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Abstract

We study collections of subrings of H* (Mg,n) that are closed under the tautological operations that map coho-
mology classes on moduli spaces of smaller dimension to those on moduli spaces of larger dimension and contain
the tautological subrings. Such extensions of tautological rings are well-suited for inductive arguments and flex-
ible enough for a wide range of applications. In particular, we confirm predictions of Chenevier and Lannes for
the ¢-adic Galois representations and Hodge structures that appear in H k (Mg,n) for k = 13, 14 and 15. We also
show that H* (ﬂg,n) is generated by tautological classes for all g and 7, confirming a prediction of Arbarello and
Cornalba from the 1990s. In order to establish the final base cases needed for the inductive proofs of our main
results, we use Mukai’s construction of canonically embedded pentagonal curves of genus 7 as linear sections of an
orthogonal Grassmannian and a decomposition of the diagonal to show that the pure weight cohomology of M7 ,
is generated by algebraic cycle classes, for n < 3.

1. Introduction

The moduli spaces of stable curves ﬂg,n are smooth and proper over the integers, and this implies
strong restrictions on the motivic structures, such as £-adic Galois representations, that can appear in
H* (Mg,,,). Widely believed conjectures regarding analytic continuations and functional equations for
L-functions lead to precise predictions, by Chenevier and Lannes, about which such structures can appear
in degrees less than or equal to 22 [10, Theorem F]. These predictions are consistent with all previously
known results on H* (Mg, n)- Recent work inspired by these predictions confirms their correctness in
all degrees less than or equal to 12 [4, 8]. Here, we introduce new methods to systematically study the
motivic structures in H* (Mg,n) for k > 12 and confirm these predictions in degrees 13, 14 and 15.

Throughout, we write H*(X) for the rational singular cohomology of a scheme or Deligne-Mumford
stack X endowed with its associated Hodge structure or £-adic Galois representation and H* (X)* for its
semi-simplification. Let L := H>(P') and S15 := H'' (M 11).

Theorem 1.1. For all g and n, we have H13(mg,n)SS = (P LSy, and lel(mg,n)SS =P L7. Moreover,
for g =2, we have H (M, ,)® = P LSy,

Theorem 1.1 confirms the predictions of Chenevier and Lannes for motivic weights k < 15. Note that
the Hodge structure on the cohomology of a smooth and proper Deligne-Mumford stack such as mg,n
is semi-simple, so the semi-simplification in Theorem 1.1 is relevant only when considering £-adic
Galois representations.

The proof of Theorem 1.1 uses the inductive structure of the boundary of the moduli space and
the maps induced by tautological morphisms between moduli spaces, as do the proofs of the precursor
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results mentioned above. Recall that the collection of tautological rings RH* (ﬂg,n) c H* (/\_/lg,n) is
the smallest collection of subrings that is closed under pushforward and pullback for the tautological
morphisms induced by gluing, forgetting and permuting marked points. For many inductive arguments,
including those used here, it suffices to consider the operations that produce cohomology classes on
moduli spaces of larger dimension from those on moduli spaces of smaller dimension.

Definition 1.2. A semi-tautological extension (STE) is a collection of subrings S* (Mg,n) of H* (ﬂg,,,)
that contains the tautological subrings RH* (ﬂg,n) and is closed under pullback by forgetting and
permuting marked points and under pushforward for gluing marked points.

Examples of STEs include the trivial extension RH*, the full cohomology rings H* and the collection of
subrings generated by algebraic cycle classes. Not every STE is closed under the additional tautological
operations induced by push-forward for forgetting marked points and pullback for gluing marked points.
However, the main examples we study here are indeed closed under all of the tautological operations
(see Proposition 2.4).

Note that any intersection of STEs is an STE. An STE is finitely generated if it is the smallest STE
that contains a given finite subset (or, equivalently, the union of finitely many Q-vector subspaces) of
Ug.n H (Mg n). Afinitely generated STE is suitable for combinatorial study via algebraic operations on
decorated graphs. See [22, 31] for discussions of the graphical algebra underlying the tautological ring,
and [24, 25] for applications of such operadic methods, with not necessarily tautological decorations, to
the weight spectral sequence for My ,,. Every STE that we consider is motivic, meaning that §* (/\_/lg,n) C

H* (ﬂg,n) is a sub-Hodge structure and its base change to Qg is preserved by the Galois action.
Theorem 1.3. For any fixed degree k, the STE generated by

{Hk’(mg,,n,) K <kg <3+l 0 <K, A —d+n > k'}

contains H* (mg,n)for all g and n.

In particular, there is a finitely generated STE that contains H* (/\_/lg,n) for all g and n.
Corollary 1.4. For each k, there are only finitely many isomorphism classes of simple Hodge structures
(respectively, €-adic Galois representations) in B enH k(M an)™.

We developed the notion of STEs to study nontrivial extensions of tautological rings, such as the STE
generated by H 1 (M,11), but the same methods also yield new results on the tautological ring itself.
We apply the explicit bounds in Theorem 1.3, together with new tools and results for small g, n and k
to prove the following. At the level of Q-vector spaces, we identify Hy (M, ,) with H2%n"% (M, ,),
where d, ,, := 3¢ — 3 + n is the dimension of Mg,,,. Similarly, when S* is an STE, we write Si (ﬂén)
for the Q-vector space S2%n~k (M, ,).

Theorem 1.5. The tautological ring RH* (Mgn) contains
1. H4(Mg,n),f0r all g and n,

2. H6(/\_/lg,n),f0rg > 10,
3. Hk(mg,n),for even k < 14, for all g and n.

Theorem 1.6. The STE generated by H'! (./\_/11,11) contains H13(mg,n)f0r all g and n.

Theorem 1.7. The STE generated by H'! (ﬂm) and HY (ﬂl,ls) contains Hys (mg,n)for all g and n.

Theorem 1.5(1) confirms a prediction of Arbarello and Cornalba from the 1990s; they proposed
that their inductive method used to prove that H*(M ¢.n) is tautological should also apply in degree 4
[1, p. 1]. Shortly thereafter, Polito confirmed that H4(Mg,n) is tautological for g > 8 [32], but the
general case remained open until now. Theorem 1.5(3) implies that H* (Mg,,,) = P L¥/2 for even
k < 14. The work of Chenevier and Lannes predicts that H* (/\_/lg,,,) should also be isomorphic to
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b L*/2 for k = 16, 18, 20. The Hodge and Tate conjectures then predict that these groups are generated
by algebraic cycle classes. However, generation by algebraic cycle classes is an open problem except in
the cases where H¥ (ﬂg,n) is known to be generated by tautological cycle classes.

By Theorems 1.6 and 1.7, H13(ﬂg,n) and H15(mg’n) lie in STEs generated by cohomology from
genus 1 moduli spaces. On the other hand, H17 (./\_/lg, n) requires genus 2 data because W7 H 17 (Mo.14) #
0[13].

We note that any STE is top-heavy, in the sense that dim S (/\_/lg,n) < dim Sg (Hg,n) for k <
dim Mg,n (cf. [30]). Moreover, the dimensions in even and odd degrees are unimodal. This is because
any STE contains RH* and hence contains an ample class. Multiplication by a suitable power of the
ample class gives an injection from S¥ (/Vg,n) to Sk (Mg,n).

One could show that H* (ﬂg,n) is generated by tautological cycles in the remaining cases covered
by Theorem 1.5(3) by showing that the pairing on RH* (/Vg,,,) X RH (ﬂg,n) is perfect, for example,
using admcycles [ | 1]. However, computational complexity prevents meaningful progress by brute force.
Note that Petersen and Tommasi showed that this pairing is not perfect in general for £k > 22 [28, 30].
Graber and Pandharipande had previously shown that H?? (./\_/12,20) contains an algebraic cycle class that
is not tautological [17].

Conjecture 1.8. The tautological ring RH* (Mg,n) contains H* (/Vg,n) Sor even k < 20.

