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Abstract—The advent of large language models (LLMs) has
initiated much research into their various financial applications.
However, in applying LLMs on long documents, semantic rela-
tions are not explicitly incorporated, and a full or arbitrarily
sparse attention operation is employed. In recent years, progress
has been made in Abstract Meaning Representation (AMR),
which is a graph-based representation of text to preserve its
semantic relations. Since AMR can represent semantic relation-
ships at a deeper level, it can be beneficially utilized by graph
neural networks (GNNs) for constructing effective document-level
graph representations built upon LLM embeddings to predict
target metrics in the financial domain. We propose FLAG:
Financial Long document classification via AMR-based GNN,
an AMR graph based framework to generate document-level
embeddings for long financial document classification. We con-
struct document-level graphs from sentence-level AMR graphs,
endow them with specialized LLM word embeddings in the
financial domain, apply a deep learning mechanism that utilizes
a GNN, and examine the efficacy of our AMR-based approach
in predicting labeled target data from long financial documents.
Extensive experiments are conducted on a dataset of quarterly
earnings calls transcripts of companies in various sectors of the
economy, as well as on a corpus of more recent earnings calls of
companies in the S&P 1500 Composite Index. We find that our
AMR-based approach outperforms fine-tuning LLMs directly on
text in predicting stock price movement trends at different time
horizons in both datasets. Our work also outperforms previous
work utilizing document graphs and GNNs for text classification.

I. INTRODUCTION

Textual data is an important qualitative source of informa-
tion in the financial domain. Financial reports can provide
valuable signals for a firm’s future performance, since these
reports usually contain forward-looking plans and strategies,
which may not be fully captured in their financial statements.
Since textual data provides greater insights into firm perfor-
mance, various methods have been utilized for transforming
these textual reports into numerical representations, in order
to define effective features for predicting target variables such
as temporal price trends, that are of value to investors.

Despite the progress that has been made in recent years,
especially in the sphere of language models (LMs), there
still remains the challenge of long documents whose lengths
usually exceed the maximum context length of LMs. Even
with longer context LLM, learning good representations of
documents is still quite difficult; a recent benchmark work on
Q&A tasks in the financial domain demonstrated that even big
LLMs such as [1] have difficulties in answering questions cor-
rectly based on specific corpora of financial documents [2]. In

addition, with transformer-based methods, semantic relations
between word entities are usually constructed arbitrarily, either
with full attention where each word attends to every other
word, or sparse attention, where attentions between words
are set up arbitrarily, such as sliding window attention or
randomized attention.

We propose Financial Long document classfication via
AMR-based GNNs (FLAG), that learns effective document-
level embeddings based on specialized LM word embeddings
in the finance domain through AMR [3], which is a graph
representation of text that preserves semantic relations. The
unique feature of AMR graphs is that they are abstracted rep-
resentations of text capable of capturing the semantic meaning
of sentences, rather than just verbatim word sequences. Hence,
words, phrases and sentences that have the same meaning, but
differ in wording or spelling, usually result in the same AMR
representation. As such, AMR is more semantically detailed
and represents deeper meaningful relations between semantic
concepts.
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Fig. 1. An example of the AMR graph for the sentence: an investment in our
common stock is subject to risks inherent to our business.

In order to demonstrate the abstracting nature of AMR
graphs, in Figure 1, we show the AMR graph of a sample
sentence: an investment in our common stock is subject to
risks inherent to our business. As we can see, the AMR graph
is an abstracted representation of semantics. It can identify
meaningful concepts within a sentence, such as “invest” and
“subject”, and it extracts the semantic relations between them.
Moreover, we see that the two instances of “our” in the original
sentence have both been abstracted as the concept of “we”,
and the node “we” has possessive relations with “stock™ and
“business.”



Our approach utilizes the transition AMR parser [4] to
transform each sentence of a document into an AMR graph
with alignment of each node with its corresponding word in the
sentence. The sentence-level graphs are then aggregated using
a hierarchical approach that utilizes both document-level and
sentence-level virtual nodes. We initialize each node (or word)
with its contextual embedding using FinBERT [5], a specially
trained LM in the finance domain. On the document-graph thus
constructed, we apply GATV2 [6], a recent GNN that employs
dynamic attention mechanism. Finally, we take the embedding
of the document virtual node as the final representation for the
document, and use it for the downstream classification task.
While we choose FinBERT as the base LM for FLLAG, other
models such as BloombergGPT [7], or open-source models
such as FinGPT [£&] can also be used.

