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Abstract—The advent of large language models (LLMs) has
initiated much research into their various financial applications.
However, in applying LLMs on long documents, semantic rela-
tions are not explicitly incorporated, and a full or arbitrarily
sparse attention operation is employed. In recent years, progress
has been made in Abstract Meaning Representation (AMR),
which is a graph-based representation of text to preserve its
semantic relations. Since AMR can represent semantic relation-
ships at a deeper level, it can be beneficially utilized by graph
neural networks (GNNs) for constructing effective document-level
graph representations built upon LLM embeddings to predict
target metrics in the financial domain. We propose FLAG:
Financial Long document classification via AMR-based GNN,
an AMR graph based framework to generate document-level
embeddings for long financial document classification. We con-
struct document-level graphs from sentence-level AMR graphs,
endow them with specialized LLM word embeddings in the
financial domain, apply a deep learning mechanism that utilizes
a GNN, and examine the efficacy of our AMR-based approach
in predicting labeled target data from long financial documents.
Extensive experiments are conducted on a dataset of quarterly
earnings calls transcripts of companies in various sectors of the
economy, as well as on a corpus of more recent earnings calls of
companies in the S&P 1500 Composite Index. We find that our
AMR-based approach outperforms fine-tuning LLMs directly on
text in predicting stock price movement trends at different time
horizons in both datasets. Our work also outperforms previous
work utilizing document graphs and GNNs for text classification.

I. INTRODUCTION

Textual data is an important qualitative source of informa-

tion in the financial domain. Financial reports can provide

valuable signals for a firm’s future performance, since these

reports usually contain forward-looking plans and strategies,

which may not be fully captured in their financial statements.

Since textual data provides greater insights into firm perfor-

mance, various methods have been utilized for transforming

these textual reports into numerical representations, in order

to define effective features for predicting target variables such

as temporal price trends, that are of value to investors.

Despite the progress that has been made in recent years,

especially in the sphere of language models (LMs), there

still remains the challenge of long documents whose lengths

usually exceed the maximum context length of LMs. Even

with longer context LLM, learning good representations of

documents is still quite difficult; a recent benchmark work on

Q&A tasks in the financial domain demonstrated that even big

LLMs such as [1] have difficulties in answering questions cor-

rectly based on specific corpora of financial documents [2]. In

addition, with transformer-based methods, semantic relations

between word entities are usually constructed arbitrarily, either

with full attention where each word attends to every other

word, or sparse attention, where attentions between words

are set up arbitrarily, such as sliding window attention or

randomized attention.

We propose Financial Long document classfication via

AMR-based GNNs (FLAG), that learns effective document-

level embeddings based on specialized LM word embeddings

in the finance domain through AMR [3], which is a graph

representation of text that preserves semantic relations. The

unique feature of AMR graphs is that they are abstracted rep-

resentations of text capable of capturing the semantic meaning

of sentences, rather than just verbatim word sequences. Hence,

words, phrases and sentences that have the same meaning, but

differ in wording or spelling, usually result in the same AMR

representation. As such, AMR is more semantically detailed

and represents deeper meaningful relations between semantic

concepts.
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Fig. 1. An example of the AMR graph for the sentence: an investment in our

common stock is subject to risks inherent to our business.

In order to demonstrate the abstracting nature of AMR

graphs, in Figure 1, we show the AMR graph of a sample

sentence: an investment in our common stock is subject to

risks inherent to our business. As we can see, the AMR graph

is an abstracted representation of semantics. It can identify

meaningful concepts within a sentence, such as “invest” and

“subject”, and it extracts the semantic relations between them.

Moreover, we see that the two instances of “our” in the original

sentence have both been abstracted as the concept of “we”,

and the node “we” has possessive relations with “stock” and

“business.”



Our approach utilizes the transition AMR parser [4] to

transform each sentence of a document into an AMR graph

with alignment of each node with its corresponding word in the

sentence. The sentence-level graphs are then aggregated using

a hierarchical approach that utilizes both document-level and

sentence-level virtual nodes. We initialize each node (or word)

with its contextual embedding using FinBERT [5], a specially

trained LM in the finance domain. On the document-graph thus

constructed, we apply GATv2 [6], a recent GNN that employs

dynamic attention mechanism. Finally, we take the embedding

of the document virtual node as the final representation for the

document, and use it for the downstream classification task.

While we choose FinBERT as the base LM for FLAG, other

models such as BloombergGPT [7], or open-source models

such as FinGPT [8] can also be used.

