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Abstract. This paper addresses an image denoising problem where observed
images are contaminated by a mix of Gaussian and impulse noise. The pro-

posed approach involves solving an optimization problem with an objective
function that combines a convex content-dependent fidelity term and a non-

local low-rank regularization term. Both terms are constructed using patch

matrices formed from similar patches of the image. Based on the unique prop-
erties of these terms, we propose two different strategies to efficiently solve the

problem. We also provide convergence analysis for both methods. Our numer-

ical experiments demonstrate that the proposed two-phase approach performs
well in terms of three quantitative metrics: peak signal-to-noise ratio (PSNR),

structural similarity (SSIM), and feature similarity (FSIM), as well as in the

visual quality of the restored images.

1. Introduction. Mathematically, a noisy image affected by both additive Gauss-
ian white noise and impulse noise can be expressed as:

y = Nimp(x+ z), (1)

where x is the true image in Rn0×m0 , y is the observed image, z is the additive
Gaussian white noise, Nimp : Rn0×m0 → Rn0×m0 characterizes impulse noise. The
impulse noise assigns specific pixels of x + z within its dynamic range [0, 255] as
outliers. Those pixels are considered anomalies in the observed data y, and the
probability of outliers is referred to as the noise level of impulse noise in y. Outliers
are modeled either as salt-and-pepper or random-valued impulse noise. In the case
of salt-and-pepper noise, the outliers take on the values 0 or 255, while other pixels
remain unchanged. For random-valued impulse noise, the outliers assume uniformly
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distributed random numbers in the interval [0, 255], and the other pixels remain
unaltered.

Due to the challenges associated with modeling the distributions of mixed ad-
ditive Gaussian white and impulse noise, numerous existing approaches adopt a
two-phase strategy. In this framework, the initial phase is dedicated to detecting
and labeling the locations of outliers based on the nature of the impulse noise,
while the subsequent phase focuses on concurrently eliminating noise at the unla-
beled locations and approximating pixels at the labeled locations. The first phase
of this two-phase approach typically employs a median type filter to pinpoint the
locations of outliers, although the specifics of the second phase vary across different
methodologies.

For instance, in [6, 7, 5], the second phase primarily involves denoising the noisy
image from outlier-free data and restoring pixels in the positions labeled as outliers
using a variational model. In [19], the second phase denoises the noisy image by
solving an optimization problem with an objective function that includes a content-
dependent fidelity term and a regularization term formed by the ℓ1 norm of tight
framelet coefficients of the underlying image. Meanwhile, in [26], the second phase
recovers the image through dictionary learning on the outlier-free pixels. An alter-
native approach, as seen in [17], foregoes explicit impulse noise detection. Instead, it
encodes each noise-corrupted patch over a pre-learned dictionary to simultaneously
remove mixed noise using a soft impulse pixel detection strategy. In [15], a method
based on Laplacian scale mixture modeling and nonlocal low-rank regularization is
proposed.

Recently, a nonlocal low-rank regularized two-phase (NLR-TP) approach was
introduced for removing mixed impulse and additive Gaussian white noise [27].
Similar to the methodology in [6, 7], the approach employs a nonlinear filter -
either the adaptive median filter (AMF) [16] or the adaptive center-weighted median
filter (ACWMF) [10]-to detect impulse noise locations in the initial phase. In the
second phase, the algorithm restores the image using only the unlabeled observed
data by solving an optimization problem. The objective function consists of a
convex content-dependent fidelity term and a nonconvex regularization term, both
derived from patch matrices formed by similar patches. The regularization term
incorporates the log-sum function and the singular values of patch matrices. To solve
the optimization problem, a majorization-minimization approach is employed. At
each iteration, the non-quadratic convex fidelity term is approximated by its second-
order Taylor expansion, while the nonconvex regularization term is approximated
by its first-order Taylor expansion, both based on the previous iteration.

Building on the NLR-TP framework, this paper proposes distinct algorithms for
solving the optimization problem by leveraging the structural properties of both
the convex content-dependent fidelity term and the nonlocal low-rank regulariza-
tion term. Specifically, the convex fidelity term is differentiable with a Lipschitz
continuous gradient map, and the proximity operator of the regularization term has
an explicit form using the proximity operator of the log-sum function [23]. With
these properties, the forward-backward splitting algorithm [2] can be employed for
solving the optimization problem. Upon closer examination of the log-sum function
within the regularization term, two different approaches for solving the optimiza-
tion problem emerge. In the first approach, the log-sum function is decomposed
as the difference of a scaled absolute function with a differentiable convex function
that is the difference of the log-sum function with the scaled absolute function.
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In the second approach, the log-sum function is expressed as the difference of a
convex function, which is the sum of the log-sum function with a scaled quadratic
function. Both ways of decomposing the log-sum function allow for the adoption
of the proximal difference-of-convex algorithm with extrapolation [25] for efficiently
implementing the optimization problem. While both decomposition approaches are
mathematically suitable for the problem, numerically, the first approach proves ef-
fective, whereas the second approach does not. This intriguing observation will be
further explained in the paper. Additionally, numerical demonstrations showcase
that the proposed algorithms for removing mixed noise outperform those in [27].

The contributions of this paper are summarized in the following two aspects.
First, this paper introduces novel algorithms for solving the optimization problem
within the NLR-TP framework, specifically addressing mixed Gaussian and impulse
noise. The differentiability of the convex fidelity term, along with the explicit form
of the proximity operator for the regularization term, enables the utilization of
the forward-backward splitting algorithm. Second, we provide an in-depth analysis
of the log-sum function within the regularization term reveals two decomposition
approaches. Both decomposition strategies permit the application of the proximal
difference-of-convex algorithm with extrapolation for efficient optimization problem
implementation.

The subsequent sections of this paper are organized as follows. In Section 2,
we provide a concise review of the NLR-TP approach, with particular attention
to the formulation of the optimization problem employed in this approach. The
properties of this optimization problem are discussed in Section 3. Two different
schemes for solving this optimization problem are proposed in Section 4, and the
complete procedure for solving the proposed optimization problem for mixed noise
removal is given in Section 5. Numerical experiments of the proposed algorithm are
shown in Section 6, and we draw our conclusions in Section 7.

2. Problem formulation. In this section, we articulate the optimization problem
for the removal of mixed Gaussian and impulse noise, building upon the formula-
tion employed in the nonlocal low-rank regularized two-phase (NLR-TP) approach
introduced in [27]. The NLR-TP approach encompasses two phases: (i) the detec-
tion of outlier candidate locations and (ii) the resolution of an optimization problem
featuring a content-driven fidelity term and a nonlocal low-rank regularization term.

Let us assume that the original image x in model (1) is indexed by Ω = {1, 2, . . . , n0}×
{1, 2, . . . ,m0}, and the outlier candidate set Z is defined as follows:

Z =

{
{(i, j) ∈ Ω : yij ̸= xij + zij and yij ∈ {0, 255}}, for salt-and-pepper noise;
{(i, j) ∈ Ω : yij ̸= xij + zij}, for random-valued impulse noise.

The impulse noise level is characterized by the ratio of the cardinalities of Z and
Ω.

In the first phase of the NLR-TP, the set Z is identified using the AMF for
salt-and-pepper noise and the ACWMF for random-valued impulse noise.

In the second phase of the NLR-TP, the objective is to approximate the ideal
image x using the outlier-free data on Ω\Z. To achieve this, we represent the image
x in a patch format. For an image x of size n0 ×m0, a block-matching algorithm
[11] is employed to find patches {xℓk}

m−1
k=1 that are similar to a square patch of size√

n×
√
n centered at position (i, j). These patches form an n×m matrix Xℓ, termed

the ℓ-th patch matrix of the image x:

Xℓ :=
[
xℓ xℓ1 . . . xℓm−1

]
,
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where xℓ and xℓk are the vectorizations of themselves. We reasonably assume that
Xℓ is low-rank.

Now, let X ∈ Rn×m be a patch matrix of the image x. We form accordingly
the matrices Y and Z from the corresponding locations of y and z in model (1),
respectively. Then,

Y = Nimp(X + Z), (2)

Nimp : Rn×m → Rn×m represents impulse noise which assigns some pixels of X+Z
in its dynamic range [0, 255]. Here, we did not distinguish the operator Nimp used
in between (1) and (2). Moreover, we also use Ω and Z to represent the index set
of X and the outlier candidate set, respectively.