The results above show that Conjecture 1.8 is true fg k <4, and for_k =6and g > 10. For k < 14,
the conjecture is true if and only if the pairing RHX (M, ) x RHi (M, ) is perfect. The examples
of Graber—Pandharipande and Petersen—Tommasi show that the conjectured bound of & < 20 is the
best possible. As further evidence for Conjecture 1.8, we note that the Arbarello-Cornalba induction
together with known base cases implies the vanishing of H 16’()(/\_/lg,n) and H 18’O(Mg,n) for all g and
n, as recently observed by Fontanari [15].

The inductive arguments used to study H* (/Vg,n) for all g and n rely on understanding base cases
H¥ (ﬂg/’n/), where g’ and n’ are small relative to k. As k grows, more base cases are needed. With
the exception of H'! (./71’1 1), all base cases required for previous work with k < 12 have been pure
Hodge-Tate [ 1, 4, 6]. Substantial work went into establishing these base cases via point counts and other
methods. When k > 13, the problem becomes fundamentally more difficult, as an increasing number of
the required base cases are not pure Hodge—Tate. In particular, previous techniques for handling base
cases do not apply.

The advances presented here depend on a new technique for controlling the pure weight cohomology
of Mg . A space X has the Chow—Kiinneth generation Property (CKgP) if the tensor product map on
Chow groups A.(X) ® A.(Y) — A.(X xY) is surjective for all Y. If X is smooth, proper and has the
CKgP, then the cycle class map is an isomorphism. However, in several of the base cases needed for
our arguments, the smooth and proper moduli space M, , has odd cohomology and hence does not
have the CKgP. Nevertheless, we show that the open moduli spaces M, , do have the CKgP for the
relevant pairs (g, n). To apply this in the proof of our main results, the key new technical statement
is Lemma 4.3, which says that if X is smooth and has the CKgP, then W;H*(X) is algebraic. This
extension of the aforementioned result on the cycle class map to spaces that are not necessarily proper
is essential for controlling the motivic structures that appear in H* (M, ,,) for k > 13. For example,
using that M3 ,, has the CKgP for n < 11 [5, Theorem 1.4], we determine the Hodge structures and

Galois representations that appear in H*(M3_,), for n < 11.
Theorem 1.9. Forn < 11, H* (HM)SS is a polynomial in L and Sy.

Bergstrom and Faber recently used point counting techniques to compute the cohomology of ﬂ3,n
as an S,-equivariant Galois representation for n < 14. For n > 9, these computations are conditional on
the assumption that the only £-adic Galois representations appearing are those from the list of Chenevier
and Lannes [3]. Theorem 1.9 unconditionally confirms the calculations of Bergstrom and Faber for
n=9,10and 11.
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In order to prove Theorems 1.1, 1.5(3) and 1.7, our inductive arguments require several base cases
beyond what was already in the literature. In particular, we prove the following results in genus 7, which
are also of independent interest.

Theorem 1.10. For n < 3, the moduli space M7 ,, has the CKgP and R*(M7,) = A* (M7 ).

Here, R* denotes the subring of the Chow ring A* generated by tautological cycle classes. Previous
results proving that M, , has the CKgP and R* (Mg ,) = A*(M, ) for small g and n have primarily
relied on corresponding results for Hurwitz spaces with marked points [5]. Unfortunately, the numerics
for degree 5 covers prevented this technique from working with marked points. Here, we take a new
approach to the pentagonal locus, using a modification of Mukai’s construction [21] that includes
markings.

2. Preliminaries

In this section, we establish notation and terminology that we will use throughout the paper and discuss
a few basic examples of STEs. We also recall previously known facts about the cohomology groups
of moduli spaces, especially in genus 0, 1 and 2, that will be used in the base cases of our inductive
arguments.

2.1. Preliminaries on STEs

Recall that an STE is, by definition, closed under the tautological operations given by pushing forward
from the boundary or pulling back from moduli spaces with fewer marked points. Let .M, , denote
the normalization of the boundary. The sequence

Hk_z(a’r\/tg,n) — H* (mg,n) - Wka(Mg,n) -0

is right exact.
Let mr;: Mg — M, ,—1 be the tautological morphism forgetting the ith marking, and let

®f = WiH (Mg not) + - + T Wi HY (Mg 1) € WiH (Mg ).

The following lemma is a cohomological analogue of the “filling criteria” in [5, Section 4].

We consider the partial order in which (g, n’) < (g,n)ifg’ < g,2g’+n’ < 2g+nand(g’,n’) # (g, n).
The moduli space /\_/lg, n is stratified according to the topological types of stable curves, and each stratum
of the boundary is a finite quotient of a product of moduli spaces M, ,+, such that (g’,n") < (g,n).
Recall that we write dg , :==3g =3 +n.

Lemma 2.1. Let S* be an STE, and let 2g — 2 + n > 0. If the canonical map
SK (Mg ) = Wi HY (Mg ) /(@K + RH (Mg 1)) 2.1)
is surjective for (g’,n’, k') = (g,n, k) and all (g’,n’, k') satisfying
(g’,n) < (g,n), 2dgw — k' <2dgn—k and k' <k-2, (2.2)

then SK(Mg ) = H* (M ).

Proof. The proof is by induction on g and n. Consider the diagram

Sk_z(aMg,n) — Sk (mg,n)

I Is x @3)

Hk_z(aMg,n) —> Hk(mg,n) —> Wka(Mg,n) —> 0-
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Here, we extend S* to M ,, in the natural way, by summing over components, using the Kiinneth
formula, and taking invariants under automorphisms of the dual graph. We claim that « is an isomor-
phism. By the Kiinneth formula, the domain of @ is a sum of tensor products of S (/\_/ly,v) with¢ < k-2
and (y,v) < (g, n). Furthermore, by considering dimensions of the cycles involved, we must also have
2d,, —{€ < 2dg , — k. This is because we must have k —2—¢ < 2(dg , —1-d,,,,), so that the degree of
the other Kiinneth component does not exceed its real dimension. Now, suppose we are given (g, n’, k')
that satisfy

(g’,n") < (y,v), 2dg w— k' <2d,, -t and K<t-2.

Then (g’,n’, k') satisfies (2.2), so S (M,,) = H (M,,,) by induction. This proves the claim.
Next, by induction, we have HF (Mg 1) = Sk(/\/lg,n,l), so the image of

s HY (Mgno1) = H* (Mg )

is contained in S¥ (ﬂg,n) for all i. Hence, CD'g‘,n is contained in the image of ¢. The tautological classes
RH*(M an) SWiH k(M ¢.n) are also contained in the image of ¢ by definition. Thus, the surjectivity of

Sk (/Vg,n) - Wka (Mg,n)/(q)g,n + RHk(Mg,n))

implies that ¢ is surjective. Hence, g is also surjective, as desired. O

In order to apply Lemma 2.1, we need results that help us understand generators for
Wka(Mg,n)/((D’gﬂn + RH* (/\/lg’,,)). This is the topic of Sections 3 and 4.

2.2. Pure cohomology in genus 1 and 2

On M_,,, the only nonvanishing pure cohomology is WoH"(M_,,). Below, we present the complete
classification of pure cohomology in genus 1, which is due to Getzler [16]. In genus 2, we present a
classification in low cohomological degree, following Petersen [27].

2.2.1. Genus1

The following statement appeared in [23, Proposition 7]; the proof there is omitted. Here, we include
the proof (and corrected statement), which was explained to us by Petersen. Let S denote the weight
k structure associated to the space of cusp forms of weight k& + 1 for SL»(Z). Let 7: E — M be
the universal curve, and let V be the local system R'7.Q. By the Eichler—Shimura correspondence, we
have Syy1 = WiH!' (M1, V1), We will see that the latter is identified with Wy H* (M ;). More
generally, we have the following. Given a partition A of n, let V; be the associated Specht module
representation of S,,.