In summary, our contributions are:

o We propose and implement an AMR-based deep learning
framework for classification tasks geared towards long fi-
nancial documents. Our FLAG approach constructs novel
document-level AMR graphs from sentence-level AMR
graphs and uses a GNN to learn effective document-level
representations.

e We perform an extensive set of experiments on two
collections of earnings calls for companies from different
sectors of the economy and from the S&P 1500 Com-
posite Index to show that FLAG outperforms previous
methods in predicting stock price movement trends for
different time horizons, thereby achieving state-of-the-art
(SOTA) performance.

II. RELATED WORKS

In processing documents, traditional approaches for feature
identification generate static embeddings that do not contain
contextual information. Methods such as Term Frequency - In-
verse Document Frequency (TF-IDF) [9], word2vec [10], and
GloVe [11] belong in this category. They generate numerical
vector representations that contain some semantic information,
but strictly speaking, are not contextual embeddings. Recent
approaches construct contextual embeddings that represent
a word in view of its context. LMs, such as BERT [I12]
and GPT [!] belong in this category. These approaches can
learn different representations for a word according to its
surrounding context. The challenge with LMs, however, for
using them on long financial documents, such as corporate
earnings call transcripts, is the difficulty to extract document-
level features, since the maximum number of word tokens
these transformer LMs can handle is limited, and even if
they can handle longer context windows, getting effective
document-level representations still poses a big challenge.

On the semantic graph side, to our knowledge, AMR-
based approaches have not been applied for long financial
document classification tasks, such as earnings calls that can
exceed 7,000 words in length. However, there have been
several methods in different domains that utilize AMR for
textual analysis. For example, researchers have used it for
text classification [13], event detection [I14], profanity and

toxic content detection [!5], paraphrasability prediction and
paraphrase generation [16], and machine translation [17]. All
of these utilize only sentence-level AMR, which is unsuitable
for our purpose.

Methods for AMR parsing, which is the process of trans-
forming text into AMR graphs, are well-studied. Transition-
based parsers, such as [18] and [19], provide SOTA sentence-
level results, and AMR aligners, such as [20], provide reliable
AMR-to-text alignments that link each node entity to its corre-
sponding word in the original sentence. There have also been
recent works on parsing multi-sentence AMRs to preserve
cross-sentence information. O’Gorman et al. [21] provided a
corpus of annotated multi-sentence AMRs, which was used by
Naseem et al. [22] to implement a new approach to construct-
ing multi-sentence or document-level AMR representations.
Since their approach is still limited to short documents (e.g.,
averaging about 429 words per document), it is unsuitable for
our purpose. Instead, we transform the AMR graphs into a
document-level graph specially designed for long documents.

As for utilizing document graphs and GNNs to perform
graph learning for text classification in the finance domain,
Medya et al. [23] designed and implemented StockGNN,
which constructs document graphs based on the contextual
window of each unique word in the document, applies a
Gated GNN [24] on the document graphs, and concatenates the
final embeddings of the document graphs with their respective
doc2vec [25] embeddings to generate the final document
representation for text classification. They collected a corpus
of general domain earnings calls from several sectors of the
economy and predicted the financial impact of earnings calls
on stock price using StockGNN. We use StockGNN as a
baseline in our experiments. Importantly, StockGNN graphs
are localized context graphs, and do not model semantics as
we do via AMR.

III. THE FLAG APPROACH

FLAG is an AMR-based GNN graph learning framework
based on LM embeddings for long financial document clas-
sification. For each document, we parse all its sentences into
AMR graphs, and construct a document-level AMR graph hier-
archically with a sentence virtual node for every sentence and
a document-level node to represent the document. We initialize
each node with the word embedding of its corresponding word,
generated from contextual LMs. Next, we apply a GNN model
to generate the final document representations by taking the
document virtual node embeddings. As such, our approach
can be split into three phases: (1) Sentence AMR Parsing,
(2) Document-level Graph Construction, and (3) GNN Model
Training and Fine-Tuning, with the architecture illustrated in
Figure 2. Each of the phases is discussed next.