To set up our denosing model, let us review some definitions and establish nota-
tion. Throughout, we consider real matrices and vectors, and, for x ∈ Rd, use ⟨·, ·⟩
and ∥ · ∥ to refer to the usual inner product and its induced norm. For p ≥ 1, let
∥M∥p = (

∑n
i=1

∑m
j=1 |Mij |p)1/p denote the ℓp-norm of the matrix M of size n×m

by viewing it as a long vector in Rnm, where Mij is the (i, j)th entry of M . In
particular, ∥M∥2 is the Frobenious norm of M . For two matrices A and B of the
same dimension, the Hadamard product A ⊙ B is a matrix of the same dimension
as operants, with elements given by (A⊙ B)ij = AijBij , (i, j) ∈ Ω. For the sets Ω
and Z associated with model (2), we define an n ×m binary matrix D as follows:
Dij = 1 if (i, j) ∈ Ω \ Z and 0 otherwise. We define m ∧ n := min{m,n}.

For A,B ∈ Rn×m, ⟨A,B⟩ :=
∑n

i=1

∑m
j=1AijBij . For any vector x ∈ Rn∧m, let

Diag(x) denote the n×m matrix with (Diag(x))ii = xi for all i, and (Diag(x))ij = 0
for i ̸= j. For any X ∈ Rn×m, we define σ(X) := (σ1(X), σ2(X), . . . , σn∧m(X))⊤,
where σ1(X) ≥ σ2(X) ≥ . . . ≥ σm∧n(X) are the ordered singular values of X.
Denote by O(X) the set of all pairs (U, V ):

O(X) :=
{
(U, V ) ∈ Rn×m∧n × Rm×m∧n : U⊤U = I, V ⊤V = I,X = UDiag(σ(X))V ⊤

}
.

That is, for any pair (U, V ) ∈ O(X), UDiag(σ(X))V ⊤ is a singular value decom-
position of X.

Our denoising model is formulated as follows:

min
{
J(X) = F (X) + λG(X) : X ∈ Rn×m

}
, (3)

where F (X) is the fidelity term, G(X) is the regularization term, and λ is a positive
parameter that balances the two. We will introduce both F and G in the following.

To define the fidelity term, we introduce the function φη : R → R, as proposed
in [19]:

φη(t) :=
ηt2

η + |t|
(4)

where η is a given parameter that controls the shape of φη. This function behaves
like the function t2 when t is small, making it suitable for Gaussian noise, and like
η|t| when t is large, making it effective for impulse noise. Importantly, φη is convex,
differentiable, and has a Lipschitz continuous gradient with a Lipschitz constant of
2, i.e.,

|φ′
η(s) − φ′

η(t)| ≤ 2|s− t|, ∀s, t. (5)

With the function, we define the fidelity term as

F (X) = ∥φη(D ⊙ (X − Y ))∥1 .
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Here, φη(D ⊙ (X − Y )) is viewed as an n×m matrix whose (i, j)th entry is given
by

[φη(D ⊙ (X − Y ))]ij = φη(Dij(Xij − Yij)).

From an application perspective, the squared loss is well-suited for Gaussian noise,
while the ℓ1-loss is more robust for impulse noise. Since real-world images often suf-
fer from a mixture of both noise types, we require a loss function that combines the
strengths of both. From a mathematical perspective, squared loss is highly sensitive
to outliers, while the ℓ1-loss is robust but non-differentiable at zero. The function
φη offers a smooth transition between these two behaviors while maintaining a 2-
Lipschitz continuous gradient, facilitating the use of proximal gradient algorithms
for optimization. The parameter η controls the trade-off between smoothness and
robustness, and we have observed in numerical experiments that proper tuning of
η significantly improves performance.

Additionally, the gradient of the fidelity term will be frequently used in our
computations:

∇F (X) = D ⊙ φ′
η(D ⊙ (X − Y )).

For the regularization term, we employ low-rank regularization and define it as

Gϵ(X) =

m∧n∑
i=1

gϵ(σi(X)),

where for a given positive number ϵ, the function gϵ is defined as

gϵ(t) = log

(
|t|
ϵ

+ 1

)
. (6)

This function is widely used in compressive sensing [8] as a bridge between the ℓ0
quasi norm and the ℓ1 norm. It also serves as a nonconvex surrogate for the matrix
rank function in low-rank regularization problems [12]. Compared to standard nu-
clear norm regularization, the log-sum function better approximates the properties
of the rank function. The nuclear norm tends to overly shrink singular values, which
can degrade low-rank recovery performance. In contrast, the log-sum function is
smoother and avoids imposing excessive penalties on large singular values, thereby
preserving more structural information in the data. Although other nonconvex
regularization methods, such as the Schatten-p norm and ℓp norm, also promote
rank sparsity, the log-sum function has a closed-form proximal operator [23]. This
property makes it computationally more efficient and convenient for algorithmic
implementation.

With these preparations, the optimization problem in the second phase of the
NLR-TP is formulated as

min

{
J(X) = ∥φη(D ⊙ (X − Y ))∥1 + λ

m∧n∑
i=1

gϵ(σi(X)) : X ∈ Rn×m

}
. (7)

In the next section, we will analyze the properties of the objective function of
problem (7).

3. Properties. This section consists of two subsections. The first subsection dis-
cusses the Kurdyka- Lojasiewicz property of the objective function of (7), while the
other provides the proximity operator associated with the regularization term of
(7).
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3.1. The Kurdyka- Lojasiewicz property of the objective function. In this
subsection we will show that the objective function of (7) is a Kurdyka- Lojasiewicz
function [1, 2].

Given a function f : Rd → (−∞,+∞], the domain of f is domf = {x ∈ Rd :
f(x) < +∞}. The subdifferential of f is defined as

∂f(x) =

{
η : lim inf

u→x

f(u) − f(x) − ⟨η, u− x⟩
∥u− x∥

≥ 0

}
.

When f is convex, this reduces to the usual convex subdifferential, and when f is
differentiable, ∂f(x) = {∇f(x)}.

The definition of a Kurdyka- Lojasiewicz function is as follows.

Definition 3.1 (Kurdyka- Lojasiewicz Property). Let f : Rd → (−∞,+∞] be
proper and lower semicontinuous.

(a) The function f is said to have the Kurdyka- Lojasiewicz (KL) property
at x̃ ∈ dom∂f := {x ∈ Rd : ∂f(x) ̸= ∅} if there exist β ∈ (0,+∞], a
neighborhood U of x̃ and a continuous function ψ : [0, β) → [0,∞) such
that

(i) ψ(0) = 0;
(ii) ψ is continuously differentiable on (0, β), and continuous at 0;

(iii) for all s ∈ (0, β), ψ′(s) > 0;
(iv) for all x ∈ U ∩ {x ∈ Rd : f(x̃) < f(x) < f(x̃) + β}, the following

Kurdyka- Lojasiewicz inequality holds

ψ′(f(x) − f(x̃))dist(0, ∂f(x)) ≥ 1.

(b) The function f is called a KL function if f has the KL property at each
point of dom∂f .

Semialgebraic and subanalytic functions are typical KL functions [1, 2]. We first
recall the definition of semialgebraic functions.

Definition 3.2 (Semialgebraic).

(a) A subset S of Rd is a real semialgebraic set if there exists a finite number
of real polynomial functions Pij , Qij : Rd → R such that

S = ∪p
j=1 ∩

q
i=1 {x ∈ Rd : Pij(x) = 0, Qij(x) < 0}.

(b) A function f : Rd → R∪{+∞} is called semialgebraic if its graph {(x, ξ) ∈
Rd+1 : f(x) = ξ} is a semialgebraic subset of Rd+1.

Lemma 3.3. Let σk : Rn×m → R : X 7→ σk(X) be the kth singular value of
X ∈ Rn×m, where k = 1, 2, . . . n ∧m. Then each σk is semialgebraic.

Proof. We consider sequentially the following optimization problems

max
(p,q)∈Ck

⟨Xp, q⟩ (Pk)

for k = 1, . . . , n ∧m, where

Ck =

{
(p, q) ∈ Rm × Rn :

∥p∥2 − 1 = 0, ∥q∥2 − 1 = 0,
⟨vi, p⟩ = 0, ⟨ui, q⟩ = 0, i = 1, . . . , k − 1

}
with (vi, ui) being an optimal solution to problem (Pi), i < k. It is well-known (see,
e.g., [14]) that σk(X) is the optimal value of problem (Pk), i.e., there exist uk ∈ Rn
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and vk ∈ Rm such that

σk(X) = max
(p,q)∈Ck

⟨Xp, q⟩ = ⟨Xvk, uk⟩.

