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Abstract. We analyze the structure of positive solutions to a class of steady

state equations arising in modeling a prey population that grows logistically,
experiences Holling Type III predation from a generalist predator, and exhibits

an overall negative relationship between density and emigration rate (-DDE).

In particular, the predator is assumed to operate on a different time scale than
the prey and, thus, its density is held constant. Under some general hypothe-

ses on the reaction term and boundary nonlinearity, we establish existence,

nonexistence, and multiplicity results for certain ranges of a parameter which
is proportional to patch size squared via the method of sub-super-solutions.

In particular, we establish that the bifurcation curve of positive solutions for

the steady state equation is at least Σ-shaped. In this case, there is a range
of patch size where a patch-level Allee effect occurs, i.e., a situation where the

trivial solution and at least one other positive steady state are stable arises for
small patch sizes, and a non-Allee effect type bi-stability arises for a range of
larger patch sizes. As an application of our result, we consider the case when Ω

is a ball, the reaction term is exactly logistic growth with a Type III functional
response and the boundary nonlinearity is a -DDE form with a fast decay rate
and show that the hypotheses in our theorems are satisfied. Further, when

Ω = (0, 1), we employ quadrature methods and computations using Wolfram
Mathematica to show that the bifurcation diagram for positive solutions of

this example is exactly Σ-shaped for certain values of the parameters. The

occurrence of multiple steady states in real-world metapopulations can influ-
ence the fraction and distribution of occupied patches and cause uncertainty
in predicting minimum patch size and density-area relationships.
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1. Introduction. In [18], the authors established certain existence and multiplicity
results for positive solutions of the following steady state problem arising from a
population model, namely,{

−∆u = λ
(
u− u2

K −
cu2

1+u2

)
; x ∈ Ω

∂u
∂η +

√
λu = 0; x ∈ ∂Ω

(1)

where a prey population and a generalist predator occupy a single habitat patch
which is surrounded by a hostile matrix. Here, u represents the prey density in the
patch, λ > 0 is proportional to patch size squared, prey exhibit logistic growth with

K > 0 being the patch carrying capacity, and cu2

1+u2 represents a Holling Type III
functional response of a predator population which is assumed to be at constan-
t density (one could assume the time scale of the predator is much greater than
the prey, leaving the predator’s population dynamics as negligible) with compos-
ite parameter c ≥ 0 representing maximal predation rate (see, e.g., [22], [23], and
[24]). Specifically, a Type III response can arise in the situation where a gener-
alist predator, which when it encounters this prey at low levels preys upon it at
corresponding low levels. But, as the prey density reaches a certain threshold, the
predator “switches” and begins to consume prey at higher levels. It is also assumed
that either Ω is a bounded domain in RN ; N > 1 with smooth boundary ∂Ω or
N = 1 and Ω = (0, 1). In this scaled model, Ω has unit length, area, or volume
and ∂u

∂η denotes the outward normal derivative of u. The details of the derivation

of such a population model can be found in [13].
In [18], the authors proved that the bifurcation diagram of positive solutions for

(1) is S-shaped for certain parameter values and ranges of λ-values (see Figure 1).

Figure 1. A prototypical S-shaped bifurcation diagram of posi-
tive solutions for (1).

The ecological interpretation of such a prediction is that patches with a λ-value
such as the one illustrated by the dotted line in Figure 1 will have at least three
positive steady states, say u1, u2, u3 listed in ascending order of size. It is easy to see
that this creates a dynamical structure that is at least bi-stable, i.e., the solution
of the corresponding time-dependent problem with initial condition taken within
[u1, u2] will remain in this range for all time (see, e.g., [32]) and similarly for initial
conditions taken within [u2, u3]. However, for this λ-value, the trivial solution is
unstable. As this bifurcation diagram illustrates, the size of the patch plays a crucial
role in determining if this predation mechanism will produce bi-stability or not. In
other words, bi-stability only occurs for intermediate levels of patch size.

Allee effects, defined as the positive effects of increasing density on fitness, have
also been shown to create a type of bi-stability in spatially heterogeneous models
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such as (1). In this case, the trivial solution and at least one other positive steady
state are both stable, leading to prediction of a threshold for which the population
must overcome in order to be predicted to persist. Allee effects were first described
in the early 1930s for cooperatively breeding species [3, 26]. Although several causes
of Allee effects have been proposed in the literature, scarcity of reproductive op-
portunities at low densities are thought to be a common cause for Allee effects (see
[15, 30]). Other factors can be found in [11, 17, 27]. Although it can be difficult to
detect (e.g., [35]), empirical support for Allee effects spans a wide diversity of taxa
(see [11, 27]).

The authors have shown in a series of studies that a negative relationship between
density and emigration from a patch into the matrix (-DDE) can generate a patch-
level Allee effect in models without an explicit Allee effect type growth, see [8,
19, 21]. Although the most widely accepted view of emigration behavior is that
species should exhibit positive DDE (+DDE) (see [5, 6, 31]), other forms of density-
dependent emigration (DDE), including -DDE, exist. In a recent review of the
empirical literature, [21] found that 35% of the cases exhibited +DDE, 30% were
density independent (DIE), 25% were -DDE, 10% were non-monotonic. However,
little is known about the dynamics of such an ecosystem where prey grow logistically,
experience Type III predation, and exhibit -DDE. In particular, what interaction
will the two mechanisms of Type III predation and -DDE have on predictions of
persistence as the patch size is varied?

