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Abstract—Safe reinforcement learning (RL) aims to derive
a control policy that navigates a safety-critical system while
avoiding unsafe explorations and adhering to safety constraints.
While safe RL has been extensively studied, its vulnerabilities
during the policy training have barely been explored in an
adversarial setting. This paper bridges this gap and investigates
the training time vulnerability of formal language-guided safe
RL. Such vulnerability allows a malicious adversary to inject
backdoor behavior into the learned control policy. First, we
formally define backdoor attacks for safe RL and divide them
into active and passive ones depending on whether to manipulate
the observation. Second, we propose two novel algorithms to
synthesize the two kinds of attacks, respectively. Both algorithms
generate backdoor behaviors that may go unnoticed after de-
ployment but can be triggered when specific states are reached,
leading to safety violations. Finally, we conduct both theoretical
analysis and extensive experiments to show the effectiveness and
stealthiness of our methods.

I. INTRODUCTION

Cyber-physical systems (CPS) integrate computing and
networking components to control the physical system and
interact with the environment using sensors and actuators.
Researchers have been making efforts to embed artificial intel-
ligence (AI) in CPS to enable applications such as autonomous
vehicles, drones, and smart manufacturing [1]. However, the
increasing autonomy also brings up new security and safety
concerns for CPS [2]–[4].

Deep reinforcement learning (DRL) has demonstrated no-
table efficacy in resolving decision-making problems, specif-
ically in acquiring control policies within simulated environ-
ments through iterative trial and error. Such success motivates
the investigations into the deployment of DRL in real-world
scenarios. However, conventional DRL has no safety con-
siderations, and ensuring safety is important for real-world
applications. Consequently, the concept of safe reinforcement
learning (safe RL) has been introduced to derive a control
policy that optimizes task performance and incorporates safety
constraints during the training process.

There are two main research directions in safe RL. The first
one solves the problem using a mathematical model describing
how the system works [5]–[7]. The second one does not
require such knowledge and instead follows a set of rules
written in formal languages, e.g., linear temporal logic (LTL)
[8] or signal temporal logic (STL) [9]. Safety requirements
are formally specified and the specifications are used to guide
the policy training.

Both directions leverage neural networks (NN) as function
approximations. However, DRL has been proven to be vul-

nerable to training time attacks [10]–[12], such as adding
perturbation to the observation, manipulating actions, and
reward poison. Existing safe RL works assume a secure
environment, and their training time vulnerability has barely
been investigated in an adversarial setting. We believe that
investigating such vulnerability of safe RL is important to
enhance safety in the real world.

Conventional adversarial RL (non-safe RL) methods focus
on compromising the performance of DRL policies by reduc-
ing the cumulative reward [13]–[15]. They are not suitable
for analyzing safety violations in safe RL, which has more
serious consequences than reward reduction. We investigate
whether a well-designed adversary could maliciously inject
safety violation behavior into the learned policy. Specifically,
we consider an adversary setting termed as “backdoor attack”,
in which the adversary injects the safety violation behavior
(backdoor behavior) into the safe RL policy. The backdoor
behavior will be triggered after the policy is deployed when
some specific states are reached.

Considering the research gap, we study the vulnerability of
safe RL during training. We focus on the formal language-
guided safe RL especially the signal temporal logic (STL)
guided safe RL, which converts the safety constraint and
task specifications into a reward function. Unlike traditional
DRL using hand-engineered reward function, STL effectively
expresses the safety constraint and training the policy and is
proven by several works [16]–[18].

In this paper, we aim to address three key research ques-
tions: 1) How to design an effective backdoor attack that
successfully compromises the control policy in terms of safety
violation? 2) How does the effectiveness of an attack vary
with different levels of its capability and knowledge? 3) How
to keep an attack effective while stealthy? To answer these
questions, we formally define backdoor attacks for safe RL,
then propose algorithms to synthesize such attacks, and finally
validate the effectiveness of our methods theoretically and
experimentally. To be specific, the main contributions of our
paper are as follows:

• We formally analyze the training time vulnerability of
STL-guided safe RL and show that safe RL is unsafe
when confronting a malicious adversary.

• We define active and passive backdoor attacks, depending
on whether to manipulate the observation, for safe RL.
We propose two attack synthesis algorithms for each
kind of attack respectively, and theoretically show the
correctness and effectiveness of our algorithms.



• We perform extensive experiments on four benchmarks
in OpenAI Safety Gym. The results show that our algo-
rithms are effective in violating safety constraints while
staying stealthy.

The remaining sections are organized as follows. Section
II introduces the related work. Section III discusses necessary
preliminary. In Section IV we introduce the proposed backdoor
attack framework. Section V evaluates the proposed attack.
Section VI discusses the limitations and defense. Section VII
summarizes the paper.

II. RELATED WORK

This section discusses two major related works: formal lan-
guage (especially STL) guided safe RL and existing training
time attacks targeted at RL.

A. Formal language guided safe RL

Formal languages, notably STL, offer a means to express
control objectives and safety requirements. Specifically, these
languages convert the desired system behavior into explicit
specifications and ensure the system strictly adheres to these
specifications [19]. Furthermore, [20] introduces robustness
metrics to translate the boolean value of the STL specification
into a real value. This approach efficiencies the process for
STL-guided safe RL, eliminating the need for manual design
of the reward function. Existing works [17], [21] show the
efficacy of using the robustness metrics of STL to synthesize
control policy. A recent work by Liu et al. [22] introduces the
ASAP-Phi framework. This framework encourages the agent
to fulfill the STL specification while minimizing the time
taken to achieve it. H. Venkataraman et al. [23] focus on the
computationally intractable problem where they propose a new
state-space representation to capture the state history.

One significant line of research focuses on exploring the
properties of robustness metrics and their impact on the learn-
ing process. Mehdipour et al. [24] were the first to propose
the soundness property of robustness metrics, which rigorously
classifies whether a trajectory satisfies the specification using
values greater than 0 or less than 0. Building on this, Varnai
et al. [25] introduced the shadowing property of robust-
ness metrics, highlighting its potential impact on learning
efficiency. Another study by Singh et al. [16] emphasizes
the smoothness property and introduces a novel robustness
metric aimed at maximizing smoothness, with the cost of
sacrificing soundness. In our work, we utilize the robustness
metrics introduced in [25], which are considered state-of-the-
art methods for enhancing learning efficiency.

B. Training time attacks on RL

Training time adversarial attack means that a malicious
adversary externally adds or manipulates the RL signals in the
training phase, i.e. state, action, and reward so that the control
policy is misled to act as the adversary’s expectation [26]–[30].
While these attacks have shown impressive results in reducing
the performance of the learning policy and decreasing the
expected reward, they often lack stealthiness. In other words,

the victim can easily detect that the policy is not functioning
properly.

To address this, P. Kiourti et al. [13] propose a backdoor
attack on RL. They define a 3×3 patch in the corner of the
image as the trigger. In this setup, the policy behaves as
the standard policy when the patch is not presented, but it
experiences a significant performance drop when the patch is
presented. C. Gong et al. [31] consider the setting of offline
RL and trigger the attack not only a patch on the image but
also a particular system state (velocity). Additionally, [14]
investigates the backdoor attack on competitive RL and they
trigger the attack when one of the agents takes a specific
action that leads to a fast-failing of the system. However,
such works do not consider a major issue in designing the
backdoor attack: 1) They lack a theoretical analysis of the
adversary’s reward design. Typically, when injecting malicious
actions, they assign high positive rewards, which often require
empirical knowledge and manual crafting. 2) None of the
attacks consider a real-world scenario, where safety violations
are much more critical than simply reducing the system’s per-
formance. Our work addresses these gaps, proposing backdoor
attack algorithms aiming at safety violations with a theoretical
reward design.