In summary, our contributions are:

• We propose and implement an AMR-based deep learning

framework for classification tasks geared towards long fi-

nancial documents. Our FLAG approach constructs novel

document-level AMR graphs from sentence-level AMR

graphs and uses a GNN to learn effective document-level

representations.

• We perform an extensive set of experiments on two

collections of earnings calls for companies from different

sectors of the economy and from the S&P 1500 Com-

posite Index to show that FLAG outperforms previous

methods in predicting stock price movement trends for

different time horizons, thereby achieving state-of-the-art

(SOTA) performance.

II. RELATED WORKS

In processing documents, traditional approaches for feature

identification generate static embeddings that do not contain

contextual information. Methods such as Term Frequency - In-

verse Document Frequency (TF-IDF) [9], word2vec [10], and

GloVe [11] belong in this category. They generate numerical

vector representations that contain some semantic information,

but strictly speaking, are not contextual embeddings. Recent

approaches construct contextual embeddings that represent

a word in view of its context. LMs, such as BERT [12]

and GPT [1] belong in this category. These approaches can

learn different representations for a word according to its

surrounding context. The challenge with LMs, however, for

using them on long financial documents, such as corporate

earnings call transcripts, is the difficulty to extract document-

level features, since the maximum number of word tokens

these transformer LMs can handle is limited, and even if

they can handle longer context windows, getting effective

document-level representations still poses a big challenge.

On the semantic graph side, to our knowledge, AMR-

based approaches have not been applied for long financial

document classification tasks, such as earnings calls that can

exceed 7,000 words in length. However, there have been

several methods in different domains that utilize AMR for

textual analysis. For example, researchers have used it for

text classification [13], event detection [14], profanity and

toxic content detection [15], paraphrasability prediction and

paraphrase generation [16], and machine translation [17]. All

of these utilize only sentence-level AMR, which is unsuitable

for our purpose.

Methods for AMR parsing, which is the process of trans-

forming text into AMR graphs, are well-studied. Transition-

based parsers, such as [18] and [19], provide SOTA sentence-

level results, and AMR aligners, such as [20], provide reliable

AMR-to-text alignments that link each node entity to its corre-

sponding word in the original sentence. There have also been

recent works on parsing multi-sentence AMRs to preserve

cross-sentence information. O’Gorman et al. [21] provided a

corpus of annotated multi-sentence AMRs, which was used by

Naseem et al. [22] to implement a new approach to construct-

ing multi-sentence or document-level AMR representations.

Since their approach is still limited to short documents (e.g.,

averaging about 429 words per document), it is unsuitable for

our purpose. Instead, we transform the AMR graphs into a

document-level graph specially designed for long documents.

As for utilizing document graphs and GNNs to perform

graph learning for text classification in the finance domain,

Medya et al. [23] designed and implemented StockGNN,

which constructs document graphs based on the contextual

window of each unique word in the document, applies a

Gated GNN [24] on the document graphs, and concatenates the

final embeddings of the document graphs with their respective

doc2vec [25] embeddings to generate the final document

representation for text classification. They collected a corpus

of general domain earnings calls from several sectors of the

economy and predicted the financial impact of earnings calls

on stock price using StockGNN. We use StockGNN as a

baseline in our experiments. Importantly, StockGNN graphs

are localized context graphs, and do not model semantics as

we do via AMR.

III. THE FLAG APPROACH

FLAG is an AMR-based GNN graph learning framework

based on LM embeddings for long financial document clas-

sification. For each document, we parse all its sentences into

AMR graphs, and construct a document-level AMR graph hier-

archically with a sentence virtual node for every sentence and

a document-level node to represent the document. We initialize

each node with the word embedding of its corresponding word,

generated from contextual LMs. Next, we apply a GNN model

to generate the final document representations by taking the

document virtual node embeddings. As such, our approach

can be split into three phases: (1) Sentence AMR Parsing,

(2) Document-level Graph Construction, and (3) GNN Model

Training and Fine-Tuning, with the architecture illustrated in

Figure 2. Each of the phases is discussed next.