In this paper, we study a general class of steady state problems arising from
a population model for prey that are growing logistically, experiencing Type III
predation from a generalist predator, and exhibiting -DDE, namely:{

−∆u = λf(u); x ∈ Ω
∂u
∂η +

√
λγg(u)u = 0; x ∈ ∂Ω

(2)

where the setup is the same as in (1) with the addition of the composite parameter

γ which is proportional to matrix hostility and g(u) = 1−α(u)
α(u) with α(u) being the

probability of an organism remaining in the patch upon reaching the boundary. We
now make the following assumptions regarding the reaction term f and boundary
nonlinearity g which will include the modeling situation discussed previously:
(H1) : f ∈ C([0,∞),R) such that f(0) = 0, f ′(0) = 1, there exists r0 ∈ (0,∞) such
that f ∈ C2 ([0, r0]), f(r0) = 0, and f(s)(s− r0) ≤ 0 for s ∈ [0,∞),
(H2) : g ∈ C([0,∞), (g∞, g0]) is a continuous function such that there exists g0, g∞
with 0 < g∞ ≤ g0, g(0) = g0, and min

[0,∞)
g(s) = g∞.

We note that (H2) ensures g represents an overall -DDE when g∞ < g0 or DIE

or +DDE when g∞ = g0, and we will show that when max
[0,r0]

{
f(s)
s

}
= 1 (= f ′(0)) the

growth term is not of Allee effect type. Our aim is to derive sufficient conditions
for which the bifurcation diagram of positive solutions for (2) is at least Σ-shaped.
Ecologically, such a diagram will imply there are ranges of λ where a patch-level
Allee effect arises and others where a non-Allee type bi-stability occurs.

First, we recall some results for certain eigenvalue problems from [20]. Namely,
given M,B, γ > 0, let Ē1(M,B, γ) be the principal eigenvalue of the problem:{

−∆φ0 = EMφ0; x ∈ Ω
∂φ0

∂η +
√
EBγφ0 = 0; x ∈ ∂Ω

(3)
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with corresponding normalized eigenfunction φ0 > 0;x ∈ Ω such that ‖φ0‖∞ = 1.
In the case of M = 1, B = 1 we denote E1(γ) = Ē1(1, 1, γ). Further, for a fixed
M,B, γ, λ > 0, let σ0(M,B, γ) be the principal eigenvalue and φ0 > 0;x ∈ Ω be the
corresponding normalized eigenfunction of:{

−∆φ0 = (σ + λM)φ0; x ∈ Ω
∂φ0

∂η +
√
λBγφ0 = 0; x ∈ ∂Ω

(4)

and σ1(M,B, γ) be the principal eigenvalue and φ1 > 0;x ∈ Ω be the corresponding
normalized eigenfunction of the related problem:{

−∆φ1 = (σ + λM)φ1; x ∈ Ω
∂φ1

∂η +
√
λBγφ1 = σφ1; x ∈ ∂Ω.

(5)

We note that sgn (σ1) = sgn (σ0), σ0(M,B, γ) ≥ 0 for λ ≤ Ē1(M,B, γ),
σ0(M,B, γ) < 0 for λ > Ē1(M,B, γ), and σ0(M,B, γ) → 0 as λ → Ē1(M,B, γ)
(see [20]).
Let R > 0 be the radius of the largest ball that can be inscribed inside the domain

Ω, CN := (N+1)N+1

2NN
(> 1), f∗(s) := max

r∈[0,s]
f(r), and given a b > 0, denote vµb as

the unique solution of: {
−∆v = 1; x ∈ Ω

∂v
∂η + γµbg∞v = 0; x ∈ ∂Ω

(6)

with µb =
√

2bNCN
R2f(b) .

Now, we state two further hypotheses regarding f :

(H3) : there exist a, b > 0 such that a < b < r0
CN

and a
f∗(a)/

b
f(b) >

2NCN‖vµb‖∞
R2 ,

(H4) : there exist r1 ∈ (0, b) and r2 ∈ (bCN , r0) such that f is non-decreasing in
(r1, r2).

We now state our main results, with statements of stability understood in Lya-
punov sense, e.g., see [7] or [32].

Theorem 1.1.

(i) Let (H1), (H2) hold and let M0 = max
[0,r0]

{
f(s)
s

}
. Then (2) has no positive so-

lution for λ ≤ Ē1(M0, g∞, γ) and the trivial solution is asymptotically stable.
For λ > Ē1(1, g0, γ), the trivial solution of (2) is unstable and there exists a
positive solution of (2), uλ, such that ‖uλ‖∞ → r0 as λ→∞.

(ii) Let (H1), (H2) hold and let M0 = max
[0,r0]

{
f(s)
s

}
. Given a λ0 < Ē1(M0, g0, γ),

there is a unique b0 ∈ (0, g0) such that λ0 = Ē1(M0, b0, γ) and if g(s) ≥
b0−g0
r0

s + g0; s ∈ [0, r0] then (2) has no positive solution for λ ∈ (0, λ0). In

particular, if M0 = 1 and g0 = g∞ then (2) has no positive solution for
λ ≤ Ē1(1, g0, γ) and, thus, there is no patch-level Allee effect in this case.
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(iii) Let (H1), (H2) hold. Given a λ1 ∈
(
Ē1(1, g∞, γ), Ē1(1, g0, γ)

)
, there

exists a λ0 ∈ (Ē1(1, g∞, γ), λ1), a corresponding b0 ∈ (g∞, g0) such that
λ0 = Ē1(1, b0, γ), and a K0(λ1, f, γ,Ω) > 0 such that if g(s) < b0 for
s ∈ [K0(λ1, f, γ,Ω), r0] then (2) has at least two positive solutions for
λ ∈

[
λ1, Ē1(1, g0, γ)

)
and a patch-level Allee effect occurs on this λ-range.

