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Abstract—Attack defense is a critical research problem in
Cyber-Physical System security. While significant research has
focused on attack detection, the crucial aspect of attack diagnosis,
particularly temporal diagnosis, remains underexplored. This
paper addresses this critical gap by proposing a novel approach
to actuator attack diagnosis. We present a real-time, data-driven
solution for actuator attack diagnosis in CPS that operates
without prior knowledge of the system and is not limited to
specific attack types. Our approach leverages attention mecha-
nisms and provides both temporal and spatial diagnosis. Through
extensive testing using high-fidelity simulators and a case study
on Raspberry Pi, we demonstrate the robustness, accuracy, and
efficiency of our method. This research contributes to advancing
CPS security and facilitating effective attack recovery strategies.

Index Terms—cyber-physical systems, actuator attacks, real-
time, detection, diagnosis

I. INTRODUCTION

Cyber-Physical Systems (CPS) integrate computing and
communication components with sensing and actuation to
engage with the physical environment. The progression of CPS
has shifted from simple control systems to intricate, diverse
networks, facilitating advanced capabilities. This advancement
fosters the emergence of novel applications like autonomous
vehicles, unmanned aerial vehicles, and intelligent manufac-
turing, presenting significant advantages. At the same time,
the open architecture of modern CPS gives rise to potential
security vulnerabilities [1]-[3].

Contrary to conventional IT systems, the challenges in CPS
security stand out not only in terms of the consequences of
security breaches but also in the breadth of attack surfaces [4]—
[6]. Breaches in CPS can result in physical property damage
and pose potential risks to human lives, for example, plant
explosion [7], power cutoff [8] and car accidents [9].

Actuators, which take commands from the cyber side and
enact physical changes in the environment, serve as the bridge
between the two domains. Consequently, their command in-
tegrity is critical to CPS security. Control commands can
be spoofed both in cyberspace, such as through software
and network attacks [10] and in the physical space, such as
transduction attacks [11], [12].

The increasing prevalence of security threats has prompted
significant research efforts aimed at safeguarding the integrity
of actuators [13]. A key area of focus is the detection of com-
promised actuator command data, known as actuator attack

detection. Studies in this domain can be categorized into two
main groups. The first category utilizes domain knowledge of
Cyber-Physical Systems (CPS), often leveraging mathematical
models of the physical system, including both linear and non-
linear models [14]. The second category employs deep-driven
methods to handle the high dimensionality inherent in spatial
(i.e., involving a large number of sensors) and temporal (i.e.,
dealing with long time series) aspects [1], [15]-[17].

Despite considerable efforts in attack detection, another
critical area, attack diagnosis, remains insufficiently addressed.
Attack diagnosis focuses on two core aspects: spatial diag-
nosis, which involves identifying the specific dimensions of
the attacked system, and temporal diagnosis, which aims to
pinpoint when the attack began.

Spatial diagnosis, also known as attack localization or
identification, has garnered research attention. Similar to attack
detection, existing spatial diagnosis methods can be grouped
into two categories. The first group utilizes prior mathematical
models [18], [19]. Recognizing the challenges in obtaining
accurate mathematical models [20], the second group uses
deep-driven models as the solution [21], [22].

In contrast, few works have addressed the temporal aspect
of attack diagnosis in CPS. This lack of attention stems from
two primary reasons. First, temporal diagnosis is a relatively
new research area, and its significance in CPS has not been
fully realized. Historically, researchers viewed attack detection
as the final step in the defense process, assuming immediate
system reboot upon detection. However, certain systems, like
drones in flight, cannot be instantly rebooted. Consequently,
research on attack recovery, aimed at restoring CPS to safe
states, has gained traction [23]-[29].

Meanwhile, temporal attack diagnosis is gaining attention
due to its importance in identifying trustworthy historical data
for estimating the current system state during attack recovery.
Second, many researchers underestimated the complexities of
attack diagnosis, assuming that fast attack detection methods
suffice for diagnosis. However, this assumption overlooks the
variability in attack magnitudes and resulting varying detection
delays. While robust detection methods offer short delays,
these delays cannot reliably pinpoint the attack starts, espe-
cially for stealthy attacks with prolonged delays. Therefore,
advanced techniques in attack diagnosis are essential to com-
plement existing detection strategies. Recently, [30] proposed a
data-driven sensor attack temporal diagnosis system. However,
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the actuator attack diagnosis area remains unexplored.

Motivated by the above observations, this work focuses on
the development of a real-time data-driven attack diagnosis
solution for cyber-physical systems under actuator attack. The
attack diagnosis is triggered subsequent to attack detection,
making it compatible with most existing detection methods.
The system comprises six modules trained offline and executed
online to offer temporal actuator attack diagnosis. Our solution
explores novel uses of the attention mechanisms [31] and its
feature of being sensitive to input changes. To be specific, the
contribution of this work is summarized as follows:

e We address a critical research gap in actuator attack
diagnosis for CPS. Our solution diagnoses actuator attacks
with zero knowledge of the corresponding CPS and is not
confined to certain types of attacks, facilitating effective attack
recovery and advancing related research domains.

e We propose a lightweight real-time end-to-end attack di-
agnosis system addressing both spatial and temporal diagnosis
for CPS actuator attack. It provides diagnosis in millisecond-
level computing time in edge devices such as Raspberry Pi.

e We validate the effectiveness of our proposed method
through extensive testing using high-fidelity simulators on the
Raspberry Pi platform. Our experimental results confirm that
the solution can robustly and accurately diagnose attacks with
minimal computational overhead. These findings establish the
practicality and effectiveness of our approach for real-world
applications in Cyber-Physical Systems (CPS).