A. Sentence AMR Parsing

In a corpus consisting of N documents, L =
{d1, d2, · · · , dN}, let di represent the i-th document of the

corpus. For a document di, we first sentencize the document



Document i Sentences
Transition

AMR Parser

Sentence 

AMRs

Document-level 

AMR Graph i

Linear Layer 

FC1: [b,dim]

Linear Layer 

FC2: [b,m]

Output

Neuron

Graph Neural 

Network 

(GNN)

F

B

F

B

FF

BB

Fig. 2. FLAG Architecture: Each document is parsed into sentences, which
are converted into sentence AMR graphs. Using our hierarchical approach, we
combine them into the document-level graph, which is endowed with the word
embeddings and we then apply the GNN model to generate the final document
virtual node embedding. This embedding is then passed through two fully
connected linear layers to predict the target output. F: forward propagation;
B: backward propagation.

into sentences, using the pre-trained Punkt tokenizer for En-

glish in the NLTK package [26]. This provides a sequence

of sentences S = {s1, s2, · · · , smi
}, where mi denotes the

total number of sentences in di. Each sentence in S is parsed

into a sentence-level AMR graph using the transition AMR

parser [4], thereby generating a sequence of sentence graphs,

SGi = {sg1, sg2, · · · , sgmi
}.

Fig. 3. Document-level graph construction.

B. Document-level Graph Construction

Figure 3 shows our document-level graph construction. For

di, we have a sequence of sentence AMR graphs SGi =
{sg1, sg2, · · · , sgmi

}. For each sentence graph in SGi, we

make a virtual sentence node that connects to all the nodes

in the sentence graph, culminating in a consecutive sequence

of virtual sentence nodes SNi = {sn1, sn2, · · · , snmi
}, and

then we connect these sentence virtual nodes in a consecutive

manner, such that sn1 is connected to sn2, sn2 is connected

to sn3, and so on, both forming a hierarchical representation

of each sentence and preserving the order of sentences in the

document. In turn, each sentence node in SNi is connected

to a virtual document node dni, representing di. Overall, all

the original nodes and edges in SGi, all the virtual sentence

nodes and their edges in SNi, and the virtual document node

dni and its edges, form the graph structure gi for document

di. We make every edge of the graph bidirectional, so that

information can flow both ways during model training.

After constructing the graphs, we initialize the nodes with

embeddings of their corresponding words in the original text,

generated from the base LM method. We are able to do

so, because the transition AMR parser [20] provides us with

alignment between node entities in the sentence AMR graphs

in SGi and their corresponding words in the original text of

the sentences.

The LM method that we chose is FinBERT [5], a spe-

cialized LM in the finance domain which generates token

embeddings of size 768. We initialize the non-virtual nodes

in our document-level graphs with the word embeddings of

the original word in the sentence that they are aligned with.

We pass each sentence of the document through the LM. A

word’s embedding is the average of the sum of the last 4

hidden state embeddings for each of the sub-tokens. Through

this process, each non-virtual node in gi is initialized with

word embeddings of size 768. All virtual nodes, dni and all

the nodes in SNi, are initialized as zero vectors.

C. GNN Model Training and Fine-Tuning

Given document-level graphs constructed for every doc-

ument in the corpus L, forming a collection of graphs,

GL = {g1, g2, · · · , gN}, we apply an initial MLP layer on

the graph features to transform the original node embedding

dimension of 768 into another hidden dimension. We then

train a GNN model on the transformed graphs, specifically,

GATv2 [6], an attention-based GNN model which has been

theoretically proven to achieve dynamic attention. Afterwards,

we take the embedding vector of the virtual document node

dni as the document representation for the graph gi, denoted

hi. We then use a linear layer:

xi = W1hi + b1, (1)

followed by another linear layer that outputs the final predicted

one-hot label, ŷi, after a softmax.

ŷi = softmax(W2xi + b2) (2)

Finally, we use the cross entropy loss, L = −
∑

k
yk log(ŷk),

where ŷk is the k-th element of the predicted label, and yk is

the k-th element of the target one-hot label.

IV. EMPIRICAL EVALUATION

We now present experimental results to evaluate the efficacy

of FLAG. We utilized the transition AMR parser [4] with the

AMR 2.0 structured BART large model pre-trained checkpoint

[20] to perform AMR parsing and alignment, and we used the

Deep Graph Library (DGL) [27] for graph construction and

initialization, as well as for GNN model training.

For the hyperparameter tuning for FLAG, we train the

framework for up to 20 epochs; for LM baselines, we train

up to 30 epochs; and for StockGNN and related methods, we

train up to 1000 epochs. We vary the learning rate from 10−2

to 10−6, and select the model with the lowest validation error



TABLE I
BEST HYPERPARAMETERS FOR ALL METHODS: (E) NUMBER OF EPOCHS,

AND (LR) LEARNING RATE.