A. Sentence AMR Parsing

In a corpus consisting of N documents, L =
{di,da,-- ,dn}, let d; represent the i-th document of the
corpus. For a document d;, we first sentencize the document
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Fig. 2. FLAG Architecture: Each document is parsed into sentences, which
are converted into sentence AMR graphs. Using our hierarchical approach, we
combine them into the document-level graph, which is endowed with the word
embeddings and we then apply the GNN model to generate the final document
virtual node embedding. This embedding is then passed through two fully
connected linear layers to predict the target output. F: forward propagation;
B: backward propagation.

into sentences, using the pre-trained Punkt tokenizer for En-
glish in the NLTK package [26]. This provides a sequence
of sentences S = {s1,82,** ,Sm, }, where m; denotes the
total number of sentences in d;. Each sentence in S is parsed
into a sentence-level AMR graph using the transition AMR
parser [4], thereby generating a sequence of sentence graphs,

SG’L = {89178927 e 7ng1}
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Fig. 3. Document-level graph construction.
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B. Document-level Graph Construction

Figure 3 shows our document-level graph construction. For
d;, we have a sequence of sentence AMR graphs SG; =
{591,892, ,Sgm, }. For each sentence graph in SG;, we
make a virtual sentence node that connects to all the nodes
in the sentence graph, culminating in a consecutive sequence
of virtual sentence nodes SN; = {sni, sna, -, $ny, }, and
then we connect these sentence virtual nodes in a consecutive
manner, such that snq is connected to sno, sny is connected
to sns, and so on, both forming a hierarchical representation
of each sentence and preserving the order of sentences in the
document. In turn, each sentence node in SNN; is connected
to a virtual document node dn;, representing d;. Overall, all
the original nodes and edges in SG;, all the virtual sentence
nodes and their edges in SIV;, and the virtual document node

dn; and its edges, form the graph structure g; for document
d;. We make every edge of the graph bidirectional, so that
information can flow both ways during model training.

After constructing the graphs, we initialize the nodes with
embeddings of their corresponding words in the original text,
generated from the base LM method. We are able to do
s0, because the transition AMR parser [20] provides us with
alignment between node entities in the sentence AMR graphs
in SG; and their corresponding words in the original text of
the sentences.

The LM method that we chose is FinBERT [5], a spe-
cialized LM in the finance domain which generates token
embeddings of size 768. We initialize the non-virtual nodes
in our document-level graphs with the word embeddings of
the original word in the sentence that they are aligned with.
We pass each sentence of the document through the LM. A
word’s embedding is the average of the sum of the last 4
hidden state embeddings for each of the sub-tokens. Through
this process, each non-virtual node in g; is initialized with
word embeddings of size 768. All virtual nodes, dn; and all
the nodes in SN;, are initialized as zero vectors.

C. GNN Model Training and Fine-Tuning

Given document-level graphs constructed for every doc-
ument in the corpus L, forming a collection of graphs,
Gr = {91,92, - ,gn}, we apply an initial MLP layer on
the graph features to transform the original node embedding
dimension of 768 into another hidden dimension. We then
train a GNN model on the transformed graphs, specifically,
GATV2 [6], an attention-based GNN model which has been
theoretically proven to achieve dynamic attention. Afterwards,
we take the embedding vector of the virtual document node
dn; as the document representation for the graph g;, denoted
h;. We then use a linear layer:

x; = Wih; + by, (D

followed by another linear layer that outputs the final predicted
one-hot label, yj, after a softmax.

vi = softmax(Wax; + ba) 2)

Finally, we use the cross entropy loss, £ = —3", yi log(yi),
where v, is the k-th element of the predicted label, and y; is
the k-th element of the target one-hot label.

IV. EMPIRICAL EVALUATION

We now present experimental results to evaluate the efficacy
of FLAG. We utilized the transition AMR parser [4] with the
AMR 2.0 structured BART large model pre-trained checkpoint
[20] to perform AMR parsing and alignment, and we used the
Deep Graph Library (DGL) [27] for graph construction and
initialization, as well as for GNN model training.

For the hyperparameter tuning for FLAG, we train the
framework for up to 20 epochs; for LM baselines, we train
up to 30 epochs; and for StockGNN and related methods, we
train up to 1000 epochs. We vary the learning rate from 102
to 1075, and select the model with the lowest validation error



TABLE 1
BEST HYPERPARAMETERS FOR ALL METHODS: (E) NUMBER OF EPOCHS,
AND (LR) LEARNING RATE.

