
Deadline-Safe Reach-Avoid Control Synthesis for
Cyber-Physical Systems with Reinforcement

Learning
Mengyu Liu S, Pengyuan Lu †, Xin Chen‡, Oleg Sokolsky†, Insup Lee†, Fanxin KongS
SDepartment of Computer Science and Engineering, University of Notre Dame, Notre Dame IN
†Department of Computer and Information Science, University of Pennsylvania, Philadelphia PA

‡Department of Computer Science, University of New Mexico, Albuquerque NM
mliu9@nd.edu, pelu@seas.upenn.edu, chenxin@unm.edu, sokolsky@cis.upenn.edu, lee@cis.upenn.edu, fkong@nd.edu

Abstract—Meeting deadlines is a fundamental requirement
of cyber-physical systems (CPS) in real-time applications to
consolidate their reliability and effectiveness in executing time-
critical tasks. Recent research have focused on applying rein-
forcement learning to synthesize controllers for real-time systems,
particularly in terms of achieving fast reach-avoid. However,
achieving fast behavior does not necessarily equate to meeting
deadlines. Sometimes reinforcement learning agents are trying to
maximize the total reward by exploiting the reward function, and
thus performing unwanted behavior, known as reward hacking.
Therefore, depending on the deadlines, it is possible to have fast
controllers that miss the deadlines and slow controllers that meet
the deadlines. To address the misalignment between fast and
meeting deadlines, we investigate the relationship between as soon
as possible (ASAP) and deadline-safe. Additionally, we formulate
the problem into a new Markov decision process R-MDP in-
cluding time to avoid non-Markovian rewards when considering
deadlines. Furthermore, we have designed new reward functions
that encourage the agent to meet the deadlines. Moreover, we
evaluate our method on various benchmarks. The experiment
results show the effectiveness of our method in ensuring deadline
compliance without compromising safety.

Index Terms—cyber-physical systems, reinforcement learning,
control synthesis

I. INTRODUCTION

Cyber-physical systems (CPS) are integrations of compu-
tation, networking, and physical processes [1]. Among the
numerous challenges in CPS design, real-time considerations
stand out as particularly crucial. In time-critical scenarios,
the system must respond to changes in the environment
within strict time constraints to ensure safety, reliability, and
efficiency [2]. For instance, in autonomous vehicular systems,
any delay in processing and responding to sensor data can lead
to catastrophic failures [3]–[6], This exemplifies the critical
nature of real-time computing in ensuring the safety and
reliability of CPS.

The reach-avoid problem is a fundamental challenge in
control theory and CPS, particularly relevant to autonomous
systems and robotics [7], [8]. It involves synthesizing a control
strategy for a system so that it can reach a target set (the
”reach” condition) while simultaneously avoiding a set of
undesirable states (the ”avoid” condition). In addition, it is

important to reach the target set by the deadline for real-time
applications to achieve ”deadline-safe” behavior.

To address the reach-avoid problem, especially in situations
where the system model is unknown, researchers have turned
to reinforcement learning (RL) [9]–[11]. An important prob-
lem to tackle in the design and training of RL agents is the
formulation of reward functions. A well-designed reward func-
tion should lead to a policy that exactly encourages completing
the intended task the agent was supposed to accomplish.
However, many researchers have overlooked the misalignment
between the “as soon as possible” (ASAP) and deadline-safe
in RL when designing reward functions. They design reward
functions which encourage finishing the task ASAP instead
of deadline-safe for tasks with a fixed deadline. This will
cause reward hacking [12] that the agent seeks to optimize the
total reward by exploiting the reward function, which leads to
unwanted and unsafe behaviors.

While numerous studies have focused on achieving reach-
avoid tasks rapidly using RL, the specific challenge of meeting
deadlines within these tasks has received significantly less
attention. Researchers in [13] consider a finite horizon Markov
Decision Process (MDP) is an infinite horizon MDP with
time in the state space. Researchers in [14] argue time should
be part of the environment and thus it should be included
in the state space to avoid violating the Markov property
[15]. They also provide a novel discount factor distribution
to prioritize the long-term reward to make the agent time-
aware. Unfortunately, none of them systematically consider
deadlines from a problem level. It is important to design
novel reinforcement learning methods for CPS that encourage
deadline-safe.

In response to these gaps, this work targets the design of
deadline-safe reinforcement learning method for CPS in reach-
avoid tasks. Encouraging deadline-safe behavior is challenging
due to several key issues: First, the ambiguous definition of
deadline-safe makes it hard to design reward functions. Some
researchers attempt to achieve this temporal property using RL
but the reward functions they designed are encouraging ASAP.
Second, there is a trade-off between the curse of dimension-
ality and the flexibility of including more information in the

96

2024 IEEE Real-Time Systems Symposium (RTSS)

DOI 10.1109/RTSS62706.2024.00018

20
24

 IE
EE

 R
ea

l-T
im

e
Sy

st
em

s S
ym

po
si

um
 (R

TS
S)

 |
97

9-
8-

33
15

-4
02

6-
5/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

R
TS

S6
27

06
.2

02
4.

00
01

8

979-8-3315-4026-5/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

state space. Third, it is challenging to provide a guarantee of
the deadline-safe behavior for time-critical applications in CPS
due to the unknown system dynamics and the probabilistic
nature of machine learning.

To address the above issues, we propose a novel RL method
to achieve deadline-safe. Specifically, the contributions of this
work are as follows:

1) We systematically elaborate the relationship between
ASAP and deadline-safe on a problem level. We for-
mally define what is deadline-safe and ASAP policies
and investigate the corresponding propositions of them.
This provides theoretical foundations of reward design
for deadline-safe.

2) We propose a new formulation of MDP, R-MDP, which
is feasible for applications with deadline-safe require-
ments. This new formulation partially mitigates the curse
of dimensionality compared to existing methods.

3) We propose a new reward function design method to en-
courage deadline-safe behavior. Additionally, we prove
there is a probabilistic guarantee for the deadline-safe
behavior under some assumptions.

4) We evaluate the proposed method on various bench-
marks. The results show that the proposed reward design
method can efficiently train a deadline-safe policy and
outperform baselines.

The rest of this paper is organized as follows: Section II
discusses related papers. Section III presents preliminaries.
Section IV elaborates on the relationship between ASAP and
deadline-safe. Section V presents how to design deadline-
safe rewards and the proof of the probabilistic guarantee of
deadline-safe behavior. Section VI evaluates our algorithm.
Section VII concludes the paper.

II. RELATED WORKS

Traditional model-based control relies on accurate math-
ematical models of the system, which may not be readily
available for complex systems [4], [16], [17]. In contrast,
data-driven methods are motivated by the availability of large
datasets and the desire to extract control policies or models
directly from them [18]. Data-driven control methods attempt
to identify system models from the data and design controllers
to meet specific objectives. Researchers have applied data-
driven methods to solve the reach-avoid problems under vari-
ous scenarios and assumptions [19], [20]. However, an explicit
system model identified from the data is still required for data-
driven control which may not be feasible for some systems.

To tackle the above problems, some researchers attempt to
solve control problems using model-free RL to find optimal
control policies [21]–[23]. However, training can be chal-
lenging due to sparse rewards, making convergence difficult.
Researchers in [24] try to design appropriate episodic reward
functions for RL. They investigate the conditions of modifying
the reward function and preserving the optimal policy to the
original MDP. The importance of designing dense reward func-
tions is well-established in the RL literature [25]. Moreover,

it provides theoretical foundations for potential-based reward-
shaping (PBRS) and provides basic guidance to avoid some
reward hacking cases.

To address the timing requirements of the task, some
researchers have attempted integrating temporal logic with RL
[26]–[29]. This integration of formal methods and RL has
provided some insights into the reward design phase since
temporal logic allows for formal specifications of desired
behavior over time. Researchers in [26], [27] utilize temporal
logic to construct tasks as logical formulas, creating rewards
that encourage the agent to satisfy these formulas. To solve
problems with continuous signals, researchers adapt linear
temporal logic to signal temporal logic [30]. Researchers in
[28], [29] provide a dense reward implementation monitoring
the satisfaction of signal temporal logic formulas on continu-
ous problems. However, the MDP property is violated in [28]
and can result in unstable performance.

Some researchers have noted that time should be considered
as part of the environment state space for tasks with timing
constraints [13], [14]. Researchers in [13] study how to
design special efficient training algorithms for finite-horizon
MDP instead of directly using training algorithms for infinite-
horizon MDP. However, it does not consider rewards are
time-dependent in more general cases. Researchers in [14]
considering time in more general cases of time-dependent
MDP, they design a novel time-dependent reward-distributing
method by assigning higher coefficients for rewards of later
time steps in the value function. However, none of them
consider special reward functions to encourage deadline-safe.

For critical applications using machine learning, having
guarantees is desirable but challenging, especially when the
system model is unknown. Researchers have attempted to
provide probabilistic guarantees using Gaussian process. A
Gaussian process (GP) is a probabilistic model used in ma-
chine learning and statistics. It provides a way to generalize
the Gaussian distribution to functions, making it applicable
to a variety of problems. GPs offer significant advantages for
RL due to their inherent ability to model uncertainty and they
are highly sample-efficient which often requires fewer training
samples to build accurate models [31]. Researchers have
attempted integrating GP with delayed Q-learning [32], [33]
to provide probabilistic guarantees for reinforcement learning.
Researchers in [34] have attempted to provide RL model-
based algorithms with a probabilistic guarantee. Researchers in
[35] propose Delayed Gaussian process Q-learning (DGPQ),
a novel sample efficient model-free RL algorithm using GP
with probabilistic guarantee.