Finance Health Materials Service Tech

FinBERT (E) 7 11 7 9 3

FinBERT (LR) 10
−5

10
−6

10
−5

10
−6

10
−5

StockGNN (E) 717 725 316 178 187

StockGNN (LR) 10
−5

10
−5

10
−5

10
−5

10
−5

FLAG (E) 14 9 17 10 15

FLAG (LR) 10
−5

10
−5

10
−5

10
−5

10
−5

as the best model. The best hyperparameters for each method

are reported in Table I. Our code and datasets are publicly

available on github via https://github.com/Namir0806/FLAG.

A. Dataset and Metrics

We take corporate earnings call transcript data as the subject

of our analysis. An earnings call is a conference call between

company executives and the financial community. It is usually

held on a quarterly basis following the release of a company’s

earnings report. On this call, the management reviews the

company’s performance for a specific period, as well as

potential risks and future plans, which can cause subsequent

stock prices to shift dynamically [28].

To evaluate FLAG, we compare its performance with base-

line methods on both the Medya et al. earnings call dataset

[23], which contains earnings calls from 5 sectors of the

economy during period from 2010 to 2019, and a new dataset,

the S&P 1500 earnings call corpus, which contains earnings

calls of companies from the S&P 1500 Composite Index

during the period from 2010 to 2023, that we collected.

TABLE II
MEDYA EARNINGS CALLS DATASET: N IS NUMBER OF DOCUMENTS AND

L IS AVERAGE DOCUMENT LENGTH.

Train/Val N Test N Train/Val L Test L

Finance 14930 2036 7351.20 6668.94

Health 9869 1646 7083.55 6591.70

Materials 9240 1256 7165.85 6452.11

Service 14890 1983 7498.45 6928.90

Technology 14319 2069 7112.78 6785.09

TABLE III
FLAG GRAPH STATISTICS FOR THE MEDYA EARNINGS CALL DATASET: N

IS NUMBER OF NODES, E IS NUMBER OF EDGES, AND D IS DEGREE.

Avg. N Avg. E Avg. D

Finance (Train/Val) 6307.34 19559.83 3.10
(Test) 5784.46 17921.15 3.10

Health (Train/Val) 6161.94 19115.60 3.10
(Test) 5775.57 17908.75 3.10

Materials (Train/Val) 6261.34 19400.57 3.10
(Test) 5640.78 17464.83 3.10

Service (Train/Val) 6464.74 20066.69 3.10
(Test) 5993.24 18598.27 3.10

Tech (Train/Val) 6192.78 19215.09 3.10
(Test) 5934.40 18407.39 3.10

Medya Earnings Call Dataset The Medya et al. [23] earnings

call dataset consists of earnings calls during the 2010 to

2019 period. It is split into five sectors: finance, health, basic

materials, service, and technology. They used this dataset to

predict a binary trend label, which they call value-based labels.

They define the label function yv(T
c

d
) for an earnings call

transcript T c

d
of a company c on the day d as follows:

yv(T
c

d
) =

{

1, ifSc

d+1
> Sc

d−1

0, otherwise,
(3)

where Sc

d+1
and Sc

d−1
denote the closing stock prices of com-

pany c on the following and previous business day respective

to day d.

Since this task is to analyze the trend, it aims to capture the

immediate financial impact of an earnings call, so the target is

daily and more granular than most financial impact analyses in

industry. Moreover, in the real world, financial impact analyses

in the context of portfolio management or asset pricing involve

multiple complex factors, both qualitative and quantitative, and

the textual signals from earnings calls only form a fraction of

all the factors that can affect the stock price trends. Therefore,

the purpose of experimenting on this dataset in predicting

the daily value-based label is to evaluate the effectiveness of

document representations produced by different methods for

predicting immediate price movements only from textual data.

All the earnings calls during the period of 2010 to 2018

are used as the training/validation set (with a 80:20 split), and

all the earnings calls during 2019 are used as the test set, as

is done by Medya et al. [23]. The detailed data statistics are

listed in Table II. As for the document-level graphs constructed

using the FLAG approach from earnings calls for the Medya

dataset, the detailed statistics are shown in Table III.

TABLE IV
S&P 1500 EARNINGS CALLS DATASET STATISTICS, WITH THE TOTAL

NUMBER OF DOCUMENTS (N ) AND AVERAGE DOCUMENT LENGTH (L).