Finance | Health | Materials | Service | Tech
FinBERT (E) 7 I1 7 9 3
FinBERT (LR) 10-5 10-6 10-5 106 10-5
StockGNN (E) 717 725 316 178 187
StockGNN (LR) | 10~° 10-5 10-5 10-5 10-5
FLAG (E) 14 9 17 10 15
FLAG (LR) 10-5 10-5 10-5 10-5 10-5

as the best model. The best hyperparameters for each method
are reported in Table 1. Our code and datasets are publicly
available on github via https://github.com/NamirO806/FLAG.

A. Dataset and Metrics

We take corporate earnings call transcript data as the subject
of our analysis. An earnings call is a conference call between
company executives and the financial community. It is usually
held on a quarterly basis following the release of a company’s
earnings report. On this call, the management reviews the
company’s performance for a specific period, as well as
potential risks and future plans, which can cause subsequent
stock prices to shift dynamically [28].

To evaluate FLAG, we compare its performance with base-
line methods on both the Medya et al. earnings call dataset
[23], which contains earnings calls from 5 sectors of the
economy during period from 2010 to 2019, and a new dataset,
the S&P 1500 earnings call corpus, which contains earnings
calls of companies from the S&P 1500 Composite Index
during the period from 2010 to 2023, that we collected.

TABLE 11
MEDYA EARNINGS CALLS DATASET: N IS NUMBER OF DOCUMENTS AND
L 1S AVERAGE DOCUMENT LENGTH.

Train/Val N | Test N | Train/Val L Test L

Finance 14930 2036 7351.20 | 6668.94

Health 9869 1646 7083.55 | 6591.70

Materials 9240 1256 7165.85 | 6452.11

Service 14890 1983 7498.45 | 6928.90

Technology 14319 2069 7112.78 | 6785.09
TABLE III

FLAG GRAPH STATISTICS FOR THE MEDYA EARNINGS CALL DATASET: N
IS NUMBER OF NODES, E IS NUMBER OF EDGES, AND D IS DEGREE.

Avg. N Avg. E Avg. D
Finance (Train/Val) 6307.34 | 19559.83 | 3.10
(Test) 5784.46 | 17921.15 | 3.10
Health (Train/Val) 6161.94 | 19115.60 | 3.10
(Test) 5775.57 | 17908.75 | 3.10
Materials (Train/Val) | 6261.34 | 19400.57 | 3.10
(Test) 5640.78 | 17464.83 | 3.10
Service (Train/Val) 6464.74 | 20066.69 | 3.10
(Test) 5993.24 | 18598.27 | 3.10
Tech (Train/Val) 6192.78 | 19215.09 | 3.10
(Test) 5934.40 | 18407.39 | 3.10

Medya Earnings Call Dataset The Medya et al. [23] earnings
call dataset consists of earnings calls during the 2010 to

2019 period. It is split into five sectors: finance, health, basic
materials, service, and technology. They used this dataset to
predict a binary trend label, which they call value-based labels.
They define the label function y,(75) for an earnings call
transcript 77 of a company c on the day d as follows:

. 1, ifSe,, > S5
yu(Td) _ d+1 d—1

0, otherwise,

3)

where Sg,, and Sj_, denote the closing stock prices of com-
pany c on the following and previous business day respective
to day d.

Since this task is to analyze the trend, it aims to capture the
immediate financial impact of an earnings call, so the target is
daily and more granular than most financial impact analyses in
industry. Moreover, in the real world, financial impact analyses
in the context of portfolio management or asset pricing involve
multiple complex factors, both qualitative and quantitative, and
the textual signals from earnings calls only form a fraction of
all the factors that can affect the stock price trends. Therefore,
the purpose of experimenting on this dataset in predicting
the daily value-based label is to evaluate the effectiveness of
document representations produced by different methods for
predicting immediate price movements only from textual data.

All the earnings calls during the period of 2010 to 2018
are used as the training/validation set (with a 80:20 split), and
all the earnings calls during 2019 are used as the test set, as
is done by Medya et al. [23]. The detailed data statistics are
listed in Table II. As for the document-level graphs constructed
using the FLAG approach from earnings calls for the Medya
dataset, the detailed statistics are shown in Table III.

TABLE IV
S&P 1500 EARNINGS CALLS DATASET STATISTICS, WITH THE TOTAL
NUMBER OF DOCUMENTS (/N) AND AVERAGE DOCUMENT LENGTH (L).

