server, the DNT must estimate the physical

network status of BS m. When the physical network status

and the DNT status are identical (i.e., st = st), we consider

the DNT synchronizes with the physical network.

D. Problem Formulation

Given the our designed system model, we next describe our

considered optimization problem. Our goal is to maximize the

sum of the data rates of all U users, while guaranteeing the

synchronization between the DNT and the physical network

over a set T of T time slots. The optimization problem includes

optimizing the RB allocation matrix Xt and physical network

information transmission matrix yt. The optimization problem

can be formulated as

max
{Xt,Y t}t∈T

T
∑

t=1

(

−
1− ϵ

U
∥st − st∥

2
2

+ϵ

M
∑

m=1

U
∑

u=1

cumt

(

xumt,X(−m)t,Y (−m)t

)

)

,

(8)

s.t. xumt,n ∈ {0, 1},m ∈M, n ∈ N , u ∈ U , t ∈ T , (8a)

M
∑

m=1

N
∑

n=1

xumt,n ≤ 1, u ∈ U , t ∈ T , (8b)

U
∑

u=1

xumt,n ≤ 1,m ∈M, n ∈ N , t ∈ T , (8c)

ymt,n ∈ {0, 1},m ∈M, n ∈ N , t ∈ T , (8d)

N
∑

n=1

ymt,n ≤ 1,m ∈M, t ∈ T , (8e)

U
∑

u=1

xumt,n + ymt,n ≤ 1,m ∈M, n ∈ N , t ∈ T ,

(8f)

Tmt ≤ α,m ∈M, t ∈ T , (8g)

where ϵ ∈ (0, 1) is a weight parameter, and α is a threshold

of the transmission delay of each BS transmitting the physical

network information to the cloud server. In problem (8),

constraints (8a) and (8b) imply that each user can be served

by only one BS and can occupy only one RB of this BS.

Constraints (8a) and (8c) implies that each RB can be occupied

by only one user. Constraints (8d) and (8e) imply that each BS

m can allocate only one RB for physical network information

transmission. (8f) implies that each RB n of BS m can be used

either for serving a user or for physical network information

transmission. Constraint (8g) is a constraint of the delay of

each BS m transmitting physical network information to the

cloud server.

Problem (8) is challenging to solve by conventional opti-

mization methods due to the following reasons. First, each

BS m cannot fully observe the entire physical network

status st, making it difficult to find the RB allocation policy

which optimizes the data rates of all users and the DNT

synchronization using conventional optimization methods [21].

Second, each BS cannot know the future DNT status as it

depends on the observations of the physical network, the

decisions of physical network information transmission by other
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BSs, as well as the estimation accuracy of the DNT. Third, our

considered system is dynamic due to user movements. Hence,

the status of the physical network and the DNT will change

over time. This makes it complicated to solve problem (8)

using conventional optimization methods because we need to

resolve the problem when the physical network statuses change.

To solve problem (8), we propose a value decomposition based

MARL method which enables each BS to find its optimal RB

allocation policy and synchronization policy, while considering

the RB allocation and synchronization policy of others, thus

optimizing the data rate of all users in the physical network

and keeping an accurate synchronization between the physical

network and the DNT.

III. SOLUTION OF PROBLEM

To solve problem (8), we next introduce our proposed

ML based method that combines GRUs with the value

decomposition network (VDN). In our designed method, the

GRU is implemented by the DNT to estimate the status of the

physical network. The VDN is used by each BS to determine

its associated users, as well as allocating RBs to serve the

associated users and to transmit physical network information

to the cloud server. Meanwhile, the use of GRUs enables the

designed method to use historical user mobility data for future

user movement prediction without the reliance on user mobility

models. Compared to traditional recurrent neural networks

(RNNs) methods for user mobility prediction, the GRUs can

effectively fix the gradient vanishing problem thus improving

prediction accuracy and efficiency. Compared to traditional

multi-agent reinforcement learning (MARL) methods (i.e., IQL

[19]), the VDN allows each BS to decide its associated users

and whether to transmit the physical network information based

on its partial observation, but optimize the performance of the

entire system (i.e., the sum of data rates of all users, and the

synchronization between the DNT and the physical network).

Next, we first introduce the GRU for physical network status

estimation. Then, we introduce the components of the VDN

based MARL framework. Finally, we explain the procedure of

using our proposed method to solve problem (8).