Proposition 2.2. For n > k, a basis for Wi H*(M,,) is given by the (Zj) pullbacks from

Wi H* (M 4), where A runs over all subsets of {1, ...,n} of size k, such that 1 € A. Consequently,
there is an S, -equivariant isomorphism

Wka(Ml,n) = Sk+1 ® Vn—k+l,l"*] .

For n < k, we have Wy H*(M ) = 0.

Proof. Letn: E — M, denote the universal elliptic curve, and o: M ; — E the section. Associated
to the open embedding M ,, < E™!, we have a right exact sequence

P Wia 2 (E"?) — Wi HE (E™) = WiH (M) — 0. 24)
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Since f: E""! — M is smooth and proper, the Leray spectral sequence degenerates at E>, and by
[12, Proposition 2.16], we have a direct sum decomposition

HYE"") = (D HP (M1, R £.Q). (2.5)

p+q=k

By the Kiinneth formula, we have

RIf.Q = @ R27,Q0® - ® R"7.Q.

i+ +ip=q

Let V := R'7,Q, and note that R7,Q = Q and R*1,Q = Q(-1).
Fix some p and (ia, ..., i,) with p+ir +--- +i, = k. If i; = 2, then, we claim that

WiHP (M) 1,R?7,Q®--- ® R"1,Q) c Wy H*(E"™) (2.6)

lies in the image of the first map in (2.4). More precisely, leta; : E n=2 _ E"~! be the locus where the jth
entry in E"~! agrees with the section o-: M ; — E. In other words, j is defined by the fiber diagram

En—2 @ s En—l

[

My —5— E.

Ifi; =2, wehave p +ip +---+ij_1 +ij4 + -+ +i, = k — 2. Therefore, using the Leray spectral
sequence for E"2 — M 1, there is a corresponding term

WiaHP (M1 1, R21,Q0® - - ® RV'1,Q ® R 7,Q® - - ® R"7,Q) € Wi oH2(E"%). (2.7)

Then the pushforward @ ,: H*"2(E""?) — H*(E™!) sends the subspace on the left of (2.7) isomor-
phically onto the subspace on the left of (2.6), which proves the claim.

It follows that Wy H* (M ,,) is generated by the terms Wy H? (M1 1, R?7.Q ® --- ® R"7.Q) in
Wi H*(E"1), where all ij < 1. By [26, Section 2], we have Wi HP (M 1, V®?) = 0 unless p = 1 and
g =k — 1, in which case Wy H' (M 1, V®-1) = §;,; by Eichler—Shimura.

There are (Z:i) terms of the form H'(M 1, V®~1) in (2.5) coming from choosing which k — 1 of
the n—1 indices have i; = 1. Each of these terms is pulled back along the projection map E n-l_, pk-1,
which remembers the k — 1 factors for which i; = 1. Let A be the collection of indices j, such thati; = 1
together with 1. There is a commutative diagram

WiH*(E"™1) —— WiHN (M)

T T

WiH*(EF=1) —— Wi H* (M 4).

It follows that Wy H* (M ,,) is generated by the pullbacks from Wy H* (M 4) as A ranges over all
subsets of size k containing 1. Finally, we note that there can be no relations among these (Z:i) copies
of W H 1(/\/11,1, Vek-1) = g, since the image of the left-hand map of (2.4) lies in the subspace of
type LiSy 1o fori > 1.

We have now shown that Wka(Ml,n) = Si4+1 ® U for some (Z:})—dimensional vector space U.
From the discussion above, it is not difficult to identify U as an S, -representation. When n = k, the

Sk action on Wy H* (M 1) is the sign representation. To identify U for n > k, let S,_; C S, be the
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subgroup that fixes 1. Since Wy H* (M ,) is freely generated by the pullbacks from Wy H*(M_4) as
A runs over subsets of size k containing 1, we have

Res;” U=Ind! . (sgnm1).

Sk-1XSj-

By the Pieri rule, we have

Ind>" o (sgn®@1) =Ind"! o (Ve ®Vik) = Vi gy 152 @ Vg i (2.8)

Sk-1XSp- k-1XSp-k

By the branching rule, V,_;,; jx-1 is the unique S, representation whose restriction to S, is the
representation in (2.8). O

Since S14 = 0, we have the following.
Corollary 2.3. HB(./\_/l],n) lies in the STE generated by H'! (ﬂl,] 1) for all n.

Let S¥, denote the STE generated by H'! (ﬂl,l 1). Note that S%) is the STE generated by the class
w € H'9(M 1) associated to the weight 12 cusp form for SL,(Z),that is, it is the smallest STE whose
complexification contains w. In [8], we showed that S;, contains H 1 (Mg,,,), and hence Hy, (ﬂg,n),
for all g and n. In this paper, we show that it also contains H 13(./\_/lg,,,) for all g and n (Theorem 1.6). In
contrast with the system of tautological rings, an arbitrary STE need not be closed under pushforward

along maps forgetting marked points or pullback to the boundary. Nevertheless, we have the following
result for S, (Mg ).

Proposition 2.4. The STE S, is closed under the tautological operations induced by pushforward for
forgetting marked points and pullback for gluing marked points.

Proof. By [26], all even cohomology in genus 1 is represented by boundary strata. Therefore, any product
of two odd degree classes can be written as a sum of boundary strata. It follows that every class in
S3, (ﬂg, n) can be represented as a linear combination of decorated graphs, all of whose nontautological
decorations are H'!-classes on genus 1 vertices.

The pushforward of H'! (M ,,) along the maps forgetting marked points is zero. Since the tautolog-
ical rings are closed under pushforward, it follows that S7, is closed under pushforward.

By [8, Lemma 2.2], the image of H “(ﬂl,n) under pullback to the boundary lies in S},. By the
excess intersection formula, and using the fact that y/-classes in genus 1 are boundary classes, it follows
that the pullback of any such decorated graph in S7, to any boundary stratum is a sum of decorated
graphs of the same form. In particular, S7, is closed under pullback to the boundary, as required. o

Remark 2.5. More generally, the Hodge groups H*-° (Ml, ) correspond to the space of cusp forms for
SL,(Z) of weight k + 1. Essentially the same argument shows that the STE generated by any subset of
these cusp form spaces is closed under all of the tautological operations.

2.2.2. Genus 2
Here, we summarize what we need about the pure weight cohomology of M, ,, in low degrees, from
[28, 30].

Proposition 2.6. Let k < 10. Then Wor H**(My.,) = RH* (M,.,).
Proof. When n < 20, we have H*(M,,) = RH?*(M,,) by [28, Theorem 3.8]. Hence,
Wor H*)(M>,,) = RH**(My,,,) by restriction. For n = 20 and k < 10, the same result holds (see

[28, Remark 3.10]). For n > 20 and k < 10, all of Wa; H?*(M,_,) is pulled back from Waz H*K (M3, ,)
where m < 20 (see Lemma 3.1, below). Because the tautological ring is closed under forgetful pull-

backs, the lemma follows. O

Applying Lemma 2.1 to the STE RH* immediately implies Conjecture 1.8 for g = 2.
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Corollary 2.7. If k < 10, then H* (My.,) = RH*(My.,)) for all n.

In odd degrees, there are restrictions on the possible motivic structures coming from the cohomology
of local systems on the moduli space of principally polarized abelian surfaces.

Proposition 2.8. In the category of Galois representations, the pure weight cohomology of Mj , in
degrees 13 and 15 is of the form

WisH (My,,)™ = EB LS12 and WisH(My,)* = @ L?Sa.
Proof. For every k, the surjection
H*(Ma,,) = WiHN (M)

factors through Wy H¥ (M ). Here, MS' is the moduli space of genus 2 curves of compact type with
n markings. By [28, Theorem 2.1(i) and (ii)],

HE(MS,) = (D) HP (M5, A7) @ HP (Sym® My, BY),
p+q=k

where A? and B4 are local systems of weight g, given by direct sums of Tate twists of symplectic local
systems. Moreover, the terms H” (Sym2 M .1, BY) map to zero under restriction to H' k (My,,) by [28,
Lemma 3.3].