Clearly, Ck is a semialgebraic set in Rm ×Rn and J(X, p, q) := ⟨Xp, q⟩ is a semial-
gebraic function on Rn×m × (Rm × Rn) by the definitions of semialgebraic set and
semialgebraic function. Hence, σk is a semialgebraic function in Rn×m.

The class of semialgebraic sets is a special subclass of subanalytic sets. We recall
the definitions of subanalytic set and subanalytic function.

Definition 3.4 (semianalytic).

(a) A subset A of Rn is called semianalytic if each point of Rn admits a neighbor-
hood V for which V ∩A assumes the following form:

∪p
i=1 ∩

q
j=1 {x ∈ V : fij(x) = 0, gij(x) > 0},

where the functions fij , gij : V → R are real-analytic for all 1 ≤ i ≤ p,
1 ≤ j ≤ q.

(b) The set A is called subanalytic if each point of Rn admits a neighborhood V
such that

A ∩ V = {x ∈ Rn : ∃y ∈ Rmsuch that (x, y) ∈ B},
where B is a bounded semianalytic subset of Rn × Rm for some m ≥ 1.

(c) A function f : Rn → R∪{+∞} is called subanalytic if its graph is a subanalytic
subset of Rn × R.

Lemma 3.5. The function gϵ given in (6) has the KL property at each point in R.

Proof. Note that dom∂gϵ = R. Since gϵ is differentiable on R \ {0}, then gϵ has
the KL property at each point of R \ {0}. At the origin, the function gϵ is not
differentiable. For any β > 0 we have

{t ∈ R : gϵ(0) < gϵ(t) < gϵ(0) + β} = (−ϵ(eβ − 1), 0) ∪ (0, ϵ(eβ − 1)).

Let us choose ψ(t) = ct with c ≥ ϵeβ . Then,

ψ′(gϵ(t) − gϵ(0))dist(0, g′ϵ(t)) =
c

ϵ+ |t|
≥ 1

for all t ∈ (−ϵ(eβ − 1), 0)∪ (0, ϵ(eβ − 1)). This implied that gϵ has the KL property
at the origin, hence has the KL property at each point in R.

Lemma 3.6. The function gϵ given in (6) is subanalytic in R.

Proof. Let us look at the graph of gϵ.

graph(gϵ) = {(t, y) ∈ R× R : log

(
|t|
ϵ

+ 1

)
= y, y ≥ 0}

= {(t, y) ∈ R× R : ϵ+ |t| − ϵey = 0, y ≥ 0}.
The last set can be written as the union of the sets {(0, 0)}, {(t, y) ∈ R × R :
ϵ− t− ϵey = 0, y > 0, t < 0}, and {(t, y) ∈ R× R : ϵ+ t− ϵey = 0, y > 0, t > 0},
which are semianalytic. Therefore, gϵ is subanalytic in R.

Immediately, we can show that the fidelity term of problem (7) is semialgebraic.

Lemma 3.7. Let us denote f(X) the fidelity term of problem (7), i,e., f(X) =
∥ϕη(D ⊙ (X − Y ))∥1. Then f is a semialgebraic function on Rn×m.
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Proof. For X ∈ Rn×m, we have

f(X) =
n∑

i=1

m∑
j=1

ϕη(Dij(Xij − Yij)) =
∑

Dij=1

ϕη(Xij − Yij).

From a general result concerning the summation of semialgebraic functions, it suf-
fices to show that for a given y ∈ R, ϕη(· − y) is semialgebraic. Its graph can be
written as

{(t, ξ) ∈ R2 : ϕη(t− y) = ξ} = {(t, ξ) ∈ R2 : η(t− y)2 = ξ(η + |t− y|)}.
Considering three cases of t = y, t > y, and t < y, the set on the right of the above
equation is the union of the sets {(y, 0)}, {(t, ξ) ∈ R2 : η(t − y)2 − ξ(η + t − y) =
0, y − t < 0}, and {(t, ξ) ∈ R2 : η(t− y)2 − ξ(η − t+ y) = 0, t− y < 0} accordingly.
Each of the last three sets is semialgebraic by the definition of semialgebraic. Hence
the graph of f is semialgebraic. This completes the proof.

The main result in this subsection is summarized in the following theorem.

Theorem 3.8. The objective function of the optimization problem (7) is a KL
function.

Proof. By Lemma 3.6 and Lemma 3.3, the low-rank regularization term
∑m∧n

i=1 gϵ(σi(X))

in problem (7) as a function of X is subanalytic. Furthermore, by Lemma 3.7, the
objective function of problem (7) is subanalytic. Therefore, the sum of them is
subanalytic, and thus a KL function. As a result, the objective function of the
optimization problem (7) is a KL function.

3.2. The proximity operators associated with the regularization term. In
this subsection, we will present the proximity operators of the functions associ-
ated with the regularization term of (7), which are essential in the development of
algorithms for solving problem (7).

We begin by introducing our notation. Let H be a Hilbert space equipped with
an inner product ⟨·, ·⟩H and the induced norm ∥ · ∥H. A function p defined on H
with values in R∪ {+∞} is proper if its domain dom(p) = {x ∈ H : p(x) < +∞} is
nonempty, and p is lower semicontinuous if its epigraph is a closed set. The set of
proper and lower semicontinuous functions on H to R∪ {+∞} is denoted by Γ(H).
The set of proper, convex, and lower semicontinuous functions on H to R ∪ {+∞}
is denoted by Γ0(H).

The proximity operator was introduced by Moreau in [22]. For a function p ∈
Γ(H), the proximity operator of p at z ∈ H with index α is defined by

proxαp(z) := arg min

{
p(w) +

1

2α
∥w − z∥2H : w ∈ H

}
.

The proximity operator of p is a set-valued operator from H → 2H, the power set
of H.

Our goal here is to present the proximity operators of the functions associated
with the regularization term of (7) that involves singular values of a matrix. As the
singular values of a matrix are descending, we expect that they are still descending
after applying a proximity operator to them. We need the following result.

Lemma 3.9. Let f : R → (−∞,∞] be a proper closed function, and assume that for
a given λ > 0 the following condition is satisfied: the function u 7→ f(u)+ 1

2λ (u−x)2

is coercive for any x ∈ dom(f) the domain of f . Then, for any x, y ∈ dom(f) with
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x < y, we have u ≤ v for any u ∈ proxλf (x) and v ∈ proxλf (y). Furthermore,
assume that 0 ∈ proxλf (0), then for any u ∈ proxλf (x) with x ∈ dom(f), if both x
and u are nonzero, then they must the same signs.

Proof. First, for any x ∈ dom(f), it follows by [3, Theorem 6.4] that the set
proxλf (x) is nonempty. Next, by the definition of proximity operator, one has for
any x, y ∈ dom(f) with x < y

f(u) +
1

2λ
(u− x)2 ≤ f(v) +

1

2λ
(v − x)2

f(v) +
1

2λ
(v − y)2 ≤ f(u) +

1

2λ
(u− y)2

for any u ∈ proxλf (x) and v ∈ proxλf (y). Adding the above two inequalities leads
to (u− v)(x− y) ≥ 0, that is, u ≤ v.

Finally, under the assumption of 0 ∈ proxλf (0), it follows immediately from the
above results that x and u have the same signs if they are nonzero.

The primary outcome of this subsection is presented below, accompanied by its
proof, which closely follows the methodology outlined in [9, Theorem 2.3]. For the
sake of completeness, we provide the proof in the subsequent text.

Theorem 3.10. Let f : R → (−∞,∞] be a proper closed function, and assume
that for a given λ > 0 the following condition is satisfied: the function u 7→ f(u) +
1
2λ (u−x)2 is coercive for any x ∈ dom(f). Let us further assume that 0 ∈ proxλf (0).
Define

F : Rn×m ∋ X 7→
n∧m∑
i=1

f(σi(X)). (8)

Then, if X⋆ ∈ proxλF (X) for X ∈ Rn×m, then there exist (U, V ) ∈ O(X) and a
vector d ∈ Rn∧m with di ∈ proxλf (σi(X)) such that

X⋆ = UDiag(d)V ⊤. (9)

Here, if σk(X) = σk+1(X) for some 1 ≤ k ≤ n ∧m, we always choose dk = dk+1.