III. PRELIMINARIES

In this section, we introduce basic terms and concepts for
later sections and our problem statement.

A. Reinforcement Learning(RL)

A MDP is a stochastic control process that operates in
discrete time [36]. It offers a mathematical framework for
decision-making scenarios where outcomes are influenced

97

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

both by randomness and the actions of a decision maker.
Generally, a MDP can be formalized as:

MDP = (𝑆,𝐴,𝒫, 𝑅, 𝛾)

where 𝑆 is the state space, 𝐴 is the action space, 𝒫 is the
transition probability, 𝑅 is the reward function and 𝛾 is the
discount factor.

For RL, the goal of learning algorithms is to find an optimal
policy 𝜋 with maximized cumulative rewards when converged
by performing actions on a MDP. Specifically, it can be
formulated as maximizing the return 𝐺𝑡 for an infinite-horizon
MDP:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + . . . =
∞∑︁
𝑘=1

𝛾𝑘−1𝑅𝑡+𝑘 (1)

The discount factor for infinite-horizon MDP is usually set to
0 < 𝛾 < 1. When considering deadlines, for a finite-horizon
MDP with a fixed episode length 𝑇 , the return 𝐺𝑡 is:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + . . . =
𝑇∑︁

𝑘=1

𝛾𝑘−1𝑅𝑡+𝑘 (2)

At this time, the discount factor can be set to 1 since 𝐺𝑡 is
upper-bounded.

The Actor-Critic algorithm is an advanced reinforcement
learning method that optimizes a policy in an off-policy way.
This approach aims to balance exploration and exploitation
by making a trade-off between long-term reward and short-
term reward. Specifically, the Bellman Equation of Actor-
Critic algorithm can be formalized as:

𝑉 (𝑠) = E𝑎∼𝜋 [𝑅(𝑠, 𝑎) + 𝛾𝑉 (𝑠′)] (3)

Equation (3) describes how the critic evaluates the action taken
by the actor by estimating the state-value function. 𝑉 (𝑠) is the
state-value function, 𝑅(𝑠, 𝑎) is the immediate reward if taking
action 𝑎 at state 𝑠. Soft Actor-Critic (SAC) is a variation of
the Actor-Critic algorithm which introduces entropy into the
value function that encourages exploitation, SAC is designed
for continuous action spaces and is particularly noted for its
sample efficiency and stability relative to other reinforcement
learning algorithms.

B. Probably approximately correct learning

Probably Approximately Correct (PAC) learning is a theo-
retical framework in machine learning that helps understand
the limits of what computers can learn from data [37]–[39].
“Probably” means that the learning model should make ac-
curate predictions with high probability, and “approximately”
indicates that the predictions should be close to the actual
results within a small margin of error. This framework is
crucial for assessing whether learning problems can be solved
efficiently and how much data is needed to build accurate
models.

Formally, the PAC learning framework can provide a
guarantee on the learned concept:

𝑃 (𝑒(ℎ) < 𝜖) < 𝛿 (4)

We can interpret the PAC bound in Equation (4) as ”for a
specific learning algorithm, the probability that a concept ℎ it
learns will have an error 𝑒 bound by 𝜖 is 𝛿”. The concept ℎ
usually is a hypothesis on learning.

C. Signal Temporal Logic

Signal Temporal Logic (STL) is a formal language that
is motivated by monitoring real-time properties over signals
(e.g., state trajectories). It enables precise specification of how
signals should behave over time, using logical operators and
temporal operators like ”eventually,” ”always,” and ”until.”
STL can define constraints and patterns that the signals should
follow, allowing engineers to express complex timing require-
ments for system behaviors. This is particularly useful in real-
time and embedded systems to ensure the system adheres to
specified safety and reliability requirements. A STL formula
can be defined using the following syntax:

𝜙 ::= ⊤ | 𝑓(𝑠) < 0 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1𝑈[𝑡1,𝑡2]𝜙2

where ⊤ is tautology, and 𝑓 is a function that maps a trajectory
𝑠 to a real number. 𝑈 is the until operator, e.g., 𝜙1𝑈[𝑡1,𝑡2]𝜙2

indicates that 𝜙2 must hold at some time 𝑡 between 𝑡1 and
𝑡2. Additionally, 𝜙1 must always hold before time 𝑡. The time
interval [𝑡1, 𝑡2] is interpreted as {𝑡1, 𝑡1 + 1, . . . , 𝑡2}. We can
induce other temporal operators from the 𝑈 operator such as 𝐹
(finally) and 𝐺 (globally). Specifically, 𝐹[0,𝑡]𝜙 means 𝜙 must
hold at one time step between 0 and 𝑡, and 𝐺[0,𝑡]𝜙 means 𝜙
must hold at all time steps between 0 and 𝑡.

Researchers have attempted to construct reward functions
for RL based on the formal specification. They map the degree
of the robustness of the specification to a real value, this
mapping also known as quantitative semantics. In general, the
quantitative semantics can be formalized as:

𝜌(𝑠, 𝑡, (𝑓(𝑠) < 𝑑)) = 𝑑− 𝑓(𝑠𝑡)

𝜌(𝑠, 𝑡,¬𝜙) = −𝜌(𝑠, 𝜙, 𝑡)

𝜌(𝑠, 𝑡, 𝜙1 ∧ 𝜙2) = min(𝜌(𝑠, 𝑡, 𝜙1), 𝜌(𝑠, 𝑡, 𝜙2))

𝜌(𝑠, 𝑡, 𝜙1 ∨ 𝜙2) = max(𝜌(𝑠, 𝑡, 𝜙1), 𝜌(𝑠, 𝑡, 𝜙2))

𝜌(𝑠, 𝑡, 𝐹[𝑡1,𝑡2]𝜙) = max
𝑡′∈[𝑡′+𝑡1,𝑡′+𝑡2]

𝜌(𝑠, 𝑡′, 𝜙)

𝜌(𝑠, 𝑡,𝐺[𝑡1,𝑡2]𝜙) = min
𝑡′∈[𝑡′+𝑡1,𝑡′+𝑡2]

𝜌(𝑠, 𝑡′, 𝜙)

𝜌(𝑠, 𝑡, 𝜙1𝑈[𝑡1,𝑡2]𝜙2)

= max
𝑡′∈[𝑡+𝑡1,𝑡+𝑡2]

(︁
min(𝜌(𝑠, 𝑡′, 𝜙2), min

𝑡′′∈[𝑡,𝑡′)
𝜌(𝑠, 𝑡′′, 𝜙1))

)︁
(5)

However, since the input of the signal temporal logic is a
trajectory of states 𝑠 instead of a state at one time step.
Therefore, some researchers have introduced new formats of
MDP to make STL tractable. A 𝜏 -MDP is an adaption of the
original MDP where the state space is a Cartesian product of
the original state space and the set of trajectories Σ𝑠 over the
horizon [40].

𝜏 -MDP = (𝑆 × Σ𝑠, 𝐴,𝒫, 𝑅, 𝛾)

This formulation suffers from the exponential state space
growth with horizon 𝑇 , which is also known as the curse

98

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

of history. Instead, researchers try to compress the history
information to a series binary states to form the so called
𝐹 -MDP where the state space is a Cartisian product of the
original state space and the sets of these binary states.

𝐹 -MDP = (𝑆 ×
𝑛∏︁

𝑖=1

F𝑖, 𝐴,𝒫, 𝑅, 𝛾)

These binary states F𝑖 are flags to test for the satisfaction of
each STL sub-formula.

D. Problem Statement

In this work, we try to find a deadline-safe control
strategy for a finite-horizon MDP of reach-avoid using RL.
Specifically, we are trying to find a policy that has the
highest probability to achieve deadline-safe (deadline-safe
probability). Formally, the problem is trying to find an optimal
policy 𝜋𝑜𝑝:

𝜋𝑜𝑝 = argmax
𝜋

𝑃𝜋 (𝑠0, 𝑡)

𝑃𝜋(𝑠, 𝑡) =
∑︁
𝑎∈𝐴

𝜋(𝑎 | 𝑠)
∑︁
𝑠′∈𝑆

𝒫 (𝑠′ | 𝑠, 𝑎) · 𝑃𝜋 (𝑠′, 𝑡− 1)
(6)

𝑃𝜋(𝑠, 𝑡) represents the probability that the agent reaches the
target from state 𝑠 within the deadline 𝑡 controlled by policy
𝜋. 𝒫 (𝑠′ | 𝑠, 𝑎) is the probability of transitioning from state 𝑠
to 𝑠′ if taking action 𝑎. 𝑠0 is an arbitrary initial state in the
initial set, 𝑆 is the state space, 𝐴 is the action space.

IV. DEADLINE-SAFE VS AS SOON AS POSSIBLE

In this section, we formally define what is deadline-safe
and as soon as possible. We introduce ASAP to represent
”fast” reach-avoid behaviors since ”fast” is imprecise. We
elaborate on the difference between deadline-safe and ASAP
on the problem level. Moreover, we provide insights about the
relationship between these two behaviors to provide theoretical
foundations for further reward design.