III. PRELIMINARY

This section introduces the necessary preliminaries covered
in this paper. We briefly introduce signal temporal logic (STL)
and the STL-guided safe RL and present the system model and
threat model.

A. Signal Temporal Logic

STL is a temporal logic designed to articulate various tem-
poral properties using real-time signals. The STL specification
is recursively constructed through sub-formulas and temporal
operators. It yields either true or false based on a function
f : Rn → R and can be inductively described by the following
syntax:

ϕ := true|¬φ|φ1 ∧ φ2|G[a,b]φ|F[a,b]φ | φ1U[a,b]φ2

Where ϕ and φ are STL formulas. ¬ (negation) and ∧
(conjunction) are Boolean operators. G (always), F (finally),
and U (until) are temporal operators. The specification G[a,b]φ
is true if the property defined by φ is always true in the time
horizon [a, b]. In addition, the F[a,b]φ holds only if there is at
least one time step where φ is true. Similarly, φ1U[a,b]φ2 is
satisfied when φ1 remains true until φ2 becomes true during
time horizon [a, b].

The STL allows various definitions of robustness metrics
to convert the boolean value into a real number to represent
how satisfied the STL specification is. Based on this property,
existing work [20] utilizes the robustness value as a reward
function in RL so that they do not need to hand engineer the
reward function. The robustness metrics are essential because
the reward function (robustness metrics) significantly impacts
learning an optimal RL policy. The original robustness metrics
from [20] use min function to obtain the robustness of a



conjunction operator and define the robustness metrics as
below:

ρ (xt, µ (xt) < d) = d− µ (xt)

ρ (xt,¬φ) = −ρ (xt, φ)

ρ (xt, φ1 ∧ φ2) = min (ρ (xt, φ1) , ρ (xt, φ2))

ρ
(
xt, F[a,b]φ

)
= max

t′∈[a,b]
ρ (xt′ , φ)

ρ
(
xt, G[a,b]φ

)
= min

t′∈[a,b]
ρ (xt′ , φ)

ρ
(
xt, φ1U[a,b]φ2

)
= max

t∈[t+a,t+b]

(
min

(
ρ (xt, φ2) , min

t′′∈[t,t′)
ρ (xt′′ , φ1)

))
We denote the xt is the state trajectory for the system that
xt = (x0, x1, ..., xt).

However, these robustness metrics create a shadow-lifting
problem that hurts the learning performance. The min function
from the conjunction operator ∧ allows increasing an individ-
ual specification without any impact on the overall robustness
unless the specification’s robustness is the minimum [25].
Instead, we consider state-of-the-art robustness metrics from
[25] which solves the shadow-lifting problem and replaces the
original min function from conjunction to the equation as
follows:

ρ̄i = (ρi − ρmin)/ρmin

ρ (xt, (ρ1 ∧ ρ2 . . . ∧ ρn)) =


∑

i ρmine
ρ̃ieνρ̄i∑

i e
νρ̄i

if ρmin < 0,∑
i ρie

−νρ̄i∑
i e

−νρ̄i
if ρmin > 0,

0 if ρmin = 0.
(1)

We denote ρmin as the robustness value of which ρi achieves
the minimum among all sub-specification φ and ν is a hyper-
parameter defined by the user.

Although the most recent work by Singh et al. [16] proposes
a new semantics that yields the best performance in learning
STL-guided control policies, we use the approach outlined in
Varnai et al. [25] for learning the control policies. Our focus
is to explore the vulnerability of STL-guided control policy
instead of improving learning efficiency; hence, different ro-
bustness metrics do not impact the theoretical proof.

B. System model

In this paper, we investigate the safety vulnerability of CPS.
We assume that the CPS with unknown system dynamics has
a specific task to complete (goal) within a time horizon T .
Additionally, several unsafe regions need to be avoided, mean-
ing certain states should not be reached (safety constraint).
For example, an autonomous vehicle aims to reach a target
position while needing to avoid collisions with obstacles and
other vehicles. Similarly, a robot arm strives to grasp a box
while avoiding contact with other objects. We formally define
the goal and safety constraint using STL.

Definition III.1 (Goal). We denote the STL specification φg

to be the goal of the system. Given the start time t0 and a

time horizon T , the system achieves the goal (complete the
task) only if ρ

(
xt, F[t0,t0+T ]φg

)
≥ 0.

Definition III.2 (Safety Constraint). We denote the STL
specification φs to be the safety constraint. Given the start
time t0 and a time horizon T , the system satisfies the safety
constraint (avoid unsafe) only if ρ

(
xt, G[t0,t0+T ]φs

)
≥ 0.

The system aims to simultaneously achieve the goal and sat-
isfy the safety constraint by interacting with the environment.
Combining the STL specification of goal and safety constraint,
the overall STL specification is:

ϕ = F[t0,t0+T ]φg ∧G[t0,t0+T ]φs (2)

Note that obtaining the actual states of a real-world CPS is
challenging. Instead, we assume that the system relies on
sensor values (observations) to determine its state. Throughout
the paper, we consider the sensor values (observations) at time
step t as the system state xt.

C. STL-guided Safe RL

We assume the system tries to find a control policy π that
maximizes the robustness of ϕ. We formulate a safe learning
process that utilizes the STL specification.

Definition III.3. The safe learning process for a safety-
critical system can be formulated as a finite-horizon Constraint
Markov Decision Process (CMDP) defined as a tuple Q :=
(S,A, T, p, r, c, γ). Where S and A are the state and action
space, respectively. T is the total time steps that the system
interacts with the environment. p is the transition function that
p : S×A×S → [0, 1] and p(xt, a, xt+1) is the probability that
taking an action a ∈ A at state xt ∈ S and result in the next
state xt+1. r, c, and γ are the reward function, cost function,
and discount parameter, respectively.

The objective of STL-guided safe RL is to obtain an optimal
control policy π : S → A that can maximize the cumulative
reward by using the robustness metric as the reward function:

π = argmax
π

Eπ
T∑

t=0

γtρ (xt, ϕ)

In this paper, we assume the systems employing actor-critic al-
gorithms [32] for safe RL. Actor-critic algorithms have demon-
strated efficiency in addressing continuous learning problems
and are recognized for their sample efficiency, leveraging the
critic network for Q function approximation, also known as
the state-action value. We show the Q function and the value
function V in the STL-guided RL as follows:

Qπ(xt, at) = ρ(xt, ϕ) + γmax
at+1

Qπ (xt+1| (xt, at) , at+1)

V π(xt) =
T∑

k=0

γkρ (xt, ϕ)

(3)



Figure 1: An illustration of passive backdoor attack (left) and
active backdoor attack (right).

D. Threat model

In this paper, we consider a malicious adversary that can
access the training process of the safe RL. We refer to a policy
trained using STL-guided safe RL as the ”standard policy,” and
one tampered with by the adversary as the ”Trojaned policy.”
We first illustrate the adversary’s knowledge and capability.

Adversary Knowledge.We assume that the adversary has
complete access to the sensor data (state) and the STL spec-
ification ϕ used in the training process. For an adversary
executing a strong attack, as defined in Section IV, this
includes having knowledge of the system and its environment.
However, the adversary lacks knowledge of the RL algorithm
and cannot access its parameters.

Adversary Capability. The adversary can manipulate both
the sensor data and reward signal during the training phase.
Furthermore, if the adversary can manipulate the action signal,
we categorize it as a strong attack; otherwise, it is termed a
weak attack, as defined in this work [13].