The rest of this paper is organized as follows. Sec-
tion II presents preliminaries. Section III describes the system
overview. Section IV details the design for each system com-
ponent. Section V evaluates the proposed solution. Section VI
concludes the paper.

II. PRELIMINARIES

This section outlines the scope of the paper, the system
model, and the threat model.

A. System Model

We consider a Cyber-Physical System (CPS) in which a
controller manages a physical system to adhere to control
references. The controller operates on a periodic schedule.
During each control step, the controller first retrieves sensor
measurements (such as velocity, pressure, etc.) and then ap-
plies a control policy to compute control commands or signals
(e.g., throttle). These commands are subsequently executed on
the actuators to influence the physical system. In this paper,
the control references, control commands, and sensor measure-
ments are treated as /NV,.-dimensional, /N.-dimensional, and N -
dimensional multivariate time series, respectively, denoted by
R,C,and S. R = {ry,...,ry.} € RN C = {cy,..,en.} €
R>Ne and § = {s1,..,sn,} € R™*Ne, where ¢ denotes the
number of time steps until the current time.

Every dimension of R, C, or S represents a reference,
control, or sensor channel. We use subscript 7 and superscript
t to represent the data of %" dimension and ¢ time step:

1 t\T tx1 it t t 1x N,
ri={r;,.r} € R ={r], . ry } e RV
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¢; and s; form as the same. Our actuator attack diagnosis
system also uses the entire CPS system state for prediction,
and we use X for notation:

tXN
X={r1,..,IN,,C1y s CN,, S1, e, SN, } € R

where N = N, + N. + N,. Moreover, we use double
superscripts ¢,w to indicate the sub-multivariate time series
or univariate time series with a window size of w:

R == o = Y L e RO

Ct, S and X% form as the same.

B. Threat Model

We consider a malicious attacker who can launch actua-
tor attacks manipulating the control commands transmitted
to actuators generated by the controller. Consequently, the
actuators may engage with the physical environment in an
adverse manner, potentially leading the system into an unsafe
state. The attacker can compromise the integrity of control
commands: € = CT% + v where 7 and @ denote
the attack end and duration, and € and V™% are the
compromised value and attack magnitude from time step 7—w
to 7 — 1. This threat model is widely used in CPS and security
papers [32], [33]. Typically, defense strategies concentrate on
mitigating a specific attack vector (such as actuator attacks in
this paper) since a singular defense against all types of attacks
is often unfeasible. Therefore, this paper centers its focus on
actuator attacks, operating under the assumption that the other
system components remain unaffected.

Please note that our proposed method is not limited to
specific types of attacks. The following merely provides exam-
ples used for evaluation purposes. One common attack type
is the bias attack, wherein the attacker alters measurements
by introducing fixed values, leading to a stable drift: v}

v7 ™%, where t € (7 — b, 7). The second type is a stealthy

attack, which gradually modifies control commands starting

from a negligible magnitude: v! = v!™! + o7 *~!, where

te[r—1,7)and v] *t =0.

C. Problem Statement

While numerous studies have focused on attack detection,
there remains a critical gap in post-detection diagnosis. In
this work, the proposed actuator attack diagnosis system is
designed to determine attack onset and identify the most
affected actuator. We use z and 7 to denote the attack start time
and most affected actuator at detection time. Here, 2 = 7 —w,
and i = argmax, |c¢] — ¢} |, where 7 is the time step when the
system attack detection module detects the attack.

The proposed attack diagnosis module is designed to pro-
vide a diagnosis suggesting the attack onset ¢ and the most
affected actuator v that minimize the diagnosis error:

minid)mize max(0, ¢ — z2), miniwmize [ — il
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The proposed diagnosis module does not serve as a substitute
for attack detection; rather, it complements most existing data-
driven attack detection models. This research contributes to the
field by offering a comprehensive approach to CPS security.

III. SYSTEM OVERVIEW

Actuator Attack Diagnosis System
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Fig. 1: Actuator Attack Temporal And Spatial Diagnosis
System Overview.
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This section presents the overview of our real-time actuator
attack diagnosis system. Fig. 1 depicts the system design. Our
actuator attack diagnosis system comprises six interconnected
components operating sequentially:

1) Preprocessor: Responsible for scaling and normalizing
system inputs, ensuring consistent data representation
across different input ranges and types.
Reference-Control (Ref-Ctrl) Encoder: Encodes control
references and control commands into a latent space for
later use in attack detection and diagnosis.

Feature Aggregator: Composes rich feature inputs by
projecting encoded latent features and other system
information.

Control Command Predictor: Uses rich feature inputs to
predict control command in the following time step.
Attack Detector: Identify potential actuator attacks and
raise the alarm after detection.

Attack Diagnoser: Analyzes the detected attacks and
determines the attack onset and most affected actuator.