A. Definitions of deadline-Safe and ASAP

Before discussing the relationship between deadline-safe
and as soon as possible, it is important to formally define
them. This formalization will provide a clear framework for
comparing these concepts and understanding their interactions,
particularly in systems where timing and safety are crucial.

Definition IV.1. A deadline-safe policy 𝜋𝑑𝑠 for a reach task
can drive the system from any initial point in the initial set
to the target within the given deadline 𝑇 . Formally, it can be
written as follows:

∀𝑠0 ∈ 𝑆𝑖𝑛𝑖𝑡, 𝑆𝑡𝑟𝑎𝑗 ∩ 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 ̸= ∅
𝑆𝑡𝑟𝑎𝑗 = {𝑠1, 𝑠2, ..., 𝑠𝑇 }, 𝑠𝑖+1 = 𝑓(𝑠𝑖, 𝑎𝑖), 𝑎𝑖 = 𝜋𝑑𝑠(𝑠𝑖)

(7)

𝑓 is the dynamics of the system, 𝑎𝑖 is the action at 𝑖𝑡ℎ

time step. A deadline 𝑇 is the maximum acceptable time by
which a task must be completed after its initiation. 𝑆𝑖𝑛𝑖𝑡 is
the initial set and 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 is the target set. 𝑆𝑡𝑟𝑎𝑗 stands for
state trajectory set which contains the states on each time step
before the deadline.

Definition IV.1 provides a formal concept defines the
deadline-safe property of a policy for reach tasks. Similarly,
for deadline-safe policy of reach&avoid tasks, we can adapt
Definition IV.1 to :

∀𝑠0 ∈ 𝑆𝑖𝑛𝑖𝑡, 𝑆𝑡𝑟𝑎𝑗 ∩ 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 ̸= ∅ ∧ 𝑆𝑡𝑟𝑎𝑗 ∩ 𝑆𝑢𝑛𝑠𝑎𝑓𝑒 = ∅
𝑆𝑡𝑟𝑎𝑗 = {𝑠1, 𝑠2, ..., 𝑠𝑇 }, 𝑠𝑖+1 = 𝑓(𝑠𝑖, 𝑎𝑖), 𝑎𝑖 = 𝜋𝑑𝑠(𝑠𝑖)

(8)

where 𝑆𝑢𝑛𝑠𝑎𝑓𝑒 stands for unsafe that has to be avoided all the
time.

Definition IV.2. ASAP policy 𝜋𝑠𝑝 for reach tasks can drive
the system from any initial point in the initial set to the target
in the shortest time. Formally, it can be written as follows:

∀𝑠0 ∈ 𝑆𝑖𝑛𝑖𝑡, 𝑠𝑡 ∩ 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 ̸= ∅
∄𝜋𝑜𝑝 : 𝑠′𝑞 ∩ 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 ̸= ∅ ∧ 𝑞 < 𝑡

𝑠𝑖+1 = 𝑓(𝑠𝑖, 𝑎𝑖), 𝑎𝑖 = 𝜋𝑠𝑝(𝑠𝑖)

𝑠′𝑖+1 = 𝑓(𝑠′𝑖, 𝑎
′
𝑖), 𝑎

′
𝑖 = 𝜋𝑜𝑝(𝑠

′
𝑖)

(9)

where 𝑠′𝑞 and 𝑠𝑡 are the earliest time step on a trajectory that
reaches the target. 𝑠𝑖 and 𝑠′𝑖 represent the states of the system
at the 𝑖𝑡ℎ time step controlled by 𝜋𝑠𝑝 and 𝜋𝑜𝑝, respectively.
Definition IV.2 explains the temporal property of ASAP
policy for reach tasks. Specifically, there is no other policy
that can drive the system to the target in a shorter time than
a ASAP policy. Similarly, it can be extended to reach-avoid
tasks:

∀𝑠0 ∈ 𝑆𝑖𝑛𝑖𝑡, 𝑠𝑡 ∩ 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 ̸= ∅ ∧ 𝑆𝑡𝑟𝑎𝑗 ∩ 𝑆𝑢𝑛𝑠𝑎𝑓𝑒 = ∅
𝑆𝑡𝑟𝑎𝑗 = {𝑠1, 𝑠2, ..., 𝑠𝑡}, 𝑠𝑖+1 = 𝑓(𝑠𝑖, 𝑎𝑖), 𝑎𝑖 = 𝜋𝑠𝑝(𝑠𝑖)

𝑆′
𝑡𝑟𝑎𝑗 = {𝑠′1, 𝑠′2, ..., 𝑠′𝑡}, 𝑠′𝑖+1 = 𝑓(𝑠′𝑖, 𝑎

′
𝑖), 𝑎

′
𝑖 = 𝜋𝑜𝑝(𝑠

′
𝑖)

∄𝜋𝑜𝑝 : 𝑠′𝑞 ∩ 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 ̸= ∅ ∧ 𝑞 < 𝑡 ∧ 𝑆′
𝑡𝑟𝑎𝑗 ∩ 𝑆𝑢𝑛𝑠𝑎𝑓𝑒 = ∅

𝑠𝑖+1 = 𝑓(𝑠𝑖, 𝑎𝑖), 𝑎𝑖 = 𝜋𝑠𝑝(𝑠𝑖)

𝑠′𝑖+1 = 𝑓(𝑠′𝑖, 𝑎
′
𝑖), 𝑎

′
𝑖 = 𝜋𝑜𝑝(𝑠

′
𝑖)

(10)

In this work, we consider different reward functions to solve
the same problem. However, since the reward function is part
of the definition of the MDP, to formally define what is a
problem, we have to introduce a new concept: Markovian
decision process without rewards.

Definition IV.3. Markovian decision process without rewards
(MDP∖𝑅) is an adaption of Markovian decision process which
ignores the reward aspects. It can be formulated as

MDP ∖ ℛ = (𝑆,𝐴,𝒫, , 𝛾)

MDP∖𝑅 focuses solely on the state and action dynamics.
It excludes the aspects of reward that usually guide the
optimization of policies towards specific objectives.

Fig. 1 shows the topology of policies we defined for the
same MDP∖𝑅. We can see the big red eclipse is the set of
all the policies for the MDP∖𝑅, the green eclipse is the set
of all deadline-safe policies, the blue eclipse is the set of all
ASAP policies. We have two major observations from this
figure: First, the ASAP policies set is a subset of deadline-
safe policies set. Second, the ASAP policies set are not always

99

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Topology of policies for the same MDP ∖ 𝑅, the red
set 𝜋 is the set of all the policies for a MDP ∖ 𝑅, the green
set 𝜋𝑑𝑠 is the set of all deadline-safe policies, the blue set 𝜋𝑠𝑝

is the set of all ASAP policies.

identical to the deadline-safe policies set. We will formally
prove these two statements in the following subsection.

B. Relationships between deadline-safe and ASAP

In this subsection, we will discuss the relationship between
the deadline-safe policies and ASAP policies.

Proposition IV.1. The ASAP policies set is not always iden-
tical to the deadline-safe policies set. This can formalized as:

𝑆𝜋𝑑𝑠
̸≡ 𝑆𝜋𝑠𝑝

𝑖𝑓 𝑆𝜋𝑑𝑠
̸= ∅ (11)

Proposition IV.1 claims the relationship between deadline-
safe and ASAP is not an identity. This claim seems a little bit
trivial but it has been overlooked when designing applications
with deadline-safe requirements. We can prove this proposition
by contradiction.

Proof. Assume if 𝑆𝜋𝑑𝑠
≡ 𝑆𝜋𝑠𝑝 and 𝑆𝜋𝑑𝑠

̸= ∅, the set of
deadline policies is identical to the set of ASAP policies for
a MDP∖𝑅. This implies any deadline-safe policy is also an
ASAP policy. However, we can easily find a counterexample.
Consider a simple discrete MDP∖𝑅 with only 2 states, A and
B as shown in Fig. 2:

Fig. 2: A counterexample of 𝑆𝜋𝑑𝑠
≡ 𝑆𝜋𝑠𝑝

, there are only 2
states A and B in this MDP∖𝑅, the goal is to reach B in 2
steps from A.

The initial state of this MDP∖𝑅 is A, and the goal is to
reach B in 2 steps, in other words, the deadline is 2 steps,
the time horizon is finite. There are 2 actions available for the
agent at A, the first is staying, and the second is moving to
next as the arrows in Fig. 2. There is only one action for for
agent at B which is staying. We can easily find two policies:

1) Policy 𝜋1: The agent chooses to move to the next
immediately, it reaches B in 1 step.

2) Policy 𝜋2: The agent chooses to stay at A then moving
to the next, it reaches B in 2 steps.

We can see both policy 𝜋1 and policy 𝜋2 are deadline-safe, but
policy 𝜋1 is ASAP but policy 𝜋2 is not. This counterexample
conflicts with the assumption that the set of deadline policies
is a subset of ASAP policies for a MDP∖𝑅. Therefore, there
is a contradiction, and proposition IV.1 holds.

Proposition IV.1 has provided some insights about the
potential reward hacking vulnerability if we design a reward
function encouraging ASAP for deadline-safe tasks. However,
in fact, a reward function encouraging ASAP works relatively
well on some deadline-safe tasks. To further elaborate on the
reason, we need more insights of the relationship between
these two behaviors.