Proof. It follows from Lemma 3.9 that di ≥ di+1 for any di ∈ proxλf (σi(X)) and
di+1 ∈ proxλf (σi+1(X)) for all i = 1, 2, . . . , (n ∧m) − 1. Hence d ∈ Rm∧n

↓ := {x ∈
Rm∧n : x1 ≥ x2 ≥ . . . ≥ xm∧n ≥ 0}.

Next, for X ∈ Rn×m, if X⋆ ∈ proxλF (X), we show that it can be rewritten in the
form of (9). By the definition of the proximity operator of proxλF (X), we consider
the optimization problem

min

{
1

2λ
∥W −X∥22 + F (W ) : W ∈ Rn×m

}
which, by using (8) and introducing an auxiliary variable d = σ(W ), can be equiv-
alently written as

min
d∈Rm∧n

↓

{
min

W∈Rn×m,σ(W )=d

{
1

2λ
∥W −X∥22 +

m∧n∑
i=1

f(di)

}}
.

Note that ∥W −X∥22 = tr(W⊤W )− 2tr(W⊤X) + tr(X⊤X), tr(W⊤W ) =
∑n∧m

i=1 d2i ,

and tr(X⊤X) =
∑n∧m

i=1 σi(X)2. Due to von Neumann’s trace inequality (see [21]),
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we have

∥W −X∥22 ≥
n∧m∑
i=1

d2i − 2σ(X)⊤d+
m∧n∑
i=1

σi(X)2.

Equality holds when W admits the singular value decomposition W = UDiag(d)V ⊤,
where (U, V ) ∈ O(X). Under this situation, the above optimization problem reduces
to

min
d∈Rm∧n

↓

{
1

2λ
∥d− σ(X)∥22 +

m∧n∑
i=1

f(di)

}
.

Clearly, if a vector d is a solution to the about problem, then di ∈ proxλf (σi(X)).
This completes the proof.

As a consequences of Theorem 3.10, we present the results for f being the absolute
function and gϵ, respectively.

Corollary 3.11. Let F be given by (8) with f = | · |. For any X ∈ Rm∧n and
λ > 0, if X⋆ ∈ proxλF (X), then X⋆ = UDiag(d)V ⊤ for some (U, V ) ∈ O(X) and
di = max{0, σi(X) − λ}, i = 1, 2, . . . , n ∧m.

Proof. It can be checked directly that for any λ > 0 and x ∈ R, the function
u 7→ |u| + 1

2λ (u − x)2 is coercive, proxλ|·|(x) = sgn(x) max{0, |x| − λ}. The result
follows from Theorem 3.10.

We remark that F (X) in Corollary 3.11 is the nuclear norm of X and the corre-
sponding proxλF is called the singular value shrinkage operator in [4].

To close this subsection, we present the proximity operators of gϵ and the regu-
larization term of (7).

For any given pair of positive parameters (λ, ϵ), let us define r(λ,ϵ) : R → R as
follows:

r(λ,ϵ)(t) :=
1

2
(t− ϵ) +

√
1

4
(t+ ϵ)2 − λ. (10)

where t ≥ max{2
√
λ− ϵ, 0}.Then, it was given in [23] that

proxλgϵ(t) =

 {0}, if |t| < t∗;
{0, sgn(t)r(λ,ϵ)(t∗)}, if |t| = t∗;
{sgn(t)r(λ,ϵ)(|t|)}, if |t| > t∗,

(11)

where t∗ = λ
ϵ if

√
λ ≤ ϵ and t∗ is the only root of the function

w 7→ 1

2λ
(r(λ,ϵ)(w) − w)2 + gϵ(r(λ,ϵ)(w)) − 1

2λ
w2

for w ∈ [2
√
λ− ϵ, λϵ ) if

√
λ > ϵ. This root can be found by the bisection method.

With this result, we have the following corollary.

Corollary 3.12. Let Gϵ : Rn×m → R be given as follows:

Gϵ(X) :=

m∧n∑
i=1

gϵ(σi(X)), (12)

where gϵ is given in (6). For any X ∈ Rm∧n and λ > 0, if X⋆ ∈ proxλF (X), then
X⋆ = UDiag(d)V ⊤ for some (U, V ) ∈ O(X) with di ∈ proxλgϵ(σi(X)) given by
(11).

Proof. By identifying f = gϵ in Theorem 3.10, the rest of the proof is similar to
the one in Corollary 3.11.
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4. Two schemes. Two schemes for solving (7) are developed in the last two sub-
sections. Scheme 1 is based on the forward-backward splitting approach in [2].
Scheme 2 is based on decomposition of the regularization term in (7) by exploiting
the properties of gϵ given in (17) and (18).

4.1. Scheme 1. For this scheme, we use the forward-backward splitting approach
to optimize the objective function.

X(k+1) ∈ proxαλGϵ

(
X(k) − α∇F (X(k))

)
(13)

The gradient of the fidelity term ∇F (X(k)) = D⊙φ′
η(D⊙ (X − Y )) is Lipschitz

continuous with constant 2. Hence, Scheme 1 reads as follows: given an initial
X(0) ∈ Rn×m and α < 1/2, iterate

X(k+1) ∈ proxαλGϵ

(
X(k) − αD ⊙ φ′

η(D ⊙ (X(k) − Y ))
)
, (14)

for k = 0, 1, . . .. The update X(k+1) can be computed efficiently due to the avail-
ability of the operator proxαλGϵ

, which can be found in Corollary 3.12.
The convergence analysis of the sequence generalized by Scheme 1 is as follows.

Theorem 4.1. The sequence (X(k))k∈N converges to some critical point of the
objective function of (7) and

∑
k ∥X(k+1) −X(k)∥2 <∞.

Proof. We already know J(X) = ∥ϕη(D ⊙ (X − Y ))∥1 + λGϵ(X) the objective
function of (7) is a KL function. The results of this theorem follow immediately
from [2, Theorem 5.1] if the sequence (X(k))k∈N is bounded.

Write W (k+1) := D ⊙ (X(k+1) − Y ) and W (k) := D ⊙ (X(k) − Y ). Using the
definition of the proximity operator for (14), we have

αλGϵ(X
(k+1))+

1

2
∥X(k+1)−X(k)+αD⊙φ′

η(W
(k))∥22 ≤ αλGϵ(X

(k))+
1

2
∥αD⊙φ′

η(W
(k))∥22,

which is equivalent to

λGϵ(X
(k+1)) +

1

2α
∥X(k+1)−X(k)∥22 + ⟨D⊙ϕ′η(W (k)), X(k+1)−X(k)⟩ ≤ λGϵ(X

(k)).

(15)
On the other hand, since the fidelity ∥ϕη(D ⊙ (· − Y ))∥1 is convex and its gradient
is Lipschitz continuous with constant 2 due to (5), we get

∥ϕη(W (k+1))∥1 ≤ ∥ϕη(W (k))∥1 + ⟨D⊙ϕ′η(W (k)), X(k+1)−X(k)⟩+∥X(k+1)−X(k)∥22
(16)

by using the descent lemma for ∥ϕη(D ⊙ (· − Y ))∥1 at X(k).
Adding two inequalities (15) and (16) leads to

J(X(k+1)) +
1 − 2α

2α
∥X(k+1) −X(k)∥22 ≤ J(X(k)).

That is, the sequence of the objective function values (J(X(k)))k∈N) is decreasing.
Due to the coerciveness of the objective function J , the sequence (X(k))k∈N must
be bounded. This completes the proof.
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4.2. Scheme 2. The idea of Scheme 2 is based on the observation: the function gϵ
can be viewed as the difference of two convex functions in two different ways:

gϵ(t) =
|t|
ϵ

−
(
|t|
ϵ

− log

(
|t|
ϵ

+ 1

))
(17)

and

gϵ(t) =

(
log

(
|t|
ϵ

+ 1

)
+
ρ

2
t2
)
− ρ

2
t2, (18)

where ρ ≥ 1/ϵ2. We can directly verify that |t|
ϵ − log

(
|t|
ϵ + 1

)
is differentiable and

convex while log
(

|t|
ϵ + 1

)
+ ρ

2 t
2 is convex. One difference between the decomposi-

tions in (17) and (18) is that there is an additional parameter ρ used in (18).
Motivated from (17), Scheme 2 relies on this decomposition on the regularization

term in (7) as follows:
Gϵ(X) = Q(X) − P (X), (19)

where

Q(X) :=

n∧m∑
i=1

σi(X)

ϵ
and P (X) =

n∧m∑
i=1

(
σi(X)

ϵ
− gϵ(σi(X))

)
. (20)

The following lemma gives the properties of P and Q defined in (20).