We now consider the terms H” (M, A?). Let V be a Tate twist of a symplectic local system of
weight g on /\/lgt. If ¢ is odd, then HP (M, V) vanishes because the hyperelliptic involution acts on the
fibers of V by (~1)7. When ¢ is even, the possible Galois representations appearing in H” (M, V)%
are determined by [27, Theorem 2.1]. When p + g = 13 (respectively, p + ¢ = 15), the only possibility
of pure weight is LSy, (respectively, L2812). O

Corollary 2.9. On Mz,n, in the category of Galois representations, we have

H(Ma,)* = EB LS1; and H"(My,)® = @ L*S1a.
Proof. For degree 13, consider the right exact sequence
H'" (0Man) = H(Ma,) = WisH " (Ma,) — 0.

By [8], the semi-simplification of the left-hand side is a sum of terms Si,. Proposition 2.8 shows
that the semi-simplification of the right-hand side consists only of Tate twists of Sy,. Thus, the semi-
simplification of the middle term does, too.

Similarly, for degree 15, we consider the right exact sequence

H3(OMy.n) — H® (Ma,) — WisH> (Ma,) — 0.

The boundary divisors on Mz,n are finite quotients of products of moduli spaces for genus at most 2. In
particular, by the Kiinneth formula and vanishing of odd cohomology in degrees less than or equal to 9,
we see that the left-hand side is a sum of terms of the form H'3 (M /) or H* (Mg, n)) @ H'' (Mg, ),
where g’, g1, g2 < 2. By the degree 13 result just proved, the semi-simplification of terms of the first
kind is a sum of LS,. Meanwhile, we know H?(M,, ,,) is pure Tate by [1] and H'! (Mg, ,,,)™ is a
sum of terms Sy, by [8]. Hence, the semi-simplification of terms of the second kind is also a sum of
LSi,. To conclude, note that Proposition 2.8 shows that the semi-simplification of the right-hand side
consists only of Tate twists of Sj,, so the semi-simplification of the middle term does too. O

Remark 2.10. See Lemma 8.1 for an analogous result in the category of Hodge structures.
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3. Finite generation

Let S* be an STE. By Lemma 2.1, §¥ (/\_/lg,,,) contains H¥ (/\_/lg,,,) for all g and n if and only if it surjects
onto Wy H* (Mg,n)/(q)g,n + RH* (M, ,)) for all g and n. Below we give a sufficient criterion for the
vanishing of W H* (M an)/ CI)/gn The argument is similar to the proof of Proposition 2.2, using the
Kiinneth decomposition of the Leray spectral sequence for the n-fold fiber product of the universal curve
C" — M,.

We are grateful to Petersen for explaining how an earlier version of this lemma could be strengthened
to the version presented here. This stronger version will also be useful for controlling some additional
base cases in Section 7. To state it, we define the subspace

n

W =@+ Y@ C W H (M ).

In other words, ‘I‘;f,n is generated by pullbacks from moduli spaces with fewer markings multiplied with
y-classes. Given a g-tuple of integers A = (11 > A2 > --- > A, > 0),let 'V, be the associated symplectic
local system on Mg, asin [29]. Let |4| = 4| +- - - + 4,4, which is the weight of the local system V. When
|4| = n, as in the previous section, we write V, for the irreducible S,, representation corresponding to A.

Lemma 3.1. (a) If g > 2, then

WiH (Mg ) [ (@F, + W5 ) = D) WiH " (M, V) @ Vr.
|A|=n

(b) Moreover, ifn > 0 and n > k, then Wy, H* (Mg.n) = @’g"n.

Proof. (a) Let m: C — M, be the universal curve. There is an open inclusion Mg , C C", and hence

restriction gives a surjection from Wy H*(C") to Wy H¥ (Mg n). Given a subset A C {1,...,n}, let
C" — C4 be the projection onto the factors indexed by A. We consider the following three subspaces of
H*(C™):

e @, the span of the pullbacks of #*(C%/}*) along projection C" — C1/}*

e W, the span of g, - H*"2(C1}%)

e A, the span of A;j - H*=2(C117)%), where A; 7 denotes the pullback of the class of the diagonal in
H>(Clh7}),

Note that A lies in the kernel of H¥ (C") — H*(M ¢.n), and the images of the weight k parts of ® and

¥ under W H* (C") — W HF (Mg ) are the subspaces leéf’n and ‘P(,”,"n, respectively. To prove part (a),

it thus suffices to show that

HC) ) (®+P +A) = @H"_"(Mg,v,l) ®Vyr. 3.1
||=n

We explain how (3.1) follows from [29].
Since f: C" — M, is smooth and proper, the Leray spectral sequence degenerates at E5, and by
[12, Proposition 2.16], we have a direct sum decomposition

HE(C") = €D HP (M, R £.Q).

p+q=k
Applying the Kiinneth formula, we obtain
H*(C") = @ H? (Mg, R'1.Q®---® R"1.Q) . (3.2)
p+q=k
i1+...+ip=q
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As observed in [29, Section 5.2.2], the subspace ) corresponds to the span of the summands where
some iy = 0. Meanwhile, modulo ®, the subspace W corresponds to the span of summands where
some iy = 2. This follows from the formulas for the projector 7> (which projects onto such summands)
in [29, Section 5.1]. Quotienting by ® + ¥ thus leaves the term with iy = ... = i, = 1. The local
system (R'7,Q)®" corresponds to the nth tensor power of the standard representation of Spy,- It thus
decomposes into a direct sum of irreducible local systems, as in [29, Section 3.2]. As explained there,
we have a natural projection

(R'7,Q)®" — @ Va® Vyr, (3.3)

||=n
whose kernel is spanned by the image of the (’21) insertion maps
(R]H*Q)®nf2 — (R]H*Q)®n

given by inserting the class of the symplectic form. Modulo other Kiinneth components, the class of the
diagonal A; ; is the class of the symplectic form in H'(C) ® H'(C) c H?(C'-/}), Summarizing, we
have found

H*(C) /(D + W) = H " (M, (R'7,Q)®") — @ H™ (V) ® Vyr,
|A|=n

and the kernel is spanned by A. This establishes (3.1)

(b) Now assume n > k. If some iy = 2 and ij +--- + i, = k, we must have some other iy = 0.
It follows that ¥ c ®, and hence ‘P{’;‘n C d)g’n. Thus, it suffices to see that the right-hand side of (a)
vanishes when n > k and n > 0. This is immediate when n > k. Meanwhile, for the case n = k, we have
HO(Mg, V) = 0 since V, is nontrivial. O

We note a neat consequence of Lemma 3.1(a) in genus 2, which was also pointed out to us by
Petersen.

Lemma 3.2. Suppose n is odd. The STE generated by H* (ﬂz,n,l ), H%2 (Mz,n,]) and H*2 (/Vl,m)
for m < n+ 2 contains H*(M,,).