Proposition IV.2. The set of ASAP policies is a subset of
deadline-safe policies for a MDP∖𝑅. Formally, we have:

𝑆𝜋𝑠𝑝
⊆ 𝑆𝜋𝑑𝑠

𝑖𝑓 𝑆𝜋𝑑𝑠
̸= ∅ (12)

Proof. Assume the set of ASAP policies is not a subset of
deadline-safe policies for a MDP∖𝑅. This implies that there
exists a policy that is ASAP but not deadline-safe. Given the
definition IV.1, the ASAP policy cannot drive the system to
the target by the given deadline. According to the definition
IV.2, if the ASAP policy cannot drive the system to the target
by the deadline, there does not exist a policy that can drive
the system to the target earlier than the deadline. Therefore,
the set of deadline-safe policies is empty, then there is an
contradiction.

Note that the condition of proposition IV.2 is important. If
𝑆𝜋𝑑𝑠

= ∅, proposition IV.2 does not hold since there might
be ASAP policies that can not meet the deadlines. In other
words, in that case, there are no deadline-safe policies even
they are as soon as possible.

There is an inconsistency between the definition of ASAP
policies when considering deadlines. We have to adapt
definition IV.2 to the following:

∀𝑠0 ∈ 𝑆𝑖𝑛𝑖𝑡, 𝑠𝑡 ∩ 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 ̸= ∅ ∧ 𝑆𝑡𝑟𝑎𝑗 ∩ 𝑆𝑢𝑛𝑠𝑎𝑓𝑒 = ∅
𝑆𝑡𝑟𝑎𝑗 = {𝑠1, 𝑠2, ..., 𝑠𝑇 }, 𝑠𝑖+1 = 𝑓(𝑠𝑖, 𝑎𝑖), 𝑎𝑖 = 𝜋𝑠𝑝(𝑠𝑖)

𝑆′
𝑡𝑟𝑎𝑗 = {𝑠′1, 𝑠′2, ..., 𝑠′𝑇 }, 𝑠′𝑖+1 = 𝑓(𝑠′𝑖, 𝑎

′
𝑖), 𝑎

′
𝑖 = 𝜋𝑜𝑝(𝑠

′
𝑖)

∄𝜋𝑜𝑝 : 𝑠′𝑞 ∩ 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 ̸= ∅ ∧ 𝑞 < 𝑡 ∧ 𝑆′
𝑡𝑟𝑎𝑗 ∩ 𝑆𝑢𝑛𝑠𝑎𝑓𝑒 = ∅

𝑠𝑖+1 = 𝑓(𝑠𝑖, 𝑎𝑖), 𝑎𝑖 = 𝜋𝑠𝑝(𝑠𝑖)

𝑠′𝑖+1 = 𝑓(𝑠′𝑖, 𝑎
′
𝑖), 𝑎

′
𝑖 = 𝜋𝑜𝑝(𝑠

′
𝑖)

(13)

where the agent should avoid the unsafe set until the deadline
ends instead of just avoid it before reach.

The relationship between ASAP and deadline-safe has been
elaborated by propositions IV.1 and IV.2. These two proposi-
tions indicate that there is a difference between deadline-safe
and ASAP from the problem level so that we can not treat
them identically. This message is important for researchers

100

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

to formally design rewards to achieve deadline-safe to avoid
potential reward hacking. Additionally, deadline-safe requires
a predefined deadline for training but it is not required for
ASAP.

V. DEADLINE-SAFE TRAINING

In this section, we will introduce how to design reward
functions to encourage deadline-safe behaviors instead of
ASAP. Additionally, we describe the details of the new MDP
formulation, 𝑅-MDP, to avoid violating Markovian property
when using the reward function we introduced. Moreover,
we want to provide a probabilistic guarantee for our method
under certain conditions to make it suitable for time-critical
applications in CPS. We provide a formal PAC bound on the
deadline-safe probability and prove its correctness.

A. deadline-safe reward design

When designing a reward function, the most important con-
sideration is ensuring that the function aligns with the desired
goals and behaviors of the system, this process is known
as reward alignment. Let’s start with that simple discrete
example again which is shown in Fig.2. But the insights we
provide is also feasible for continuous space problems. How
do we design a deadline-safe reward function for this simple
problem?

The most intuitive idea is to design an episodic reward
function to encourage deadline-safe:

𝑅𝑒𝑝𝑖(𝑡) =

{︃
10 if 𝑡 = 𝑇 and the state is B
0 otherwise

(14)

This reward design encourages deadline-safe by only setting
rewards for the last time step of the episode and give zero
reward for other time steps. Deadline-safe is encouraged since
the optimal policy of this MDP is reaching B by the deadline
𝑇 . Note that this reward design does not encourage ASAP
since an earlier reach will not grant additional rewards for the
agent compared to an agent reaching it at the last time step in
the episode.

This reward function is good enough for this simple example
since there are only 2 states, and it is easy to have a sample
trajectory that reaches B during training even if there is no
immediate reward at every time step except the last time step.
However, it is going to be harder to find a sample trajectory
that reaches B if there are more states between A and B as
Fig. 3 shown.

It is possible to apply PBRS to resolve this sparse reward
issue by adapting the reward function in Equation (14):

𝑅𝑝𝑏𝑟𝑠(𝑡) =

{︃
10 if 𝑡 = 𝑇 and the state is B
𝑑(𝑠𝑡−1)− 𝑑(𝑠𝑡) otherwise

(15)

We define 𝑑(𝑠) as the length of the shortest path from 𝑠 to
B. This reward shaping provides dense rewards at each time
step which encourages the agent to reach B. Unfortunately,
this shaping will make the reward function encouraging ASAP
instead of deadline-safe. For the example in Fig. 3, assuming

Fig. 3: If there are multiple states between A and B, the agent
has 2 actions at each state: moving to next or staying, then it
is harder and harder to get motivated to reach B since there
is no immediate rewards. In other words, the agent will get
immediate zero rewards no matter choose to stay or move to
next.

the deadline is 5 and there are 2 states between A and B, the
global optimal policy is moving to the next state at every state.
This policy will grant a positive immediate reward (which
is 1 since the length of the shortest path is reduced by 1)
and maximize the global return as introduced in Equation (1).
However, this reward is not encouraging deadline-safe since
the different deadline-safe policies will have different returns.
In other words, under 𝑅𝑝𝑏𝑟𝑠, we think the ASAP policy
(which is also deadline-safe) is better than other deadline-
safe policies since it grants higher cumulative rewards. This
is a phenomenon of reward hacking and we want to avoid
this problem. Now the question for us is ”How to design a
reward function that grants equal cumulative rewards for every
deadline-safe policy?”

Researcher have attempted to apply STL and quantitative
semantics to resolve this problem. If the pure quantitative
semantics in Equation (5) are applied for training, then the
reward function is episodic and the training suffers from the
sparse reward again. Researchers in [28], [41] have made
the rewards dense by evaluating the degree of robustness of
the STL formula at every time step. However, these shaping
methods either suffer from the curse of dimensionality or
violate the Markovian property. Additionally, the rewards in
these works are still encouraging ASAP instead of deadline-
safe. To the best of our knowledge, there is no existing work
that has answered this question properly.

It is challenging to answer this question since there is a key
conflict between the dense rewards for encouraging reach and
the attached encouragement for ASAP instead of deadline-
safe. To resolve this conflict, we propose a novel reward
function which assigns rewards for the steps after reaching
to ”balance” the reward granted before reaching:

𝑅𝑑𝑠(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10 if (𝑠𝑡 ∈ 𝐵) ∧ (𝐶(𝐵) = 1) ∧ (𝑡 ̸= 𝑇)

10−
∑︀

𝑟𝑏𝑟 if (𝑠𝑡 ∈ 𝐵) ∧ (𝐶(𝐵) = 1) ∧ (𝑡 = 𝑇)

𝑑(𝑠𝑡−1)− 𝑑(𝑠𝑡) if 𝐶(𝐵) = 0
−

∑︀
𝑟𝑏𝑟

𝑇−𝑡+1 if 𝐶(𝐵) > 1 ∨ ((𝑠𝑡 /∈ 𝐵) ∧ (𝐶(𝐵) = 1))
(16)

𝐶(𝑠) represents the number of times this state 𝑠 has been
visited including this time step. There are three differences be-
tween the new deadline-safe reward function in Equation (16)

101

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

and the PBRS reward function in Equation (15):
1) If the goal is achieved (in the example, the goal is to

reach B), the reward will be granted at that time step
instead of the last time step. However, this reward is
only granting once which is the first time.

2) We separate the time steps to two parts: before reaching
B and after reaching B. Before reaching B, the reward
is the same as the reward designed in Equation (15). We
store these rewards 𝑟𝑏𝑟 before reaching B into a buffer
and calculate the sum of them. For every time step after
reaching B, the reward is the additive inverse of that
sum divided by the remaining time steps.

3) There is a special case that the first time the agent reach
the goal is at the last time step. In this case, there is
no time step remaining and the additive inverse of the
reward sum is added to include in the immediate reward
at this time step, too.