Lemma 4.2. Let both P : Rn×m → R and Q : Rn×m → R be defined in (20).
Then, both P and Q are convex on Rn×m. Furthermore, define h : Rn∧m → R as
follows:

h(x) =

n∧m∑
i=1

(
|xi|
ϵ

− gϵ(xi)

)
.

Then, P is differentiable and its gradient is

∇P (X) = UDiag(∇h(σ(X)))V ⊤,

where for any (U, V ) ∈ O(X).

Proof. The function Q(X) is the constant 1/ϵ multiplying the nuclear norm of X,
hence Q is convex. Note that P (X) = h(σ(X)). It can be checked directly that h
is convex on Rn∧m and is absolutely symmetric, i.e.,

h(x1, x2, . . . , xn∧m) = h(|xπ(1)|, |xπ(2)|, . . . , |xπ(n∧m)|),
for any permutation π. By [18, Proposition 6.1], P is convex on Rn×m. The final
result on the gradient of P follows from [18, Proposition 6.2].

Using the decomposition (19), problem (7) can be rewritten as

min{J(X) = F (X) + λQ(X) − λP (X) : X ∈ Rn×m}. (21)

By Lemma 4.2, the objective function J(X) of problem (21) is the sum of
∥φη(D ⊙ (X − Y ))∥1 a smooth convex function with Lipschitz gradient, λQ(X)
a proper convex function and −λP (X) a differentiable concave function. Due to
this structure, the proximal difference-of-convex algorithm with extrapolation in
[25] can be adopted for solving problem (21). This leads to our Scheme 2 as follows:
set α < 1/2, {βk} ⊂ [0, 1) with supk βk < 1, X(−1) = X(0) ∈ Rn∧m, iterate{

W (k) = X(k) + βk(X(k) −X(k−1)),

X(k+1) = proxαλQ

(
W (k) − α

(
∇F (W (k)) − λ∇P (X(k))

))
,

(22)



MIXED NOISE REMOVAL VIA NONLOCAL LOW-RANK REGULARIZATION 13

where (U (k), V (k)) ∈ O(X(k)).
From Corollary 3.11, proxαλQ in Scheme 2 is the singular value shrinkage operator

with threshold αλ
ϵ . Write

X̃(k+1) := W (k) − α
(
∇F (W (k)) − λ∇P (X(k))

)
. (23)

We get

X(k+1) = U (k+1)Diag(dk+1)(V (k+1))⊤, (24)

where (U (k+1), V (k+1)) ∈ O(X̃(k+1)), and for all i = 1, 2, . . . , (n ∧m)

dk+1
i =

{
0, if σi(X̃

(k+1)) ≤ αλ
ϵ ;

σi(X̃
(k+1)) − αλ

ϵ , otherwise.
(25)

For the sequence (X(k))k∈N generated by Scheme 2, by Theorem 4.1 in [25] this
sequence is bounded, limk→∞ ∥X(k+1) − X(k)∥2 = 0, and any accumulation point
of (X(k))k∈N is a stationary point of the objective function of (7), i.e,

0 ∈ ∇F (X(k)) + λ(∂Q(X(⋆)) −∇P (X(⋆))),

where X(⋆) is an accumulation point of (X(k))k∈N. Furthermore, by Theorem 4.2
in [25], we have

∑
k ∥X(k+1) −X(k)∥2 <∞.

We introduce an alternative decomposition of Gϵ based on (18). The pair (P,Q)
used in (19) is defined as follows:

Q(X) :=
n∧m∑
i=1

(
gϵ(σi(X)) +

ρ

2
σ2
i (X)

)
and P (X) :=

ρ

2
∥σ(X)∥22 (26)

with any ρ ≥ 1
ϵ2 . Clearly, P (X) is the square of the Schatten-2 norm of X multi-

plying the constant ρ
2 , which is also the square of the Frobenius norm of X mul-

tiplying the same constant, yielding ∇P (X) = ρX. Viewing gϵ(·) + ρ
2 (·)2, which

is convex by (18), as the function f in Theorem 3.10, one immediately sees that
Q(X) =

∑n∧m
i=1 f(σi(X)) and the function f satisfies all assumptions on it. With

this pair of (P,Q), scheme 2 becomes{
W (k) = X(k) + βk(X(k) −X(k−1))

X(k+1) = proxαλQ

(
W (k) − α

(
∇F (W (k)) − λρX(k)

)) (27)

Write

X̃(k+1) := W (k) − α
(
∇F (W (k)) − λρX(k)

)
. (28)

By Theorem 3.10, we have

X(k+1) = U (k+1)Diag(dk+1)(V (k+1))⊤, (29)

where (U (k+1), V (k+1)) ∈ O(X̃(k+1)), and for all i = 1, 2, . . . , (n ∧m)

dk+1
i = proxαλf (σi(X̃

(k+1))) = prox αλ
1+αλρ gϵ

(
σi(X̃

(k+1))

1 + αλρ

)
.

Note that αλ
1+αλρ <

1
ρ ≤ ϵ2. By (11) and (10) with some manipulations, we know

that

dk+1
i =

 0, if σi(X̃
(k+1)) ≤ αλ

ϵ
;

(σi(X̃
(k+1))−ϵ(1+αλρ))+

√
(σi(X̃

(k+1))+ϵ(1+αλρ))2−4αλ(1+αλρ)

2(1+αλρ)
, otherwise.

(30)
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At first glance, both iterative schemes (22) and (27) should theoretically work
for optimization problem (7). However, our numerical experiments for mixed noise
removal showed that scheme (22) works very well, but scheme (27) does not. Specif-
ically, all iterates X(k) generated by scheme (27) remain nearly indistinguishable
from the initial guess X(0). A similar observation has been reported in [25]. How-
ever, a plausible explanation for this phenomenon remains unknown.

5. Our algorithms for mixed noise removal. In this section, we present our
algorithm for model (1). As it was mentioned earlier, the general framework for
model (1) presented here is similar to the NLR-TP in [27]. The main difference is
how to solve the optimization problem (7). With the preparations in the previous
sections, we are ready to present our two-phase algorithm for model (1). Phase I
is to identify the set Z the locations of outlier candidates in the noisy image y.
According to the types of impulse noise in y, we use AMF [16] for salt-and-pepper
noise and use ACWMF [10] for random-valued impulse noise to estimate Z. In
Phase II, for a local patch, say yℓ, of y, we search for its nonlocal patches across
the image to form the corresponding patch matrix Yℓ, which is Y in model (2).
Accordingly, we have Xℓ and Zℓ that can be viewed as X and Z, respectively,
in model (2). Therefore, we can estimate Xℓ from Yℓ through either Scheme 1
or Scheme 2. By rendering all patches, we aggregate all estimated Xℓ together,
yielding an reconstructed image x. As suggested in [13], we can run the Phase II
several more rounds to further enhance the denoised image. A complete procedure
for model (1) with K rounds of Phase II is summarized in Algorithm 1.

We manage three parameters, namely η, ϵ, and λ in (7). Our strategy for adjust-
ing these parameters involves varying η based on the iteration and adjusting ϵ and
λ according to noise levels in observed images. Specifically, at the kth iteration of
Scheme 1 or Scheme 2 for patch ℓ, we set η as follows:

η =

√
2

|Ω \ Z|
∥D ⊙ (X

(k)
ℓ − Y )∥1, (31)

where |Ω \ Z| is the cardinality of the set Ω \ Z. As for the parameter α common
to both Scheme 1 and Scheme 2, we consistently choose α = 0.499, ensuring it is
less than 1/2.

In each iteration of Phase II in our algorithm, we generate a denoised image by
combining all the estimated patch matrices. For the i-th iteration, the pixel value
at a specific point in the denoised image x(i) is obtained as the weighted average of
the pixel values at the corresponding position across all estimated patches covering
this pixel. While various weighted averaging strategies can be employed, we opt for
the straightforward approach of using equal weights for all patches. This choice is
made based on our observations from numerical experiments, where we have not
identified significant differences with other weighting strategies.