N L

Train/Val 55696 8138.38

Test 6049 7912.46

TABLE V
FLAG GRAPH STATISTICS FOR THE S&P 1500 EARNINGS CALL DATASET.

Avg. # of nodes Avg. # of edges Avg. degree

Train/Val 7093.21 28883.19 4.07
Test 6512.83 26353.94 4.05

S&P 1500 Earnings Call Corpus The S&P 1500 earnings

call corpus dataset we collected contains more recent data,

and consists of earnings call transcripts from the S&P 1500

Composite Index for the period 2010 to 2023. It includes

companies from all sectors and represents the overall U.S.

equity market. Unlike for the Medya dataset, we use this

dataset to predict weekly value-based labels. For this dataset,

we define the label function yv(T
c

d
) for an earnings call

transcript T c

d
of a company c on day d as follows:

yv(T
c

d
) =

{

1, if 1

5

∑5

i=1
Sc

d+i
> 1

5

∑5

i=1
Sc

d−i

0, otherwise,
(4)



where 1

5

∑5

i=1
Sc

d+i
and 1

5

∑5

i=1
Sc

d−i
denote the average

value of the closing stock prices of company c from the week

preceding and after respectively of day d (a business week is

defined as 5 working days).

The target labels in this case are on a weekly basis, so

it is closer to what an analyst would infer from a company’s

earnings calls about the future direction of the company in the

following week. The purpose is to investigate the effectiveness

of documents representations produced by different methods,

but in the context of predicting a longer-term (weekly) target

label.

All the earnings calls during the period of 2010 to 2021 are

used as the training/validation set (with a 90:10 split), and all

the earnings calls during 2022-2023 are used as the test set.

The detailed statistics for the corpus are shown in Table IV.

The document-level graphs are constructed using the FLAG

approach from earnings calls in the S&P 1500 corpus, with

the detailed statistics shown in Table V.

B. Methods

We describe the baselines and FLAG used in our experi-

ments.

• FinBERT [5]: We compare with a baseline LM model,

using a domain-specific model pre-trained on financial

corpora, FinBERT [5]. This baseline method truncates

the long document to the maximum length that the LM

can take, and applies the LM to generate document

embeddings, which is then passed through two linear

layers to predict the target. Overall, this serves as a

representative transformer-based LM baseline.

• StockGNN [23]: StockGNN [23] also utilizes contextual

graphs and the Gated GNN (GGNN) method [24] to

learn from long financial documents. However, it uses

only a local contextual graph and does not leverage

deeper semantics. Overall, this serves as a representative

previous SOTA baseline method.

• FLAG: For the GNN model in FLAG, we configure

GATv2 with 4 layers, 8 attention heads per layer, and

512 as the hidden dimension that node embeddings of

the original graphs are transformed to before applying the

GNN model. We found this configuration to perform best

empirically, which we discuss more in the ablation studies

below. Each GATv2 layer reaches a node’s immediate

neighbours. Therefore, 4 layers are sufficient to reach

from one node to all other nodes, as the diameter of the

document graphs is close to 4.

• GGNN on FLAG Graphs: Since StockGNN uses

only contextual graphs, we examine the effectiveness of

GGNN [24] on the AMR graphs constructed in FLAG.

This baseline serves to showcase the added benefits from

a more semantics-based AMR graph with the same GNN

as used in StockGNN.

C. Comparative Results

For experiments, we train the models to minimize the

training loss, and because the target value is a trend metric,

we evaluate the quality of the binary trend label predictions by

evaluating the accuracy, precision (macro average), and recall

(macro average) of the predictions, as is done in Medya et al.

[23], as well as the F1 score.

TABLE VI
EXPERIMENT RESULTS ON THE MEDYA EARNINGS CALL DATASET. BEST

RESULTS ARE MARKED IN BOLD.