The main idea in the design of the reward function in Equa-
tion (16) is using the time steps after reaching to compensate
the rewards granted before reaching. The goal of this design
is to encourage deadline-safe instead of ASAP. To be noticed,
we have not included avoid in the reward yet. It is important
to consider avoiding behavior as well as considering deadline-
safe. We can trivially consider collision behavior is as bad as
not achieving deadline-safe. Therefore, if there is a collision
at one time step, it will get the same reward for not reaching
at the last time step. We can formally define when the reward
function is encouraging deadline-safe:

Definition V.1. A reward function 𝑅𝑑𝑠 is encouraging
deadline-safe if every deadline-safe policy grants equal cumu-
lative rewards for starting from any initial point in the initial
set. Formally, we have:

𝑉 𝜋1(𝑠0) = 𝑉 𝜋2(𝑠0) ∀𝜋1, 𝜋2 ∈ 𝜋𝑑𝑠, 𝛾 = 1, 𝑠0 ∈ 𝐼

𝑉 𝜋(𝑠) = E
𝑎∼𝜋

[︃
𝑇−1∑︁
𝑘=0

𝛾𝑘𝑅𝑑𝑠(𝑘 + 1) | 𝑠0 = 𝑠

]︃
(17)

Lemma V.1. Reward function in Equation (16) is encouraging
deadline-safe.

Proof. Since the horizon is finite, it is possible to set the
discount factor 𝛾 to 1. Based on this simplification, the value
of the initial point is the expectation of the sum of the reward
of the episode.

We assume there is a single case that there are two deadline-
safe policies 𝜋1 and 𝜋2 and they grant different cumulative
rewards such that 𝑉 𝜋1(𝑠0) ̸= 𝑉 𝜋2(𝑠0). Since both of them are
deadline-safe, then it must reach the goal before the deadline.
However, according to Equation (16), the sum of rewards of
any episode if reach is 10. Therefore, there is a contradiction.

In this subsection, we have introduced how to design reward
functions to encourage deadline-safe. Although we only prove
Lemma V.1, this is not confined to the special instance in
Equation (16). In fact, it is more like a template since we

can replace 𝑑(𝑠𝑡−1) − 𝑑(𝑠𝑡) with any reward shaping that
encourages reach behavior (such as quantitative semantics) and
the reward function is still encouraging deadline-safe.

However, the reward depends on both the remaining time
steps and the previous rewards which violates the Markovian
property. Therefore, we need a new formulation of the MDP
problem to restore Markovian property.

B. 𝑅-MDP formulation

In this subsection, we introduce 𝑅-MDP for deadline-safe
rewards and compare them to existing formulations.

In 𝑅-MDP, the state space is a Cartesian product of the
original state space 𝑆, the set of remaining time steps 𝑇𝑟, the
set of reward history Σ𝑟, and a set of a binary flag state 𝐾
indicates whether the goal has been achieved:

𝑅-MDP = (𝑆 × 𝑇𝑟 × Σ𝑟 ×𝐾,𝐴,𝒫, 𝑅, 𝛾) (18)

We can assign the state space of 𝑅-MDP as Σ𝑅 where we have
Σ𝑅 ∈ (𝑆×𝑇𝑟×Σ𝑟×𝐾). In this formulation, the deadline-safe
reward function does not violate the Markovian property. The
format of the reward history is an array with size 𝑇 which is
the deadline, the initial values are set to 0.
𝑅-MDP does not suffer from the curse of history as much

as 𝜏 -MDP since the reward is a single value instead of vectors.
This is a very important property when the dimension of the
system model is high. Also, the binary states in 𝐹 -MDP are
not able to include the reward history and remaining time steps
in the MDP since these are real values.

For time-critical applications in CPS, it is important to have
guarantees on the performance of the proposed method. In the
next subsection, we introduce how to obtain a probabilistic
guarantee on deadline-safe behavior.

C. deadline-safe PAC guarantee

We define the probability of deadline-safe as the probability
of reaching the target by the deadline from arbitrary initial
point 𝑠0 in the initial set under policy 𝜋 is 𝑃𝜋(𝑠0) in the
problem statement . We want to find the an optimal policy
which has the highest deadline-safe probability within the
given deadline 𝑇 from arbitrary initial point in the initial set.
However, there is an inconsistency since the RL algorithms
are maximizing the value formulated in Bellman Equation
instead of probabilities. Therefore, it is important to show
the monotonicity between deadline-safe probability and value.
Before we show how to obtain the probabilistic guarantee,
we have to make certain adaptation to the reward function in
Equation (16):

𝑅𝑑𝑠(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

10 if (𝑠𝑡 = 𝐵) ∧ (𝐶(𝐵) = 1) ∧ (𝑡 ̸= 𝑇)

10−
∑︀

𝑟𝑏𝑟 if (𝑠𝑡 = 𝐵) ∧ (𝐶(𝐵) = 1) ∧ (𝑡 = 𝑇)

−10−
∑︀

𝑟𝑏𝑟 if (𝐶(𝐵) = 0) ∧ (𝑡 = 𝑇)

𝜇− 𝑑(𝑠𝑡) if 𝐶(𝐵) = 0 ∧ (𝑡 ̸= 𝑇)
−

∑︀
𝑟𝑏𝑟

𝑇−𝑡+1 if 𝐶(𝐵) > 0
(19)

𝜇 is a constant represents the threshold for reach, in discrete
settings, 𝜇 can be set to 0, in continuous settings, usually 𝜇 is

102

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

setting to the radius of the target set if we assume target set is
a ball. Therefore, the rewards before reach are negative since
𝑑(𝑠) is greater or equal to 0. This adaption does not violate
the deadline-safe property from Lemma V.1. The values of 10
and -10 are constants and can vary depending on the problem.

Lemma V.2 (Monotonicity between deadline-safe probability
and value). With the reward in Equation (19), starting from
a 𝑠0 in the initial set, for any two control policies 𝜋1 and
𝜋2 with values 𝑣𝜋1(𝑠0), 𝑣𝜋2(𝑠0) and deadline-safe probability
𝑃𝜋1(𝑠0), 𝑃𝜋2(𝑠0), we have monotonicity

𝑃𝜋1(𝑠0) ≤ 𝑃𝜋2(𝑠0) ⇐⇒ 𝑉 𝜋1(𝑠0) ≤ 𝑉 𝜋2(𝑠0) (20)

Proof. To be noticed, 𝜋1 and 𝜋2 are not guaranteed to be
deadline-safe. For policies 𝜋1, we denote 𝑟𝜋1

𝑡 as the reward
received at time 𝑡, 𝑟𝜋1

𝑡 = 𝑅𝑑𝑠(𝑡). Similarly, we have 𝑟𝜋2
𝑡 . To

prove ⇒, we have:

𝑉 𝜋1(𝑠0) = 𝐸𝜋1
1 + 𝐸𝜋1

2

𝐸𝜋1
1 = 𝑃𝜋1(𝑠0) * Σ𝑑𝑠 = E𝑑𝑠

[︃
𝑇∑︁

𝑡=1

𝛾𝑡−1𝑟𝜋1
𝑡

]︃

𝐸𝜋1
2 = (1− 𝑃𝜋1(𝑠0)) * Σ𝑛𝑑𝑠 = E𝑛𝑑𝑠

[︃
𝑇∑︁

𝑡=1

𝛾𝑡−1𝑟𝜋1
𝑡

]︃ (21)

𝐸1 is the expectation of deadline-safe cases, 𝐸2 is the ex-
pectation of other cases. The sum of rewards of any episode
if deadline-safe is 10, also, this is the highest cumulative
rewards it can obtain, therefore Σ𝑑𝑠 = 10 . On the other
hand, any non-deadline-safe episode will grant cumulative
reward -10. then we have Σ𝑛𝑑𝑠 < 10, Σ𝑑𝑠 > Σ𝑛𝑑𝑠 Therefore,
𝑉 𝜋1(𝑠0) − 𝑉 𝜋2(𝑠0) = (𝐸𝜋1

1 − 𝐸𝜋2
1) + (𝐸𝜋1

2 − 𝐸𝜋2
2) =

(𝑃𝜋1(𝑠0)− 𝑃𝜋2(𝑠0)) *Σ𝑑𝑠 + (𝑃 𝜋2(𝑠0)− 𝑃𝜋1(𝑠0)) *Σ𝑛𝑑𝑠 =
(𝑃𝜋1(𝑠0) − 𝑃𝜋2(𝑠0)) * (Σ𝑑𝑠 − Σ𝑛𝑑𝑠). Since 𝑃𝜋1(𝑠0) ≤
𝑃𝜋2(𝑠0), we have (𝑃𝜋1(𝑠0)−𝑃𝜋2(𝑠0)) ≤ 0. And we also have
Σ𝑑𝑠 > Σ𝑛𝑑𝑠, then (𝑃𝜋1(𝑠0)− 𝑃𝜋2(𝑠0)) * (Σ𝑑𝑠 − Σ𝑛𝑑𝑠) ≤ 0.

To prove ⇐, same as above, we have 𝑉 𝜋1(𝑠0)−𝑉 𝜋2(𝑠0) =
(𝑃𝜋1(𝑠0)−𝑃𝜋2(𝑠0))*(Σ𝑑𝑠−Σ𝑛𝑑𝑠). Because (Σ𝑑𝑠−Σ𝑛𝑑𝑠) =
20 > 0, if 𝑉 𝜋1(𝑠0)−𝑉 𝜋2(𝑠0) ≤ 0, we can obtain (𝑃𝜋1(𝑠0)−
𝑃𝜋2(𝑠0)) ≤ 0.