2)

3)

4)
)
6)

These components can be categorized into two groups:
algorithm-based and data-driven. The algorithm-based com-
ponents include the preprocessor, attack detector, and attack
diagnoser. Data-driven components, collectively referred to as
the system behavior learner, consist of the reference-control
encoder, feature aggregator, and control command predictor.

The incorporation of data-driven components necessitates
an offline training phase for the system behavior learner
to effectively learn and predict control commands. In this
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context, “system behaviors” encompass the linear or non-
linear mappings from control references and system states
to control commands. These behaviors are independent of
specific operator preferences or algorithm implementations,
ensuring a generalized approach to system behavior modeling.
The system behavior learner employs a zero-positive learning
approach, training exclusively on normal, unattacked data.
This methodology is predicated on the learner’s ability to
accurately forecast system behavior in subsequent control
loops with minimal error when provided with unattacked
inputs. The rationale behind this approach is three-fold:

o Predictive accuracy: By training on normal data, the
learner develops a robust understanding of expected sys-
tem behaviors, enabling highly accurate predictions under
normal operating conditions.

« Attack sensitivity: When confronted with attack-induced
input patterns unseen during training, the predictor will
generate significantly erroneous predictions due to misin-
terpretations. Prediction errors serve as crucial indicators
for the detection and subsequent diagnosis of attacks.

« Performance consistency: Regardless of the scope and
extent of data collection from attacked systems. This
characteristic ensures that the proposed system is not
restricted to specific types of attacks, enhancing its ver-
satility and applicability across various attack scenarios.

The offline training process continues until the system
behavior learner’s performance converges. Upon convergence,
the learner’s parameters are fixed, enabling it to operate online
alongside other components within the CPS control loop to
provide real-time diagnosis.

It is important to note that while the Attack detector could
potentially be implemented as a data-driven component, we
do not delve into its optimization in this work as it falls
outside the primary focus of our study. Future research could
explore the potential benefits of a data-driven approach to
attack detection, potentially improving the system’s overall
performance and adaptability.

IV. ATTACK DIAGNOSIS SYSTEM

The proposed actuator attack diagnosis system comprises
six components, with three core components—reference-
control encoder, feature aggregator, and attack diag-
noser—being the focus of this work. We claim novelty only
for the core modules in actuator attack diagnosis, while
acknowledging that standard approaches may be applied to the
supporting modules. The design of these supporting modules
is presented flexibly, allowing for the adoption of alternative
models as deemed appropriate. Figure 2 illustrates the details
of the modules’ design and corresponding notations.

A. Preprocessor

The preprocessor ensures consistent data representation
across various input ranges and types, which is essential for
the accurate functioning of the attack diagnosis system.

During the offline training phase, the preprocessor de-
termines the maxima and minima for each dimension of
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the system state X. These values establish the lower and
upper bounds within which the attack diagnosis system can
accurately process data. For both online training and online
running phases, the preprocessor projects inputs into these
predetermined bounds using a min-max normalization tech-
nique. This scaling operation is defined as: &! (zt —
min(x;))/(maz(x;)—min(x;)), where £¢ and x! represent the
scaled and original values, respectively, for the i-th dimension
at time step ¢. This normalization ensures that all input features
are scaled [0,1], which helps prevent certain features from
dominating others due to differences in their original scales.
In the rest of this paper, we use X to denote the scaled inputs
when it does not cause confusion for cleaner expressions.

The effectiveness of the preprocessor is contingent upon
the input values falling within the established bounds. Values
outside these bounds can lead to extrapolation errors and con-
sequently, incorrect diagnoses. While extending these bounds
to accommodate a wider range of inputs is a potential area
for future research, it falls outside the scope of this paper.
Instead, we focus on the system’s performance within the
defined operational range, which encompasses the majority of
expected scenarios based on our training data.

B. Reference-Control Encoder

/Feature Aggregator\

9 H

/ Ref-Ctrl Encoder\

%

Fig. 2: Details of Ref-Ctrl encoder and feature aggregator.

The reference-control encoder, shown in Figure 2, derived
from the design of [30], introduces a novel attention mecha-
nism tailored for cyber-physical systems (CPS). This mecha-
nism, called Reference-Control Command attention (Ref-Ctrl
attention), replaces the self-attention in the vanilla multi-head
attention mechanism (MHA) [31].

The reference-control encoder serves two purposes: 1) Em-
bedding control references and commands into latent features
for improved prediction and detection, and 2) Facilitating
temporal attack diagnosis through a novel Attention Fluc-
tuation Index (AFI). Initially, we discuss the vanilla Multi-
Head Attention (MHA) mechanism, followed by our proposed
Reference-Control (Ref-Ctrl) attention, and then introduce the
AFI for diagnosing temporal actuator attacks.

1) Vanilla MHA: In the context of CPS, vanilla MHA
processes a window of the entire system states X" at every
time step t, projecting it into a latent space embedding that
represents underlying system behavior. First, X% is triplicated
and projected into query Q"", key K**, and value V%% using
distinct fully-connected layers with weights W, Wy, and W,
respectively. The resulting query, key, and value maintain the
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same shape as the input X", Second, it dot-products Q""" and
K"" and generates a matrix of attention weights A? at each
time step. At last, the attention weights A’ are used to reweight
value V4%, producing a latent representation, which is then
projected by W, to obtain a latent feature O"*. Formally:

Qt,’LU — Xt,wwq’ Kt,u) — Xt’ka’ Vt’w _ Xt’wW,L“
At = softmagn(Qt’“’{K’fﬁ’w}T)7 ot = Atvtew,,

where Q"% K%, V4%, and O™ € R**N, A ¢ R¥**, and
Wy, Wi, W,, and W, € RV,

The MHA architecture allows for various attention strategies
across different sets of dimensions by dividing the inputs into
distinct groups. When multiple heads are employed, Q"*,
K"¥, and V%" are split into H subsets. Each head computes
A and O independently. The final A is the average of all heads,
while O is their concatenation.