Rather than compelling the system to learn a minimally
performing control policy, we consider a more severe scenario
wherein the control policy should operate normally unless
certain states trigger a violation. This approach poses greater
risk as it may allow the system to overlook vulnerabilities
prior to deployment. Essentially, the Trojaned policy could
potentially produce actions that violate safety constraints when
encountering specific states but operate normally otherwise.
This strategy is referred to as a backdoor attack.

Definition III.4. (Backdoor Attack and Backdoor Behavior).
Suppose for a set of state (observation) space S̃, a Trojaned
policy π̃ : S → A, for an initial state x0 ∈ S̃, the
Trojaned policy will result in a sequence of action ã0ã1 . . . ãt
and a final state xt which violates the safety constraint
ρ(xt|x0, G[t0,t0+T ]φs) < 0. We define the state space S̃ as
the backdoor trigger and the sequence of action as backdoor
behavior.

Adversary Objective. The adversary’s objective is to inject
the backdoor behavior into the control policy. In other words,
the system leads to a safety violation and does not complete the
goal when the trigger is presented. Meanwhile, the adversary
should keep stealthy, that is, when the trigger is not presented,
the control policy should work normally as the standard safe
RL policy.

IV. BACKDOOR ATTACK DESIGN

Backdoor attacks on images typically involve creating a
patch as the trigger for initiating the attack. Following this

philosophy, we introduce the Active Backdoor Attack, which
manipulates the states as the triggers in the context of CPS.
Additionally, we propose the Passive Backdoor Attack, which
does not require manipulating states for the triggers. Note
that the Trojaned policy should work normally as a standard
policy when no trigger is presented but lead to a safety
violation behavior when the trigger is presented. Based on
these requirements, we define the active backdoor attack and
the passive backdoor attack.

Definition IV.1 (Active Backdoor Attack). We consider the
active backdoor attack where the backdoor triggers are not in
the original state space: S̃ /∈ S. The attack is triggered only if
the adversary manipulates the observations xt → x̃t.

The active backdoor attack follows the traditional backdoor
attack strategy from existing work [13]. Instead of creating
a fixed patch on the image as the trigger, the trigger for
the CPS would be manipulating the observation with a fixed
’patch’ with the adversary’s selection. For instance, consider
an autonomous vehicle equipped with an Inertial Measurement
Unit (IMU) sensor, capable of measuring linear velocity,
angular velocity, and acceleration along the x, y, and z axes.
The adversary can select the trigger and manipulate the values
of less crucial sensors, such as the linear acceleration along
the z-axis (representing gravity). We assume that this sensor
data is deemed unimportant for autonomous driving tasks, and
the system may overlook such biased sensor data, resulting
in something bad happening. This active backdoor attack is
triggered when the adversary manipulates the state as the
trigger. Conversely, we propose a passive backdoor attack that
does not require state manipulation.

Definition IV.2 (Passive Backdoor Attack). The passive back-
door attack is defined as the backdoor trigger belonging to
the original state space: S̃ ∈ S. This implies that the attack
is triggered in some specific states even when the adversary
does not manipulate the observations.

The passive backdoor attack involves the adversary selecting
a set of normal states as triggers. The underlying concept is
that the system operates normally; however, specific cases,
such as nearing an unsafe region, trigger the attack. For
instance, consider a robot arm equipped with a LiDAR sensor
that detects the distance to surrounding objects. In a passive
backdoor attack, the adversary might inject a backdoor behav-
ior: when the LiDAR recognizes the robot arm nearing a wall,
the Trojaned policy forces the robot arm to collide with the
wall. Notably, in the passive backdoor attack, the adversary
does not need to manipulate the observations to trigger the
attack. This attack is deemed more harmful, as it provides the
system with less time to react effectively.

As illustrated in the previous section, attacks are also
categorized as strong or weak based on whether the adversary
can modify the action as inspired by [13]. Table I classifies
the attacks based on the adversary’s strategy and capability,
also indicating which signal the attack will manipulate. For
example, a strong active backdoor attack can manipulate the



Attack Strong Weak
Active Backdoor xt, at, rt xt, rt
Passive Backdoor at, rt rt

Table I: The strong attack can manipulate the action signal
during training, whereas the weak attack cannot. In the case
of the active backdoor attack, the state xt is manipulated to
create the trigger. On the other hand, the passive backdoor
attack does not require the manipulation of the state.

state, action, and reward in a training phase while a weak
active backdoor can only manipulate the state and reward. In
the next section, we discuss how the adversary realizes the
backdoor attack target on the STL-guided safe RL.

A. Problem Formulation

Intuitively, the adversary aims to have a Trojaned policy
that generates action ãt (approach to the unsafe) when the
trigger is presented x̃t ∈ S̃ while maintaining normal behavior
when xt /∈ S̃. We denote a′t as the optimal malicious action
that leads the system to the unsafe region. Then ideally the
adversary’s goal is to have the Trojaned policy that:

π̃(x̃t) = a′t ̸= π(xt)

π̃(xt) = π(xt) ̸= a′t

Where π denotes the standard policy and π̃ denotes the
Trojaned policy. The above equations demonstrate that the
Trojaned policy normally acts as the standard policy with state
xt and performs the optimal malicious action a′t when the
trigger x̃t presents. Note that we use x̃t to denote the trigger
state no matter whether it is a passive or active backdoor
attack.

To better illustrate how the Trojaned policy works, we start
from the state-action value (Q) function. The state-action value
function used in RL expresses the expected reward if it takes
action at at the state xt. A higher value of the Q implies the
control policy has a higher potential to take the action at. We
show the state-action value function of the standard policy:

Qπ(x̃t, at) > Qπ(x̃t, a
′
t)

Qπ(xt, at) > Qπ(xt, a
′
t)

where at = π(·)
(4)

This expresses that the standard policy consistently prioritizes
action at over a′t as the latter may lead to safety violations,
regardless of whether the state is the trigger state. However,
the adversary has the opposite objective. We formulate the
attack effectiveness as:

Qπ̃(x̃t, at) < Qπ̃(x̃t, a
′
t) (5)

Equation 5 implies that the Trojaned policy will opt for the
malicious action a′t when the trigger is presented because it
has the highest state-action value. Similarly, if the trigger is
not presented, the state-action value should satisfy as follows:

Qπ̃(xt, at) > Qπ̃(xt, a
′
t) (6)

Equation 6 indicates that when the trigger is not presented,
the Trojaned policy should output the action that does not aim

at safety violation. We define the fulfillment of Equation 6 as
the attack being stealthy. In other words, the Trojaned policy
is stealthy when it behaves as standard policies to fulfill the
system’s goal when no trigger is presented. We evaluate the
stealthiness by comparing the difference between the Trojaned
and standard policies in Section V.

Based on the Equations 4 and 5, we denote the rp as
a positive constant that the adversary uses to poison the
reward, aiming to reduce Qπ(x̃t, at) and satisfy the following
equation:

Qπ(x̃t, at)− rp < Qπ(x̃t, a
′
t) (7)

In summary, the adversary’s objective is to satisfy both
Equations 5 and 6, which represent the attack’s effectiveness
and stealthiness, respectively. However, both objectives are
counter to the goal of safe RL learning, underscoring the
importance of a well-designed attack.