A. GRUs for Physical Network Status Estimation

We first introduce the GRUs for physical network status

estimation. The GRU-based estimation model is deployed at

the cloud server, and its output is an estimated status of the

physical network of all BSs. Accurate status estimation enables

the DNT to simulate the physical network, even when the

BSs do not transmit their partially observed physical network

information to the cloud server. The GRU-based estimation

model consists of three components: 1) input, 2) output, and

3) the GRU model, which are introduced as follows.

1) Input: The input of the GRU-based estimation model

consists of the most recent K statuses of the entire DNT, which

can be represented as St = [st−K+1, ..., st].

2) Output: The output of the GRU-based estimation model

is the estimated status ŝt+1.

3) The GRU Model: The GRU model is used to approximate

the relationship between the input St and the output ŝt+1. A

GRU model consists of an input layer, a hidden layer, and an

output layer. The hidden states ht of the units in the hidden

layer at time slot t are used to store the information related to

the previous states from time slots t−K+1 to t. At each time

slot τ from t−K +1 to t, the hidden states hτ is determined

by the reset gate rG
τ and the update gate zG

τ . The reset gate

rG
τ determines how much of the previous hidden states hτ−1

should influence the new candidate state, effectively allowing

the model to retain relevant portions of past information. The

reset gate at time slot τ is

rG
τ = ϕ (W rsτ +U rhτ−1) , (9)

where ϕ (·) is the sigmoid function, and W r ∈ R
N h×2U and

U r ∈ R
N h×N h

are the weight matrices of the reset gate with

N h being the number of the units in the hidden layer. Given

the reset gate rG
τ , the new candidate hidden state h̃τ is

h̃τ = tanh
(

W h̃sτ +U h̃
(

hτ−1 ⊙ rG
τ

)

)

, (10)

where tanh (·) is the hyperbolic tangent function, W h̃ ∈
R

N h×2U and U r ∈ R
N h×N h

are the weight matrices of the

hidden states, and ⊙ is an element-wise multiplication.

The update gate zG
τ controls how much of the past information

is retained and how much of the new input is incorporated into

the current hidden states. The update of zG
τ is given by

zG
τ = ϕ (W zsτ +U zhτ−1) , (11)

where W z ∈ R
N h×2U and U z ∈ R

N h×N h

are the weight

matrices of the update gate. Given (9), (10), and (11), the

hidden state hτ can be updated by

hτ =
(

1− zG
τ

)

⊙ h̃τ + zG
τ ⊙ hτ−1. (12)

By Given the hidden state ht, the output of the GRU model

estimates the state of the physical network at time slot t+ 1
as follows:

ŝt+1 = W oht, (13)

where W o is the output weight matrix.

B. GRU Training

The GRU model is used to approximate the relationship

between the input St and the output ŝt+1. Hence, the loss

function of the GRU-based estimation model is given by

JG =
1

2U
∥ŝt+1 − st+1∥

2. (14)

To train our proposed GRU-based estimation model, we use

a mini-batch stochastic gradient decent (SGD) method to

minimize (14). The update rule of the parameter matrices

in the GRU model is defined as

W i ←W i − λG∇W iJG,

U j ← U j − λG∇UjJG, (15)

where i ∈ {r, z, h̃, o}, j ∈ {r, z, h̃}, λG is the learning rate,

and ∇W iJG and ∇UjJG are the gradient of the loss function

with respect to W i and U j . [22]
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C. Components of the VDN Algorithm

Given the status predicted by the DNT, we use a VDN

based method to solve problem (8). Next, we first introduce

the components of the VDN algorithm. The VDN algorithm

consists of seven components: 1) agents, 2) states, 3) actions,

4) policy, 5) reward function, 6) local Q function, and 7) global

Q function, which are introduced as follows [23]:

1) Agents: The agents are M BSs. Each BS implements

an unique deep Q network (DQN), observes a part of the

physical network, and made decisions for user-BS association

and whether to transmit the partially observed physical network

information to the cloud server. The DQNs of BSs are not

controlled by any central nodes.

2) States: The local state of each BS describes the positions

of users within its service area, while the global state of all

BSs describes the positions of all users in the physical network.

Hence, we use smt to denote the local state of BS m at time

slot t, and st to denote the global state.

3) Actions: For each BS m, the action describes: 1)

whether BS m transmits its partially observed physical network

information to the cloud server at time slot t and which RB

will be used for the transmission, and 2) the subset of users

that BS m serves. Here, 1) is expressed by |ymt|, and 2)

can be expressed by a vector zmt = [zmt,1, ..., zmt,U ] with

zmt,u ∈ {0, 1} indicating whether BS m serves user u. Hence,

the action of BS m at time slot t is am
t = [|ymt|, zmt],

am
t ∈ A, where A is the action space. The joint action of all

BSs at time slot t is at =
[

a1
t , ...,a

M
t

]

.