Rationale for using MHA: The adoption of MHA in our
attack diagnosis system is motivated by several key factors:

o Enhanced Generalization: MHA significantly extends
neural networks’ ability to generalize, enabling more
precise and accurate predictions [34], [35].

« Interpretability: MHA provides insights into the neural
network’s focus [36], [37], which is crucial for determin-
ing attack onsets.

« Sensitive to Input Fluctuations: The matrix multiplication
in the attention mechanism amplifies changes, making
them more detectable. Also, a well-trained attention net-
work learns to focus more on significant fluctuations,
effectively filtering out noise.

2) Ref-Ctrl MHA: Different from the vanilla attention
mechanism that employs self-attention by projecting the same
inputs X*% to @“*, K**, and V**, our novel Ref-Ctrl atten-
tion mechanism utilizes different inputs for these projections.
This design choice offers several advantages in the context of
CPS actuator attack diagnosis.

In Ref-Ctrl attention, control references R™ are projected
to Q" using a fully-connected layer with weights W, €
RN-*Nr I addition, control commands C** are projected
to both K“* and V%“ using fully-connected layers with
weights W, € RNe*Nr and W, € RNeXNr | respectively.
Consequently, 0“* € RY*Nr and W, € RN*Nr The
proposed Ref-Ctrl attention offers several key advantages over
conventional self-attention:

o Computational Efficiency: By reducing input dimensions
from N to N,., Ref-Ctrl attention decreases computational
overhead in computing attention weights A.

o Enhanced Correlation Exploitation: Ref-Ctrl attention
fully leverages the correlation between control references
and control commands by projecting them as Q and
K/V, respectively. This approach enables our solution to
capture the complex relationships between these elements
more effectively, leading to improved performance.

o Reduced Interference in Attention Weights: By avoiding
the placement of the same components (R, C, or S) in
both Q and K, Ref-Ctrl attention minimizes interference
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in attention weights. This is particularly important in
CPS contexts where there may be a lag between R,
C, and S. If Q or K contained all these components,
it would be challenging for the attention weights to
effectively address all phases of the system’s operation.
By mitigating this interference, Ref-Ctrl attention enables
more accurate attack temporal diagnosis.

3) Attention Fluctuation Index: The Attention Fluctuation
Index (AFI) f is a novel metric designed to represent attention
weights and plays a pivotal role in our proposed solution
for accurate temporal diagnosis of CPS actuator attacks. This
score is motivated by the observation that attention weights A
exhibit discernible fluctuations in response to input changes,
particularly when utilizing our specially designed Ref-Ctrl
Attention mechanism. These fluctuations align with input
variations, providing valuable insights into actuator attacks.

Our extensive exploration has revealed two key character-
istics of these fluctuations: 1) Fluctuations typically disrupt
previously stable patterns within A, influencing neighboring
time steps by either attracting or redistributing weights. This
temporal impact is crucial for identifying the onset of potential
attacks. 2) The distribution of weights across dimensions
within these fluctuations is uneven and lacks predictability.
This characteristic necessitates a robust metric capable of
capturing diverse fluctuation patterns.

Given these observations, we introduce the attention fluctu-
ation index (AFI)” as a metric to identify the time steps when
fluctuations display in their corresponding .A. Developing such
a metric presents several challenges: 1) the metric must be
sufficiently sensitive to capture subtle fluctuations that may
indicate the early stages of an attack. 2) it should facilitate
accurate temporal diagnosis, pinpointing the exact time steps
when attacks potentially occur. 3) the computational overhead
associated with calculating and tracking the metric must be
carefully balanced to ensure real-time applicability in CPS.

After extensive experimentation and analysis, we found that
tracking the maxima and minima in A provides an effective
approach that balances these factors. The inclusion of minima
is essential because the attention mechanism may allocate
small attention weights to attacks at the beginning in certain
attack settings, which are not easily predictable. Formally:

al, = mazx(AY) — 1/w, af = 1/w — min(A?),

t—1 t
mt o t'=max (¢’ ,t—w) aj
7t —max(¢,t —w)

jat, —mb| |af —mi]
ft:{qiuflt}:{ umz u7 lmf l}7

where ¢’ is initialized as 0 and represents the latest fluctuation,
and 1/w represents the average weights under the softmax
function, serving as a baseline to reduce variance. The AFI’s
design inherently supports the temporal attack diagnosis. By
continuously updating and comparing against recent historical
data, the index can pinpoint attack onset. The system keeps
updating ¢’, and we present the algorithm to determine it in
the attack diagnoser component.