Proof. The STE generated by H* (./\_/lz,,,_l), Hk2 (ﬂz,n_l) and H*2 (Wl,m) for m < n+2 contains all
classes in H* (/Vz,n) that are pushed forward from the boundary, pulled back from less marked points
or products of i classes with classes pulled back from less marked points. It, therefore, suffices to show
that Wy H¥ (./\/12,,,)/(<I>’2"n + ‘I‘é"n) = 0. By Lemma 3.1(a), this quotient is a sum of the pure cohomology
of local systems of weight n. But on My, the hyperelliptic involution acts on local systems of weight n
by (—1)", so local systems of odd weight have no cohomology. O

Proof of Theorem 1.3. Let §* be the STE generated by the cohomology groups listed in the
statement of the theorem. By Lemma 2.1, it suffices to check that S*(M, /) surjects onto

Wi HY (Mg ) /(an’ + RHk’(Mg,,n,)) for all (g’,n’, k') with kK’ < k — 2. By Lemma 3.1(b), the

g/’n/
target vanishes when n” > k’. By the ved of M, it also vanishes when k’ > 4g” — 4 + n’. Finally,
Hk/(Mg/,n/) is tautological for kK’ < # [35]. O

Remark 3.3. One can prove analogues of Theorem 1.3 and Lemma 2.1 for homology. In particular, for
each k, there is a finitely generated STE that contains Hy (Mg ,) for all g and n, with explicit bounds
on the generators.
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Figure 1. The argument in the proof of Theorem 1.3 shows that W17Hl7(./\/lg,n)/(<l>gn + RH”(./\/lg,n))
vanishes for (g,n) outside the gray shaded region. Note that this quotient does not vanish for (g, n)
equal to (1,17) and (2, 14), which are pictured by purple dots.

4. The Chow-Kiinneth generation Property

In this section, we prove a key lemma about the cycle class map for spaces that have the following
property.
Definition 4.1. Let X be a smooth algebraic stack of finite type over a field, stratified by quotient stacks.

We say that X has the CKgP if for all algebraic stacks Y (of finite type, stratified by quotient stacks), the
exterior product

A (X)® A(Y) - A(X XY)

is surjective.

For convenience, we record here several properties of the CKgP, all of which are proven in [5,
Section 3.1].

Proposition 4.2. Let X be a smooth algebraic stack of finite type over a field, stratified by quotient stacks.

1. if U C X is open and X has the CKgP, then U has the CKgP;

2. if Y — X is proper, surjective, representable by DM stacks, and Y has the CKgP, then X has the
CKgP;

if X admits a finite stratification X = [[gcs S, such that each S has the CKgP, then X has the CKgP;
if V.— X is an affine bundle, then V has the CKgP if and only if X has the CKgP;

if X has the CKgP, and G — X is a Grassmann bundle, then G has the CKgP;

if X = BGL,,, BSL,, or BPGL,,, then X has the CKgP.

If X is smooth and proper and has the CKgP, then the cycle class map for X is an isomorphism
[5, Lemma 3.11].

When X is smooth but not necessarily proper and has the CKgP, the cycle class map is not necessarily
an isomorphism. Nevertheless, we have the following useful substitute (cf. [20, 33] for slightly different
statements with similar proofs).

SAIE

Lemma 4.3. Let X be an open substack of a smooth proper Deligne—Mumford stack X over the complex
numbers. If X has the CKgP, then the cycle class map

cl: EB Ai(X) - EB W H* (X)
i k
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is surjective. In particular, if k is odd, then Wi H*(X) = 0, and if k is even, then Wi H* (X) is pure
Hodge—Tate.

Proof. Setd :=dimX and D := X \ X. Let A C X x X denote the diagonal. Because X has the CKgP,
the exterior product map

d
@ AL(X) ® A (X) — AY(X x X)
£=0

is surjective. We have the excision exact sequence
AY(X x D) - A4(X xX) » A4(X x X) — 0.
It follows that we can write the class of the diagonal in A4 (X x X) as
A=T+A"+A"+. .-+ A9, 4.1)

where T is supported on X x D and each A’ is a linear combination of cycles of the form V{ x WA=,
where Vf and Wl.d‘f are subvarieties of X of codimension £ and d — ¢, respectively.

Let p; and p; be the projections of Y_X X to the first and second factors, respectively. Given a
class ¥ € H*(X x X), we write ¥,.: H*(X) — H*(X) for the associated correspondence, defined by
Y.a = pa.(pia-P).

Leta € Wi H*(X). Let a be a lift of a in Wi H*(X) = H*(X). Then

a=Aa=T +A2+A +.- -+ ADq.

First, we study Ala = p». (pia- AY). Note that pia- A’ vanishes for dimension reasons if k +2¢ > 2d.
Furthermore, since p; is of relative dimension d, the pushforward by p, of any cycle will vanish if
k + 2¢ < 2d. Thus, the only nonzero terms occur when k = 2d — 2{. Moreover, Afa is a linear
combination of the form }; ciWid"), so it lies in the image of the cycle class map.

Next, we study I',a. It suffices to treat the case that I is the class of a subvariety of X x X contained
in X x D, as it is a linear combination of such subvarieties. In this case, the map pa|r: ' — X factors
through D — X. Thus, I',a maps to zero under the restriction to Wy H* (X) because the correspondence
map factors through the cohomology of the boundary D. Thus, a|x = a is in the image of the cycle
class map. O

Remark 4.4. Essentially the same argument (only with Q-coefficients) gives a similar statement for
the cycle class map to {-adic étale cohomology over an arbitrary field.

The first two authors have previously given many examples of moduli spaces M, ,, that have the
CKgP and also satisfy A*(Mg ) = R*(My ) [5, Theorem 1.4]. For the inductive arguments in this
paper, we need more base cases in genus 7. In the next section, we prove that M7, has the CKgP
and A*(My7,) = R*(My7,), for n < 3. The table below records the previously known results from
[5, Theorem 1.4] together with Theorem 1.10.

The following is a consequence of Lemma 4.3.

Proposition 4.5. Forall g <7 and n < c(g) as specified in Table 1, we have
Wka (Mg,n) = RHk (Mgn)
In particular, if k is odd and n < c(g), then

WiH" (Mg ) = gr) H* (M, ) = 0.
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Table 1. My ,, has the CKgP and A* (Mg ) = R* (Mg ), for n < c(g), by [5, Theorem 1.4] and Theorem 1.10.

¢ 0 1 2 3 4 5 6 7

c(g) o 10 10 11 11 7 5 3

Proof of Theorem 1.9, assuming Theorem 1.1. By the hard Lefschetz theorem, it suffices to prove that
H*(M3_,)® is a polynomial in L and Sy, for fixed k < 17 and n < 11. Consider the right exact sequence

H2(0Mj5,,) — HY(M3.,) = WiH" (M3,,) — 0.

By Theorem 1.1 and [8, Theorems 1.1, 1.2 and Lemma 2.1], for £’ < 15, Hk,(ﬂg/,n/)“ is a poly-
nomial in L and S, for all g’ # 1 and all n” as well as for g’ = 1 and n” < 13. Since we assume
n < 11, no ﬂl,n, with n” > 14 appears as a factor in a component of the normalized boundary. It
follows that, H*"2(d M3_,)* is a polynomial in L and Sy,. By [5, Theorem 1.4], M3, has the CKgP
and A*(Mj;,,) = R*(Ms,,) for n < 11. Thus, W H*(M3,,) = RH*(M3,,) by Lemma 4.3. Hence,
Wi HK (M 3.n) is pure Hodge—Tate, and the theorem follows. ]

5. The CKgP in genus 7 with at most three marked points

In order to prove Theorems 1.1, 1.5(3) for k = 14 and 1.7, we need more base cases in genus 7. The
required base cases are given by Theorem 1.10, which we now prove.
In order to prove Theorem 1.10, we filter M7 ,, by gonality:

2 3 4 5
M, e My, e My, c M3,

Here, M'; ,, is the locus parametrizing smooth curves C with n marked points that admit a map of
degree at most k to P'. Standard results from Brill-Noether theory show that the maximal gonality of a
genus 7 curve is 5. By Proposition 4.2(3), to show that M5 ,, has the CKgP, it suffices to show that each
gonality stratum

M, \ M5

has the CKgP. Moreover, to show that A*(M7,) = R*(M37,,), it suffices to show for each &, that all
classes supported on ./\/117c ,, are tautological up to classes supported on .M’;‘n1 In other words, we must

show that every class in A*(./\/lé"n \ Mé‘_nl) pushes forward to a class in A* (M7, \ /\/l';_nl) that is the
restriction of a tautological class on M7 .