6. Numerical experiments. The superior performance of NLR-TP against state-
of-the-art denoising methods, including WESNR [17], WJSR[20] and LSM-NLR[15]
for mixed noise removal, has been reported in [27]. Therefore, in this section,
we present numerical experiments to illustrate the effectiveness of our proposed
Algorithm 1 by comparing it with NLR-TP. To distinguish the usage of Scheme 1
and Scheme 2, Algorithm 1-S1 and Algorithm 1-S2 refer to Algorithm 1.
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Algorithm 1 Mixed Noise Removal for (1)

1: Input: Degraded image y; parameters
2: Set parameters δ > 0, patch size, patch number, outer iteration number K,inner

iteration number M ;
3: Initialize x(0) = y and y(0) = y;
4: Phase I: Apply AMF (for salt-and-pepper noise) or ACWMF (for random-valued

noise) to estimate the set Z and obtain the binary matrix D;
5: Phase II:
6: for i from 1 to K do
7: y(i) = x(i−1) + δ(y − x(i−1));
8: for each patch yℓ of y(i) do
9: Form the patch matrix Yℓ;

10: for t from 1 to M do
11: Set parameters η,ϵ,λ,α < 1/2, {βk} ⊂ [0, 1) with supk βk < 1;
12: 1. Scheme 1:

X(k+1) ∈ proxαλGϵ

(
X(k) − αD ⊙ φ′

η(D ⊙ (X(k) − Y ))
)

;

13: 2. Scheme 2:

W (k) = X(k) + βk(X(k) −X(k−1)),

X(k+1) = proxαλQ

(
W (k) − α

(
∇F (W (k)) − λ∇P (X(k))

))
,

14: end for
15: end for
16: Aggregate Xℓ to form the denoised image x(i);
17: end for

To compare our proposed algorithm and NLR-TP, we select four testing images:
the “Barbara”, “House” and “Boat” images of size 512 × 512, as shown in Fig-
ure 1(a), 1(b), and 1(c), respectively. The “Barbara” image is widely used due to
its rich details, including edges and smooth regions. The “House” image features
well-defined edges and extensive cartoon-like regions. The “Boat” image includes
elements such as clouds and water surfaces, which lack distinct texture features.
Additionally, we include a 512 × 512 color image of “Baboon” in Figure 1(d) to
demonstrate the applicability of our algorithm to color images.

For testing our algorithm, we added mixed noise to the images, comprising Gauss-
ian noise and another type of impulse noise, either salt-and-pepper or random-value.
Details on the noise types will be discussed in the following subsections.

The effectiveness of algorithms in removing mixed noise are assessed by three
metrics, namely, the peak signal-to-noise ratio (PSNR), the structural similarity
(SSIM) [24] and the feature similarity (FSIM) [28]. The PSNR mainly measures the
intensity similarity between an reconstructed image and its reference image while
the other two mainly measure the perceptual image quality of an reconstructed
image. Normally, the higher PSNR, SSIM, and FSIM scores are, the better the
quality of the reconstructed images is.

Algorithm 1 consists of two loops. The number of iterations for performing both
Scheme 1 and Scheme 2 (inner loop) in line 10 is set to 15 and 25, respectively.
Meanwhile, the maximum number of iterations for updating the observed patch
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(a) Barbara (b) House (c) Boat (d) Baboon

Figure 1. The testing images (a) “Barbara”, (b) “House”, (c)
“Boat”, and (c) “Baboon”.

matrices (outer loop) from line 6 to line 11 is set to 50 (i.e., K = 50). The outer
loop terminates once the reconstructed image achieves the highest PSNR value.

In the following sections, we present our numerical results separately based on
the types of mixed noise and the image color type.

6.1. Mixed Salt-and-Pepper noise and Gaussian noise. In this subsection,
Nimp in model (1) represents the salt-and-pepper noise. The noise levels of the
salt-and-pepper noise in our experiments are set to be 20, 30, and 50 while the
standard variations of the Gaussian noise are set to 10 and 20. As a result, six
different mixed noise scenarios are tested for each image.

For this type of noise, we need to set parameters λ, ϵ and block size. We choose
ϵ = 0.01 and a block size of 10. Table 1 reports the values of λ used in Algorithm 1-S1
and Algorithm 1-S2 for testing the “Barbara”, “House” and “Boat” images across
the six cases. In this table, ‘sp20+gs10’ refers the mixed noise with the level of
salt-and-pepper noise 20 and the standard deviation of Gaussian noise 10. Similar
notations apply to the other mixed noise cases.

In Table 2, we present the results of three metrics-PSNR, SSIM, and FSIM-for
NLR-TP, Algorithm 1-S1 and Algorithm 1-S2. For the image of “Barbara”, we
observe that Algorithm 1-S1 and Algorithm 1-S2 perform better than NLR-TP in
terms of the values of PSNR, in particular in the ‘sp50+gs10’ noise case. Both
Algorithm 1-S1 and Algorithm 1-S2 exhibit comparable performance. Regarding
the “House” image, Algorithm 1-S2 achieves the highest performance, followed by
Algorithm 1-S1 in terms of PSNR values. For the “Boat” image, although with
σ = 20 our algorithm’s numerical performance is inferior to NLRTP (still quite
close), at sigma = 10 our algorithm performs better numerically. Figures 2(a), 2(b)
and 2(c) provide visualizations of the PSNR values for the “Barbara”, “House” and
“Boat” images, respectively, at a noise level of σ = 10.

Figures 3, 4 and 5 display the visual quality of the denoised images of “Barbara”,
“House” and “Boat” for the cases having the standard deviation of Gaussian noise
10 (Boat) or 20 (Barbara,House). Figure 3(a) is the noisy “Barbara” image with
Gaussian noise of σ = 20 and salt-and-pepper noise level is 50. The denoised images
by NLR-TP, Algorithm 1-S1 and Algorithm 1-S2 are depicted in Figure 3(b), 3(c),
and 3(d), respectively.

For the “Barbara” image, it is evident that all three methods—NLR-TP, Algo-
rithm 1-S1, and Algorithm 1-S2—effectively remove noise and restore the contours
of the image. In particular, the texture of the clothing is well preserved. The sec-
ond row of Figure 3 presents a zoomed-in view of a specific region from the first
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row images. Close-up views corresponding to NLR-TP, Algorithm 1-S1, and Al-
gorithm 1-S2 all maintain the striped patterns in that region. However, a closer
inspection reveals that Algorithm 1-S1 and Algorithm 1-S2 produce less blurring in
the top-left corner of the zoomed-in area compared to NLR-TP, indicating superior
preservation of fine details.

Similarly, Figures 4 and Figure 5 show the image of the denoised “House” and
“Boat”. Our method effectively restores image contours while preserving edge
sharpness, demonstrating its capability to remove this type of mixed noise. The
second row of Figure 4 provides a zoomed-in view of a selected region from the
first-row images. Due to the presence of noise, none of the three methods can fully
recover the vertical texture on the wall in the zoomed-in area. However, all three
approaches successfully preserve the contours and edges of the window, highlighting
their effectiveness in maintaining structural details. A similar observation holds for
the “Boat” image in Figure 5.

Table 1. Parameters set for mixed salt-and-pepper noise and
Gaussian noise.

Algorithm Algorithm 1-S1 Algorithm 1-S2

Noise Type η λ ϵ block size η λ ϵ block size

Images: Barbara and House

sp20+gs10 1 4.0e-4 0.01 10 1 2e-4 0.01 10

sp30+gs10 1 3.5e-4 0.01 10 1 2e-4 0.01 10

sp50+gs10 1 3.4e-4 0.01 12 1 1.8e-4 0.01 12

sp20+gs20 1 1.1e-4 0.01 12 1 5e-5 0.01 12
sp30+gs20 1 1e-4 0.01 12 1 5e-5 0.01 12

sp50+gs20 1 9e-5 0.01 12 1 5e-5 0.01 12

Image: Boat

sp20+gs10 1 5e-4 0.1 10 3 2.3e-3 0.8 10

sp30+gs10 1 8e-4 0.1 10 3 2.1e-3 0.1 10

sp50+gs10 1 1.3e-3 1 15 5 1.5e-3 1 15
sp20+gs20 7 5.5e-3 0.01 10 0.5 1.3e-3 0.5 10

sp30+gs20 7 9e-3 1 10 0.5 1.2e-3 0.5 10

sp50+gs20 9 1.5e-4 0.01 15 5 7e-4 1 15

(a) (b) (c)

Figure 2. The PSNR values of the denoised images from salt and
pepper noise by various methods for the images of (a) “Barbara”,
(b) “House” and (c) “Boat”.
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Table 2. Comparison of NLR-TP and Algorithm 1.