B. Passive Backdoor Attack

In this subsection, we propose our passive backdoor attack
algorithm. To fulfill the Equations 5 and 6, it is crucial to
design a specific reward-poisoning method (i.e., manipulating
the reward values). Unlike existing backdoor attacks on RL
[13], which simply changes the reward to -1 or 1, offering non-
guaranteed attack performance, we present the Passive Back-
door Attack algorithm in Algorithm 1 and provide theoretical
analysis of the algorithm.

Algorithm 1: Passive Backdoor Attack
Input : A victim policy π, the maximum length of

trajectory T .
Output: Trojaned policy π̃

1 step← 0 ;
2 while step < total attack steps do
3 t← 0
4 for t < T do
5 Sample state xt and trajectory xt

6 Sample at = π(xt)

7 if xt ∈ S̃ then
8 step← step+ 1
9 if Attack is Strong Attack then

10 at ← malicious action a′t
11 end
12 end
13 Sample xt+1 and trajectory xt+1

14 rt ← reward poisoning(xt+1)
15 end
16 Update policy π
17 end
18 Return policy π

Algorithm 1 details the passive backdoor attack procedure.
The attack begins by checking if the current state is within
a predetermined trigger space (close to unsafe regions). If
so, the adversary modifies the action from at to ãt for a
strong attack, as outlined in Lines 9-11. For a weak attack, the



manipulation focuses solely on altering the reward, following
the steps described in Algorithm 2 for reward poisoning. This
involves using a positive constant rp to decrease the reward rt
when transitioning between specific states (S̃ to S), as seen in
Lines 2-4, ensuring the attack remains effective yet stealthy.
We will further demonstrate how the reward poisoning aligns
with the goals of effectiveness and stealthiness, as outlined in
Equations 5 and 6, in the followings. When the system is near
unsafe states, the altered rewards prompt the learning policy
towards safety violations, detailed in Lines 5-7, leveraging ϕ′

to define the adversary’s desired outcome based on the STL
specification. The specification ϕ′ is given as follows:

ϕ′ = G[t0,t0+T ]¬φg ∧ F[t0,t0+T ]¬φs

The ϕ′ represents the adversary goal which is opposite to
the original system specification ϕ. It is designed such that
G[t0,t0+T ]¬φg signifies the adversary’s intention for the sys-
tem to consistently avoid the goal within a specified timeframe.
Similarly, F[t0,t0+T ]¬φs encourages the system to engage
in behavior that violates safety protocols. Furthermore, as
detailed in Lines 8-10 of Algorithm 2, when the system is
already in a state of safety violation, the adversary assigns
a positive reward rp. This strategy is employed to enhance
the likelihood of the policy thereby maximizing the attack’s
effectiveness.

To summarize, the passive backdoor attack remains inactive
while the system is far from any unsafe areas. The attack
begins once the system nears an unsafe zone. Initially, to
ensure stealth, the system’s reward is reduced by rp when
entering the trigger states. This penalty discourages the system
from approaching unsafe areas from a long distance. However,
if the system is inside the trigger states, the adversary then
incentivizes this behavior by rewarding the system based on
the robustness of ϕ′ and further offers a final bonus of rp
if the system violates safety. This approach subtly encourages
safety violation actions only when the system is close to unsafe
regions, aligning to make the backdoor attack stealthy.

Algorithm 2: Reward Poisoning
Input : Trajectory xt+1, original reward rt, the

reward penalty rp.
Output: Reward rt.

1 rt ← ρ(xt+1, ϕ)

2 if xt /∈ S̃ and xt+1 ∈ S̃ then
3 rt ← rt − rp
4 end
5 else if xt ∈ S̃ and xt+1 ∈ S̃ then
6 rt ← ρ(xt+1, ϕ

′)
7 end
8 else if the system violates the safety then
9 rt = rp

10 end
11 return rt

Theorem IV.1. Assume Θ is the minimum robustness of a
trigger state x̃t ∈ S̃ denote as Θ := min

x̃t∈S̃
ρ(xt, ϕ) and it is easy

to have Θ < 0. Suppose the Equation 7 holds for the policy
π, the lower bound of the rp to satisfy the effectiveness and
stealthiness is given by:

rp >
γ

γ − 1
Θ (8)

Theorem IV.1 establishes the minimum value for rp, guiding
its selection to maintain the stealthiness of the backdoor attack.
The proof of Theorem IV.1 is presented as follows:

Proof. From Equation 7, we have:

rp > Qπ(x̃t, at)−Qπ(x̃t, a
′
t)

We derive the upper bound for the difference between the Q-
values of the original and manipulated actions at state x̃t as
follows:

Qπ(x̃t, at)−Qπ(x̃t, ãt) ≤ max
x̃t∈S̃

Qπ(x̃t, at)− min
x̃t∈S̃

Qπ(x̃t, ãt)

To evaluate the right-hand side of the equation, we introduce
Lemma IV.2 for calculating maxQπ(x̃t, at).

Lemma IV.2. Suppose the trajectory xt with an initial state
x̃0 ∈ S̃, the maximum Q value the state x̃0 achieve will be:

max
x̃t∈S̃

Qπ(x̃t, at) ≤ 0

Proof. We have:

Qπ(x̃t, at) = ρ(xt, ϕ) + γQπ(xt+1, at+1)

The trajectory with a final state x̃t does not satisfy the STL
specification φg . According to the definition of Soundness
[25], we have ρ(xt, ϕ) < 0. Similarly, for any trajectory xt

that does not satisfy the goal, its robustness value is less than
0. We can easily have the upper bound of Qπ(x̃t, at) ≤ 0.

We then introduce Lemma IV.3 to determine the bounded
value of minQπ(x̃t, ãt).

Lemma IV.3. Given the minimum robustness among all states
in the trajectory Θ and a Q function with a state x̃0 ∈ S̃ and
action ãt, we have:

min
x̃t∈S̃

Qπ(x̃t, ãt) ≥
γ

1− γ
Θ

Proof. The Lemma IV.3 gives a lower bound of the
Qπ(x̃t, ãt). We prove this by assuming a minimum robustness
value Θ, where Θ is the minimum robustness value in the
trigger space, denoted as Θ = min

x̃∈S̃
(ρ (xt, ϕ)):

min
x̃t∈S̃

Qπ(x̃t, ãt) = ρ(xt, ϕ) + γQπ(xt+1, at+1)

min
x̃t∈S̃

Qπ(x̃t, ãt) ≥ Θ+ γΘ+ γ2Θ...+ γT−tΘ

≥ γ

1− γ
Θ



Based on Lemma IV.2 and IV.3, we can have the lower
bound of rp:

rp >
γ

γ − 1
Θ

The lower bound of rp is only related to the discount factor
γ and minimum robustness value Θ, both of which can be
predicted or acquired by the adversary. For example, the γ is
usually set to 0.99 in the RL training. The Θ can be obtained
by sampling the training data and monitoring the robustness
value.

C. Active Backdoor Attack

The active backdoor attack requires the adversary to desig-
nate certain states as triggers by introducing perturbations, as
detailed in Algorithm 3. The process begins with the adversary
selecting specific states to perturb, setting them as triggers
for the attack. During the training phase, the adversary then
manipulates the process by altering states, rewards, and in
cases of a strong attack, actions too, as demonstrated in
Lines 7-15. Furthermore, to ensure both effectiveness and
stealthiness, the active backdoor attack involves adjusting the
state-value function when the system transitions from a non-
trigger to a trigger state. A key distinction of the active
backdoor attack, compared to the passive backdoor, is that the
Trojaned policy behaves normally without manipulating the
states, becoming effective only when the adversary introduces
poisoned states as triggers.