(iv) Let (H1), (H2), (H3), & (H4) hold. Then (2) has at least three positive
solutions for

λ ∈
(

max
{
Ē1(1, g0, γ), 2bNCN

R2f(b)

}
,min

{
a

‖vµb‖∞f∗(a) ,
2r2N
f(b)R2

})
.

Corollary 1.2. Let (H1), (H2), (H3), & (H4) hold. Given a
λ1 ∈

(
Ē1(1, g∞, γ), Ē1(1, g0, γ)

)
, if g(s) < b0 for s ∈ [K0(λ1, f, γ,Ω), r0] (where

b0 and K0 are as in Theorem 1.1 (iii)), then (2) has a positive solution uλ for
λ > λ1 such that ‖uλ‖∞ → r0 as λ → ∞, at least two positive solutions for
λ ∈

[
λ1, Ē1(1, g0, γ)

)
, and at least three positive solutions for

λ ∈
(

max
{
Ē1(1, g0, γ), 2bNCN

R2f(b)

}
,min

{
a

‖vµb‖∞f∗(a) ,
2r2N
f(b)R2

})
.

Remark 1.3. See [1] and [2] for studies where the authors have established a Σ-
shaped bifurcation diagram for (2) when the boundary conditions are linear (i.e.
g(s) = 1) and nonlinear respectively. In both studies, authors established their
results assuming that f(s) is an increasing function and hence their results do not

apply to the reaction term f(s) = s − s2

K −
cs2

1+s2 . See also [28], where the authors
discuss a Σ-shaped bifurcation curve for an ecological model with semipositone

structure and Dirichlet boundary conditions, namely when f(s) = s− s2

K −
cs2

1+s2 − ε;
ε > 0.

Theorem 1.1(i) shows that persistence of the prey is not possible when the patch
size is too small, whereas prey can persist at a level which approaches the steady
state value of the spatially homogeneous version of (2), i.e., r0. The latter is due
to the fact that larger patches develop a core area where organisms residing in this
area are not likely to reach the patch/matrix interface and face mortality in the
matrix. Theorem 1.1(ii) gives a sufficient condition for when the -DDE strength
(which is measured by how fast g is allowed to decay to its minimum value g∞) is
not enough to ensure persistence for small patch sizes. Notice that g0 = g∞ means
that g represents non-negative DDE, and any patch-level Allee effect prediction has

to come from the reaction term. When max
[0,r0]

{
f(s)
s

}
= 1, there is no possibility

for a positive solution below the bifurcation point, Ē1(1, g0, γ), and therefore no
patch-level Allee effect is possible.

Theorem 1.1(iii) reveals the fact that if the prey species exhibits any level of -DDE
(i.e., g∞ < g0) then a patch-level Allee effect is predicted as long as g decays quickly
enough below a certain threshold. This threshold is related to the domain geometry
through the eigenvalue problem (3) and the desired λ1-value. Notice that the decay
rate requirement is indeed tied to reaction term, f . The result in Theorem 1.1(iv)
gives sufficient conditions for existence of a non-Allee type bi-stability for patch sizes
in a certain range of values. Finally, Corollary 1.2 gives sufficient conditions for the
bifurcation curve of positive solutions for (2) to be Σ-shaped (see Figure 2). In this
case, the model predicts extinction for small patch sizes, a patch-level Allee effect
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for a range of patch sizes corresponding to λ < Ē1(1, g0, γ) and λ ≈ Ē1(1, g0, γ), and
a non-Allee type bi-stability for an intermediate range of patch sizes with λ-values
in the range outlined in Theorem 1.1(iv).

Figure 2. An expected bifurcation diagram for positive solutions
of (2) when the hypotheses for Corollary 1.2 are satisfied.

We present some important preliminaries in Section 2, followed by proofs of
Theorem 1.1 and Corollary 1.2 in Section 3. In Section 4, we discuss an example
arising in ecological modeling for the case when Ω is a ball of radius R > 0 in RN ;
N = 1, 2, 3, and show that Theorem 1.1 and Corollary 1.2 hold for certain parameter
values for this example. In Section 5, we computationally generate bifurcation
diagrams of positive solutions for (2). In particular, our computational results
indicate these bifurcation curves are exactly Σ−shaped for certain parameter values.

2. Preliminaries. In this section, we introduce definitions of a (strict) subsolution
and a (strict) supersolution of (2) and state two sub-supersolution theorems that
are used to prove existence and multiplicity results for positive solutions.
By a subsolution of (2) we mean ψ ∈ C2(Ω) ∩ C1(Ω) that satisfies{

−∆ψ ≤ λf(ψ); x ∈ Ω
∂ψ
∂η +

√
λγg(ψ)ψ ≤ 0; x ∈ ∂Ω,

and by a supersolution of (2) we mean Z ∈ C2(Ω) ∩ C1(Ω) that satisfies{
−∆Z ≥ λf(Z); x ∈ Ω

∂Z
∂η +

√
λγg(Z)Z ≥ 0; x ∈ ∂Ω.