4) Policy: The policy πm (am
t |s

m
t ) of each BS m is the

conditional probability that BS m chooses action am
t given its

current state smt .

5) Reward Function: The team reward r (st,at) captures

the total reward of all BSs taking a joint action at under a

global state st. The team reward function of all BSs at each

time slot t is the weighted sum of: 1) the sum of data rates of

all users, and 2) the similarity between the physical network

status st and the DNT status st, which can be expressed by:

r (st,at) =



































−
1− ϵ

U
∥st − st∥

2
2 +

M
∑

m=1

U
∑

u=1

ϵcumt,

if ∀u, ξut = 1,
U
∑

u=1

1{ξut>1}ξutρ, otherwise.

(16)

where ξut =
∑M

m=1 zmt,u is the total number of BSs that

serve user u at time slot t, and ρ < 0 is a penalty for one user

obtaining RBs from multiple BSs. From (16), we see that the

sum of data rates of all users depends on the physical network

information transmissions. The sum of data rates of all users

cannot directly obtained using the joint action at since am
t

only determines the users connect to BS m (i.e., zmt) but does

not consider how to allocate RBs to these users (i.e., xumt).

Next, we introduce how to calculate the team reward of all BSs

given an action at. In particular, given an action at, problem

(8) can be divided into M suboptimization problems that can

be solved by each BS iteratively. Hence, the suboptimization

of BS m is given by

max
{xijt}(i,j)∈Zm

t
,t∈T

{ykt}k∈{1,...,m}

T
∑

t=1

(

−
1− ϵ

U
∥smt − smt ∥

2
2

+
∑

u∈Um
t

ϵcumt (xumt, [xijt] , [ykt])

)

, (17)

s.t. xumt,n ∈ {0, 1}, n ∈ N , t ∈ T , (17a)

N
∑

n=1

xumt,n ≤ 1, u ∈ Um
t , t ∈ T , (17b)

∑

u∈Um
t

xumt,n ≤ 1, t ∈ T , (17c)

∑

u∈Um
t

xumt,n + ymt,n ≤ 1, n ∈ N , t ∈ T . (17d)

where Zm
t = {(i, j) | zjt,i = 1, j < m}. Since the

associated users zmt of BS m have determined, only the

RB allocation vectors xumt need to be optimized. In (17),

since the objective function (17) is linear, the constraints are

non-linear, and the optimization variables are integers, we

can use an iterative Hungarian algorithm [24] to solve the

suboptimization problems for all BSs. Compared to standard

convex optimization algorithms, using the Hungarian algorithm

to solve problem (17) does not require to calculate gradients

of each variables nor dynamically adjusting the step size for

convergence. To implement Hungarian algorithm for finding the

optimal RB allocation for all BSs, each BS must transform its

suboptimization problem (17) into a bipartite graph matching

problem. Hence, a bipartite graph Gm = ⟨Um ×Nm, Em⟩
must be constructed for each BS m, where Um is the set of

vertices represent the users associated with BS m,Nm is the set

of vertices represent the RBs that are not occupied by physical

network information transmission such that can be allocated

to each associated user of BS m, and Em is the set of edges

that connect vertices from Um and Nm. Let emun ∈ E
m be the

edge connecting vertex u in Um and vertex n in Nm with

emun ∈ {0, 1}, where emun = 1 indicates that BS m allocates

RB n to user u (i.e., xumt,n = 1), and emun = 0 otherwise. Let

Xm
t be a subset of Em at time slot t, in which two edges can

neither share a common vertex in Nm, nor in Um. Therefore,

in Xm
t , each RB n can only be allocated to one associated

user (constraint (8c) and (8f) are satisfied), and each user can

only occupy one RB (constraint (17b) is satisfied). The weight

of edge emun is

ψm
un =

{

cumt, if emut = 1,

0, otherwise.
(18)

Given the formulated bipartite matching problem of BS m,

we can find an optimal RB allocation scheme for BS m

when the RB allocation schemes of other BSs are given.

Hence, to optimize the RB allocation schemes of all BSs, one

must iteratively update the RB allocation scheme of each BS
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Algorithm 1 The Process of Using the Hungarian algorithm to find
RB allocation schemes for all BSs

for each environment step t do
if m = 1 then

BS 1:
Use its Q network to determine a1

t .
Based on a1

t , use the Hungarian algorithm to determine the
optimal X 1∗

t .
Use X 1∗

t to find the optimal RB allocation policy [xu1t]u∈U1
t

.