While the active backdoor attack can be triggered at any
time by manipulating the states to triggers, the adversary may
strategically choose to trigger the attack when the system is
near unsafe states during the training phase. This aims to
maximize the likelihood of safety violations and enhance the
efficiency of the attack.

From the perspective of the victim system, the Trojaned
policy created by the active backdoor attack is stealthier
compared to the passive backdoor. This is because the active
backdoor remains hidden until the adversary decides to trigger
the attack. However, the active backdoor requires the adversary
to manually perturb the states to trigger the attack, while the
passive backdoor can automatically start the safety violation.

We introduce the Proposition IV.4 to prove that our active
and passive backdoor attacks satisfy the effectiveness and
stealthiness.

Proposition IV.4. The Trojaned policy π̃ produced by the
passive and active backdoor attack fulfills the requirements of
attack effectiveness and stealthiness, as specified in Equations
5 and 6.

Proof. We start by demonstrating that the Trojaned policy π̃,
resulting from the backdoor attack, is effective.

Qπ̃(x̃t, ãt)−Qπ̃(x̃t, at) = V π̃(xt+1|(x̃t, ãt))− V π̃(xt+1|(x̃t, at))

Assume the new stat (xt+1|(x̃t, at)) is still in the trigger space.
According to the Algorithms 1 and 2, we have the value
function:

Algorithm 3: Active Backdoor Attack
Input : A victim policy π, the maximum length of

trajectory T , selected trigger x̃.
Output: Trojaned policy π̃

1 step← 0 ;
2 while step < total attack steps do
3 t← 0
4 for t < T do
5 Sample state xt and trajectory xt

6 Sample at = π(xt)
7 if time to attack then
8 xt ← x̃t

9 step← step+ 1
10 if Attack is Strong Attack then
11 at ← malicious action ãt
12 end
13 end
14 Sample xt+1 and trajectory xt+1

15 rt ← reward poisoning(xt+1)
16 end
17 Update policy π
18 end
19 Return policy π

V π̃(xt+1|(x̃t, ãt)) = Eπ
t1−1∑
k=0

γkρ
(
xt+1+k|(x̃t, ãt), ϕ

′)+ γt1rp

V π̃(xt+1|(x̃t, at)) = Eπ
t2−1∑
k=0

γkρ
(
xt+1+k|(x̃t, at), ϕ

′)+ γt2rp

We define t1 and t2 are the number of time steps until the
system violates the safety. Where ãt is the optimal malicious
action that maximizes the robustness value of ϕ′, so we can
easily have:

V π̃(xt+1|(x̃t, ãt)) > V π̃(xt+1|(x̃t, at))

Qπ̃(x̃t, ãt) > Qπ̃(x̃t, at)

If the (xt+1|(x̃t, at)) is not in the trigger space, we have:

V π̃(xt+1|(x̃t, at)) = Eπ
T−t−1∑
k=1

γkρ (xt+k|(x̃t, at), ϕ)

Based on the Theorem IV.1, we have that
V π̃(xt+1|(x̃t, ãt)) > V π̃(xt+1|(x̃t, at)) holds. So the
Trojaned policy π̃ satisfies the effectiveness.

Similarly, we have the Q-function for the stealthiness:

Qπ̃(xt, at)−Qπ̃(xt, a
′
t) = V π̃(xt+1|(xt, at))− V π̃(xt+1|(xt, a

′
t))

Suppose (xt+1|(xt, a
′
t)) still does not belong to the trigger

space, we have the value function of the xt+1:

V π̃(xt+1|(xt, at)) = Eπ
T−t−1∑
k=1

γkρ (xt+k|(xt, at), ϕ)

V π̃(xt+1|(xt, a
′
t)) = Eπ

T−t−1∑
k=1

γkρ (xt+k|(xt, a
′
t), ϕ)



(a) Goal (b) Circle

(c) Push (d) Button

Figure 2: The four benchmarks used in our experiments from
Safety Gym.

While at is the optimal action that maximize the robustness
of ϕ, we have:

V π̃(xt+1|(xt, at)) > V π̃(xt+1|(xt, a
′
t))

Qπ̃(xt, at) > Qπ̃(xt, a
′
t)

If (xt+1|(xt, a
′
t)) goes into the trigger space, then the system

will lead to safety violation. We have:

V π̃(xt+1|(xt, a
′
t)) = Eπ

t1−1∑
k=1

γkρ
(
xt+k|(xt, a

′
t), ϕ

′)− rp + γt1rp

We have:

Eπ
T−t−1∑
k=1

γkρ (xt+k| (xt, at) , ϕ)− Eπ
t1−1∑
k=1

γkρ
(
xt+k|(xt, a

′
t), ϕ

′)
> γt1rp − rp

Note that t1 denotes the number of time steps from t until the
system violates safety. This implies that for a sufficiently large
t1, the manipulated policy π̃ satisfies the stealthiness criterion.
Moreover, a larger value of rp increases the absolute value of
γt1rp− rp, which in turn enhances the likelihood of fulfilling
the stealthiness requirements. This conclusion is in line with
Theorem IV.1.

V. EXPERIMENTS

This section demonstrates our experimental approach for
assessing the effectiveness of our backdoor attack on different
benchmarks. All experiments were carried out on a system
featuring an Intel Core i7-13700F processor operating at 2.10
GHz with 16 cores and 16 GB of RAM.

A. Benchmarks

Safety Gym. We implement our attack algorithms on the
OpenAI Safety Gym [33], [34]. The Safety Gym offers safe
RL benchmarks to address the challenge of safe exploration.
We focus specifically on the Goal, Circle, Push, and Button
benchmarks and use the Point agent to represent the victim
system.

The Goal benchmark is a typically reach-avoid problem in
which a point navigates to a green goal while avoiding contact
with the three unsafe hazards on the map. The PointGoal
benchmark can be formulated into STL specification as below:

ϕ = F [0,T ](dg < rg) ∧G[0,T ](dc > rc)

Where dg is the distance to the goal and dc is the distance to
the closest hazard.

The Circle benchmark requires the point to navigate in the
green circle while avoiding going outside the boundaries where
the point has 16 sensors to detect the distance to the center of
the circle. Meanwhile, two walls are on the two sides so the
car should not crash on the wall. The goal of the point is to
reach a high velocity inside the circle and the safety constraint
is not crashing into the wall. We formulate the goal and safety
constraint as below:

ϕ = F
[0,T ]

(
v

|rcar − rcircle|
> v0) ∧G

[0,T ]
(dc > 0)

We denote that v is the current velocity of the car and v0 is
the desired velocity. rcar denotes the distance from the car to
the center of the circle which encourages the car to navigate
away from the center but not going out of the circle.

The Push benchmark adds a yellow box compared to the
Goal benchmark. In this scenario, the Point must push the box
to the goal while avoiding two hazards. The STL specification
for this benchmark is:

ϕ = F
[0,T ]

(dg < rg) ∧ F
[0,T ]

(db < rb) ∧G
[0,T ]

(dc > rc)

Here, dg represents the box-to-goal distance,db is the Point-
to-box distance, and dc is the distance to the hazards, with rg ,
rb, and rc being the respective thresholds.

The Button benchmark presents a similar reach-avoid prob-
lem, where the Point must touch the correct button while
avoiding hazards and the wrong button. The STL specifi-
cation is the same as the Goal benchmark with additional
G

[0,T ]
(dw > rw) to avoid the wrong button:

ϕ = F
[0,T ]

(dg < rg) ∧G
[0,T ]

(dw > rw) ∧G
[0,T ]

(dc > rc)

B. Experiments Setting

Training setting. We employ the Proximal Policy Optimiza-
tion (PPO) algorithm [35] to train the control policy across
four benchmarks, utilizing 107 training steps. The discount
factor γ is set to 0.99 to balance immediate and future rewards.
The architecture of the control policy comprises a three-layer
fully connected neural network, utilizing the Rectified Linear
Unit (ReLU) activation function.