5.1. Hpyperelliptic and trigonal loci

By [5, Lemma 9.9], if n < 14, then ./\/l3 has the CKgP and all classes in A*(M7_,) supported on ./\/l3
are tautological. Note that this 1ncludes the hyperelliptic locus.

5.2. The tetragonal locus

To study the tetragonal locus /\/l w\ ./\/l7 ,,» we will use the Hurwitz stack Hy4 ¢, parametrizing degree

4 covers f: C — P!, where C is a smooth curve of genus g with n marked points. There is a forgetful
morphism

Bn: Hagn — Mg
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Restricting to curves of gonality exactly 4, we obtain a proper morphism

ﬁ;z: HO = H4,g,n \ﬁ;l(/\/@,n) - Mgv" \ M;"

4.g.n

with image Mg ,, \ M; ;. To show that M3 \ M3 has the CKgP, it suffices to show that H', = has

the CKgP by Proposition 4.2(2). We will do so by further stratifying 7—[27’n.

In [6, Section 4.4], the first two authors studied a stratification of H4 7 := H4,7,0 with no markings.
Here, we carry out a similar analysis with marked points. The Casnati—Ekedahl structure theorem [9]
associates to a point in H4 o a rank 3 vector bundle E and a rank 2 vector bundle F on P!, both of
degree g + 3, equipped with a canonical isomorphism det E = det F' [7, Section 3]. Let B be the moduli
stack of pairs of vector bundles (E, F) on P! of degree g + 3, together with an isomorphism of their
determinants as in [7, Definition 5.2]. Let 7: P — B be the universal P!-fibration, and let £ and F be
the universal bundles on P. There is a natural morphism H4 , — B that sends a degree 4 cover to its
associated pair of vector bundles. Moreover, the Casnati—-Ekedahl construction gives an embedding of
the universal curve C over Hy 4 into PEY.

Consider the natural commutative diagram

b

> C —24 5 pEY

SO

H47g’n H H4,g % Ba
where C,, is the universal curve over H4 ¢ ,. For each i, the map a o b o o; sends a pointed curve to the

image of the ith marking under the Casnati—Ekedahl embedding. Taking the product of these maps for
i=1,...,n, we obtain a commutative diagram

HS  —— Hagn —> (PEV)"

4,8,n
l l l (5.2)
H, > Hag s B.

Lemma 5.1 (Lemma 10.5 of [5]). Suppose x € A*(Hfg ) lies in the image of the map A*((PEVY™) —

A*(’H,Zg,n). Then f3;,.x is tautological on Mg ,, \ M;n.

The splitting types of the Casnati-Ekedahl bundles E and F induce a stratification on H4 7. We write
E = (ey, ez,e3) and F = (f1, f») to indicate that the bundles have splitting types

E=0(e1)®0(e2) ®O0(e3)  and  F=0(f) ® O(f).
We will consider a stratification into three pieces
7‘[4,7’,1 =X, uY,uz,.

The three strata correspond to unions of splitting types of E and F. The possible splitting types are
recorded in [6, Section 4.4]. The locus Z,, is the set of covers with maximally unbalanced splitting
types, and parametrizes hyperelliptic curves [0, Equation 4.5]. Its image in M7 , is contained in /\/13 o
which has the CKgP when n < 14, as noted above. We will show that X,, and Y,, have the CKgP and
that A*((PEY)™) surjects onto the Chow ring of their union, which is Hzln. We start with X,,.

Let X, C Ha,7., denote the locus of covers with splitting types £ = (3,3,4) and F = (5,5), or

E=(3,3,4)and F = (4,6).
Lemma 5.2. Ifn < 3, then X,, has the CKgP and A*((PEV)") — A*(X,,) is surjective.
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Proof. Taking f = 4 in [5, Definition 10.8], we have X, = 7—[3 7 The result then follows from [5,
Lemmas 10.11 and 10.12] with g =7 and f = f; = 4.

]

Now let Y,, € Ha4 7., be the union
Yn = 22,n U ZS,m
where X, , parametrizes covers with splitting types E = (2,4, 4) and F = (4, 6), and X3 ,, parametrizes
covers with splitting types E = (2,3,5) and F = (4,6).

Recall that 7: P — Biis the structure map for the P! bundle P. Lety : PEY — P denote the structure
map and 7; : (PEY)" — PEY denote the ith projection. Define

zi =1;v"c1(Op(1)) and ¢ :=n;ci(Opgv(1)).
Then z; and ; generate A*((PEY)™) as an algebra over A*(B). Write Z¢ := ¢ .
Lemma 5.3. For € =2,3 and n < 3, there is a surjection
A (Z)[z1s v zn, G Gn] = AT (2 n)
induced by ¢, — ¢ and restriction from (PEY)". Moreover, ¥¢ ,, has the CKgP.

Proof. Let ¢ and f be the splitting types associated to X, and let Bz, Fc B be the locally closed

substack that parametrizes pairs of bundles (E, F) with locally constant splitting types € and f . We
write O(€) := O(e1) ® - - ® O(ex). By construction, X, , is the preimage of B, 7 along Ha7., — B.
We, therefore, study the base change of (5.2) along B; P B:

Zen — (BEYB, ;)"

l l (5.3)

% —— B; ;.

We now recall the description of X, as an open substack of a vector bundle on BE Foas in [6, Lemma
3.10]. Let |

U c H'P',O(f)" ® Sym? O(8)) = H*(PO(Z)" .y O(f)" ® Opo 2+ (2)
be the open subset of equations that define a smooth curve, as in [6, Lemma 3.10]. Then
% = [(U X G) /SLy <(Aut(O(&)) x Aut(O()))].

The stack Bé, 7 is the part obtained by forgetting U:

B, 7 = [Gm/SLa =(Aut(O(@)) x Aut(O(f)))].

As explained in [6, Equation 3.1], there is a product of stacks BGL,, which is an affine bundle over
BAut(O(e€)). As such, Ba, 7 has the CKgP by Proposition 4.2(4) and (5). It follows that X, also has the
CKgP by Proposition 4.2(1) and (4).

Let us define the rank 2 vector bundle W := y* FY ®@Opgv (2) on PEY . Write Wé.’ 7 for the restriction of
WtoPEY| B, ; The discussion above says that ¥, is an open substack of the vector bundle (77 o *y)*Wg’ 7
on BE, 7
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Next, we give a similar description with marked points. Consider the evaluation map
(o) (Toy) W, 7 > W

Pulling back to the fiber product (PE"| B, ; )", we obtain

nj(moy) (mo Y)W, 7 — @niwg,f. (54)

Note that n; (moy)(mo 7)*Wa is independent of ;. The kernel ) of (5.4) parametrizes tuples of n
points on PO(Z)V together with a sectlon of

H(PO(2)', 7" O(f)" ® Opo (2 (2))

that vanishes on the points. There is, therefore, a natural map X, , < ) defined by sending a pointed
curve to the images of the points on PO(&)" and the defining section of the curve. The kernel Y is not
locally free. Nevertheless, its restriction to the open substack U,, ¢ (PEY| B, ; )" where (5.4) is surjective
is locally free. V

We claim that the map Xy, — Y factors through Y|y, . To see this, suppose C c PO(¢)" is the

vanishing of a section of y*O( f )Y ® Oro(z)v (2) and C is smooth and irreducible. By [5, Lemma 10.6],
if n < 3, the evaluation map (5.4) is surjective at any tuple of n distinct points on C. It follows that the
image of the composition X, ,, — YV — (P€V|Béj._)" is contained in U,. Hence, Z; , — YV|u,,-

In summary, we have a sequence of maps '

Zpn len - Uy — (ng|55f)n - (,PlBg’f)n - Bgfv

each of which is an open inclusion, vector bundle or product of projective bundles. Since Ba > has the

CKgP, it follows that X, ,, also has the CKgP by Proposition 4.2(1), (4) and (5). Moreover, we see that
A*(Bé’,f)[zlv s lns é’l, e 94’!] - A*(Z{’,n)

is surjective. Finally, note that X, , — Ba 7 factors through Z,, so A*(BE f) — A*(Z¢,,) factors

through A*(X;). This proves the claim. m]

Corollary 5.4. Forn < 3, ’Hfﬁln has the CKgP. Hence, M;"n has the CKgP.