Send [xu1t]u∈U1
t

to BS 2.

else
for m = 2 → M do

BS m:
Use its Q network to determine am

t .
Receive [xijt]i,j∈Zm

t
from BS m− 1.

Based on am
t and [xijt]i,j∈Zm

t
, use the Hungarian algo-

rithm to determine the optimal Xm∗
t .

Use Xm∗
t to find the optimal RB allocation policy

[xumt]u∈Um
t

.

Send [xijt]i,j∈Z
m+1
t

to BS m+ 1.

end for
end if

end for

using the Hungarian algorithm [22]. Algorithm 1 summarizes

the procedure of using the Hungarian algorithm to find RB

allocation schemes for all BSs.

6) Local Q Function: The local Q function Qm (smt ,a
m
t )

of BS m is used to estimate the expected reward of the BS

taking action am
t under a local state smt . Each BS uses a

GRU, referred to as the Q network, parameterized by θm,

to approximate its Q function. The output of the Q network

represents the Q values under a given state and different actions.

Therefore, the local Q function approximated by the Q network

with parameters θm is expressed as Qθm
(smt ,a

m
t ).

7) Global Q Function: The global Q function Q (st,at) is

defined as a Q function that estimates the reward of all BSs

taking action at under a global state st. In our algorithm, we

cannot obtain the global Q function since we do not have

a centralized DQN to approximate the global Q function.

However, if we want the BSs to maximize the team reward,

we need to use global Q value to update the DQN model of

each BS. During the training process, we will introduce an

approximate a global Q function Qtot (st,at) that is estimated

using local Q values.

D. Training of the VDN

Next, we introduce the training process of the VDN algo-

rithm. Since we consider a MARL and each BS will not share

its reward, actions, and states with other BSs, we cannot obtain

the values of the global Q values. However, we need the global

Q function to search for polices that optimize r (st,at). To

obtain the global Q values, we assume that a global Q value

can be additively decomposed into local Q values of all BSs,

which is given by

Qtot (st,at) =

M
∑

m=1

Qθm
(smt ,a

m
t ) . (19)

Using (19), each BS can update their Q networks in a distributed

manner since the BSs do not need to know Q (st,at), we

introduce two key techniques to improve the training process

of the designed MARL method. First, we use a neural network

θ̃m whose structure is similar to that of Q network θm, to

approximate the target Q function Q̃θ̃m
(smt ,a

m
t ) so as to

define the loss function. Different from θm, the target Q

network θ̃m updates and hence, the update speed of θ̃m is much

slower compared to that of θm. For instance, the Q network

θm is updated at each training epoch while θ̃m is updated

every several training epochs. The target value is expressed as

ỹm = rm (smt ,a
m
t ) + γmax

am
t+1

Q̃θ̃m

(

smt+1,a
m
t+1

)

, (20)

where γ is the discount factor. Similar to Q (st,at), the target

value of the global Q function is

ỹ = r (st,at) + γmax
at+1

M
∑

m=1

Q̃θ̃m

(

smt+1,a
m
t+1

)

. (21)

Here, ỹ will be used to calculate the training loss of our

designed VDN algorithm [25]. Second, we use experience

replay technique to store past states, actions, and rewards in a

buffer [26]. The experience replay technique allows the model

to learn from a diverse set of states, actions, and rewards

sampled from the buffer, improving training stability and the

performance of the model by breaking the correlation between

consecutive states. To introduce the experience replay technique,

we first define a transition as (st,at, r (st,at) , st+1) and

assume that each BS will collect D transitions per training

epoch g. These transitions are then stored in a replay memory,

which also contains transitions collected from previous training

epochs. In each training epoch g, a set Dg of transitions

is sampled from the replay memory to update the local Q

functions. Accordingly, the loss function of the VDN algorithm

is defined as [25]

JQ = E(st,at,r,st+1)∼Dg

[(

(

r (st,at)

+ γmax
at+1

M
∑

m=1

Q̃θ̃m

(

smt+1,a
m
t+1

)

)

−Qtot (st,at)

)2]

= E(st,at,r,st+1)∼Dg

[

(

ỹ −Qtot (st,at)
)2
]

.