, J€{wl},
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Rationale for the moving windows: The attention weight
maxima a’, and minima a} are observed to vary within a small
range when the CPS is operating normally. However, they
exhibit significant fluctuations after sudden control command
changes because the model learned to pay more attention to
changes, leading to the allocation of more attention to abnor-
mal time steps and resulting in polarized attention weights. To
capture this behavior, two moving windows are maintained,
and the AFI is calculated as maxima/minima divided by their
respective moving averages. This approach allows amplifica-
tion of anomalies, enhancing detection sensitivity.

In summary, the Attention Fluctuation Index (AFI) serves
as a powerful tool for temporally diagnose potential attacks in
CPS by leveraging the unique properties of attention weights
in our Ref-Ctrl Attention mechanism. The reference-control
encoder only records the AFI and the attack diagnoser analyses
it to determine the attack onset. Because AFI cannot be used
for detection and is only useful after detecting attacks.

C. Feature Aggregator

The feature aggregator, shown in Figure 2, serves as a
crucial intermediary between the ref-ctrl encoder and the
control command predictor. This component performs three
steps: projection, skip connection, and feature aggregation.

The Aggregator first projects the encoded reference-control
matrix 0" € RN to a new space 0" € R**Ne. This
projection aligns the dimensions of the encoded reference-
control matrix with the control command matrix. Subse-
quently, it applies a skip connection from the control command
matrix C** to Ot’w, resulting in o Formally:

Ot’w = Ot’ng,,
0"’ = SiLU(ct +0""),

Xt,11) _ {Rt‘wjotyw’st,w}’

where W, € RNs*Ne is a learnable weight matrix, 0" e
Rw*Ne and SiLU (Sigmoid Linear Unit) [38] is an activation
function chosen for its superior performance compared to other
commonly used activation functions.

In its final step, the feature aggregator constructs the com-
prehensive feature matrix X~ € R“*N by concatenating
Ot’w with the reference matrix R“* and the sensor measure-
ment matrix $*. This aggregated feature matrix serves as the
input for the subsequent control command predictor.

Rationale for skip connection: The skip connection from
Cch" to bt’w serves two primary purposes: 1) It mitigates
the vanishing gradient problem during backpropagation, fa-
cilitating more stable and efficient training. 2) It preserves the
original control command information, ensuring that critical
data is not lost during the encoding and projection processes.

Rationale for feature aggregation: The concatenation of
0" R", and §"" provides a comprehensive representation
of the system state: 1) (~)t’w captures the cross-encoded infor-
mation from control references and commands. 2) R** and
S"* provide direct access to the original control references
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and sensor measurements, allowing the model to consider
the actual system state and, together with aligned control
commands, enabling better predictions.

This rich, multi-faceted feature representation enhances the
control command predictor’s ability to accurately forecast
future control commands, thereby improving the overall per-
formance of the actuator attack diagnosis system.

D. Control Command Predictor

W 1D conv. layer W Avg pooling [ Fully connected layer

w wN 1

0.5 1

NC
2 0.5%w
) o0 = =
g: flatten %n) B
z :
1.33N 0.5>wN

N

Fig. 3: Model Architecture of Control Command Predictor.

The control command predictor, shown in Figure 3, employs
a neural network to forecast the control command for the sub-
sequent time step, denoted as y**!, utilizing the comprehensive
feature matrix X" as input. The prediction is crucial for
detecting potential discrepancies between expected and actual
control commands, which may indicate the presence of an
actuator attack.

While designing adaptable prediction neural networks
presents challenges, our work focuses on demonstrating the ef-
ficacy of the proposed diagnosis system rather than introducing
novel network architectures. Previous research [30] has shown
that Convolutional Neural Networks (CNNSs) offer a balanced
trade-off between performance and computational overhead
in similar prediction tasks. Consequently, we adopt a CNN-
based approach as a representative example of commonly used
prediction models in this domain.

Our CNN implementation consists of two components:
convolutional sub-net and fully connected sub-net. The con-
volutional sub-net comprises three sequential blocks, each
containing a 1D-convolution layer, a Sigmoid Linear Unit
(SiLU) activation layer, and an average pooling layer. The
final block’s convolution layer has a spatial dimension of 2NV
and employs a kernel size of 3 with a padding length of 1 on
both sides. The parameters of the preceding layers increase
linearly to accommodate the growing complexity of extracted
features. The average pooling layers serve to downsample
the temporal dimension by averaging every two consecutive
time steps, effectively reducing the sequence length while
preserving important temporal information.

Following the convolutional layers, outs will be flattened
and fed to the fully connected sub-net. The first layer doubles
the hidden size to allow for more complex feature interactions,
while the second layer projects the enlarged hidden represen-
tation into an N.-dimensional space, meaning the prediction
of N.-dimensional control commands.
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The control command predictor is the final data-driven com-
ponent in our system, and the back-propagation for parameter
optimization begins from this point during the offline training
phase. We employ the mean absolute error between predicted
and actual control commands as the loss function, aiming to
minimize this error across all time steps. Forma}l\lfy, for every
time step ¢ in the training phase: lossh) = >, |y — ¢,
where y! is the predicted control command for ¢-th actuator
at time step ¢, and 0 represents the learnable parameters in
the reference-control encoder, feature aggregator, and control
command Predictor. The objective during the training phase
is to minimize the expected loss: minimizey E[lossg], where
E[-] computes the average loss across all training samples.