Algorithm NLR-TP Algorithm 1-S1 Algorithm 1-S2

Noise Type (PSNR, SSIM, FSIM) (PSNR, SSIM, FSIM) (PSNR, SSIM, FSIM)

The “Barbara” image

sp20+gs10 (34.50, 0.9731, 0.9806) (34.53, 0.9735, 0.9816) (34.62, 0.9741, 0.9821)

sp30+gs10 (33.87, 0.9700, 0.9783) (34.09, 0.9714, 0.9801) (34.15, 0.9718, 0.9804)

sp50+gs10 (31.92, 0.9563, 0.9705) (32.83,0.9629, 0.9742) (32.87, 0.9640, 0.9737)
sp20+gs20 (31.34, 0.9481, 0.9637) (31.40,0.9478, 0.9649) (31.44, 0.9490, 0.9648)

sp30+gs20 (30.90, 0.9451, 0.9606) (31.02, 0.9441,0.9649) (31.00, 0.9458, 0.9617)
sp50+gs20 (30.01, 0.9334, 0.9537) (30.06, 0.9312,0.9551) (30.04, 0.9337, 0.9549)

The “House” image

sp20+gs10 (38.99, 0.9598, 0.9760) (38.97, 0.9588, 0.9766) (39.12, 0.9618, 0.9777)
sp30+gs10 (38.17, 0.9550, 0.9732) (38.38, 0.9518, 0.9719) (38.67, 0.9580, 0.9750)

sp50+gs10 (36.58, 0.9430, 0.9704) (37.31, 0.9410, 0.9677) (37.65, 0.9505, 0.9705)

sp20+gs20 (35.76, 0.9290, 0.9542) (35.69, 0.9227, 0.9472) (35.77, 0.9297, 0.9543)
sp30+gs20 (35.34, 0.9257, 0.9528) (35.34, 0.9187,0.9438) (35.37, 0.9248, 0.9520)

sp50+gs20 (34.73, 0.9150, 0.9457) (34.73, 0.9114, 0.9397) (34.74, 0.9119, 0.9425)

The “Boat” image

Bsp20+gs10 (32.84, 0.9565, 0.9768) (32.78, 0.9565, 0.9777) (32.85, 0.9553, 0.9771)

Bsp30+gs10 (32.22, 0.9497, 0.9724) (32.24, 0.9511, 0.9738) (32.23, 0.9501, 0.9731)
Bsp50+gs10 (30.57, 0.9298, 0.9612) (30.54, 0.9311, 0.9614) (30.65, 0.9307, 0.9618)

Bsp20+gs20 (29.91, 0.9099, 0.9484) (29.82, 0.9028, 0.9490) (29.81, 0.9067, 0.9484)

Bsp30+gs20 (29.47, 0.9023, 0.9439) (29.31, 0.8904, 0.9431) (29.30, 0.8951, 0.9401)
Bsp50+gs20 (28.31, 0.8726, 0.9255) (28.20, 0.8736, 0.9291) (28.26, 0.8736, 0.9294)

(a) (b) (c) (d)

Figure 3. (a) The noisy “Barbara” image with Gaussian noise
(σ = 20) and salt-and-pepper noise at level 50. The denoised
images are obtained using (b) NLR-TP, (c) Algorithm 1-S1, and
(d) Algorithm 1-S2. The second row displays the corresponding
zoomed-in regions of the images in the first row.

6.2. Mixed Random Impulse Noise and Gaussian Noise. In this subsection,
Nimp in model (1) represents the random-valued impluse noise. The noise levels of
the impulse noise used in our experiments are set to be 15, 25, and 45 while the
standard variations of the Gaussian noise are set to 15 and 25. Therefore, there are
six cases of mixed noise to be tested for each test image.
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(a) (b) (c) (d)

Figure 4. (a) The noisy “House” image with Gaussian noise
(σ = 20) and salt-and-pepper noise at level 50. The denoised
images are obtained using (b) NLR-TP, (c) Algorithm 1-S1, and
(d) Algorithm 1-S2. The second row displays the corresponding
zoomed-in regions of the images in the first row.

(a) (b) (c) (d)

Figure 5. (a) The noisy “Boat” image with Gaussian noise (σ =
10) and salt-and-pepper noise at level 50. The denoised images
are obtained using (b) NLR-TP, (c) Algorithm 1-S1, and (d) Algo-
rithm 1-S2. The second row displays the corresponding zoomed-in
regions of the images in the first row.

Table 3 shows the parameters used in Algorithm 1-S1 and Algorithm 1-S2 for
testing the “Barbara”, “House” and “Boat” images at six cases. In the table,
‘rv15+gs15’ refers the mixed noise with the level of random-valued impluse noise
15 and the standard deviation of Gaussian noise 15. Similar explanation for other
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mixed noise cases is obvious. For each case, the parameters λ and ϵ in optimization
problem (7) together with the block size for patch matrices are provided.

In Table 4, we present the results of three metrics PSNR, SSIM, and FSIM corre-
sponding to NLR-TP, Algorithm 1-S1 and Algorithm 1-S2. For the image of “Bar-
bara”, we observe that Algorithm 1-S1 and Algorithm 1-S2 perform significantly
better than NLR-TP in terms of the values of PSNR for all tested cases. Algo-
rithm 1-S1 is better than Algorithm 1-S2 except in the case of rv45+gs15. For the
“House“ image, three algorithms perform comparable for the noise cases rv15+gs15
and rv25+gs15 while both Algorithm 1-S1 and Algorithm 1-S2 perform better than
NLR-TP in the other cases in terms of the values of PSNR for all tested cases. Re-
garding the “Boat” image, both Algorithm 1-S1 and Algorithm 1-S2 perform better
than NLR-TP in terms of PSNR in all cases. Specifically, Algorithm 1-S1 performs
significantly better than Algorithm 1-S2.

Figure 6(a), 6(b) and 6(c) provide visualizations of the PSNR values for the
”Barbara”,”House” and ”Boat” images, respectively, at a noise level of σ = 25.

We present the visual quality of the denoised images for “Barbara”, “House” and
“Boat” with Gaussian noise at a standrad deviation σ = 25 and random-valued noise
at level 45. Figure 7(a) shows the noisy “Barbara” image. The denoised images
by NLR-TP, Algorithm 1-S1 and Algorithm 1-S2 are depicted in Figure 7(b), 7(c),
and 7(d), respectively. For the “Barbara” image, we observe that Figure 7(b),
7(c), and 7(d) are quite clear, and the textures within the image are also distinctly
visible. This suggests that our method effectively removes noise. However, it is
evident that Figure 7(b) contains more unnatural spots and streaks compared to
Figure 7(c) and 7(d), which appear clearer in comparison. In the second row of
Figure 7, we shoe a zoomed-in portion of the images from the first row. The
zoomed-in part corresponding to NLR-TP appears jagged, likely because it cannot
effectively remove random-valued noise. In contrast, the zoomed-in portions of
Algorithm 1-S1 and Algorithm 1-S2 are smoother and appear more natural.

Figure 8 shows the denoised “House” image. We observe that Figure 8(c) and
8(d) appear clearer than Figure 8(b). In Figure 8(b), the staircase effect along
the edges is noticeable, but it is significantly reduced in Figures 8(c) and 8(d),
particularly in Figure 8(d), where the contours and edges are much more natural
and distinct. The second row of Figure 8 shows a zoomed-in portion of the images
from the first row. The zoomed-in parts corresponding to Algorithm 1-S1 and
Algorithm 1-S2 show clearer edges compared to NLR-TP. Notably, the zoomed-in
portion from Algorithm 1-S2 even restores the texture on the wall.

Similarly, Figure 9 shows the denoised “Boat” image. It is evident that our
method effectively removes the noise in Figure 9(a). In the zoomed-in section of the
boat shown in the second row, we can observe that our method effectively preserves
both the boat’s edge regions and the smooth areas. The details in Figure 9(d), such
as the lines, are much clearer.