(22)

Given the loss function, the parameters θm of each BS m is

updated by a SGD method as follows:

θm ← θm − λQ∇θm
JQ, (23)

where λQ is the learning rate, and ∇θm
JQ is the gradient of

JQ with respect to θm, which is given by

∇θm
JQ

= E(st,at,r,st+1)∼Dg
[(ỹ −Qtot (st,at))∇θm

Qtot (st,at)]

= E(st,at,r,st+1)∼Dg
[(ỹ −Qtot (st,at))∇θm

Qθm
(smt ,a

m
t )] .
(24)
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Algorithm 2 The Training Procedure if the VDN Algorithm

Input: Discount factor γ; learning rate λQ; training epoch G;
environment steps per training epoch D; minibatch size |Dg|.

Init: Q network parameters θ1, ...,θM generated randomly.
for g = 1 → G do

Data collection stage:
for each time step t do

The DNT estimates ŝt based on (9) - (13).
for each BS m ∈ M do

Record local state sm
t .

Choose action am
t based on the current policy

πm (am
t |sm

t ).
Determine the RB allocation scheme by using the Hungar-
ian algorithm.
if |ymt| = 1 then

Synchronize sm
t with the DNT.

end if
end for
The DNT calculate st based on (7).
Each BS m receives the team reward r (st,at) based on (16).
Each BS m stores the transition into the reply memory.

end for
Training stage:
for each BS m ∈ M in parallel do

Sample a set Dg of transitions from the reply memory.
for d = 1 → |Dg| do

Calculate the approximated global Q value Qtot (sd,ad)
based on (19).

end for
Update θ1, ...,θM based on (23).

end for
end for

The specific training procedure of the VDN algorithm is

summarized in Algorithm 2.

IV. COMPLEXITY AND CONVERGENCE OF THE PROPOSED

ALGORITHM

In this section, we analyze the complexity and the conver-

gence of the proposed method for DNT synchronization and

user data rate optimization in the physical network.

A. Complexity Analysis

We first analyze the complexity of our proposed method,

which includes: 1) the DNT state predictions, 2) each BS

determining its associated users and whether to send its partial

observed physical network state to the DNT, and 3) RB

allocation schemes. Thus, the complexity of the proposed

method is determined by: 1) the complexity of the GRU-based

predictive model, 2) the complexity of the Q networks of

the VDN algorithm, and 3) the complexity of the Hungarian

algorithm. Next, we will introduce the complexity of these

components.

Using the result from [27], [28], we know that the com-

putational complexity of the GRU-based predictive model is

O
(

KN h
(

U +N h
))

, and the computational complexity of

each Q network at a BS is O
(

θh
(

U + θh + |A|
))

, where θh

is the size of the hidden states of the Q network. Hence, the

complexity of all BS’s Q networks is O
(

Mθh
(

U + θh + |A|
))

.

Since the GRU-based predictive model is trained at the cloud

server, and the Q networks are trained at BSs, both possessing

sufficient computational power, the training overhead of these

models can be ignored [28].

We now analyze the computational complexity for each

BS m using the Hungarian algorithm to determine its RB

allocation scheme. First, each BS m requires |Um|N iterations

to calculate the data rate of each associated user over each RB.

Then, the Hungarian algorithm updates ψm
un to find the optimal

matching set Xm∗. The worst-case complexity of each BS m

is O
(

|Um|2N
)

, and the worst-case complexity of all BSs is

O
(

∑M

m=1 |U
m|2N

)

. In contrast, the best-case complexity of

each BS m is O (|Um|N), leading to a best-case complexity

of O
(

∑M

m=1 |U
m|N

)

= O (UN) for all BSs [22].

Finally, we compare the complexity of the proposed method

with the standard VDN algorithm that directly optimizes user

association and RB allocation without using the Hungarian

algorithm. The maximum complexity of our proposed method

is

O

(

KN h
(

U +N h
)

+Mθh
(

U + θh + |A|
)

+

M
∑

m=1

|Um|2N

)

.

(25)

In contrast, the complexity of the standard VDN method is

O
(

KN h
(

U +N h
)

+Mθh
(

U + θh + |Ab|
)

)

, (26)

where Ab is the action space of the standard VDN. In our

proposed method, since the Q network of each BS is only

used to determine the associated users and whether to send

information to the DNT, we have |A| = 2U+1. However, in

the standard VDN, each BS must consider to allocate N RBs

to U users and the physical network information transmission

link, resulting in an action space size of |Ab| = NU+1. Hence,

our proposed method can significantly reduce the complexity

of the standard method, especially in large networks with a

big number U of users.