Accuracy

Finance Health Materials Service Tech

FinBERT 0.574 0.547 0.516 0.496 0.541
StockGNN 0.559 0.584 0.561 0.554 0.551
FLAG 0.619 0.614 0.597 0.626 0.637

Precision

Finance Health Materials Service Tech

FinBERT 0.581 0.544 0.524 0.503 0.545
StockGNN 0.563 0.583 0.562 0.554 0.557
FLAG 0.615 0.616 0.595 0.629 0.641

Recall

Finance Health Materials Service Tech

FinBERT 0.521 0.543 0.523 0.501 0.543
StockGNN 0.564 0.583 0.562 0.553 0.553
FLAG 0.616 0.604 0.593 0.627 0.638

F1 Score

Finance Health Materials Service Tech

FinBERT 0.437 0.542 0.513 0.423 0.536
StockGNN 0.559 0.583 0.561 0.552 0.543
FLAG 0.615 0.598 0.592 0.624 0.635

Results on the Medya Dataset: Table VI shows the detailed

results of our comprehensive experiment across all 5 sectors in

the Medya et al. earnings calls dataset. As we can see, FLAG

outperforms both FinBERT and StockGNN across all sectors

of the economy. However, there are different degrees to how

well FLAG performs in different sectors. Especially compared

to the FinBERT baseline, we see the smallest improvement

in performance in the financial sector. Overall, the highest

absolute performance is in the technology sector. Therefore,

in the spirit of fintech, we take the financial sector and the

technnology sector as subjects of analyses in both the ablation

studies and the case study below.

With regards to FinBERT, FLAG is able to achieve signif-

icant performance gains over directly applying the domain-

specific LM. Especially in the service and technology sectors,

we see very high performance gains with FLAG (e.g., 26.2%

gain for service), and in the financial sector, it outperforms

FinBERT, however by a lesser margin (7.8% gain). We find

the same trend for performance using StockGNN. The im-

provement in the service and technology sector is generally

higher than in the other sectors. We posit that this trend is due

to the differences in the nature of earnings calls in different

sectors of the economy and how the stock market reacts to an

earnings call event in each particular sector, which we analyze

in the case study below.

Earnings calls have an immediate financial impact on stock

prices, and through this set of experiments, we show that

FLAG is able to capture that better. In other words, as a

more semantically meaningful approach, it is able to achieve



better performance in predicting stock price movement trends

for which the input document is a main contributing factor.

This indicates that choosing the sparse connections in a

semantically meaningful way, as done via the AMR graphs,

helps the model achieve better performance in trend analysis.

We validate this conclusion through an ablation study of

applying Gated GNN, the GNN used in StockGNN, on the

AMR document-level graphs (discussed below). This finding

is important for building a textual element within asset pricing

model in the real world, where the textual signals implications

for stock price trends must be understood.

TABLE VII
EXPERIMENT RESULTS ON THE S&P 1500 EARNINGS CALL DATASET.

BEST RESULTS ARE MARKED IN BOLD.

Accuracy Precision Recall F1 Score

FinBERT 0.549 0.543 0.530 0.501
StockGNN 0.556 0.551 0.543 0.533
FLAG 0.598 0.598 0.586 0.578

Results on S&P 1500 Dataset: Table VII shows the ex-

periment results on the S&P 1500 dataset, in the context of

predicting weekly average price trends. Once again, FLAG

performs better in predicting longer-term price trend metrics

at the weekly granularity when compared with FinBERT and

StockGNN, with the graph-based approach of StockGNN per-

forming better than FinBERT. This corpus consists of earnings

calls from all sectors in the U.S. equity market, as represented

in the index. As such, the absolute performance gains of FLAG

on this corpus are lower compared to the sector-specific Medya

earnings call dataset, albeit the target metric scope is different:

the latter is on a daily granularity. Overall, the results show

that not only are there indications for weekly stock price trends

contained in the soft information of the earnings calls, but

that FLAG is able to extract this better with its semantically

meaningful graph representations of documents, even across

various different sectors of the economy.

TABLE VIII
PERFORMANCE OF STOCKGNN VS. GATED GNN WITH FLAG.

Finance

Accuracy Precision Recall F1 Score

StockGNN 0.541 0.513 0.509 0.489
GGNN on FLAG graphs 0.547 0.540 0.540 0.540

Tech

Accuracy Precision Recall F1 Score

StockGNN 0.560 0.560 0.560 0.560
GGNN on FLAG graphs 0.573 0.574 0.574 0.573

D. Ablation Studies

a) Efficacy of AMR document-level graphs: a comparison

between StockGNN and Gated GNN on FLAG graphs: As

FLAG and StockGNN utilize different GNNs, with FLAG

using GATv2 and StockGNN using Gated GNN, it is of

interest to evaluate the performance of document graphs

constructed with FLAG versus document graphs constructed

with StockGNN. Therefore, we apply the same configurations

of GGNN that StockGNN uses, but on the documents graphs

constructed with FLAG, and compare its performance against

StockGNN generated graphs, on the financial and technology

sectors of the Medya dataset. We ran StockGNN for 100

epochs and GGNN on FLAG graphs for 50 epochs. Table

VIII shows the results.