Adversary setting. We conduct the four backdoor attacks
and use SP, WP, SA, and WA to denote strong passive, weak
passive, strong active, and weak active, respectively. Then We
define ϵ as the fraction representing how much of the training
process can be interfered with by an adversary, with values set
at 0.005, 0.01, 0.015, 0.02. These values indicate the maximum
proportion of the training steps that can be poisoned. The steps
to be poisoned with are chosen randomly, and once the amount



ϵ
Goal Circle

SP WP SA WA ST WT SP WP SA WA ST WT

0.005 28.9%
±4.3%

24.8%
±3.3%

12.1%
±1.8%

8.4%
±3.4%

10.8%
±2.7%

14.1%
±5.0%

16.6%
±3.2%

12.8%
±4.4%

15.9%
±3.0%

14.4%
±5.0%

5.4%
±1.8%

2.2%
±0.3%

0.01 42.0%
±2.1%

35.9%
±6.3%

41.0%
±4.8%

24.6%
±3.5%

17.0%
±4.2%

22.0%
±1.8%

20.6%
±2.2%

20.0%
±2.6%

26.8%
±4.3%

18.6%
±2.6%

11.6%
±3.5%

10.1%
±2.0%

0.015 54.2%
±2.8%

38.7%
±3.8%

48.6%
±5.7%

45.8%
±6.9%

21.2%
±3.5%

17.6%
±3.6%

28.7%
±5.2%

23.9%
±2.4%

25.8%
±3.0%

19.3%
±2.8%

10.4%
±1.8%

11.0%
±3.3%

0.02 51.4%
±5.0%

41.2%
±5.6%

60.0%
±5.1%

50.6%
±1.3%

35.6%
±3.7%

33.0%
±1.2%

36.8%
±5%

28.8%
±1.9%

49.6%
±4.7%

40.8%
±4.2%

9.6%
±1.8%

10.8%
±4.2%

Push Button

0.005 85.6%
±3.9%

48.4%
±6.1%

64.3%
±6.3%

38.2%
±5.4%

37.4%
±3.3%

20.2%
±3.0%

48.2%
±4.4%

33.8%
±3.7%

47.0 %
±3.8%

33.6%
±1.7%

23.0%
±4.8%

15.8%
±1.4%

0.01 89.5%
±1.7%

64.5%
±4.0%

77.5%
±2.0%

46.0%
±3.0

37.7%
±3.6%

25.6%
±7.4%

86.2%
±3.4%

53.8%
±3.7%

59.7%
±2.9%

46.0%
±3.0%

26.6%
±6.2%

25.0%
±2.1%

0.015 92.6%
±2.5%

70.9%
±3.0%

95.4%
±1.2%

44.8%
±2.7%

58.6%
±5.6%

26.6%
±5.6%

88.0%
±2.6%

59.4%
±2.4%

88.8%
±0.7%

69.0%
±5.1%

32.4%
±2.0%

22.2%
±2.9%

0.02 99.4%
±0.8%

83.2%
±2.7%

97.8%
±0.7%

48.4%
±5.4%

92.1%
±4.4%

47.4%
±2.6%

90.4%
±1.9%

89.2%
±3.5%

90.2%
±1.1%

77.2%
±5.8%

57.2%
±2.2%

46.8%
±4.1%

Table II: The effectiveness of the backdoor attack is evaluated through the violation rates, with ϵ representing the ratio of
poisoned training steps. We use abbreviations to denote different attack scenarios: SP and WP refer to the proposed strong
passive and weak passive backdoor attacks, while SA and WA represent strong active and weak active backdoor attacks,
respectively. Additionally, ST and WT denote the baseline methods of strong TrojanDRL and weak TrojanDRL.

ϵ
Goal Circle

SP WP SA WA ST WT SP WP SA WA ST WT

0.005 71.8
±21.4

80.0
±45.6

155.8
±184.5

119.9
±76.5

209.1
±20.9

191.7
±14.6

415.4
±19.2

419.2
±7.9

424.6
±12.5

437.5
±22.2

480.2
±12.7

477.7
±7.2

0.01 69.4
±32.9

78.8
±13.2

60.5
±9.7

82.8
±32.5

190.1
±19.7

186.5
±10.4

420.5
±8.7

460.6
±9.6

430.2
±19.2

416.7
±11.6

450.9
±14.7

412.6
±9.3

0.015 76.7
±6.4

71.0
±16.5

51.3
±8.2

75.3
±4.6

73.0
±14.1

69.4
±20.4

390.9
±16.7

440.3
±9.9

430.9
±17.6

404.0
±14.7

453.9
±7.9

427.3
±6.1

0.02 62.6
±3.34

71.9
±37.9

79.4
±25.3

74.2
±5.5

51.8
±16.9

134.0
±50.5

335.6
±11.3

417.5
±9.0

392.4
±12.1

353.1
±13.5

448.0
±8.5

451.7
±10.5

Push Button

0.005 234.3
±34.1

559.3
±68.8

473.4
±39.7

717.7
±40.1

726.8
±16.9

895.1
±23.1

179.5
±35.2

194.1
±13.1

165.1
±22.7

181.0
±6.6

190.1
±19.7

191.6
±14.6

0.01 212.2
±11.7

513.4
±41.2

338.7
±34.1

643.4
±17.3

702.6
±42.6

786.3
±41.6

169.7
±21.1

180.6
±11.2

135.4
±15.6

168.1
±15.8

209.1
±20.9

186.5
±10.4

0.015 144.1
±16.7

445.3
±20.9

183.5
±8.1

668.4
±26.0

647.0
±36.4

766.6
±34.5

104.6
±11.0

140.6
±11

138.9
±20.9

142.6
±17.8

186.2
±14.3

206.0
±29.8

0.02 90.2
±2.1

337.4
±19.4

124.0
±7.5

584.6
±52.9

318.9
±48.8

639.2
±30.6

80.7
±10.3

91.6
±4.2

81.7
±5.2

135.8
±22.4

157.8
±7.6

166.2
±23.1

Table III: The effectiveness of the backdoor attack is evaluated based on the Time-to-Failure (TTF). A lower TTF value signifies
a faster attack, implying that the attack can compromise the system’s safety more quickly.

of poisoned steps reaches the specified fraction, the adversary
is not allowed to manipulate any further in the training process.

In the case of the active backdoor attack, the trigger condi-
tion is met by modifying the acceleration sensor’s reading to a
value of 5. Conversely, the passive backdoor attack is initiated
when the system comes within 0.3 distance units of an unsafe
region. For both types of attacks across all four benchmarks,
we employ a reward penalty value, rp = 50, as illustrated in
Algorithm 2. This value of rp = 50 is considered sufficiently
large for the context of these benchmarks and aligns with the
recommendations posited in Theorem IV.1.

Baseline settings. We conduct a comparative analysis be-
tween our backdoor attack and baselines [31] and [13]. Both
baselines utilize the idea of poisoning states and rewards
during attacks and poisoning actions during strong attacks.
We implement both strong (ST) and weak (WT) versions of
the baselines using the same trigger as our active backdoor
attack. For the reward poisoning setting in [13], we assign

rt = +1 during strong attacks. The original weak baseline’s
reward mechanism is tailored for discrete action spaces, which
does not suit our continuous action space scenario. To enable
consistent comparison, we adjust the weak baseline’s reward
mechanism to penalize the deviation between the executed
action at and the malicious action a′t

rt = 1− ∥at − a′t∥

C. Results
1) Effectiveness Analysis: To evaluate the effectiveness of

the backdoor attack, we use the following metrics:

• Violation rate. We conducted 1000 episodes for each
benchmark and calculated the ratio of episodes in which
the agent violated the safety constraint for different
Trojaned policies produced by our proposed attack and
the baseline.