B. Convergence Analysis

Next, we analyze the convergence of the multi-agent VDN

algorithm. We first define the gap between the actual global

Q function Qπ (s,a) and the global Q function Qπ
tot (s,a)

approximated by Q networks under a policy π as

επ (s,a) = Qπ (s,a)−Qπ
tot (s,a) , (27)

where

Qπ (s,a) =
∑

s′

P (s′|s,a)
[

r (s,a) + γmax
a′

Qπ (s′,a′)
]

(28)

with s′,a′ being the global state and the joint action of all

BSs at the next time step, and P (s′|s,a) being the transition

probability from the current global state s to the next global

state s′ given the joint action a.

Then, the convergence of VDN is presented in the following

lemma.
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Lemma 1. If 1) ε → 0, or γ → 1, and 2)

|επ1 (s,a)− επ2 (s,a)| ≤ ε for any π1, π2, our proposed VDN

method can converge to the optimal Q∗
tot.

Proof. To analyze the convergence of the VDN, we first

define the Bellman operator HV of our proposed VDN

method for updating the approximated global Q func-

tion Qtot. Since Qπ
tot (s,a) = Qπ (s,a) − επ (s,a)

and the standard Bellman operator is (HQ) (s,a) =
∑

s′ P (s′|s,a) [r (s,a) + γmaxa′ Q (s′,a′)], the Bellman

operator of our proposed VDN method is [29], [30]

(

HVQπ
tot

)

(s,a) =
∑

s

P (s′|s,a)
[

r (s,a)

+ γ
(

max
a′

Qπ
tot (s

′,a′) + επ (s′,a′)
)]

− επ (s,a) . (29)

Given (29), we use the Banach fixed point theorem [31] to prove

the convergence of our proposed VDN method. In particular,

according to the Banach fixed point theorem, to prove the

convergence of our proposed VDN method, we only need to

prove that HV satisfies the following condition:

∥HVQπ1
tot −H

VQπ2
tot∥∞ ≤ γ∥Q

π1
tot −Q

π2
tot∥∞,

for any π1, π2,

(30)

where Qπ1
tot (s,a) and Qπ2

tot (s,a) are the global Q function

approximated by Q networks under policies π1 and π2, we

have

∥HVQπ1
tot −H

VQπ2
tot∥∞

= max
s,a

∣

∣HVQπ1
tot −H

VQπ2
tot

∣

∣

= max
s,a

∣

∣

∣

∣

∣

∑

s′

P (s′|s,a) γ

[

max
a′

1

(

Qπ1
tot (s

′,a′
1) + επ1 (s′,a′

1)
)

−max
a′

2

(

Qπ2
tot (s

′,a′
2) + επ2 (s′,a′

2)
)

]

−
(

επ1 (s,a)− επ2 (s,a)
)

∣

∣

∣

∣

∣

= max
s,a

∣

∣

∣

∣

∣

∑

s′

P (s′|s,a)γ

(

max
a′

1

Qπ1(s′,a′
1)−max

a′
2

Qπ2(s′,a′
2)

)

−
(

επ1 (s,a)− επ2 (s,a)
)

∣

∣

∣

∣

∣

.

(31)

Since maxa′
1
Qπ1(s′,a′

1) − maxa′
2
Qπ2(s′,a′

2) ≤

maxa′

(

Qπ1(s′,a′)−Qπ2(s′,a′)
)

, we have

∥HVQπ1
tot −H

VQπ2
tot∥∞

≤ max
s,a

∣

∣

∣

∣

∣

∑

s′

P (s′|s,a)γmax
a′

(

Qπ1(s′,a′)−Qπ2(s′,a′)
)

−
(

επ1 (s,a)− επ2 (s,a)
)

∣

∣

∣

∣

∣

.

(32)

Since
∑

s′P (s′|s,a)γmaxa′

(

Qπ1(s′,a′)−Qπ2(s′,a′)
)

is

the expected value of γmaxa′

(

Qπ1(s′,a′)−Qπ2(s′,a′)
)

with

respect to s′, it is less than or equal to maxs′,a′

(

Qπ1(s′,a′)−

Qπ2(s′,a′)
)

. Hence, we have

∥HVQπ1
tot −H

VQπ2
tot∥∞

≤ max
s,a

∣

∣

∣

∣

∣

γmax
s′,a′

(

Qπ1(s′,a′)−Qπ2(s′,a′)
)

−
(

επ1 (s,a)− επ2 (s,a)
)

∣

∣

∣

∣

∣

. (33)

In (33), since maxs′,a′

(

Qπ1(s′,a′) − Qπ2(s′,a′)
)

=

maxs,a

(

Qπ1(s,a)−Qπ2(s,a)
)

, and επ1(s,a)−επ2(s,a) ≥

mins,a

(

επ1(s,a)− επ2(s,a)
)

, we have

γmax
s′,a′

(

Qπ1(s′,a′)−Qπ2(s′,a′)
)

−
(

επ1(s,a)− επ2(s,a)
)

≤max
s,a

γ
(

Qπ1(s,a)−Qπ2(s,a)
)

−min
s,a

(

επ1(s,a)−επ2(s,a)
)

= max
s,a

[

γ
(

Qπ1(s,a)−Qπ2(s,a)
)

−
(

επ1(s,a)−επ2(s,a)
)]

.