N L
Train/Val | 55696 | 8138.38
Test 6049 | 7912.46
TABLE V
FLAG GRAPH STATISTICS FOR THE S&P 1500 EARNINGS CALL DATASET.
Avg. # of nodes | Avg. # of edges | Avg. degree
Train/Val 7093.21 28883.19 4.07
Test 6512.83 26353.94 4.05

S&P 1500 Earnings Call Corpus The S&P 1500 earnings
call corpus dataset we collected contains more recent data,
and consists of earnings call transcripts from the S&P 1500
Composite Index for the period 2010 to 2023. It includes
companies from all sectors and represents the overall U.S.
equity market. Unlike for the Medya dataset, we use this
dataset to predict weekly value-based labels. For this dataset,
we define the label function y, (7)) for an earnings call
transcript 77 of a company c on day d as follows:

.l 5 1 5
Loifg 3o Siw > 5 2i=1 S

v T3) =
yo(Ti) 0, otherwise,

“4)



where 1577 S5 . and £330 S5, denote the average
value of the closing stock prices of company c from the week
preceding and after respectively of day d (a business week is
defined as 5 working days).

The target labels in this case are on a weekly basis, so
it is closer to what an analyst would infer from a company’s
earnings calls about the future direction of the company in the
following week. The purpose is to investigate the effectiveness
of documents representations produced by different methods,
but in the context of predicting a longer-term (weekly) target
label.

All the earnings calls during the period of 2010 to 2021 are
used as the training/validation set (with a 90:10 split), and all
the earnings calls during 2022-2023 are used as the test set.
The detailed statistics for the corpus are shown in Table IV.
The document-level graphs are constructed using the FLAG
approach from earnings calls in the S&P 1500 corpus, with
the detailed statistics shown in Table V.

B. Methods

We describe the baselines and FLAG used in our experi-
ments.

o FinBERT [5]: We compare with a baseline LM model,
using a domain-specific model pre-trained on financial
corpora, FinBERT [5]. This baseline method truncates
the long document to the maximum length that the LM
can take, and applies the LM to generate document
embeddings, which is then passed through two linear
layers to predict the target. Overall, this serves as a
representative transformer-based LM baseline.

e StockGNN [23]: StockGNN [23] also utilizes contextual
graphs and the Gated GNN (GGNN) method [24] to
learn from long financial documents. However, it uses
only a local contextual graph and does not leverage
deeper semantics. Overall, this serves as a representative
previous SOTA baseline method.

o FLAG: For the GNN model in FLAG, we configure
GATv2 with 4 layers, 8 attention heads per layer, and
512 as the hidden dimension that node embeddings of
the original graphs are transformed to before applying the
GNN model. We found this configuration to perform best
empirically, which we discuss more in the ablation studies
below. Each GATv2 layer reaches a node’s immediate
neighbours. Therefore, 4 layers are sufficient to reach
from one node to all other nodes, as the diameter of the
document graphs is close to 4.

e GGNN on FLAG Graphs: Since StockGNN uses
only contextual graphs, we examine the effectiveness of
GGNN [24] on the AMR graphs constructed in FLAG.
This baseline serves to showcase the added benefits from
a more semantics-based AMR graph with the same GNN
as used in StockGNN.

C. Comparative Results

For experiments, we train the models to minimize the
training loss, and because the target value is a trend metric,

we evaluate the quality of the binary trend label predictions by
evaluating the accuracy, precision (macro average), and recall
(macro average) of the predictions, as is done in Medya et al.
[23], as well as the F1 score.

TABLE VI
EXPERIMENT RESULTS ON THE MEDYA EARNINGS CALL DATASET. BEST
RESULTS ARE MARKED IN BOLD.

Accuracy
Finance Health Materials Service Tech
FinBERT 0.574  0.547 0.516 0.496 0.541
StockGNN | 0.559 0.584 0.561 0.554 0.551
FLAG 0.619 0.614 0.597 0.626 0.637
Precision
Finance Health Materials Service Tech
FinBERT 0.581 0.544 0.524 0.503 0.545
StockGNN | 0.563 0.583 0.562 0.554 0.557
FLAG 0.615 0.616 0.595 0.629 0.641
Recall
Finance Health Materials Service Tech
FinBERT 0.521 0.543 0.523 0.501 0.543
StockGNN | 0.564 0.583 0.562 0.553 0.553
FLAG 0.616 0.604 0.593 0.627 0.638
F1 Score
Finance Health Materials Service Tech
FinBERT 0.437 0.542 0.513 0.423 0.536
StockGNN | 0.559 0.583 0.561 0.552 0.543
FLAG 0.615 0.598 0.592 0.624 0.635