Lemma V.2 claims that a greater probability of deadline-safe
is equivalent to a higher value. Therefore, the optimal control
policy with the largest value must reach the target within the
greatest probability of deadline-safe. Therefore, we can obtain
this PAC bound on deadline-safe probability:

Lemma V.3. Under a model-free RL algorithm that optimizes
a control policy 𝜋 to reach a target in a deadline 𝑇 , if we
use the reward in Equation (19), with an error 𝜖 ≥ 0, false
probability of the hypothesis 𝛿 ∈ [0, 1], the reward of first
time reaching 𝑟𝑓𝑟 > 0 and reward of not reaching at the end
𝑟𝑛𝑟 < 0, and discount factor 𝛾 = 1, we have:

𝑃 [𝑉 𝜋*
(𝑠0)− 𝑉 𝜋(𝑠0) ≤ 𝜖] ≥ 1− 𝛿

=⇒ 𝑃 [𝑃𝜋*
(𝑠0)− 𝑃𝜋(𝑠0) ≤ 𝜖𝑑𝑠] ≥ 1− 𝛿

𝜖𝑑𝑠 ≤
𝜖

𝑟𝑓𝑟 − 𝑟𝑛𝑟

(22)

𝜋* is the optimal policy

Proof. From Lemma V.2, we know 𝑃𝜋*
(𝑠0)−𝑃𝜋(𝑠0) ≥ 0, let

𝑃𝜋*
(𝑠0) = 𝑃𝜋(𝑠0)+Δ𝑝, Δ𝑝 ≥ 0, then we have a probability

of 1−𝛿 that 𝑉 𝜋*
(𝑠0)−𝑉 𝜋(𝑠0) = (𝑃𝜋*

(𝑠0)−𝑃𝜋(𝑠0))*(Σ𝑑𝑠−
Σ𝑛𝑑𝑠) ≤ 𝜖. To be noticed, in the settings of Equation (19), we
set 𝑟𝑓𝑟 = 10 and 𝑟𝑛𝑟 = −10. In general, we have (Σ𝑑𝑠 −
Σ𝑛𝑑𝑠) = 𝑟𝑓𝑟 − 𝑟𝑛𝑟. Therefore, Δ𝑝 ≤= 𝜖/(𝑟𝑓𝑟 − 𝑟𝑛𝑟).

Lemma V.3 provides a guarantee of the probability of
deadline-safe under a model-free RL using the reward function
in the format of Equation (19) based on the guarantee of the
value obtained. For example, assuming we are using the reward
function in Equation (19), and we have 𝛿 = 0.05 and 𝜖 = 1. If
there is 95% probability that the value at an initial point is at
most 1 less than the value of optimal policy we have at least
95% probability that the deadline-safe probability is no more
than 5% less than the deadline-safe probability of the optimal
policy.

To obtain this bound efficiently during the training, we need
to apply PAC-MDP (sample efficient) [33] algorithms with
polynomial number of training samples. We choose DGPQ
[35] which is available for continuous state space and discrete
action space and proved to be PAC-MDP.

Theorem V.4. With our reward design in Equation (19),
within 𝑚 = poly(𝒩𝑆 , 1/𝜖, 1/𝛿, 𝑟𝑛𝑟+𝑟𝑓𝑟+(𝑑𝑚𝑎𝑥−𝜇)*(𝑡−1)),
if the maximum distance from an original state to the target
is 𝑑𝑚𝑎𝑥, we can achieve:

𝑃 [𝑃𝜋*(𝑠0)− 𝑃𝜋(𝑠0) ≤
𝜖

𝑟𝑓𝑟 − 𝑟𝑛𝑟
] ≥ 1− 𝛿 (23)

𝒩𝑆 is a covering number of state space S.

Proof. Since DGPQ is PAC-MDP, it satisfies:

𝑃 [𝑉 𝜋*
(𝑠0)− 𝑉 𝜋(𝑠0) ≤ 𝜖] ≥ 1− 𝛿

with a number of samples 𝑚 = poly(𝒩𝑆 , 1/𝜖, 1/𝛿, 1/(1−𝛾)))
for an infinite-horizon MDP where the range of the value is
[0, 1/(1 − 𝛾)] [35]. However, under the reward function in
Equation (19) with a finite-horizon MDP, the value range is
[𝑟𝑛𝑟, 𝑟𝑓𝑟+(𝑑𝑚𝑎𝑥−𝜇)*(𝑡−1)] since the the lower bound of the
value is 𝑟𝑛𝑟, and the highest value is 𝑟𝑓𝑟+(𝑑𝑚𝑎𝑥−𝜇)*(𝑡−1)
at the case if the agent reaches the target at the last step, and
it keeps the maximum distance to the target at every time step
before. Then with Lemma V.3, we can obtain the PAC bound
on the deadline-safe probability.

We have proved that using DGPQ can efficiently obtain
a PAC bound on the probability of deadline-safe. Based on
Proposition IV.1 and Proposition IV.2, we are motivated to
provide standards to design deadline-safe reward and we de-
liver Lemma V.1. Since the optimal policy of MDP is obtained
by solving Bellman Equation which maximizes the value, we
derive Lemma V.2 to connect the probability of deadline-safe
with the value. Based on Lemma V.2, we deliver Lemma V.3
to provide a guarantee of the probability of deadline-safe based
on the guarantee of the value. Since PAC learning can obtain

103

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

a guarantee of the value, based on Lemma V.3, we derive
Theorem V.4 that shows a probabilistic guarantee of deadline-
safe can be obtained by PAC learning.

VI. EVALUATION

In this section, we evaluate the proposed deadline-safe
control synthesis methods. First, we introduced the baselines
and metrics. Then, we compared it with existing baselines
to show its effectiveness in two case studies on a low-
dimensional linear system and a high-dimensional non-linear
system. Additionally, we make a special case study to validate
the PAC bound we proved in Theorem V.4.

A. Baselines and Metrics

In this work, we consider two baselines:
1) STL-reward: The reward function introduced in [30]

with dense reward settings [28]. This reward is based
on the quantitative semantics of STL in equation 5. This
format of reward functions is designed to satisfy STL
specifications and has been applied in existing works
[27], [28].

2) Distance-based reward: Distance-based reward functions
in RL primarily leverage the spatial or state space
distance between an agent’s current state and a goal state
to guide its learning process. This approach simplifies
the reward structure by focusing on reducing the distance
to the goal without requiring additional domain expertise
[42], [43]. In our experiments, we use Euclidean distance
to measure the distance between the agent to the target
and the obstacle and generate corresponding rewards.
We use the rate of deadline-safe as the metric for
evaluation. No matter the agent has a collision with the
unsafe set or has not reached the target by the deadline,
we consider this test case is not deadline-safe.

B. Case Study: DC Motor Position

A DC motor is a crucial component in various applications
where precise motion control is required, such as robotics,
automotive systems, and industrial machinery. The ability to
control the position of a DC motor is vital for tasks that
demand high accuracy in short deadlines. Position control in
DC motors is typically achieved through the use of feedback
mechanisms, such as encoders, which provide real-time data
on the motor’s position. This allows for precise adjustments
to be made to the motor’s speed and direction, ensuring that
the motor reaches and maintains the desired position. In our
experiments, DC motor position benchmark is a linear system
that uses the current as control input to manipulate the system
that drives the motor angle to a target position. For the details
of the system model, please check [4]. The initial set of the
DC motor position benchmark is [0,−1,−10] to [𝜋, 1, 10], the
target set is a ball with radius 0.5 centered at [𝜋/2, 0, 0], the
unsafe set is set as a ball with radius 0.2 centered at [𝜋/4, 0, 0],

Fig. 4 shows the results of the experiments on the DC motor
position benchmark for reach-avoid tasks. There are two main
observations from Fig. 4:

T 15 20 30
DS STL DIS DS STL DIS DS STL DIS

A 86.5 76.1 5.9 96.7 94.8 9.4 100.0 99.9 16.0

TABLE I: The deadline-safe rate of deadline-safe RL, STL-
reward and distance-based reward on DC motor position
benchmark with different deadlines. 𝑇 stands for deadline,
𝐴 stands for reach-avoid tasks, DS stands for deadline-safe,
STL stands for STL-reward, and DIS stands for distance-based
reward.

1) Deadline-Safe RL outperforms baselines when the dead-
line is 15, it has similar results with STL-reward when
the deadline is 20 and 30. This observation shows
the effectiveness of deadline-safe RL compared to the
baselines. The performance of the distance-based reward
is shaking due to the unawareness of the deadline.

2) STL-based reward converges slightly faster than the
deadline-safe RL when the deadline is 30. This obser-
vation may be due to the expansion of the state space
in deadline-safe. Since 𝑅-MDP includes reward history
to the state space which is greater than the original state
space which only has three states.

Table I shows the quantitative results on the deadline-
safe rate on the DC motor position benchmark using SAC
for training. Deadline-Safe RL outperforms the baselines on
various deadlines for reach-avoid tasks.

C. Case Study: Attitude Control

Attitude control in real-time is essential for maintaining
the stability and orientation of various CPS, such as satel-
lites, aircraft, and spacecraft. Accurate and timely attitude
control ensures that these systems can perform their intended
functions, such as communication, navigation, or scientific
observation, without deviation from their desired orientations.
Real-time attitude control allows for immediate adjustments in
response to disturbances or changes in environmental condi-
tions, enhancing the reliability and effectiveness of the system.
Moreover, it is critical for ensuring safety, as improper attitude
control can lead to mission failures and collisions.