(34)

Based on (34), (33) can be further simplified as

∥HVQπ1
tot −H

VQπ2
tot∥∞

≤

∣

∣

∣

∣

∣

max
s,a

[

γ
(

Qπ1(s,a)−Qπ2(s,a)
)

−
(

επ1 (s,a)− επ2 (s,a)
)]

∣

∣

∣

∣

∣

≤ max
s,a

∣

∣

∣

∣

∣

γ
(

Qπ1(s,a)−Qπ2(s,a)
)

−
(

επ1 (s,a)− επ2 (s,a)
)

∣

∣

∣

∣

∣

= max
s,a

∣

∣

∣

∣

∣

γ
(

Qπ1(s,a)−Qπ2(s,a)−επ1(s,a)+επ2(s,a)
)

−(1−γ)
(

επ1(s,a)−επ2(s,a)
)

∣

∣

∣

∣

∣

= max
s,a

∣

∣

∣

∣

∣

γ
(

Qπ1
tot(s,a)−Q

π2
tot(s,a)

)

−(1−γ)
(

επ1(s,a)−επ2(s,a)
)

∣

∣

∣

∣

∣

.

(35)

Since |επ1 (s,a)− επ2 (s,a)| ≤ ε, we have επ1 (s,a) −
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TABLE II
SYSTEM PARAMETERS [32], [33]

Parameter Value Parameter Value

U 10 M 3

G 75 B 1

P 1 N0 1× 10−5

θh 128 λG 1× 10−3

Nh 128 K 5

γ 0.2 λQ 1× 10−4

επ2 (s,a) ≥ −ε. Hence, (35) can be rewritten as

∥HVQπ1
tot −H

VQπ2
tot∥∞

≤ max
s,a

∣

∣

∣

∣

∣

γ
(

Qπ1
tot(s,a)−Q

π2
tot(s,a)

)

− (1−γ) ε

∣

∣

∣

∣

∣

= γmax
s,a

∣

∣

∣Q
π1
tot(s,a)−Q

π2
tot(s,a)

∣

∣

∣+ (1−γ) ε

= γ∥Qπ1
tot −Q

π2
tot∥∞ + (1−γ) ε. (36)

From (36), we see that when ε → 0 or γ → 1, the VDN

Bellman operator HV satisfies (30). Based on the Banach

fixed-point theorem, the VDN in our proposed method will

converge to Q∗
tot. This completes the proof.

V. SIMULATION RESULTS

In this section, we perform extensive simulations to evaluate

the performance of our designed GRU and VDN based method.

We first introduce the setup of the simulations. Then, we

analyze the simulation results of our designed method.

A. System Setup

For simulations, we consider a 300× 100 network area. 3
BSs are located at the coordinates [−100, 0], [0, 0], and [100, 0],
respectively. Each BS has a coverage radius of 60. The BSs in

the system serve U = 12 users. The cloud server that generates

and controls the DNT is located at [0, 50]. The GRU model used

to predict the DNT states is implemented on the cloud server.

The cloud server will collect a dataset of 2, 000 trajectories

from all U users to train the GRU model, with each trajectory

having 30 steps. For comparison purposes, we consider an

independent Q learning method in which the Q network of

each BS m is trained by its local Q values Qm (sm,am) rather

than the global Q values Qtot (s,a) as follows:

θm ← θm − λQ∇θm
Jm
Q , (37)

where Jm
Q = E(sm

t ,am
t ,rm,sm

t+1)∼Dg

[((

rm (smt ,a
m
t ) +

γmaxam
t+1

Q̃θ̃m

(

smt+1,a
m
t+1

)

)

− Qθm
(smt ,a

m
t )
)2]

, with

rm (smt ,a
m
t ) being the local reward of BS m. The baseline

model parameters are similar to that of the designed method.

Other parameters used in the simulations are listed in Table II.

Fig. 2. The prediction of the user movement trajectories via the GRU model.