Results on the Medya Dataset: Table VI shows the detailed
results of our comprehensive experiment across all 5 sectors in
the Medya et al. earnings calls dataset. As we can see, FLAG
outperforms both FinBERT and StockGNN across all sectors
of the economy. However, there are different degrees to how
well FLAG performs in different sectors. Especially compared
to the FinBERT baseline, we see the smallest improvement
in performance in the financial sector. Overall, the highest
absolute performance is in the technology sector. Therefore,
in the spirit of fintech, we take the financial sector and the
technnology sector as subjects of analyses in both the ablation
studies and the case study below.

With regards to FinBERT, FLAG is able to achieve signif-
icant performance gains over directly applying the domain-
specific LM. Especially in the service and technology sectors,
we see very high performance gains with FLAG (e.g., 26.2%
gain for service), and in the financial sector, it outperforms
FinBERT, however by a lesser margin (7.8% gain). We find
the same trend for performance using StockGNN. The im-
provement in the service and technology sector is generally
higher than in the other sectors. We posit that this trend is due
to the differences in the nature of earnings calls in different
sectors of the economy and how the stock market reacts to an
earnings call event in each particular sector, which we analyze
in the case study below.

Earnings calls have an immediate financial impact on stock
prices, and through this set of experiments, we show that
FLAG is able to capture that better. In other words, as a
more semantically meaningful approach, it is able to achieve



better performance in predicting stock price movement trends
for which the input document is a main contributing factor.
This indicates that choosing the sparse connections in a
semantically meaningful way, as done via the AMR graphs,
helps the model achieve better performance in trend analysis.
We validate this conclusion through an ablation study of
applying Gated GNN, the GNN used in StockGNN, on the
AMR document-level graphs (discussed below). This finding
is important for building a textual element within asset pricing
model in the real world, where the textual signals implications
for stock price trends must be understood.

TABLE VII
EXPERIMENT RESULTS ON THE S&P 1500 EARNINGS CALL DATASET.
BEST RESULTS ARE MARKED IN BOLD.

of GGNN that StockGNN uses, but on the documents graphs
constructed with FLAG, and compare its performance against
StockGNN generated graphs, on the financial and technology
sectors of the Medya dataset. We ran StockGNN for 100
epochs and GGNN on FLAG graphs for 50 epochs. Table
VIII shows the results.

For both the sectors, there is value added in using FLAG-
based document graphs, even without using an attention-based
GNN, such as GATv2. We see the same performance trends as
the main experiments conducted on the Medya dataset, where
the performance improvement is less for the financial sector,
compared to the technology sector. We delve a bit into why
this may be the case in the case study below.

Accuracy | Precision | Recall | F1 Score
FinBERT 0.549 0.543 0.530 0.501
StockGNN 0.556 0.551 0.543 0.533
FLAG 0.598 0.598 0.586 0.578

Results on S&P 1500 Dataset: Table VII shows the ex-
periment results on the S&P 1500 dataset, in the context of
predicting weekly average price trends. Once again, FLAG
performs better in predicting longer-term price trend metrics
at the weekly granularity when compared with FinBERT and
StockGNN, with the graph-based approach of StockGNN per-
forming better than FinBERT. This corpus consists of earnings
calls from all sectors in the U.S. equity market, as represented
in the index. As such, the absolute performance gains of FLAG
on this corpus are lower compared to the sector-specific Medya
earnings call dataset, albeit the target metric scope is different:
the latter is on a daily granularity. Overall, the results show
that not only are there indications for weekly stock price trends
contained in the soft information of the earnings calls, but
that FLAG is able to extract this better with its semantically
meaningful graph representations of documents, even across
various different sectors of the economy.