For both the sectors, there is value added in using FLAG-

based document graphs, even without using an attention-based

GNN, such as GATv2. We see the same performance trends as

the main experiments conducted on the Medya dataset, where

the performance improvement is less for the financial sector,

compared to the technology sector. We delve a bit into why

this may be the case in the case study below.

TABLE IX
ABLATION OF VARIOUS DIFFERENT GNNS APPLIED ON FLAG GRAPHS.

Finance

Accuracy Precision Recall F1 Score

FLAG 0.619 0.615 0.616 0.615

GAT 0.603 0.598 0.599 0.598
GCN 0.565 0.553 0.551 0.550
GGNN 0.547 0.540 0.540 0.540
PNA 0.561 0.281 0.500 0.360

Tech

Accuracy Precision Recall F1 Score

FLAG 0.637 0.641 0.638 0.635

GAT 0.619 0.627 0.621 0.614
GCN 0.594 0.595 0.595 0.594
GGNN 0.573 0.574 0.574 0.573
PNA 0.511 0.525 0.516 0.462

b) Efficacy of attention-based GATv2: a comparison of

different GNNs applied on FLAG graphs: Coupling dynamic

attention offered by GATv2 with the structure of FLAG-based

document graphs is an important aspect of the FLAG method-

ology and has been shown to achieve superior performance. On

account of the large size of the document graphs produced by

FLAG, as shown in the dataset metrics in Section IV-A, graph

transformers cannot be applied on FLAG graphs. However,

there are other graph convolution networks that can be applied

to FLAG graphs, including conventional GCN, PNA [29],

GAT [30], which does not have dynamic attention, and Gated

GNN [24] (also compared above). We experiment with these

GNNs and present the results in Table IX. We find that GATv2

coupled with FLAG graphs offers an edge in performance that

other non-attention-based GNNs or GNNs without dynamic

attention cannot match. Also interesting is that the GCN model

also outperforms GGNN and PNA on the earnings call graphs.

c) Various configurations of GATv2: number of layers,

attention heads, and different hidden dimensions: GATv2 is

a GNN that has many possible configurations, including the

number of layers and attention heads, and different hidden

dimensions of transformed input graphs (in FLAG). In our

ablations, we experimented with the number of layers ranging

from 1 to 6, the number of attention heads varying from 4, 8,

and 12, and hidden dimensions of 256, 512, and 768. Table X

shows the effect on the performance of frameworks with

different numbers of GATv2 layers, as we vary the attention

heads and the hidden dimensions. Results are shown for the



TABLE X
ABLATION OF FLAG ON THE FINANCIAL SECTOR.

# Layers Accuracy Precision Recall F1 Score

4 attention heads, 256dim

1 0.561 0.281 0.500 0.360
2 0.604 0.600 0.601 0.600
3 0.569 0.588 0.584 0.568
4 0.596 0.598 0.599 0.595
5 0.603 0.598 0.599 0.599
6 0.605 0.596 0.591 0.590

8 attention heads, 512dim

1 0.561 0.281 0.500 0.360
2 0.602 0.598 0.600 0.598
3 0.611 0.607 0.608 0.607
4 0.619 0.615 0.616 0.615

5 0.604 0.598 0.598 0.598
6 0.598 0.597 0.598 0.596

12 attention heads, 768dim

1 0.561 0.281 0.500 0.360
2 0.595 0.597 0.598 0.594
3 0.585 0.590 0.591 0.585
4 0.616 0.608 0.606 0.607
5 0.571 0.555 0.546 0.537
6 0.565 0.550 0.510 0.412

case when the projected dimensionality for the attention is

fixed as 64, be it 64 = 256/4, or 64 = 512/8, or 64 = 768/12.

We find that the configuration with 4 layers, with 8 attention

heads each, and a hidden dimension of 512 has consistently

better performance across sectors, and that is chosen as the

default configuration for FLAG.

E. Case Study

As we have seen in the experiment results, FLAG achieves

higher performance gains in sectors such as technology, but

not as much in sectors like the financial sector. We posited

that the stock market reacts differently to earnings calls in the

financial sector versus the technology sector. To investigate

this further, we applied the GNNexplainer [31] method to

the document on which FLAG performed the worst in the

financial sector (for Cushman & Wakefield, Q2, 2019) and on

the document that FLAG performed the best in the technology

sector (for Paycom, Q1, 2019), in terms of cross-entropy loss.