Proof. We have 7—[0 = X, UY,. By Lemmas 5.2 and 5.3, each of these pieces has the CKgP. Note

that ’H ,, maps properly onto ./\/l w \ M7 ,» and ./\/l% ,, has the CKgP. Thus, the result follows by
Proposmon 4.2(2)-(3). |

The next step is to show that all classes in A*(Z; ) are restrictions from (PEY)".
Lemma 5.5. For { = 2,3 and n < 3, the restriction A*((PEV)") — A*(Z¢.,) is surjective.

Proof. Consider the following diagram:

A ((PEY)") > A"(Zen)

T T (5.5)

A*(B)[Zl’-~-,Zn’§l7~--7§n] H A*(Ef)[zl7 -~,Zn7§l,~--’£n]~
The map A*(B) — A*(Z,) is surjective by [6, Lemma 4.2] for £ = 2, and by [6, Lemma 4.3(1)] for

¢ = 3. Therefore, the bottom horizontal arrow is surjective. By Lemma 5.3, the right vertical arrow is
also surjective. Hence, the top horizontal arrow is surjective. O
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Lemma 5.6. For n < 3, the pullback map A*((PEV)") — A*("Hf7 ) 1s surjective.

Proof. First, we fix some notation. Let
J L o
233” = Y" = H4,7,n

denote the natural closed inclusion maps. Let ¢: ’Hff7 , — (PEY)" be the map from the top left to top

<&

right in diagram (5.2). We let ¢’ : X,, — (PEY)" be the composite of the open inclusion X,, — H e

and ¢. Let y := ¢ o ¢, and let " be the composite of the open inclusion X, , < Y, and y.
Consider the following commutative diagram, where the bottom row is exact

A*((PEV)™)
wl % (5.6)
A2 (Y,) —— A'(HS, ) — A" (X,) — 0.

By Lemma 5.2, ¢’ is surjective. It thus suffices to show that the image of ¢, is contained in the image
of ¢*. To do so, we consider another commutative diagram where the bottom row is exact

A*((PEY)")

‘”*l X (5.7

AN (Zs,) —E s A%(Y,) ——— A*(Zy,) — 0.

By Lemma 5.5, ¢’ is surjective. Moreover, by the projection formula and Lemma 5.5, the image of
is generated as an A*((P€Y)™) module by the fundamental class [Z3 ,,] € A*(Y,,). Therefore, any class
a € A*(Y,) can be written as

a=y e+ [Z3 ]y e =C¢ a0 + [Z3,]0 ¢ a,
where a; € A*((PEV)™). By the projection formula,
ua = [Y]¢ a0 + [Z3.0]¢"ay,

where now the fundamental class [Z3 ,] is a class on Hf7 .- 1t thus suffices to show that the classes
[¥x] and [23 ,,] are in the image of ¢*.

By [6, Lemma 4.8], [Z/] is in the image of A*(B) — A*(’Hf7). Because [X3,] is the pullback of
[25] along A* (7—[2)7) - A*(Hf7 ,,) and [Y,] is the pullback of [Z5], both [Z3.,] and [Y,,] are in the
image of A*(B) — A*(Hf7 ,.)- Hence, they are in the image of ¢~. O

Recall that proper, surjective maps induce surjective maps on rational Chow groups. Since the map
B HS ., — Moy \M% ,, is proper with image Ms \M% ,» €very class supported on the tetragonal
locus is the pushforward of a class from ”Hff7 ,,- Combining Lemmas 5.1 and 5.6, therefore, proves the
following.

Lemma 5.7. If n < 3, then all classes supported on ./\/1471 n\ ./\/lg ,, are tautological.

5.3. The pentagonal locus

It remains to study the locus M35 = M7, \ M‘7‘ ,, of curves of gonality exactly 5. Mukai showed that
every curve in M3 is realized as a linear section of the orthogonal Grassmannian in its spinor embedding
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0G(5,10) — P [21]. To take advantage of this construction, we first develop a few lemmas about the
orthogonal Grassmannian.

5.3.1. The orthogonal Grassmannian

Let V be the universal rank 10 bundle on BSO1g. The universal orthogonal Grassmannian is the quotient
stack [OG(5, 10)/SOjp], which we think of as the orthogonal Grassmann bundle with structure map
m: OG(5,V) — BSOjg. By construction, the pullback of V along r satisfies 7*V = U & U" where U
is the universal rank 5 subbundle on OG(S5, V).

Lemma 5.8. The stack
0G(5,V) = [0G(5,10)/SOy0]

has the CKgP. Moreover, its Chow ring is freely generated by the Chern classes of U.

Proof. LetV =span{ey,..., e} be a fixed 10-dimensional vector space with quadratic form
(0 Is
- (i, o)
Let U = span{ej, ..., es}, which is an isotropic subspace. The stabilizer of SO acting on OG(5, 10)
at U is

Staby = {M = (6‘ g) MTOM = Q} c SOyp.

Expanding, we have

AT 0\(0 Is\(A B 0 ATD
T _ 5 _
M™OM = (BT DT) (15 0) (0 D) - (DTA BTD+DTB)'

Thus, Staby, is defined by the conditions D = (AT)™" and BT D + D" B = 0.

Note that Staby, is a maximal parabolic subgroup and OG(S5, 10) = SO;o/Staby, . As such, the quotient
[OG(5,10)/S0Oyy] is equivalent to the classifying stack BStaby;. To gain a better understanding of the
latter, consider the group homomorphism

GL5 < Stabys, A (13 (ATO)I) .
For fixed D, the condition BT D + DT B = 0 is linear in B. Specifically, it says that B lies in the (D7)~!
translation of the A'® of skew symmetric 5 x 5 matrices. In particular, the cosets of the subgroup
GLs < Staby are isomorphic to affine spaces A!°. In other words, the induced map on classifying
spaces BGLs — BStaby = OG(5,V) is an affine bundle. It follows that OG(5, V) has the CKgP by
Proposition 4.2(4) and (5).

Furthermore, by construction, the tautological subbundle ¢/ on OG(5, V) pulls back to the tautological
rank 5 bundle on BGLs. It follows that A*(BStaby ) = A*(BGLs) and is freely generated by the Chern
classes of the tautological bundle. O

A B

0 D) to A. The kernel of
Staby — GLs is the subgroup G = (G,)'°, where A = Is, D = I5s and B + BT = 0. This shows that
Staby is actually a semi-direct product G >~ GLs. The map BStaby — BGLs is a BG-banded gerbe.

Remark 5.9. There is also a natural map Staby — GLs that sends (
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Lemma 5.10. Let V be a rank 2v vector bundle with quadratic form on X.

1. The rational Chow ring of OG(v, V) is generated over the Chow ring of X by the Chern classes of
the tautological subbundle.
2. If X has the CKgP, then OG(v, V) has the CKgP.

Proof. The argument is very similar to that for Grassmannians in type A.

First consider the case when X is a point. The orthogonal Grassmannian OG(v, 2v) is stratified by
Schubert cells, each of which is isomorphic to an affine space. By Proposition 4.2(3), it follows that
OG(v,2v) has the CKgP. Moreover, the fundamental classes of these cells are expressed in terms of
the Chern classes of the tautological quotient or subbundle via a Giambelli formula [19, p. 1-2]. Note
that this formula involves dividing by 2, so it is important that we work with rational coefficients for
this claim. In conclusion, the Chern classes of the tautological subbundle generate the Chow ring of
OG(v,2v).