TABLE IX
ABLATION OF VARIOUS DIFFERENT GNNS APPLIED ON FLAG GRAPHS.
Finance

Accuracy  Precision  Recall FI Score
FLAG 0.619 0.615 0.616 0.615
GAT 0.603 0.598 0.599 0.598
GCN 0.565 0.553 0.551 0.550
GGNN 0.547 0.540 0.540 0.540
PNA 0.561 0.281 0.500 0.360

Tech

Accuracy  Precision  Recall ~F1 Score
FLAG 0.637 0.641 0.638 0.635
GAT 0.619 0.627 0.621 0.614
GCN 0.594 0.595 0.595 0.594
GGNN 0.573 0.574 0.574 0.573
PNA 0.511 0.525 0.516 0.462

TABLE VIII
PERFORMANCE OF STOCKGNN Vvs. GATED GNN wITH FLAG.
Finance

Accuracy  Precision  Recall F1 Score
StockGNN 0.541 0.513 0.509 0.489
GGNN on FLAG graphs 0.547 0.540 0.540 0.540

Tech

Accuracy  Precision  Recall F1 Score
StockGNN 0.560 0.560 0.560 0.560
GGNN on FLAG graphs 0.573 0.574 0.574 0.573

D. Ablation Studies

a) Efficacy of AMR document-level graphs: a comparison
between StockGNN and Gated GNN on FLAG graphs: As
FLAG and StockGNN utilize different GNNs, with FLAG
using GATv2 and StockGNN using Gated GNN, it is of
interest to evaluate the performance of document graphs
constructed with FLAG versus document graphs constructed
with StockGNN. Therefore, we apply the same configurations

b) Efficacy of attention-based GATv2: a comparison of
different GNNs applied on FLAG graphs: Coupling dynamic
attention offered by GATv2 with the structure of FLAG-based
document graphs is an important aspect of the FLAG method-
ology and has been shown to achieve superior performance. On
account of the large size of the document graphs produced by
FLAG, as shown in the dataset metrics in Section IV-A, graph
transformers cannot be applied on FLAG graphs. However,
there are other graph convolution networks that can be applied
to FLAG graphs, including conventional GCN, PNA [29],
GAT [30], which does not have dynamic attention, and Gated
GNN [24] (also compared above). We experiment with these
GNNss and present the results in Table IX. We find that GATv2
coupled with FLAG graphs offers an edge in performance that
other non-attention-based GNNs or GNNs without dynamic
attention cannot match. Also interesting is that the GCN model
also outperforms GGNN and PNA on the earnings call graphs.

c) Various configurations of GATv2: number of layers,
attention heads, and different hidden dimensions: GATV2 is
a GNN that has many possible configurations, including the
number of layers and attention heads, and different hidden
dimensions of transformed input graphs (in FLAG). In our
ablations, we experimented with the number of layers ranging
from 1 to 6, the number of attention heads varying from 4, §,
and 12, and hidden dimensions of 256, 512, and 768. Table X
shows the effect on the performance of frameworks with
different numbers of GATV2 layers, as we vary the attention
heads and the hidden dimensions. Results are shown for the



TABLE X
ABLATION OF FLAG ON THE FINANCIAL SECTOR.
# Layers | Accuracy Precision Recall F1 Score
4 attention heads, 256dim
1 0.561 0.281 0.500  0.360
2 0.604 0.600 0.601 0.600
3 0.569 0.588 0.584  0.568
4 0.596 0.598 0.599 0.595
5 0.603 0.598 0.599 0.599
6 0.605 0.596 0.591 0.590
8 attention heads, 512dim
1 0.561 0.281 0.500  0.360
2 0.602 0.598 0.600  0.598
3 0.611 0.607 0.608 0.607
4 0.619 0.615 0.616  0.615
5 0.604 0.598 0.598 0.598
6 0.598 0.597 0.598 0.596
12 attention heads, 768dim
1 0.561 0.281 0.500  0.360
2 0.595 0.597 0.598 0.594
3 0.585 0.590 0.591 0.585
4 0.616 0.608 0.606 0.607
5 0.571 0.555 0.546 0.537
6 0.565 0.550 0510 0412

case when the projected dimensionality for the attention is
fixed as 64, be it 64 = 256/4, or 64 = 512/8, or 64 = 768/12.
We find that the configuration with 4 layers, with 8 attention
heads each, and a hidden dimension of 512 has consistently
better performance across sectors, and that is chosen as the
default configuration for FLAG.

E. Case Study

As we have seen in the experiment results, FLAG achieves
higher performance gains in sectors such as technology, but
not as much in sectors like the financial sector. We posited
that the stock market reacts differently to earnings calls in the
financial sector versus the technology sector. To investigate
this further, we applied the GNNexplainer [31] method to
the document on which FLAG performed the worst in the
financial sector (for Cushman & Wakefield, 02, 2019) and on
the document that FLAG performed the best in the technology
sector (for Paycom, Q1, 2019), in terms of cross-entropy loss.
We trained GNNexplainer with 3 hops for 1000 epochs, and
generated the edge mask. This shows, in numerical terms,
which edges in the FLAG graph are determined to be important
in making the prediction. We then looked at all the edges
going into the document virtual node from sentence virtual
nodes, and examined the important edges to extract the top
sentences that were considered to be more important for
the final classification. Table XI shows some example top
sentences from the two documents.