We trained GNNexplainer with 3 hops for 1000 epochs, and

generated the edge mask. This shows, in numerical terms,

which edges in the FLAG graph are determined to be important

in making the prediction. We then looked at all the edges

going into the document virtual node from sentence virtual

nodes, and examined the important edges to extract the top

sentences that were considered to be more important for

the final classification. Table XI shows some example top

sentences from the two documents.

In the case of Cushman & Wakefield, the actual stock

price went down, but FLAG predicted that it would go up.

Looking at the top sentences, we can see why it made such

a prediction, as the earnings call speaks about growth in

the past and how they expect the growth to continue in the

future. However, it would seem that the market did not believe

Cushman & Wakefield projections, and the stock price actually

went down as a result. In the case of Paycom, the stock price

went up, and FLAG predicted correctly that it would go up.

From the top sentences FLAG identified, we see the company

speaking optimistically about its growth and a new system that

employees are using more and more, which the market reacted

positively to, leading to an uptick in stock price.

Albeit only one representative case study, it suggests a

potential trend where the market does not “believe” firms in

the financial sector on the face value of statement made in

earnings calls as much as they do firms in other sectors, such

as the technology sector, where companies deal with more

tangible assets. This warrants examining more on the broader

characteristics of earnings calls in different sectors and how

market reacts to them differently, and we plan to conduct this

analysis in our future work.

V. CONCLUSION AND FUTURE WORKS

This work presents the first use of AMR-based graphs in a

predictive framework for long document classification tasks,

such as financial trend prediction. As demonstrated by the ex-

periments, in predicting both immediate and longer-term price

trends based on textual signals from earnings calls, FLAG with

underlying FinBERT-generated embeddings is able to show

SOTA performance against both LM and previous baselines.

Therefore, our next step is to endow FLAG with embeddings

extrapolated from more advanced LLMs such as FinGPT

[8]. However, since unlike FinBERT, which is an encoder-

decoder model, FinGPT is a decoder and causal model, it will

require some modifications to generate contextually informed

embeddings.

We have also seen the performance of FLAG varying from

sector to sector, which warrants further analysis into the

characteristics of earnings calls in different sectors and their

interactions with the market. Specifically, we plan to identify

parts of documents that the model considers as important to

its prediction, leveraging the explainability offered by semantic

document graphs and attention-based GNNs in the FLAG deep

learning framework, in order to find particular patterns and

scenarios in which correct or incorrect predictions are made,

both in specific sectors and across all sectors.

Moreover, in the real-world use case scenario of price

trend analysis, financial analysts generate numerical predic-

tions from an aggregation of a variety of factors, and not

only from textual signals. Therefore, we want to use FLAG

to generate more complex qualitative insights from textual

signals that analysts cannot get directly from the data at hand.

To achieve this, we need to develop a retrieval methodology

that works on document-level graphs instead of on blocks

of text, which would enable generative models to leverage

FLAG for better semantically informed insights. We also need

further discussions and collaborations with stakeholders in the

financial industry to identify which types of qualitative insights

are of value.
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TABLE XI
A JUXTAPOSITION OF SENTENCES THAT FLAG DEEMED TO BE IMPORTANT FROM THE WORST PERFORMING DOCUMENT IN THE FINANCIAL SECTOR

(CUSHMAN & WAKEFIELD, Q2, 2019) AND THE BEST PERFORMING DOCUMENT IN THE TECHNOLOGY SECTOR (PAYCOM, Q1, 2019).

Cushman & Wakefield, Q2, 2019 Paycom, Q1, 2019

This year marks 20 years of H R Block being a Cushman
Wakefield client.

Our revenue growth continues to be primarily driven by new
business wins.

These are among the primary metrics we monitor to assess
commercial real estate supply and demand and to provide a
foundation for our business forecast.

For fiscal 2019, we are increasing our revenue guidance to a
range of 718 million to 720 million or approximately 27 year
over year growth at the midpoint of the range

Growth continues to be strong. Well, first on the percentage of those clients that have
committed to a 400 employee usage strategy.

Obviously, last year we had very strong growth in all the
courses in leasing.

We are seeing greater usage prior to implementation as we
continue to drive usage even prior to the full deployment go
live of the system.

We expect to see some of those trends continue in the second
half.

I would say the mix has been consistent as it’s been in the
past.

Advancing Financial Technologies (NSF Award #: 2113850).
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