E. Attack Detector

The attack detector continuously analyzes the discrepancies
between predicted and actual control commands at each time
step. Its primary function is to calculate a score that quan-
tifies the deviation of the actual control commands from the
predicted ones, raising an alarm when this score surpasses a
predefined threshold. While various methods can be employed
to calculate this score, such as Local Outlier Factor (LOF),
One-Class Support Vector Machines (OCSVM), and Isolation
Forest, we opt for the Cumulative Sum (CUSUM) method
due to its optimal balance of effectiveness, accuracy, and
computational overhead [39].

The CUSUM method operates by computing residuals
through element-wise squared errors and assigning a CUSUM
score for each dimension of the control command vector.
The mathematical formulation of this process is as follows:
et = (yb —ch)?, db = max(0,d"" + et — w;), where d!
represents the CUSUM score for actuator ¢ at time step ¢,
ef is the squared error, and w; is the drift parameter. The
CUSUM score is initialized as d) = 0 for all actuators. The
drift parameter w; plays a crucial role in filtering out noise
and reducing false alarms, thereby enhancing the robustness
of the detection mechanism.

When the CUSUM score d! exceeds a predetermined thresh-
old 7;, the attack detector resets d§ to 0 and raises an alarm,
signaling the detection of an attack. In our implementation,
we determine the values of w and m through offline training
and keep them fixed during operation. While adaptive methods
for adjusting these parameters on-the-fly exist, such as those
proposed in [40] and [29], they are beyond the scope of this
work but can be readily integrated into our framework.

The drift parameter w; for each actuator is set to the
minimum value that exceeds 99% of its prediction errors on a
separate validation dataset. This approach ensures that the de-
tector is sensitive enough to capture genuine anomalies while
maintaining resilience against normal operational variations.
The threshold 7); is then calculated as a multiple of the drift:
1 = Rw, where R is a scalar ratio that primarily determines
the detection sensitivity of the system.

It is worth noting that decreasing the value of R universally
increases the sensitivity of the attack detector across all
systems. However, as the primary focus of this work is on the
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temporal diagnosis of actuator attacks rather than optimizing
detection sensitivity, we employ a fixed value for R.

F. Attack Diagnoser

The attack diagnoser serves as the final component in our
actuator attack diagnosis system, providing both temporal and
spatial analysis of detected attacks.

Note that temporal diagnosis is distinct from attack detec-
tion and cannot be used independently to raise alarms. This
distinction arises because normal system behaviors, such as
sudden changes in control references, can also cause attention
fluctuations and increase the AFI. The attack detector, on the
other hand, raises alarms only for unexpected system behaviors
that deviate significantly from normal operations.

The attack diagnoser continuously analyzes f and records
the most probable attack onset ¢, but only provides a formal
diagnosis after the attack detector confirms an attack. This
approach ensures that the system doesn’t misclassify normal
fluctuations as attacks. In contrast, spatial diagnosis, which
identifies the most affected actuator by analyzing the CUSUM
score d, can be provided instantly upon attack detection.

To perform temporal diagnosis, the attack diagnoser mon-
itors for fluctuation, i.e., sudden increases or decreases in f,
by comparing it to a predefined threshold A. The diagnosis
process is more than simply identifying the latest fluctuation
because an attack typically invokes continuous fluctuations
lasting multiple time steps. It keeps track of the beginning of
every fluctuation, assuming that all fluctuation start points are
potential attack onsets, treating them as temporal diagnosis
candidates. After confirming an attack, the attack diagnoser
returns the latest candidate as the temporal diagnosis.

Algorithm 1: Actuator Attack Diagnosis

Input: )\, d; // A: threshold, d':CUSUM
score
Output: ¢, ¥ ; /] ¢, Y
spatial diagnosis
1o+ 1,9+ 1;; // ¢: latest fluctuation
2 while ¢t > 2 do
3 if attack detector detected an attack then

temporal &

4 1« argmax; d!; // spatial diagnosis
5 | return o, VY

6 | foreach j in {u,l} do // Iterate f£!
7 if fj‘? > \ then

8 if t > ¢’ + 1 then // If AFI

surpasses threshold and not
due to prior fluctuation.
9 L o+t // latest candidate

10 ¢t // Update ¢

Algorithm 1 presents the detailed process of actuator attack
diagnosis. The algorithm takes as input the threshold A and
the CUSUM score d°, and outputs the temporal diagnosis ¢
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and spatial diagnosis 1. The algorithm initializes ¢ and ¢’ to
1, where ¢’ serves as an indicator of the latest time step of
every fluctuation, while ¢ points to the first time step in each
fluctuation. The algorithm executes at every time step but only
returns a diagnosis after the attack detector confirms an attack
(lines 3-5). If any dimension of the AFI f exceeds the threshold
A (lines 6-7), the algorithm updates ¢’ to indicate the last
time step of the current fluctuation (line 10). However, it only
updates the temporal diagnosis ¢ if the current fluctuation is
newly started, pointing to the current time step as the first step
of the new fluctuation (lines 8-9). Upon detection of an attack,
the attack detector also provides a spatial diagnosis, identifying
the most affected actuator (line 4). This is determined by the
highest CUSUM score at the time step when alarm is raised.

It’s important to note that attention scores fluctuate both
when attacks start and when reference states change normally.
However, the latter case is not caused by attacks, and the
attack detector will not raise an alarm in such instances.
Consequently, the diagnosis will not be triggered for these
normal fluctuations. The recorded fluctuations only provide a
diagnosis after the attack detector confirms an attack, ensuring
that the system distinguishes between normal operational
changes and actual attack scenarios.