Fig. 3. Convergence of VDN and IQL (ϵ = 0.3, N = 12).

B. Simulation Results and Analysis

Fig. 2 shows the user movement trajectories predicted by the

GRU model. The users in Fig. 2 are randomly selected from

all users. From Fig. 2, we see that the positioning mean square

errors of user 2, user 4, and user 7 are respectively 0.188,

0.075 and 0.320. This is because the GRU effectively captures

dependencies of the historical user movement through its gating

mechanisms. From this figure, we also see that the mobility

prediction mean square errors of users 2 and 7 are higher

compared to that of user 4. This is because the movement

dynamics of users 2 and 7 are higher compared to that of user

4.

In Fig. 3, we show the convergence of both the proposed

method and the independent Q based method. Fig. 3 shows

that, as the number of training epochs increases, the average

rewards of both considered algorithms increase. This is

because the policy of determining the associated users and

the physical network information transmission is optimized by

the considered RL algorithms. We also see that our designed
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Fig. 4. The average DNT error and the data rate as ϵ varies (N = 9).

algorithm can improve the weighted sum of data rates and the

synchronization accuracy by up to 28.96% compared to the

independent Q. This gain stems from the fact that the proposed

method allows each BS to use its local state to collaboratively

find a globally optimal policy that maximize total data rates

of all users, while minimize the asynchronization between the

physical network and the DNT.

Fig. 4 shows how the average DNT error and the average data

rate of our proposed method and the independent Q method

change as ϵ varies. Fig. 4 shows that our proposed method

improves the average data rate by up to 31.79% compared to

the independent Q method when ϵ = 0.8, while the average

DNT error of the proposed method is higher compared to the

independent Q method. This is because our proposed method

optimizes the weighted sum of the data rates of all users and

the gap between the DNT and the physical network. Fig. 4 also

shows that the average data rate of the independent Q method

reduces as ϵ increases from 0.8 to 0.99. This is because in the

independent Q method, as the value of the epsilon increases,

each BS prioritizes the data rate of its associated users, which

may consequently increase the interference between BSs.

In Fig. 5, we show how the average DNT error and the

average data rate of our proposed method and the independent

Q method change as the number of users varies. From Fig. 5,

we see that the DNT errors of both our considered algorithm

and the independent Q method increase as the number of

users increases. This is because as the network serves more

users, the BSs may not have enough RBs to maintain DNT

synchronization. Fig. 5 also shows that the average data rates

of both methods decrease with the increase of the number of

users. This stems from the fact that the BSs have limited RBs

to serve users, such that several users are served by the RBs

with large interference. Furthermore, Fig. 5 shows that when

the number of users is 12, the data rate of our proposed method

is 10.15% higher than that of the independent Q method but

the average DNT error of the proposed method is 0.2 higher

compared to the independent Q method. This is because our

proposed method adapts the RB allocation policy of each BS

Fig. 5. The average DNT error and the data rate as the number of users varies
(ϵ = 0.25, N = 12).

Fig. 6. The number of BSs updating the DNT and the DNT errors at each
step within a single episode (ϵ = 0.25, N = 12).

to accommodate the growing number of users to maintain a

balance between serving the users in the physical network and

the DNT synchronization.

Fig. 6 shows how the DNT errors of our proposed method

and the independent Q method change as the number of BSs

that updates the DNT at each step. In Fig. 6, we show that our

proposed method can achieve a small DNT error compared

to the independent Q method. This is due to the fact that our

method enables better BS collaborations, allowing them to

optimize RB allocation by considering the joint impact of their

decisions on the overall system performance.

VI. CONCLUSION

In this paper, we have proposed a DNT enabled network

consisting of a physical network and its DNT. In this network,

a set of BSs in the physical network must use their limited

spectrum resources to serve a set of users while periodically

transmitting the partial observed physical network information

to a cloud server to update the DNT. We have formulated this
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resource allocation task as an optimization problem aimed at

maximizing the sum of data rates for all users while minimizing

the asynchronization between the physical network and the

DNT. To address this problem, we have introduced a method

based on GRUs and the VDN. The GRU component enables

the DNT to predict its future state and maintain updates even

when physical network information is not transmitted. The

VDN component allows each BS to learn the relationship

between its local observation and the team reward of all BSs,

allowing it to collaborate with others in determining whether to

transmit physical network information and optimizing spectrum

allocation. Simulation results have demonstrated that, compared

to a baseline approach utilizing GRU and IQL, our proposed

method significantly improves the weighted sum of user data

rates and the asynchronization between the physical network

and the DNT.
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