In our experiment, we consider a non-linear model of
attitude control for a rigid body which is introduced in
the competition of the workshop of Applied Verification of
Continuous and Hybrid Systems (ARCH’2022), please check
the details of system model at [44]. This benchmark is more
complex than the DC motor position benchmark due to the
non-linearity and the increasing of the dimension of the states.
To better illustrate the effectiveness of deadline-safe method
we propose, we first start with the reach tasks without consid-
ering collision. The initial set of the attitude control benchmark
is [−1,−1,−1,−1,−1,−1] to [1, 1, 1, 1, 1, 1], the target set is
a ball with a radius 0.8 centered at [0, 0, 0, 0, 0, 0], the unsafe
set is set as a ball with radius 0.3 centered at [0, 0, 0.2, 0, 0, 0],
the time step of this benchmark is 0.1 seconds

Fig. 5 shows the deadline-safe rate of the proposed method
with two baselines over the training process in 1 million steps
using SAC algorithm. The number of training steps is the prod-
uct of the episode length with the number of episodes. The x-

104

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4
Training…Steps 1e4

0.00

0.25

0.50

0.75

D
ea

dl
in

e-
S

af
e…

R
at

e

STL
deadline-safe
d-reward

(a) deadline=15

0 1 2 3 4
Training…Steps 1e4

0.0

0.5

1.0

D
ea

dl
in

e-
S

af
e…

R
at

e

STL
deadline-safe
d-reward

(b) deadline=20

0 1 2 3 4
Training…Steps 1e4

0.0

0.5

1.0

D
ea

dl
in

e-
S

af
e…

R
at

e

STL
deadline-safe
d-reward

(c) deadline=30

Fig. 4: Deadline-safe rate comparison between deadline-safe RL, STL-reward and distance-based reward for reach-avoid tasks
on DC motor position benchmark. Deadline-Safe rate is smoothed with a moving window of size 20 for better visualization.

0.0 0.2 0.4 0.6 0.8 1.0
Training…Steps 1e6

0.2

0.4

0.6

D
ea

dl
in

e-
S

af
e…

R
at

e

STL
deadline-safe
d-reward

(a) deadline=15

0.0 0.2 0.4 0.6 0.8 1.0
Training…Steps 1e6

0.25

0.50

0.75
D

ea
dl

in
e-

S
af

e…
R

at
e

STL
deadline-safe
d-reward

(b) deadline=20

0.0 0.2 0.4 0.6 0.8 1.0
Training…Steps 1e6

0.0

0.5

1.0

D
ea

dl
in

e-
S

af
e…

R
at

e

STL
deadline-safe
d-reward

(c) deadline=30

Fig. 5: Deadline-safe rate comparison between deadline-safe RL, STL-reward and distance-based reward for reach tasks on
attitude control benchmark. Deadline-Safe rate is smoothed with a moving window of size 20 for better visualization.

axis is the number of training steps, the y-axis is the deadline-
safe rate. For better visualization, the deadline-safe rate is
smoothed by a moving window of size 20. The orange curve
represents the deadline-safe rate of deadline-safe RL proposed
in this work, the blue curve represents the deadline-safe rate
of STL-reward, the green curve represents the deadline-safe
rate of the distance-based reward. The deadline-safe rate is
calculated over 1000 testing initial points in the initial set. We
conduct three groups of experiments where we set the deadline
to 15,20 and 30 for reach tasks without considering collision.

There are three main observations from Fig. 5:

1) Deadline-safe RL outperforms baselines on different
deadlines in terms of deadline-safe rate. When the
deadline is set to 15, STL-reward achieves around 50%
deadline-safe rate at the end of the training, deadline-
safe RL achieves over 60% deadline-safe rate. The
distance-based reward performs not well under the
model-free scenario if there is a deadline.

2) Deadline-safe RL converges faster than STL-reward.
The gap between the deadline-safe rate of deadline-
safe RL and that of STL-reward is getting smaller with
the increment of the training steps. This observation
shows deadline-safe RL is efficient for the training of
time-critical tasks with a fixed deadline. With more
training steps, STL-reward agents gradually improve
their performance and become better at completing tasks
on time, even though their primary motivation is to finish
ASAP.

3) The gap between the deadline-safe rate of deadline-
safe RL and that of STL-reward is getting smaller with

a longer deadline. In other words, deadline-safe RL
is more efficient compared with the baselines when
the deadline is short. This observation conforms to the
relationship between ASAP and deadline-safe. Deadline-
safe RL is designed to ensure task completion within the
specified deadline, prioritizing reliability and adherence
to time constraints. On the other hand, STL-reward
encourages ASAP policies, encouraging the agent to
complete tasks as quickly as possible. As the dead-
line increases, the aggressive nature of the STL-reward
mechanism means that the agent, already motivated to
finish early, finds it progressively easier to meet the
deadline. When the deadline is getting greater, it is
becoming harder and harder for it to miss the deadline
due to its aggressive behavior.

We also conduct experiments for reach-avoid tasks which we
add an unsafe set in ball shape in the way between the initial
set and the target set.

Fig. 6 shows the results for reach-avoid tasks. We can see
similar trends to the reach tasks. Deadline-Safe RL can effi-
ciently complete the reach-avoid tasks by the given deadline.

Quantitative results for experiments on attitude control
benchmarks can be found in Table II. There is a minor
observation that the gap between the deadline-safe rate of
deadline-safe RL and that of STL-reward for reach-avoid is
slightly smaller than that for reach tasks when the deadline
is 15, but it is bigger when the deadline is 20. This may
caused by various reasons such as the position and the size
of the unsafe set. This may also be the reason for the slight
difference between the performance of deadline-safe RL on

105

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5
Training…Steps 1e5

0.2

0.4

0.6
D

ea
dl

in
e-

S
af

e…
R

at
e

STL
deadline-safe
d-reward

(a) deadline=15

0 1 2 3 4 5
Training…Steps 1e5

0.00

0.25

0.50

0.75

D
ea

dl
in

e-
S

af
e…

R
at

e

STL
deadline-safe
d-reward

(b) deadline=20

0 1 2 3 4 5
Training…Steps 1e5

0.0

0.5

1.0

D
ea

dl
in

e-
S

af
e…

R
at

e

STL
deadline-safe
d-reward

(c) deadline=30

Fig. 6: Deadline-safe rate comparison between deadline-safe RL, STL-reward and distance-based reward for reach-avoid tasks.
Deadline-Safe rate is smoothed with a moving window of size 20 for better visualization.

T 15 20 30
DS STL DIS DS STL DIS DS STL DIS

R 63.6 51.5 8.8 81.6 76.1 7.8 96.9 95.2 10.2
A 62.7 54.0 7.0 81.0 70.4 7.9 97.2 93.8 9.0

TABLE II: The deadline-safe rate of deadline-safe RL, STL-
reward and distance-based reward on attitude control bench-
mark with different deadlines. 𝑇 stands for deadline, 𝑅 stands
for reach tasks, 𝐴 stands for reach-avoid tasks, DS stands
for deadline-safe, STL stands for STL-reward, DIS stands for
distance-based reward.

reach and reach-avoid tasks.

D. Case Study: PAC deadline-safe

In this subsection, we will validate the PAC bound of the
probability of deadline-safe on a discretized model of DC
motor position since DGPQ can only be applied to the system
with discrete action space.

The optimal policy can be obtained by brute-force or other
optimization-based methods since the deadline is fixed. For
each initial point, we can do a brute-force on the set of possible
combinations of actions to see whether it can reach the target
by the deadline, and this is guaranteed to find a solution if
there exists one. As long as there is a single case that a series
of actions can drive the agent from the initial point to the
target by the deadline, the optimal policy should be able to
find it. We need to randomly select several initial points from
the initial set to estimate the probability of the deadline-safe
of the optimal policy. We choose 50 initial points since the
minimum requirements for the law of large numbers to make
a statistically sound conclusion about a population is 30.

0 10 20 30 40 50
Episodes

15000

10000

5000

C
um

ul
at

ed
…

R
ew

ar
ds

deadline-safe

Fig. 7: The cumulative rewards of deadline-safe RL using
DGPQ, the training takes 50 episodes

Fig. 7 shows the cumulative rewards of deadline-safe

0 10 20 30 40 50
Episodes

0.2

0.4

0.6

0.8

D
ea

dl
in

e-
S

af
e…

R
at

e

deadline-safe

Fig. 8: The deadline-safe rate of deadline-safe RL using
DGPQ, the training takes 50 episodes

RL using DGPQ on the discretized model of the DC motor
position. The cumulative rewards is the sum of the rewards
on each step of the testing trajectories from 50 random initial
points after each 2 episodes during training. The sum is
negative since we early stop the testing whenever it reaches
the target. The curve shows it converges after the 7𝑡ℎ episode.

Fig. 8 shows the deadline-safe rate of deadline-safe RL
using DGPQ on the discretized model of DC motor position.
The initial set of the discretized DC motor position benchmark
is [0,−1,−1] to [𝜋, 1, 1], the target set is a ball with a radius
0.5 centered at [𝜋/2, 0, 0], the unsafe set is set as a ball
with radius 0.2 centered at [𝜋/4, 0, 0], the time step of this
benchmark is 0.05 seconds and the deadline is 100 time steps.
The control input is discretized as {−5,−2,−1, 1, 2, 5}, we
can see the performance reaches the peak after the 7𝑡ℎ episode.