By a strict subsolution (supersolution) of (2) we mean a subsolution (supersolution)
which is not a solution.

Then the following results hold (see Thereoms 1 and 2 in [25]).

Lemma 2.1. Let ψ and Z be a subsolution and a supersolution of (2) respectively
such that ψ ≤ Z. Then (2) has a solution u ∈ C2(Ω) ∩C1(Ω) such that u ∈ [ψ,Z].

Lemma 2.2. Let ψ1 and Z2 be a subsolution and a supersolution of (2) respectively
such that ψ1 ≤ Z2. Let ψ2 and Z1 be a strict subsolution and a strict supersolution of
(2) respectively such that ψ2 6≤ Z1 and ψ2, Z1 ∈ [ψ1, Z2]. Then (2) has at least three
solutions u1, u2 and u3 where ui ∈ [ψi, Zi]; i = 1, 2 and u3 ∈ [ψ1, Z2]\([ψ1, Z1] ∪
[ψ2, Z2]).
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Remark 2.3. Theorem 2 in [25] is established by the application of fixed-point
theory ideas used in [4] (see Theorem 15.2). As in [4], Theorem 2 in [25] is also
stated with the assumption Z1 < ψ2. For the proof of this theorem to go through,
what is really needed is that the set [ψ1, Z1] ∩ [ψ2, Z2] is empty, which is true
when Z1 < ψ2. However, for this set to be empty assuming ψ2 6≤ Z1 is sufficient,
and hence this three-solution theorem holds under this lesser assumption. This
observation was noted in [34], and Lemma 2.2 is also stated with the assumption
ψ2 6≤ Z1.

3. Proofs of Theorem 1.1 and Corollary 1.2. In this section, we provide proofs
of our main results. First, we make a note about K0 referenced in Theorem 1.1.

Details of the constant K0 in Theorem 1.1.

Given a λ1 ∈
(
Ē1(1, g∞, γ), Ē1(1, g0, γ)

)
, we choose a λ0 ∈ (Ē1(1, g∞, γ), λ1)

and using the facts that Ē1(M,B, γ) is strictly decreasing as a function of B and
Ē1(M, 0, γ) = 0, there exists a unique b0 ∈ (g∞, g0) such that λ0 = Ē1(1, b0, γ).
Now, for a fixed λ > λ1, define H(s) := (λ+σ0)s−λf(s), where σ0 = σ0(1, b0, γ) is
the principal eigenvalue of (4) with corresponding eigenfunction φ0. Then H(0) =
0 and H ′(0) = (λ + σ0) − λf ′(0) = σ0 < 0 since f ′(0) = 1 and σ0 < 0 for
λ > Ē1(1, b0, γ). This implies that H(s) < 0 for s ≈ 0. Let 0 < sλ < r0 be such
that

H(s) = (λ+ σ0)s− λf(s) < 0; for all s ∈ (0, sλ]. (7)

Now, define

K0 = K0(λ1, f, γ,Ω) := min
λ∈[λ1,Ē1(1,g0,γ)]

{
min

Ω
nφ0(x)

}
(8)

where

n := min
λ∈[λ1,Ē1(1,g0,γ)]

{sλ}. (9)

Next, we construct several sub- and supersolutions that are crucial to proving
our results.

Construction of a subsolution ψ1 when (H1) & (H2) hold for λ >

Ē1(1, g0, γ).

For a fixed λ > 0, let σ1 = σ1(1, g0, γ) be the principal eigenvalue with corre-
sponding normalized eigenfunction φ1 > 0; Ω of (5). We note that σ1 < 0 for
λ > Ē1(1, g0, γ). Let ψ1 := pλφ1 for pλ > 0 and l(s) := (λ + σ1)s − λf(s). Then,
we have l(0) = 0 and l′(0) = (λ + σ1) − λf ′(0) = σ1 < 0 since f ′(0) = 1 and
λ > Ē1(1, g0, γ). Therefore, l(s) < 0; s ≈ 0. This implies that

−∆ψ1 = pλ(λ+ σ1)φ1 < λf(pλφ1) = λf(ψ1); Ω

for pλ ≈ 0. We also have

∂ψ1

∂η
+
√
λγg(ψ1)ψ1 = pλ

(∂φ1

∂η
+
√
λγg(pλφ1)φ1

)
= pλ

((
σ1 −

√
λγg0

)
φ1 +

√
λγg(pλφ1)φ1

)
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= pλ

(
σ1 +

√
λγ (g(pλφ0)− g0)

)
φ1

< 0; ∂Ω

for pλ ≈ 0, since g(0) = g0 and σ1 < 0. Hence, ψ1 is a subsolution of (2) for
λ > Ē1(1, g0, γ) and pλ ≈ 0.

Construction of a strict subsolution ψ2 when (H1), (H2), (H3), & (H4)

hold for λ ∈
(

2bNCN
R2f(b) ,

2r2N
f(b)R2

)
.