The threshold A is a critical hyper-parameter that controls
the diagnostic sensitivity of the system. Determining its op-
timal value often requires an iterative process involving data
collection, A\ adjustment, and performance evaluation. While
different attack types might benefit from varied A values
to maximize diagnostic efficacy, it’s generally advisable to
choose a A that accommodates noise-induced effects rather
than targeting specific attack types.

Our experiments indicate that the optimal value range for A
can be efficiently determined using a simple approach. Starting
with a modest A\ value, one can employ a straightforward
technique such as the bisection method to refine the threshold.
This process allows for the identification of a A value that
balances sensitivity to attacks with resilience against false
positives from normal system fluctuations.

In practice, the optimization of A should be performed as
part of the system’s calibration process, taking into account
the specific characteristics of the CPS being protected and the
expected range of normal operational fluctuations. Regular re-
evaluation of A may be necessary to adapt to evolving system
dynamics and emerging attack patterns.

V. EXPERIMENTAL EVALUATION

To validate the efficacy of our proposed actuator attack di-
agnosis system, we conduct comprehensive experiments using
a high-fidelity simulator and present a case study on a real-
world testbed. This section details our implementation, dataset
generation, evaluation metrics, and baseline comparisons.

A. Overall Settings

We implement the System Behavior Learner using PyTorch
v2.2.2, with parameters optimized by an Adam optimizer. To
ensure the robustness and generalizability of our approach,
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we train each system configuration five times and report
the average performance across these runs. Evaluation of
the simulator is on an NVIDIA GeForce RTX 3080. Unless
otherwise specified, we use the following default parameters:
a window length (w) of 50, a detection threshold ratio (R) of
5, and a diagnosis threshold (\) of 0.1.

B. Dataset

We employ an ArduCopter drone [41] to generate a high-
fidelity dataset that closely mimics real-world CPS scenarios.
The drone operates at a frequency of 100Hz. It has twelve
control reference channels (IV,, = 12), four control command
channels (N, = 4), and twenty-eight sensors (/Ng = 28).

To create a diverse and representative dataset, we
operate the drone within a predefined three-dimensional
space: latitude: [40.764485,40.766485],  longitude:
[—113.812210, —113.810210], altitude: [20m,40m].

Our data collection process yields 2.28 million time steps of
benign operational data, 1.89 million time steps of which are
collected by operating the drone to follow rapidly changing
references, exploring a wide range of system behaviors. The
remaining data are collected by following references set near
area edges to capture terrain-specific information. We split
this dataset into training and validation sets using a 2:1 ratio,
ensuring a robust model development process.

For the test set, we simulate two types of actuator attacks,
i.e., bias attack and stealthy attack, on all four drone actuators.
Each test record comprises 5000 time steps of normal opera-
tion, followed by a 200-time step attack period (@ = 200).

C. Evaluation Metrics and Baseline

To comprehensively evaluate our system’s performance, we
employ the following metrics, adapted from [30]:

o False Positive Duration (FPD): The ratio of accumulated
false alarm time steps to total normal operation time
steps. FPD is equivalent to the false positive rate (FPR)
in traditional classification tasks.

« True Positive Rate (TPR): Defined as TPR=T% /M,
where T is the number of true positive records and M
is the total number of records. This metric quantifies the
system’s ability to correctly identify attack instances.

o Average Detection Delay (ADD): The time delay be-
tween the attack initiation and the earliest alarm from
the detection module. If an attack goes undetected in a
test record, we set the corresponding detection delay to
the total duration of the attack.

o Average Temporal Diagnosis Error (ATDE): The ab-
solute error between the actual attack starting time step
and the diagnosed time ¢. For cases where the system
fails to deliver a temporal attack diagnosis, we assign the
ATDE the value of the total attack duration.

« Spatial Diagnosis Accuracy (SDA): The success rate
of spatial diagnosis, indicating the system’s ability to
correctly identify the most affected actuator.

Given the novelty of temporal actuator attack diagnosis

in CPS, there are no existing approaches available as base-
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lines. However, since ADD is traditionally used for defending
against attacks, we can evaluate the performance improvement
of the proposed approach by comparing ATDE with ADD.

D. Main Results

We evaluate the proposed approach on attacks with different
strengths. Results are averaged among five trained models
and four actuators and they are shown in Table I. Numbers
following attack types are the strengths. For example, Bias
6 means v! = 6, and Stealthy 1 means v] ¥ = 1. It is
clear that the proposed diagnosis system provided accurate
temporal and spatial diagnosis on all scenarios. Specifically,
the proposed approach yielded up to 250.54% and 61.24%
improvement in temporal diagnosis (ATDE) over conventional
detection delay (ADD) for stealthy and bias attacks. Note
that a stealthy attack with a strength of 1 is too small for
detection, let alone diagnosis. The average overhead running
the proposed system is 1.11ms.