Since 𝛿 = 0.05, 𝜖/(𝑟𝑓𝑟 − 𝑟𝑛𝑟) = 0.05, and the deadline-
safe rate is 98% at the peak, and the optimal policy cannot
reach an deadline-safe rate greater than 100%, the experiment
results validate the statement in Lemma V.4 and the efficiency
of DGPQ for deadline-safe tasks. There is a minor observation
that the performance is shaking after reaching the peak. This is
due to the over-fitting and can be improved by regularization
and other existing methods. Similar phenomenons are found
in the experiments from [35].

VII. CONCLUSION

In conclusion, this work addresses the challenges inherent
in real-time CPS by proposing an innovative integration of
deadline-safe with RL. By redefining the reward structure

106

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

within a newly formulated reward-based Markov Decision Pro-
cess (R-MDP), we have mitigated issues associated with non-
Markovian rewards and reward hacking. Our reward functions
are specifically designed to encourage deadline-safe, thereby
enhancing the reliability and safety of operations within time-
critical applications. The empirical evaluations across diverse
benchmarks demonstrate that our method not only fosters the
development of deadline-safe policies but also significantly
outperforms existing baselines. In the future, we are inter-
ested in designing efficient deadline-safe training algorithms.
Another interesting direction is to extend our method to multi-
agent scenarios.

VIII. ACKNOWLEDGMENT

This work was supported in part by ARO W911NF-20-1-
0080, NSF CNS-2143274 and CNS-2333980.

REFERENCES

[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
the next computing revolution,” in Proceedings of the 47th design
automation conference, 2010, pp. 731–736.

[2] P. Lu, L. Zhang, M. Liu, K. Sridhar, O. Sokolsky, F. Kong, and I. Lee,
“Recovery from adversarial attacks in cyber-physical systems: Shallow,
deep, and exploratory works,” ACM Computing Surveys, vol. 56, no. 8,
pp. 1–31, 2024.

[3] M. Liu, L. Zhang, V. V. Phoha, and F. Kong, “Learn-to-respond:
Sequence-predictive recovery from sensor attacks in cyber-physical
systems,” in 2023 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2023, pp. 78–91.

[4] L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and I. Lee, “Real-
time attack-recovery for cyber-physical systems using linear-quadratic
regulator,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 20, no. 5s, pp. 1–24, 2021.

[5] F. Kong, M. Xu, J. Weimer, O. Sokolsky, and I. Lee, “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 2018,
pp. 22–31.

[6] L. Zhang, K. Sridhar, M. Liu, P. Lu, X. Chen, F. Kong, O. Sokolsky,
and I. Lee, “Real-time data-predictive attack-recovery for complex
cyber-physical systems,” in 2023 IEEE 29th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2023, pp. 209–
222.

[7] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for
autonomous vehicles using model predictive control,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 174–179.

[8] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning
and trajectory planning algorithms: A general overview,” Motion and
Operation Planning of Robotic Systems: Background and Practical
Approaches, pp. 3–27, 2015.

[9] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference
models: Model-free deep rl for model-based control,” arXiv preprint
arXiv:1802.09081, 2018.

[10] N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis, “Learning model-
free robot control by a monte carlo em algorithm,” Autonomous Robots,
vol. 27, pp. 123–130, 2009.

[11] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea,
E. Solowjow, and S. Levine, “Residual reinforcement learning for robot
control,” in 2019 international conference on robotics and automation
(ICRA). IEEE, 2019, pp. 6023–6029.

[12] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in ai safety,” arXiv preprint
arXiv:1606.06565, 2016.

[13] D. Harada, “Reinforcement learning with time,” in AAAI/IAAI, 1997, pp.
577–582.

[14] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits
in reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2018, pp. 4045–4054.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[16] C. Fan, Z. Qin, U. Mathur, Q. Ning, S. Mitra, and M. Viswanathan,
“Controller synthesis for linear system with reach-avoid specifications,”
IEEE Transactions on Automatic Control, vol. 67, no. 4, pp. 1713–1727,
2021.

[17] Z. Zhou, J. Ding, H. Huang, R. Takei, and C. Tomlin, “Efficient path
planning algorithms in reach-avoid problems,” Automatica, vol. 89, pp.
28–36, 2018.

[18] Z.-S. Hou and Z. Wang, “From model-based control to data-driven
control: Survey, classification and perspective,” Information Sciences,
vol. 235, pp. 3–35, 2013.

[19] T. Badings, L. Romao, A. Abate, and N. Jansen, “A stability-
based abstraction framework for reach-avoid control of stochastic dy-
namical systems with unknown noise distributions,” arXiv preprint
arXiv:2404.01726, 2024.

[20] A. Alanwar, Y. Stürz, and K. H. Johansson, “Robust data-driven predic-
tive control using reachability analysis,” European Journal of Control,
vol. 68, p. 100666, 2022.

[21] G. P. Kontoudis and K. G. Vamvoudakis, “Kinodynamic motion planning
with continuous-time q-learning: An online, model-free, and safe navi-
gation framework,” IEEE transactions on neural networks and learning
systems, vol. 30, no. 12, pp. 3803–3817, 2019.

[22] I. Koryakovskiy, M. Kudruss, R. Babuška, W. Caarls, C. Kirches,
K. Mombaur, J. P. Schlöder, and H. Vallery, “Benchmarking model-free
and model-based optimal control,” Robotics and Autonomous Systems,
vol. 92, pp. 81–90, 2017.

[23] Y. Zhang, B. Zhao, and D. Liu, “Deterministic policy gradient adaptive
dynamic programming for model-free optimal control,” Neurocomput-
ing, vol. 387, pp. 40–50, 2020.

[24] M. Grzes, “Reward shaping in episodic reinforcement learning,” 2017.
[25] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward

transformations: Theory and application to reward shaping,” in Icml,
vol. 99, 1999, pp. 278–287.

[26] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal
logic rewards,” in 2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE, 2017, pp. 3834–3839.

[27] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control
synthesis from linear temporal logic specifications using model-free
reinforcement learning,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 10 349–10 355.

[28] N. Hamilton, P. K. Robinette, and T. T. Johnson, “Training agents
to satisfy timed and untimed signal temporal logic specifications with
reinforcement learning,” in International Conference on Software Engi-
neering and Formal Methods. Springer, 2022, pp. 190–206.

[29] N. K. Singh and I. Saha, “Stl-based synthesis of feedback controllers
using reinforcement learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 12, 2023, pp. 15 118–15 126.

[30] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[31] Y. Engel, S. Mannor, and R. Meir, “Reinforcement learning with
gaussian processes,” in Proceedings of the 22nd international conference
on Machine learning, 2005, pp. 201–208.

[32] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman,
“Pac model-free reinforcement learning,” in Proceedings of the 23rd
international conference on Machine learning, 2006, pp. 881–888.

[33] A. L. Strehl, L. Li, and M. L. Littman, “Reinforcement learning in finite
mdps: Pac analysis.” Journal of Machine Learning Research, vol. 10,
no. 11, 2009.

[34] L. Li, M. L. Littman, and T. J. Walsh, “Knows what it knows: a frame-
work for self-aware learning,” in Proceedings of the 25th international
conference on Machine learning, 2008, pp. 568–575.

[35] R. Grande, T. Walsh, and J. How, “Sample efficient reinforcement learn-
ing with gaussian processes,” in International Conference on Machine
Learning. PMLR, 2014, pp. 1332–1340.

[36] R. Bellman, “A markovian decision process,” Journal of mathematics
and mechanics, pp. 679–684, 1957.

[37] F. Denis, “Pac learning from positive statistical queries,” in International
conference on algorithmic learning theory. Springer, 1998, pp. 112–
126.

[38] J. Pazis and R. Parr, “Pac optimal exploration in continuous space
markov decision processes,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 27, no. 1, 2013, pp. 774–781.

107

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

[39] D. Haussler and M. Warmuth, “The probably approximately correct
(pac) and other learning models,” The Mathematics of Generalization,
pp. 17–36, 2018.

[40] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-learning
for robust satisfaction of signal temporal logic specifications,” in 2016
IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016,
pp. 6565–6570.

[41] M. Liu, P. Lu, X. Chen, F. Kong, O. Sokolsky, and I. Lee, “Fulfilling
formal specifications asap by model-free reinforcement learning,” arXiv
preprint arXiv:2304.12508, 2023.

[42] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White,
and D. Precup, “Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction,” in The 10th In-
ternational Conference on Autonomous Agents and Multiagent Systems-
Volume 2, 2011, pp. 761–768.

[43] L. P. Kaelbling, “Learning to achieve goals,” in IJCAI, vol. 2. Citeseer,
1993, pp. 1094–8.

[44] D. M. Lopez, M. Althoff, L. Benet, X. Chen, J. Fan, M. Forets,
C. Huang, T. T. Johnson, T. Ladner, W. Li et al., “Arch-comp22 cate-
gory report: Artificial intelligence and neural network control systems
(ainncs) for continuous and hybrid systems plants,” in 9th International
Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH22). EasyChair, 2022, pp. 142–184.

108

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on June 09,2025 at 02:05:21 UTC from IEEE Xplore. Restrictions apply.