Let g̃ ∈ C1 ([0,∞)) be such that g̃ is nondecreasing on [0, r2), 0 ≤ g̃(s) ≤ f(s) on
[0, r1) and g̃(s) = f(s) on [r1, r2). Then the following boundary value problem{

−∆w = λg̃(w); x ∈ Ω
u = 0; x ∈ ∂Ω

has a solution w̃λ ≥ 0 such that ‖w̃λ‖∞ ≥ b for λ ∈
(

2bNCN
R2f(b) ,

2r2N
f(b)R2

)
provided (H3)

and (H4) are satisfied (see [29]). Let ψ2 := w̃λ. Since g̃(s) ≤ f(s) on [0, r0) and
∂w̃λ
∂η < 0 on ∂Ω by Hopf maximum principle, it is easy to show that ψ2 is a strict

subsolution of (2) for λ ∈
(

2bNCN
R2f(b) ,

2r2N
f(b)R2

)
.

Construction of a strict subsolution ψ3 when (H1), (H2) are satisfied for

λ < Ē1(1, g0, γ) when g(s) < b0 for s ∈ [K0(λ1, f, γ,Ω), r0].

Given a λ1 ∈
(
Ē1(1, g∞, γ), Ē1(1, g0, γ)

)
, we choose a λ0 < λ1, there exists a

unique b0 ∈ (g∞, g0) such that λ0 = Ē1(1, b0, γ). Now, recall n from (9), K0

from (8), and σ0 = σ0(1, b0, γ) the principal eigenvalue of (4) with corresponding
eigenfunction φ0. Let λ ∈

[
λ1, Ē1(1, g0, γ)

]
and ψ3 := nφ0, and assume that g(s) <

b0 for s ∈ [K0(λ1, f, γ,Ω), r0]. Then, from (7) we have

−∆ψ3 = −n∆φ0 = n(λ+ σ0)φ0 < λf(nφ0) = λf(ψ3); Ω.

Further, since g(s) < b0 for all s ∈ [K0, r0], we have

∂ψ3

∂η
+
√
λγg(ψ3)ψ3 = n

(
∂φ0

∂η
+
√
λγg(nφ0)φ0

)
= n
√
λγ (g(nφ0)− b0)φ0

< 0; ∂Ω.

Hence, ψ3 is a strict subsolution of (2) for λ ∈
[
λ1, Ē1(1, g0, γ)

]
with ‖ψ3‖∞ < r0.

Construction of a subsolution ψ4 for λ� 1 such that ‖ψ4‖∞ → r0 as λ→
∞.

We note that the boundary value problem:{
−∆w = λf(w); x ∈ Ω

w = 0; x ∈ ∂Ω

has a solution wλ for λ � 1 such that 0 ≤ wλ ≤ r0 and ‖wλ‖∞ → r0 as λ → ∞
(see [10]).
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Further, wλ satisfies ∂wλ
∂η +

√
λγg(wλ)wλ < 0 on ∂Ω since ∂wλ

∂η < 0 on ∂Ω by

Hopf’s Maximum Principle. Therefore, ψ4 := wλ is a subsolution of (2) for λ � 1
such that ‖ψ4‖∞ → r0 as λ→∞.

Construction of a global supersolution Z1 for λ > 0.

Let Z1 := r0. Then it is easy to see that Z1 is a global supersolution of (2) for all
λ > 0. Furthermore, it is easy to see from the maximum principle that any positive
solution, u, of (2) will satisfy ‖u‖∞ < Z1 = r0.

Construction of a strict supersolution Z2 when (H1), (H2), (H3), & (H4)

hold for λ ∈
(

2bNCN
R2f(b) ,

a
‖vµb‖∞f∗(a)

)
.

Let Z2 :=
avµb
‖vµb‖∞

, where vµb is the unique positive solution of (6). Thus, we

have

−∆Z2 =
a

‖vµb‖∞
> λf∗(a)

≥ λf∗
(

avµb
‖vµb‖∞

)
≥ λf

(
avµb
‖vµb‖∞

)
= λf(Z2); Ω

since λ < a
‖vµb‖∞f∗(a) and f∗(s) = max

t∈[0,s]
f(t). Now, since λ > 2bNCN

R2f(b) and g(s) ≥

g∞; [0,∞), we have

∂Z2

∂η
+
√
λγg(Z2)Z2 =

∂
(

avµb
‖vµb‖∞

)
∂η

+
√
λγg

(
avµb
‖vµb‖∞

)
avµb
‖vµb‖∞

=
a

‖vµb‖∞

(
∂vµb
∂η

+
√
λγg

(
avµb
‖vµb‖∞

)
vµb

)
≥ a

‖vµb‖∞

(
∂vµb
∂η

+

√
2bNCN
R2f(b)

γg∞vµb

)

=
a

‖vµb‖∞

(
∂vµb
∂η

+ γµbg∞vµb

)
= 0; ∂Ω.

Hence, Z2 is a strict supersolution of (2) with ‖Z2‖∞ = a.

Construction of a strict supersolution Z3 when (H1) holds for λ <

Ē1(1, g0, γ).