• Time to fail (TTF). The TTF is the average time steps
when the agent violates the safety. We compare the TTF
with the mean and the standard deviation of TTF.

Observation 1: Our proposed backdoor attack proves effec-
tive in compromising the STL-guided policy. As illustrated
in Table II, the table showcases the safety violation rate
across different poison ratios ϵ and attack methods. All four
attack methods exhibit superior performance compared to the
baseline methods. While the baseline methods achieve efficacy
with increasing poison ratio ϵ, our proposed backdoor attack
consistently demonstrates higher attack efficiency.

Table II reveals that the backdoor attack is notably effec-
tive with minimal poisoning ratios in the Push and Button
benchmarks. Specifically, the Push benchmark necessitates the
system first to approach a box before pushing it towards a goal,
while the Button benchmark demands the system to identify
the correct button and avoid wrong button alternatives, thereby
increasing the likelihood of safety breaches.

Furthermore, the results emphasize that the strong back-
door attack achieves the highest effectiveness, compelling the
system to violate safety constraints consistently. In contrast,
the weak backdoor attack consistently demonstrates lower ef-
ficiency. This discrepancy arises from the nature of the attacks:
the strong backdoor attack utilizes expert-guided learning,
always providing the optimal malicious action, while the
weak backdoor attack merely allows the adversary to explore
potential malicious actions.

Observation 2: We evaluate the effectiveness of our ap-
proach using the TTF metric, as shown in Table III. A lower
TTF indicates that an attack can compromise safety more
quickly. For most statistical results in Table III, the higher
the violation rate in Table II, the lower the TTF. However,
some results do not align with this. Our backdoor attacks are
not designed for fast violation. For example, the strong passive
backdoor attack achieves 60.0% violation rate when ϵ = 0.02
while the weak active backdoor has a lower violation rate but
has lower TTF. We believe that our proposed attack methods
are not designed for fast violation, so the violation rate and
TTF do not have a strong positive correlation.

2) Stealthiness Analysis: Stealthiness demands that the
attack should not force the system to approach unsafe con-
ditions if no trigger states are presented. While the active
and passive backdoors have different triggers, the stealthiness
measurement is also different. We use the following metrics
to evaluate the stealthiness:

• Stealthiness evaluation for active backdoor. The Tro-
janed policy generated by the active backdoor attack is
expected to behave normally in most states but exhibit
backdoor behavior when the state is manipulated to
the trigger state. We evaluate the stealthiness using the
reach rate compared to the standard policy, without any
adversary manipulation.

• Stealthiness evaluation for passive backdoor. The Tro-
janed policy generated by the passive backdoor attack
is expected to avoid forcing the system into an unsafe
state from a significant distance. Instead, it should cause
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Figure 3: The robustness values of φg over time, when the
triggers are not present. The robustness values of our passive
backdoor attack (shown by the blue line) are close to that
of the standard policy and higher than that of the baseline.
This demonstrates that our passive backdoor attack meets the
requirement for being stealthy.

the system to violate safety constraints only when it is
near the unsafe region. We assess the stealthiness using
the robustness value of φg for the Trojaned policy and
the standard policy when the system is not in the trigger
states.

ϵ
Goal Circle Push Button

SA WA SA WA SA WA SA WA

0.005 10.1
±3.2

9.0
±3.1

8.0
±2.7

4.2
±1.9

23.7
±4.4

18.0
±1.0

21.0
±4.3

14.2
±3.3

0.01 10.4
±3.2

11.0
±5.4

8.4
±6.1

9.2
±0.7

24.2
±5.1

16.4
±2.7

19.8
±4.7

16.0
±1.7

0.15 13.4
±5.6

12.5
±3.9

8.8
±2.3

4.9
±2.6

27.4
±1.0

22.2
±2.2

26.9
±1.5

14.3
±0.9

0.02 13.0
±2.8

11.3
±1.6

10.6
±0.4

12.2
±1.2

26.8
±1.5

24.2
±5.6

30.0
±3.5

20.1
±1.8

Table IV: The violation rates (in percentages) for the active
backdoor attack without triggering the attack. The violation
rates are much lower than the results in Table II which
indicates the stealthiness of active backdoor attack.

ϵ
Goal Circle Push Button

ST WT ST WT ST WT ST WT

0.005 5.7
±1.2

4.6
±1.3

2.7
±0.4

2.3
±0.5

47.0
±2.8

14.4
±4.4

16.8
±2.7

10.8
±2.4

0.01 9.3
±2.5

7.2
±3.2

7.5
±2.6

6.8
±1.9

61.8
±2.4

26.6
±3.8

24.8
±2.2

22.0
±4.1

0.15 17.1
±3.9

18.6
±4.5

8.9
±1.1

7.4
±1.0

58.8
±4.1

22.2
±2.2

29.6
±1.9

28.0
±2.8

0.02 16.6
±4.8

21.8
±5.8

9.2
±2.9

9.0
±2.3

84.4
±4.9

27.8
±6.3

33.8
±6.1

26.0
±3.3

Table V: The violation rates (in percentages) for the baselines
without triggering the attack.

Observation 3: The proposed active backdoor attack
demonstrates stealthiness, as shown in Table IV. The attack
generates a Trojaned control policy with a low violation
rate in clean states, indicating it can remain undetected by
operating normally when not triggered by an adversary. This
characteristic is vital for the attack’s effectiveness, allowing
it to stay hidden during regular operations and activate only
under specific, manipulated conditions. However, it’s noted
that an increase in the poisoning ratio does lead to a higher
violation rate, suggesting some interference with the normal



training process. As shown in Table V, the baseline models are
less stealthy in comparison, exhibiting higher violation rates
even when the attack is not triggered.

Observation 4: The proposed passive backdoor attack is
also designed to be stealthy, as shown in Figure 3. We
measure how stable φg is over time when the system isn’t
in a trigger state. Figure 3 reveals that the robustness of the
passive backdoor is very close to that of the standard policy.
This similarity means that the passive backdoor attack doesn’t
significantly change how the system normally works. Since
robustness reflects how well the control policy achieves the
task’s goals, this small difference indicates that the system still
works effectively towards its objectives, making the backdoor
attack harder to detect.

D. Extended Experimental Analysis

Env. Alg. SP WP SA WA

Goal TD3 26.8% 22.0% 17.4% 11.0%
SAC 19.4% 13.6% 18.2% 14.2%

Circle TD3 13.6% 9.2% 16.6% 10.8%
SAC 9.8% 7.0% 7.2% 6.8%

Push TD3 76.2% 59.8% 65.8% 49.4%
SAC 54.8% 41.2% 45.0% 31.2%

Button TD3 67.0% 43.2% 48.2% 37.0%
SAC 42.6% 29.4% 33.4% 20.8%

Table VI: The effectiveness of the attack on the off-policy
algorithms is demonstrated by the violation rate.