In the case of Cushman & Wakefield, the actual stock
price went down, but FLAG predicted that it would go up.
Looking at the top sentences, we can see why it made such
a prediction, as the earnings call speaks about growth in
the past and how they expect the growth to continue in the
future. However, it would seem that the market did not believe
Cushman & Wakefield projections, and the stock price actually
went down as a result. In the case of Paycom, the stock price

went up, and FLAG predicted correctly that it would go up.
From the top sentences FLAG identified, we see the company
speaking optimistically about its growth and a new system that
employees are using more and more, which the market reacted
positively to, leading to an uptick in stock price.

Albeit only one representative case study, it suggests a
potential trend where the market does not “believe” firms in
the financial sector on the face value of statement made in
earnings calls as much as they do firms in other sectors, such
as the technology sector, where companies deal with more
tangible assets. This warrants examining more on the broader
characteristics of earnings calls in different sectors and how
market reacts to them differently, and we plan to conduct this
analysis in our future work.

V. CONCLUSION AND FUTURE WORKS

This work presents the first use of AMR-based graphs in a
predictive framework for long document classification tasks,
such as financial trend prediction. As demonstrated by the ex-
periments, in predicting both immediate and longer-term price
trends based on textual signals from earnings calls, FLAG with
underlying FinBERT-generated embeddings is able to show
SOTA performance against both LM and previous baselines.
Therefore, our next step is to endow FLAG with embeddings
extrapolated from more advanced LLMs such as FinGPT
[8]. However, since unlike FinBERT, which is an encoder-
decoder model, FinGPT is a decoder and causal model, it will
require some modifications to generate contextually informed
embeddings.

We have also seen the performance of FLAG varying from
sector to sector, which warrants further analysis into the
characteristics of earnings calls in different sectors and their
interactions with the market. Specifically, we plan to identify
parts of documents that the model considers as important to
its prediction, leveraging the explainability offered by semantic
document graphs and attention-based GNNs in the FLAG deep
learning framework, in order to find particular patterns and
scenarios in which correct or incorrect predictions are made,
both in specific sectors and across all sectors.

Moreover, in the real-world use case scenario of price
trend analysis, financial analysts generate numerical predic-
tions from an aggregation of a variety of factors, and not
only from textual signals. Therefore, we want to use FLAG
to generate more complex qualitative insights from textual
signals that analysts cannot get directly from the data at hand.
To achieve this, we need to develop a retrieval methodology
that works on document-level graphs instead of on blocks
of text, which would enable generative models to leverage
FLAG for better semantically informed insights. We also need
further discussions and collaborations with stakeholders in the
financial industry to identify which types of qualitative insights
are of value.
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A JUXTAPOSITION OF SENTENCES THAT FLAG DEEMED TO BE IMPORTANT FROM THE WORST PERFORMING DOCUMENT IN THE FINANCIAL SECTOR

TABLE XI

(CUSHMAN & WAKEFIELD, Q2, 2019) AND THE BEST PERFORMING DOCUMENT IN THE TECHNOLOGY SECTOR (PAYCOM, Q1, 2019).

Cushman & Wakefield, Q2, 2019

Paycom, Q1, 2019

This year marks 20 years of H R Block being a Cushman
Wakefield client.

Our revenue growth continues to be primarily driven by new
business wins.

These are among the primary metrics we monitor to assess
commercial real estate supply and demand and to provide a
foundation for our business forecast.

For fiscal 2019, we are increasing our revenue guidance to a
range of 718 million to 720 million or approximately 27 year
over year growth at the midpoint of the range

Growth continues to be strong.

Well, first on the percentage of those clients that have
committed to a 400 employee usage strategy.

Obviously, last year we had very strong growth in all the
courses in leasing.

We are seeing greater usage prior to implementation as we
continue to drive usage even prior to the full deployment go
live of the system.

We expect to see some of those trends continue in the second
half.

I would say the mix has been consistent as it’s been in the

past.

Advancing Financial Technologies (NSF Award #: 2113850).
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