For a fixed λ > 0, let σ1 = σ1(1, g0, γ) be the principal eigenvalue with cor-
responding normalized eigenfunction φ1 > 0; Ω of (5). Recall that σ1 > 0 for
λ < Ē1(1, g0, γ). Let Z3 := m̃λφ1 and l(s) = (λ + σ1)s − λf(s). Then we have
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l(0) = 0 and l′(0) = (λ+σ1)−λf ′(0) = σ1 > 0 since f ′(0) = 1 and λ < Ē1(1, g0, γ).
This implies that

−∆Z3 = m̃λ(λ+ σ1)φ1 > λf(m̃λφ1) = λf(Z3); Ω

for m̃λ ≈ 0. We also have

∂Z3

∂η
+
√
λγg(Z3)Z3 = m̃λ

(∂φ1

∂η
+
√
λγg(m̃λφ1)φ1

)
= m̃λ

((
σ1 −

√
λγg0

)
φ1 +

√
λγg(m̃λφ1)φ1

)
= m̃λφ1

(√
λγ(g(m̃λφ1)− g0) + σ1

)
> 0; ∂Ω

for m̃λ ≈ 0 since g(0) = g0 and σ1 > 0 for λ < Ē1(1, g0, γ). Hence, Z3 is a strict
supersolution of (2) for λ < Ē1(1, g0, γ) when m̃λ ≈ 0.

Finally, we provide proofs of our main results.

Proof of Theorem 1.1(i): Let (H1), (H2) hold and M0 = max
[0,r0]

{
f(s)
s

}
.

We first prove non-existence for λ < Ē1(M0, g∞, γ).
Recall that σ0 = σ0(M0, g∞, γ) > 0 for λ < Ē1(M0, g∞, γ). Assume uλ is a positive
solution of (2) for λ < Ē1(M0, g∞, γ). Then by Green’s Second Identity, we have:∫

Ω

(
φ0∆uλ − uλ∆φ0

)
dx

=

∫
∂Ω

(
φ0
∂uλ
∂η
− uλ

∂φ0

∂η

)
ds

=

∫
∂Ω

(
− φ0

√
λγg(uλ)uλ + uλ

√
λγg∞φ0

)
ds

=

∫
∂Ω

γφ0uλ
√
λ
(
g∞ − g(uλ)

)
ds

≤ 0

(10)

since g(s) ≥ g∞; s ∈ [0, r0]. On the other hand, we have∫
Ω

(
φ0∆uλ − uλ∆φ0

)
dx

=

∫
Ω

(
− φ0λf(uλ) + (M0λ+ σ0)uλφ0

)
dx

≥
∫

Ω

(
− φ0λM0uλ + (M0λ+ σ0)uλφ0

)
dx since f(uλ) ≤M0uλ

=

∫
Ω

φ0uλ

(
− λM0 +M0λ+ σ0

)
dx

=

∫
Ω

σ0φ0uλdx

> 0 since σ0 > 0 for λ < Ē1(M0, g∞, γ).

(11)

This is a contradiction. Thus, (2) has no positive solution for λ < Ē1(M0, g∞, γ).
The stability properties of the trivial solution follow from a well-known argument
as in [20] and are omitted.
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Now we prove the existence of a positive solution uλ for λ > Ē1(1, g0, γ).
Recall the subsolution ψ1 = pλθ1 and supersolution Z1. We choose pλ small enough
so that ψ1 ≤ Z1. Then by Lemma 2.1, it follows that (2) has at least one positive
solution uλ such that ψ1 ≤ uλ ≤ Z1 for λ > Ē1(1, g0, γ).

Now we prove that (2) has a positive solution uλ such that ‖uλ‖∞ → r0

as λ→∞.
Recall that for λ� 1, we have a supersolution Z1 and subsolution ψ4 of (2) such

that ‖ψ4‖∞ → r0 as λ → ∞. By Lemma 2.1, (2) has a positive solution uλ for
λ� 1 such that ‖uλ‖∞ → r0 as λ→∞.

Proof of Theorem 1.1(ii): Let (H1), (H2) hold and let M0 = max
[0,r0]

{
f(s)
s

}
.

Here, we show nonexistence of a positive solution when a certain growth
requirement on g is met.
Given a λ0 < Ē1(M0, g0, γ), there is a unique b0 ∈ (0, g0) such that λ0 = Ē1(M0, b0, γ).

Assume that g(s) ≥ b0−g0
r0

s + g0; s ∈ [0, r0]. Recall that σ0 = σ0(M0, b0, γ) > 0 for

λ < Ē1(M0, b0, γ). Assume uλ is a positive solution of (2) for λ < Ē1(M0, b0, γ).
The argument in (11) from (i) goes through exactly. But, since uλ < r0 and

g(s) ≥ b0−g0
r0

s+ g0; s ∈ [0, r0] we must have∫
Ω

(
φ0∆uλ − uλ∆φ0

)
dx

=

∫
∂Ω

(
φ0
∂uλ
∂η
− uλ

∂φ0

∂η

)
ds

=

∫
∂Ω

(
− φ0

√
λγg(uλ)uλ + uλ

√
λγb0φ0

)
ds

=

∫
∂Ω

γφ0uλ
√
λ
(
b0 − g(uλ)

)
ds

≤
∫
∂Ω

γφ0uλ
√
λ
(
b0 − g0 +

g0 − b0
r0

uλ

)
ds

≤ 0

(12)

Notice that a contradiction arises between (11) and (12), thus (2) has no positive
solution for λ < λ0. The second part follows since M0 = 1 and g0 = g∞ im-
plies that Ē1(M0, g∞, γ) = Ē1(1, g0, γ) and, thus, there is no positive solution for
λ < Ē1(1, g0, γ). Since predictions of a patch-level Allee effect require existence
of at least one positive solution of (2) where the trivial solution is asymptotically
stable, (i) ensures that no such effect can happen in this case.