6.3. Denoising of color images. To conclude the numerical section, we evaluate
our algorithm on color images. Specifically, we apply mixed Gaussian noise with
a standard deviation of σ = 20 and salt-and-pepper noise at level 30 to the “Ba-
boon” image in Figure 1(d). The numerical values of (PSNR, SSIM, FSIM) for
the denoised images are (22.32, 0.6786, 0.8562), (22.38, 0.6897, 0.8618), and (22.33,
0.6878, 0.8615) by NLR-TP, Algorithm 1-S1, and Algorithm 1-S2, respectively.
Among these,Algorithm 1-S1 achieves slightly better performance than the other
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Table 3. Parameter sets for denoising the image with Algorithm 1.

Algorithm Algorithm 1-S1 Algorithm 1-S2

Noise Type η 1
λ

ϵ block size η 1
λ

ϵ block size

Image: Barbara Figure 1(a)

rv15+gs15 1 7.0e-5 1e-2 12 1.7 1.7e-4 0.01 12

rv25+gs15 1 5.0e-5 1e-2 12 1.7 1.8e-4 0.01 12

rv45+gs15 1 3.0e-5 1e-2 12 1.7 1.8e-4 0.01 12
rv15+gs25 1 3.0e-5 1e-2 12 1.7 1.0e-4 0.01 12

rv25+gs25 1 2.2e-5 1e-2 12 1.7 1.0e-4 0.01 12

rv45+gs25 1 1.5e-5 1e-2 12 1.7 1.0e-5 0.01 12

Image: House Figure 1(b)

rv15+gs15 1 7.0e-5 1e-3 18 1.7 1.6e-4 1e-1 18

rv25+gs15 1 5.0e-5 1e-3 18 1.7 1.2e-4 1e-1 18
rv45+gs15 1 2.0e-5 1e-3 18 1.7 1.2e-4 1e-2 18

rv15+gs25 1 2.2e-5 1e-3 18 1.7 1.0e-4 1e-2 12
rv25+gs25 1 1.8e-5 1e-3 18 1.7 7.0e-5 1e-1 15

rv45+gs25 1 9.0e-6 1e-3 18 1.7 8.0e-5 1e-2 12

Image: Boat Figure 1(c)

rv15+gs15 1 1e-3 1 12 1.5 7e-4 2.5 10

rv25+gs15 1 5e-4 1 12 1.2 3e-4 2.5 10

rv45+gs15 1 2.0e-4 1 12 1 3e-4 2.5 15
rv15+gs25 1 2.5e-4 1 10 1.5 2.5e-4 5 10

rv25+gs25 1 2.0e-4 1 10 1.5 1.5e-4 5 10

rv45+gs25 1 1.25e-4 1 10 1.5 1e-4 5 15

Table 4. Comparison of NLR-TP and Algorithm 1

Algorithm NLR-TP Algorithm 1-S1 Algorithm 1-S2

Noise Type (PSNR, SSIM, FSIM) (PSNR, SSIM, FSIM) (PSNR, SSIM, FSIM)

The “Barbara” image

rv15+gs15 (29.78, 0.9393, 0.9600) (30.41, 0.9437, 0.9633) (30.40, 0.9443, 0.9631)

rv25+gs15 (28.57, 0.9261, 0.9543) (29.14, 0.9304, 0.9581) (28.98, 0.9246, 0.9519)

rv45+gs15 (25.16, 0.8564, 0.9252) (25.33, 0.8567, 0.9302) (26.00, 0.8775, 0.9322)
rv15+gs25 (28.16, 0.9074, 0.9415) (28.89, 0.9178, 0.9468) (28.57, 0.9068, 0.9439)

rv25+gs25 (27.10, 0.8839, 0.9324) (27.64, 0.8919, 0.9375) (27.52, 0.8837, 0.9349)
rv45+gs25 (23.99, 0.7946, 0.8905) (24.61, 0.8075, 0.9028) (24.81, 0.8151, 0.8979)

The “House” image

rv15+gs15 (36.69, 0.9358, 0.9589) (36.68, 0.9339, 0.9587) (36.69, 0.9358, 0.9601)
rv25+gs15 (36.01, 0.9238, 0.9488) (36.10, 0.9248, 0.9504) (36.18, 0.9301, 0.9558)
rv45+gs15 (33.08, 0.9022, 0.9332) (33.68, 0.9036, 0.9359) (33.74, 0.9057, 0.9337)

rv15+gs25 (33.84, 0.9086, 0.9415) (34.42, 0.9065, 0.9351) (34.17, 0.9029, 0.9337)
rv25+gs25 (33.33, 0.8966, 0.9299) (33.61, 0.8986, 0.9282) (33.50, 0.8976, 0.9269)

rv45+gs25 (29.69, 0.8627, 0.9046) (30.41, 0.8725, 0.9086) (30.56, 0.8636, 0.9078)

The “Boat” image

rv15+gs15 (29.65, 0.9126, 0.9519) (29.65, 0.9077, 0.9503) (29.66, 0.9063, 0.9502)
rv25+gs15 (28.59, 0.8870, 0.9367) (28.69, 0.8932, 0.9419) (28.64, 0.8927, 0.9417)

rv45+gs15 (26.34, 0.8378, 0.9110) (26.43, 0.8366, 0.9103) (28.42, 0.8379, 0.9115)
rv15+gs25 (27.81, 0.8607, 0.9252) (27.85, 0.8554, 0.9228) (27.89, 0.8558, 0.9240)

rv25+gs25 (26.98, 0.8314, 0.9068) (27.01, 0.8326, 0.9097) (27.99, 0.8341, 0.9117)
rv45+gs25 (24.77, 0.7559, 0.8675) (24.87, 0.7506, 0.8635) (24.85, 0.7544, 0.8686)

two. The visual quality of the denoised images is shown in Figure 10, demonstrating
that our algorithm is effectively applicable to color images.
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(a) (b) (c)

Figure 6. The PSNR values of the denoised images from random
valued noise by various methods for the images of (a) “Barbara”,
(b) “House” and (c) “Boat”.

(a) (b) (c) (d)

Figure 7. (a) The noisy “Barbara” image with Gaussian noise
(σ = 25) and random-valued impluse noise at level 45. The de-
noised images are obtained using (b) NLR-TP, (c) Algorithm 1-S1,
and (d) Algorithm 1-S2. The second row displays the correspond-
ing zoomed-in regions of the images in the first row.

7. Conclusions. In this paper, we proposed efficient algorithms for solving an op-
timization problem whose objective function consists of a convex content-dependent
fidelity term and a nonlocal low-rank regularization term, both constructed using
patch matrices formed from similar patches of an image. We demonstrated that the
objective function satisfies the Kurdyka- Lojasiewicz (KL) property and leveraged
this property to analyze the convergence of the proposed algorithms. Numerical
experiments were conducted, showing that our algorithms outperform NLR-TP.
However, our model and algorithms involve several parameters, and selecting their
optimal values remains a challenge. Future work will focus on developing effective
strategies for parameter selection to further enhance the practicality and robustness
of the proposed approach.



MIXED NOISE REMOVAL VIA NONLOCAL LOW-RANK REGULARIZATION 23

(a) (b) (c) (d)

Figure 8. (a) The noisy “House” image with Gaussian noise (σ =
25) and random-valued impluse noise at level 45. The denoised
images are obtained using (b) NLR-TP, (c) Algorithm 1-S1, and
(d) Algorithm 1-S2. The second row displays the corresponding
zoomed-in regions of the images in the first row.

(a) (b) (c) (d)

Figure 9. (a) The noisy “Boat” image with Gaussian noise (σ =
25) and random-valued impluse noise at level 45. The denoised
images are obtained using (b) NLR-TP, (c) Algorithm 1-S1, and
(d) Algorithm 1-S2. The second row displays the corresponding
zoomed-in regions of the images in the first row.
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(a) (b) (c) (d)

Figure 10. (a) The noisy “Baboon” image with Gaussian noise
(σ = 20) and salt-and-pepper noise at level 30. The denoised
images are obtained using (b) NLR-TP, (c) Algorithm 1-S1, and
(d) Algorithm 1-S2. The second row displays the corresponding
zoomed-in regions of the images in the first row.
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