TABLE I: Main Results

Attack | TPR | FPD | ADD | ATDE | SDA | Improv.
Stealthy 1 | 55.00 | 035 | 12140 | 11975 | 30.00 | 138
Stealthy 2 | 100.00 | 0.13 | 831 | 273 | 100.00 | 205.05
Stealthy 3 | 10000 | 0.23 | 543 | 155 | 100.00 | 25054
Stealthy 4 | 100.00 | 0.19 | 420 | 137 | 100.00 | 207.32
Stealthy 5 | 10000 | 023 | 361 | 110 | 100.00 | 22841
Bias 6 | 9500 | 032 | 1439 | 1212 | 100.00 | 1873
Bias8 | 100.00 | 0.14 | 287 | 178 | 100.00 | 61.24
Bias 10 | 100.00 | 021 | 214 | 136 | 10000 | 57.35
Bias 12 | 10000 | 0.16 | 186 | 117 | 100.00 | 5897
Bias 14 | 100.00 | 025 | 134 | 105 | 100.00 | 27.62

E. Showcase of Reference-Control Attention.

To demonstrate the innovative nature and effectiveness of
reference-control attention in diagnosing temporal actuator
attacks, we present a visual example. Figure 4 displays the
attention weights derived from the proposed reference-control
attention mechanism when applied to a stealthy attack test
record. We focus on four key time points: t1 (10 time steps
before the attack), t2 (1 time step before the attack), t3 (1 time
step after the attack), and t4 (10 time steps after the attack).

The figure clearly illustrates that as the inputs shift, the
attention weights correspondingly shift to the left. Notably,
the weights begin to polarize following the onset of the
attack. A distinct fluctuation in attention weights is observable
from t3 onwards, persisting until t4. This visual representation
demonstrates how the novel reference-control attention design
provides a robust foundation for precise temporal diagnosis.

The ability to capture the fluctuation in attention weights
underscores the proposed system’s capacity for accurate tem-
poral actuator attack diagnosis

F. Sensitivity Analysis

To assess the robustness of our model and evaluate the
impact of key parameters on the experimental results, we con-
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Fig. 4: Showcase of Reference-Control Attention Weights.
Brighter areas have higher values.

ducted a comprehensive sensitivity analysis. All experiments
are under the Stealthy 3 scenario.

1) Comparison of diagnosis threshold: The diagnosis
threshold A plays a crucial role in determining the sensitivity of
the temporal diagnosis. The optimal value for A varies depend-
ing on the specific tasks and scenarios under consideration.
Fig. 5 illustrates the impact of different A values on the ATDE.
As evident from the figure, there is a positive correlation
between A\ and ATDE; as A increases, so does the ATDE.
This relationship can be attributed to the fact that a larger A
value filters out smaller fluctuations, potentially causing the
attack diagnoser to provide diagnoses with increased delays.
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Fig. 5: Comparison of diagnosis threshold.

In real-world applications, a conservative selection of A
is generally appropriate for a broad spectrum of scenarios.
This approach is effective because the performance differences
among various A values are typically minimal, provided that
the diagnosis algorithm is properly implemented.

2) Comparison of window size: We evaluate the perfor-
mance across various window sizes, with the results presented
in Table II. It is important to note that in this experiment, we
solely adjust the window size parameter (w) while keeping
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other parameters constant, including the number of layers in
the CNN. The optimal window size may vary depending on the
specific scenario and overall system configuration. A general
principle is that a larger w corresponds to a greater amount
of information in the inputs, which typically requires a more
complex neural network architecture. Consequently, increasing
w without correspondingly adjusting the network structure
may not necessarily yield improved performance. Moreover,
a large w combined with a complex network architecture can
impose significant computational overhead on edge devices.
Therefore, it is crucial to carefully evaluate and fine-tune the
window size parameter through empirical testing, taking into
account the specific use case and system requirements. This
process ensures an optimal balance between performance and
computational efficiency.

TABLE II: Comparison of Window Size.

| TPR | FPD | ADD | ATDE | SDA | Improv.
30 | 100.00 | 024 | 592 | 1.82 | 100.00 | 22527
40 | 100.00 | 0.24 | 579 | 176 | 100.00 | 228.98
50 | 100.00 | 0.23 | 543 | 155 | 100.00 | 250.54
60 | 100.00 | 0.23 | 547 | 152 | 10000 | 259.87
70 | 100.00 | 0.24 | 538 | 153 | 100.00 | 251.63

G. Testbed Case Study

Figure 6 illustrates our testbed design and presents the
experimental results. A stealthy attack is initiated at time step
144, resulting in observable fluctuations. Although the attack
detector triggers an alarm at time step 155, the attack diag-
noser successfully provides an accurate temporal diagnosis,
pinpointing the attack’s onset. Running on a Raspberry Pi
4 Model B board computer, the proposed system’s average
overhead is 2.3ms.

e
T 055
3
° i
5 |
. 2 050 i
32 =1 -
Raspberry Pi O = Prediction Detection
m— Real ® Diagnosis
Motor ; :
Servo 130 144 155
Time Step

Fig. 6: Testbed Sensor Attack Temporal Diagnosis.

VI. CONCLUSION

This paper underscores the critical importance of actuator
attack diagnosis in Cyber-Physical Systems (CPS). Precise
detection of actuator attack initiation is crucial for maintaining
CPS reliability and security. Such detection not only safe-
guards the system but also facilitates advanced research in
areas such as system estimation and attack recovery strategies.
Consequently, the development of efficient and accurate actu-
ator attack diagnosis techniques is of paramount importance
in the field of CPS security.
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