Proof of Theorem 1.1(iii): Let (H1) and (H2) hold.
Here we show the existence of at least two positive solutions for
λ ∈ [λ1, Ē1(1, g0, γ)) when g(s) ≤ b0 for s ≥ K0.

Recall the strict subsolution ψ3 = nφ0 for λ ∈ [λ1, Ē1(1, g0, γ)) with ‖ψ3‖∞ < r0,
supersolution Z1 = r0 for λ > 0, and strict supersolution Z3 = m̃λφ1 (with m̃λ ≈ 0)
for λ < Ē1(1, g0, γ). Furthermore, ψ0 = 0 is a solution and hence a subsolution of
(2) for any λ > 0. Now, we choose m̃λ ≈ 0 such that ψ3 � Z3 and Z3 ≤ Z1.
Then, by Lemma 2.2, (2) has at least two positive solutions, say u1 and u2 for
λ ∈ [λ1, Ē1(1, g0, γ)) where u1 ∈ [ψ3, Z1] and u2 ∈ [ψ0, Z1]\ ([ψ0, Z3] ∪ [ψ3, Z1]) .
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(Note: since ψ0 = 0 is a solution, Lemma 2.2 can not guarantee a third positive
solution in [ψ0, Z3].) Finally, since the trivial solution is stable for λ < Ē1(1, g0, γ),
solutions of the time dependent problem corresponding to (2) with initial condi-
tions sufficiently small will tend towards zero. Furthermore, the solutions u1, u2

are also sub- and supersolutions, creating a region for which solutions of the time
dependent problem corresponding to (2) with initial conditions in [u1, u2] will be
trapped in this range for all time. Hence, there is a patch-level Allee effect for
λ ∈ [λ1, Ē1(1, g0, γ)).

Proof of Theorem 1.1(iv): Let (H1), (H2), (H3), & (H4) hold.
Here we prove the existence of at least three positive solutions for

λ ∈
(

max
{
E1(γ), 2bNCN

R2f(b)

}
,min

{
a

‖vµb‖∞f∗(a) ,
2r2N
f(b)R2

})
.

Recall subsolution ψ1 = pλφ1 for λ > Ē1(1, g0, γ), strict subsolution ψ2 for

λ ∈
(

2bNCN
R2f(b) ,

2r2N
f(b)R2

)
, supersolution Z1 for λ > 0, and strict supersolution Z2 =

avµb
‖vµb‖∞

for λ ∈
(

2bNCN
R2f(b) ,

a
‖vµb‖∞f∗(a)

)
. Since a < r0, we have Z2 < Z1. By construc-

tion we have ‖ψ2‖∞ > b > a = ‖Z2‖∞. Choosing pλ ≈ 0 we have ψ1 ≤ ψ2 ≤ Z1.
Then, by Lemma (2.2) the result follows.

Proof of Corollary 1.2:
We note that the proof of Corollary 1.2 is an immediate consequence of the proof
of Theorem 1.1.

4. An application of Theorem 1.1 and Corollary 1.2 when Ω is a ball of
radius R with N = 1, 2, 3. Here we consider the following steady state logistic
growth model with grazing in a spatially heterogeneous ecosystem:{

−∆u = λf(u) = λ
(
u− u2

K −
cu2

1+u2

)
; x ∈ Ω

∂u
∂η +

√
λγg(u)u = 0; x ∈ ∂Ω

(13)

where λ > 0, K > 0, 0 < c < 2 and Ω is a ball of radius R in RN ; N = 1, 2, 3 with
smooth boundary ∂Ω, and

g(s) =

{
1−ms ; 0 ≤ s ≤ 1

2m
1
2 ; s ≥ 1

2m ,

where m > 0. We can easily see that (H1), (H2) are satisfied and M0 = 1 for
this example with g0 = 1 and g∞ = 1

2 . In [29], the authors proved the following
properties of f. When K � 1, there exists a unique r0 > 0 such that f(r0) = 0 and
f(s)(s− r0) ≤ 0 for s ∈ [0,∞). Also, for c ∈

(
8

3
√

3
, 2
)

and K � 1, they established

constants b > 0, c > 0, r0 > 0, r1 > 0, and r2 > 0 such that c < r1 < b < r2
CN

<
r0
CN

< ∞, b ≤
√
Kc, r2 >

K
4 , f(s) > 0 for s ∈ (0, r0), f(s) < 0 for s ∈ (r0,∞), f

is increasing on (0, c)∪ (r1, r2), f is decreasing on (c, r1)∪ (r2,∞), lim
K→∞

f(b) =∞,

and lim
K→∞

b
f(b) = 1. Further, they chose a ∈ (r1, b) such that f(a) = f∗(a) = f(c),

and estimated a to be 1.5437 and a
f∗(a) to be 11.4445 for c ≈ 2 and K � 1. We now

fix a λ1 ∈
(
Ē1(1, 1

2 , γ), Ē1(1, 1, γ)
)
, λ0 < λ1 with λ0 ≈ λ1, and select the unique

b0 ∈ ( 1
2 , 1) such that λ0 = Ē1(1, b0, γ). In this case, it is easy to show that the
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solution vµb of (6) is

vµb(x) =
R2 − |x|2

2N
+

1

γg∞

R

N

√
f(b)

m0b

where m0 = 2NCN
R2 . Observe that ‖vµb‖∞ decreases as γg∞ increases, implying that

a
‖vµb‖∞f∗(a) increases and therefore the interval

(
2bNCN
R2f(b) ,

a
‖vµb‖∞f∗(a)