We demonstrate the effectiveness of the backdoor attack on
the controllers trained by off-policy algorithms, as shown in
Table VI. Using the same settings as the previous subsection,
we obtained the backdoor-injected off-policy controller and
ran the experiments for 500 epochs to determine the violation
rate. The results indicate that our proposed backdoor attack
is effective against off-policy algorithms. Additionally, we
train control policy using PPO with different neural network
architectures, where NN-4 stands for 4-layer MLPs and NN-
6 for 6-layer MLPs. The results in Table VII show that our
proposed attack is effective on larger networks.

Env. Arc. SP WP SA WA

Goal NN-4 43.8% 37.0% 46.2% 29.0%
NN-6 45.4% 36.8% 48.8% 32.6%

Circle NN-4 25.4% 22.0% 34.8% 23.0%
NN-6 27.6% 24.2% 31.8% 25.8%

Push NN-4 82.4% 57.0% 71.8% 49.2%
NN-6 86.6% 50.2% 67.0% 56.4%

Button NN-4 91.6% 67.6% 70.8% 63.0%
NN-6 92.0% 61.4% 73.4% 57.6%

Table VII: The effectiveness of the attack on different NN
architectures is demonstrated by the violation rate.

VI. DISCUSSION

Realism in the Real World. Our proposed adversarial
framework necessitates access to the training process. A prac-
tical method to implement this attack involves the adversary
uploading a third-party simulation to the cloud, i.e., through
an untrustworthy simulator. In this setup, critical components

of the training process, such as rewards, actions, and observa-
tions, are maliciously manipulated. Users employing this com-
promised third-party simulator would inadvertently develop
a control policy that contains a backdoor. This becomes a
significant safety concern when the user deploys the tainted
policy in a real-world system.

Limitation. Our proposed backdoor attacks have certain
limitations: i) The strong backdoor attack necessitates the
adversary to provide the malicious action a′t, which entails
having some knowledge of the system and environment.
Alternatively, the malicious action can be obtained using
reinforcement learning, as demonstrated in [36], however, it
is hard to have the optimal malicious action in real-world
scenarios even utilizing RL can not guarantee the optimality.
Another limitation is that the backdoor attack requires the
adversary to manipulate the reward, regardless of the type of
backdoor attack.

Defense. While numerous studies have explored defense
mechanisms against backdoor attacks in image-based tasks,
but they are often unsuitable for sensor data. Therefore,
we propose two defense mechanisms: model-based attack
detection and model-free reward monitoring. Model-based
attack detection methods detect sensor attacks by comparing
observed states with predicted ones using the manipulated
states and action [37], [38]. However, these methods can not
deal with the weak passive backdoor attack which only poisons
the reward signals and will not change the predicted states.
Model-free reward monitoring can capture the inconsistency
between the observed sensor data with the obtained rewards
to detect potential attacks. However, this solution may be
overlooked by the existing researchers, as sparse rewards are
commonly used in RL [39].

Furthermore, backdoor attacks can also be mitigated through
recovery mechanisms [40], [41]. These strategies leverage
knowledge of the system model and trustworthy historical
states to predict the actual state and recover the system to
safe states.

VII. CONSCLUSION

This paper addresses the research gap regarding the vulner-
ability of safe RL during the training process. We introduce
two backdoor attack algorithms and investigate how these
attacks compromise the safety of CPS. Our study demon-
strates that a carefully crafted malicious adversary can embed
safety-violating behavior into the control policy, which can
be triggered either passively or actively. Additionally, we
provide theoretical analysis illustrating how the adversary can
achieve both effectiveness and stealthiness in their attacks.
Finally, we extensively evaluate our proposed algorithms using
the OpenAI Safety Gym to demonstrate their efficacy and
stealthiness.

ACKNOWLEDGEMENT

This work was supported in part by NSF CNS-2333980.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of the National Science Foundation (NSF).



REFERENCES

[1] D. G. Pivoto, L. F. de Almeida, R. da Rosa Righi, J. J. Rodrigues,
A. B. Lugli, and A. M. Alberti, “Cyber-physical systems architectures
for industrial internet of things applications in industry 4.0: A literature
review,” Journal of manufacturing systems, vol. 58, pp. 176–192, 2021.

[2] A. H. El-Kady, S. Halim, M. M. El-Halwagi, and F. Khan, “Analysis of
safety and security challenges and opportunities related to cyber-physical
systems,” Process Safety and Environmental Protection, 2023.

[3] M. Liu, L. Zhang, V. V. Phoha, and F. Kong, “Learn-to-respond:
Sequence-predictive recovery from sensor attacks in cyber-physical
systems,” in 2023 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2023, pp. 78–91.

[4] F. Akowuah and F. Kong, “Real-time adaptive sensor attack detection
in autonomous cyber-physical systems,” in 2021 IEEE 27th real-time
and embedded technology and applications symposium (RTAS). IEEE,
2021, pp. 237–250.

[5] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained markov
decision processes,” in International Conference on Machine Learning.
PMLR, 2020, pp. 9797–9806.

[6] Y. Wang, S. Zhan, Z. Wang, C. Huang, Z. Wang, Z. Yang, and Q. Zhu,
“Joint differentiable optimization and verification for certified reinforce-
ment learning,” in Proceedings of the ACM/IEEE 14th International
Conference on Cyber-Physical Systems (with CPS-IoT Week 2023),
2023, pp. 132–141.

[7] S. S. Zhan, Y. Wang, Q. Wu, R. Jiao, C. Huang, and Q. Zhu, “State-
wise safe reinforcement learning with pixel observations,” arXiv preprint
arXiv:2311.02227, 2023.

[8] A. Camacho, R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A.
McIlraith, “Ltl and beyond: Formal languages for reward function
specification in reinforcement learning.” in IJCAI, vol. 19, 2019, pp.
6065–6073.

[9] A. Balakrishnan and J. V. Deshmukh, “Structured reward shaping using
signal temporal logic specifications,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
3481–3486.

[10] I. Ilahi, M. Usama, J. Qadir, M. U. Janjua, A. Al-Fuqaha, D. T.
Hoang, and D. Niyato, “Challenges and countermeasures for adversarial
attacks on deep reinforcement learning,” IEEE Transactions on Artificial
Intelligence, vol. 3, no. 2, pp. 90–109, 2021.

[11] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part X 16. Springer, 2020, pp. 182–199.

[12] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks
on deep neural networks,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, 2019, pp. 2041–
2055.

[13] K. Panagiota, W. Kacper, S. Jha, and L. Wenchao, “Trojdrl: Trojan
attacks on deep reinforcement learning agents. in proc. 57th acm/ieee
design automation conference (dac), 2020, march 2020,” in Proc. 57th
ACM/IEEE Design Automation Conference (DAC), 2020, 2020.

[14] L. Wang, Z. Javed, X. Wu, W. Guo, X. Xing, and D. Song, “Backdoorl:
Backdoor attack against competitive reinforcement learning,” arXiv
preprint arXiv:2105.00579, 2021.

[15] Y. Chen, Z. Zheng, and X. Gong, “Marnet: Backdoor attacks against
cooperative multi-agent reinforcement learning,” IEEE Transactions on
Dependable and Secure Computing, 2022.

[16] N. K. Singh and I. Saha, “Stl-based synthesis of feedback controllers
using reinforcement learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 12, 2023, pp. 15 118–15 126.

[17] A. Puranic, J. Deshmukh, and S. Nikolaidis, “Learning from demonstra-
tions using signal temporal logic,” in Conference on Robot Learning.
PMLR, 2021, pp. 2228–2242.

[18] P. Kapoor, A. Balakrishnan, and J. V. Deshmukh, “Model-based re-
inforcement learning from signal temporal logic specifications,” arXiv
preprint arXiv:2011.04950, 2020.

[19] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.
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