)
gets wider as

γg∞ increases. In the case when γg∞ = 1 it was shown in [18] that, for N = 1, 2, 3,
2bNCN
R2f(b) < a

‖vµb‖∞f∗(a) . Therefore by continuity,
(

2bNCN
R2f(b) ,

a
‖vµb‖∞f∗(a)

)
is feasible

when γg∞ ≥ 1. Thus (H3) − (H4) are satisfied when γg∞ ≥ 1, or equivalently,
γ > 2.

We also note that forN = 1, 2, 3, we have 2bNCN
R2f(b) = m0b

f(b) >
5m0

8 > BD > E1(γ) for

c ∈
(

8
3
√

3
, 2
)

and K � 1, where BD is the principal eigenvalue of −∆ with Dirichlet

boundary condition (see [18]). Further, we note that g(s) ≤ b0 for s ∈ [K0, r0] when
m� 1.

Thus, our example satisfies all the hypotheses of Theorem 1.1, and therefore they
can be applied to our example yielding a structure of positive solutions at least like
the one illustrated in Figure 2.

5. Computational results when Ω = (0, 1). We note that in the one-dimensional
case, (13) reduces to

−u′′ = λf̃(u) = λ
(
u− u2

K −
cu2

1+u2

)
; x ∈ (0, 1)

−u′(0) +
√
λγg(u(0))u(0) = 0

u′(1) +
√
λγg(u(1))u(1) = 0,

(14)

where

g(s) =

{
1−ms ; 0 ≤ s ≤ 1

2m
1
2 ; s ≥ 1

2m .

In this case, we note that the positive solutions of (14) can be completely analyzed
by a quadrature method (see [12]). Since h(s) = g(s)s is increasing for all s > 0, it
follows that the solutions of (14) are symmetric about x = 1

2 with u(0) = u(1) := q
and ‖u‖∞ := ρ. Namely, the solutions take the shape as in Figure 3.

Figure 3. The shape of symmetric positive solutions of (14).
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Further, the numerically approximated bifurcation diagrams for positive solutions
to (14) are described by the equations:

λ = 2
(∫ ρ

q(ρ)

ds√
F (ρ)− F (s)

)2

(15)

and
2[F (ρ)− F (q)] = γ2(g(q))2q2 (16)

where, F (s) =
∫ s

0
f(t)dt (see [12] for details). Note that for a given ρ ∈ (0, r0),

where r0 is defined as in (H1) (i.e., the falling zero for f), there exists a unique
q = q(ρ) ∈ (0, ρ) that satisfies (15) and (16).

Below we provide bifurcation diagrams for the positive solutions of (14) via
Mathematica computation of (15)-(16). Note that the bifurcation diagrams here
are not drawn to scale.

Figure 4. An approximate bifurcation diagram of positive solu-
tions for (14) when γ = 1;K = 5; c = 1.89, m = 1000.

Figure 5. An approximate bifurcation diagram of positive solu-
tions for (14) when γ = 1;K = 15; c = 1.89, m = 1000.
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Figure 6. An approximate bifurcation diagram of positive solu-
tions for (14) when γ = 1;K = 19; c = 1.89, m = 1000.

Figure 7. An approximate bifurcation diagram of positive solu-
tions for (14) when γ = 1;K = 25; c = 1.89, m = 1000.

Our numerical results show that when K is relatively small the population does
not exhibit multiple positive steady states for patch sizes bigger than E1(γ). How-
ever, for bigger K-values we observe the existence of three positive steady states
for patch sizes bigger than E1(γ) for a certain range of λ. For this set of parameter
values, we observe a patch-level Allee effect for a certain range of λ which is a con-
sequence of a strong negative density-dependent dispersal (i.e., m � 1 causes the
probability of remaining in the patch to approach 100% for even very small density
values). Further, when K is very large, our model predicts existence of four positive
steady states for patch sizes smaller than E1(γ) and three positive steady states for
patch sizes bigger than E1(γ) for a certain range of λ-values.

The biologically necessary criteria for Σ-shaped bifurcation curves and multiple
steady states over a range of patch sizes include -DDE in the prey population and
a Holling type III functional response by the predator. One-fourth of the pub-
lished studies in ecology find -DDE [21] and this emigratory response can generate
a patch-level Allee effect [8, 19, 21]. A type III functional response is known to
arise when generalist predators respond to changing prey abundance by switching
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Figure 8. An approximate bifurcation diagram of positive solu-
tions for (14) when γ = 1;K = 75; c = 1.89, m = 1000.

to more profitable prey [16, 33, 36]. Density dependent emigration, predation fol-
lowing a Type III functional response, and interplay with landscape-level elements
such as patch size and matrix hostility combine in determining the number of pos-
itive steady states. Multiple steady states can influence regional persistence of the
prey metapopulation by altering the fraction and distribution of occupied patches
and causing uncertainty in the predictability of minimum patch size and density-
area relationships [9, 14].

Acknowledgments: The authors sincerely thank the anonymous referees for their
suggestions.
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