More generally, for a fiber bundle f: OG(v,V) — X, to prove (1), we stratify X into locally closed
subsets X; over which V is trivial, such that X; > X j fori < j and X; has codimension at least i. To
check that the desired classes generate AX(OG(v, V)) for a given k, it suffices to show that they generate
AR(F N (XoU X U---U Xp)).

Over each piece of the stratification, f~!(X;) = X; x OG(v, 2v). Since OG(v, 2v) has the CKgP, the
Chow ring of f~1(X;) = X; x OG(v,2v) is generated by A*(X;) and restrictions of the Chern classes
from the tautological subbundle on OG(v, V). By excision and the push-pull formula, the Chow ring of
any finite union f~1(Xo) U f~1(X;) U--- U f~1(Xy) is generated by the desired classes.

Finally, (2) follows from (1) exactly as in [5, Lemma 3.7]. O

Corollary 5.11. For any n > 1, the n-fold fiber product
OG(5,V)" := OG(5,V) XBsoy, - * - XBS0,, OG(5,V)

has the CKgP, and its Chow ring is generated by the Chern classes of the tautological subbundles
U, ...,Uy, pulled back from each factor.

Proof. The case n = 1 follows from Lemma 5.8. For n > 1, the n-fold fiber product is an orthogonal
Grassmann bundle over the (n — 1)-fold fiber product, so the claim follows from Lemma 5.10. O

Remark 5.12. By Proposition 4.2(2), the fact that OG(5, V) has the CKgP implies that BSO also has
the CKgP. It should be possible to show that BSO;( has the CKgP (with integral coefficients as well)
using the calculation of its Chow ring by Field [14]. If the calculation there holds over any field, it would
show that BSO¢ has Totaro’s “weak Chow—Kiinneth Property,” which is equivalent to the CKgP by the
proof of [34, Theorem 4.1].

5.3.2. Review of the Mukai construction

We first review Mukai’s construction and then explain how to modify it for pointed curves. The canonical
model of a pentagonal genus 7 curve C C P° lies on a 10-dimensional space of quadrics. The vector
space W of these quadrics is defined by the exact sequence

0 — W — Sym® H*(C,wc) — H(C, 0&?) — 0. (5.8)

For each p € C, the subspace W, C W of quadrics that are singular at p is 5-dimensional. It appears in
the exact sequence (see [21, Section 3])

0 — W, — Sym®> H(C,wc(-p)) = H*(C,wc(-p)®*) — 0. (5.9)

Mukai shows that W" has a canonical quadratic form and le is an isotropic subspace, so one obtains a
map C — OG(5,W") via p — [W,] € OG(5,W") [21, Theorem 0.4].
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Let OG(5, 10) < PS™ be the spinor embedding, as in [21, Section 1]. The composition
C — OG(5, W) = OG(5,10) — PS*

realizes C as a linear section C = OG(5, 10) N P® ¢ PS*, and C ¢ P° is canonically embedded [21,
Theorem 0.4]. Conversely, if a linear section P® N 0OG(5, 10) is a smooth curve, then it is a canonically
embedded pentagonal genus 7 curve [21, Proposition 2.2]. This construction works in families, and
Mukai proves that there is an equivalence of stacks

M3 = [(Gr(7,5) \ A)/SO10], (5.10)

where A ¢ Gr(7, §*) is the closed locus of linear subspaces P® ¢ PS* whose intersection with OG(S, 10)
is not a smooth curve [21, Section 5].

The spinor representation of SOjq corresponds to a rank 16 vector bundle S* on the classifying
stack BSOo. Then, the equivalence (5.10) shows that M3 is an open substack of the Grassmann bundle
Gr(7,8") over BSOj:

M5 = Gr(7,8%)

l (5.11)

BSOyp .

We note that the tautological subbundle £ on Gr(7, ) restricts to the dual of the Hodge bundle on
M. In other words, if f: C — M3 is the universal curve, then ;€ = (fuwy)". The universal version
of the Mukai construction furnishes a map C — OG(S5, V) over BSOyj.

5.3.3. The Mukai construction with markings

For n < 4, we describe M%n in a similar fashion to (5.11) but this time as an open substack of
a Grassmann bundle over OG(5,V)". To do so, let ¢: OG(5,V) < PS* be the universal spinor
embedding, and let £ := *Opgs+(—1). The embedding ¢ is determined by an inclusion of vector bundles
L — 71*S§* on OG(5, V). On the n-fold fiber product OG(5, V)", let L; and U; denote the pullbacks of
L and U, respectively, from the ith factor. Let 7, : OG(5, V)" — BSOj be the structure map. Consider
the sum of the inclusions

Pz D an St (5.12)

Let Z,, ¢ OG(5, V)" be the open substack where ¢, has rank n. In other words, Z,, is the locus where
the n points on OG(5, V) have independent image under the spinor embedding.

Let Q, be the cokernel of ¢, |z, , which is arank 16—n vector bundle on Z,,. The fiber of Gr(7-n, Q,,)
over (p1,...,pn) € OG(5, V)" parametrizes linear spaces P® ¢ PS* that contain the n points p;. Thus,
we can identify Gr(7 — n, Q,,) with the locally closed substack

{(p1,....pn,A) : pi € PA and p; independent} ¢ OG(5,V)" Xgso,, Gr(7,S*). (5.13)

Lemma 5.13. For n < 4, there is an open embedding a,, of M3 , in the Grassmann bundle

M3, <5 Gr(7-n, Qy)

|

Zy % OG(5, V)"

Hence, M5 has the CKgP.
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Proof. Letf:C — ./\/l° be the universal curve, and let o : M3~ — C be the ith section. The universal
version of the Mukai constructlon gives a morphism C — OG(5 V). Precomposing with each of the
sections o defines a map M7~ — OG(S, V)" over BSOjo. We claim that, for n < 4, the images of
ol,...,0,; must be mdependent Indeed, suppose the i 1mages of the sections in a ﬁber Ply---sPn €C,
are dependent under the canonical embedding. Then py + - - - + p, would give a g} on C, but curves in
./\/l;’n have no g} for n < 4 by definition.

We also have the map M7 ~— M3 — Gr(7, S*) that sends a curve to its span under the spinor
embedding. Taking the product of these maps over BSOj yields a map

M3, — OG(5,V)" Xgso,, Gr(7,S").

This map sends a family of pointed curves (C, pi,...,p,) over a scheme T to the data of sections
pi: T — C — OG(5,W") and the subbundle of the spinor representation of W determined by the
span of the fibers of C ¢ OG(5, WY) c PS* over T. The map evidently factors through the locally closed
locus in (5.13), which we identified with Gr(7 —n, Q). In fact, the image is precisely Gr(7 —n, Q,) \ A,
where A is the closed locus, such that PA N OG(5, W) is not a family of smooth curves. Indeed, on the
complement of A, an inverse map Gr(7 —n, Q,) \ A — M;’n is defined by sending (p1,...,pn, A) to
the curve C = PA N OG(5, WY) together with the sections p; € PANOG(5,WY) = C

By Corollary 5.11, we know OG(5, V)" has the CKgP. To complete the proof, apply Proposition
4.2(1) and (5). o

We now identify the restrictions of the universal bundles on OG(S, V)" and Gr(7 — n, Q,) to M3
along a,,.

Lemma 5.14. Let f: C — M3, be the universal curve, and let o; denote the image of the ith section.
The vector bundle a;, U; sits in an exact sequence

0= ay Uy = Sym® fu(ws (=07)) = ful(wf (=07)®*) — 0. (5.14)

In particular, all classes pulled back from OG(5,V)" to M;n are tautological.

Proof. The composition of @, with projection onto the ith factor of Z,, is the map that sends a pointed
curve (C, pi, ..., pn) to the image of p; under the canonical map from C to OG(5, WY) = OG(5, 10).
By construction, the fiber at p; of the universal rank 5 bundle on OG(5, 10) is le Equation (5.14)
is the relative version of (5.9). By Grothendieck—-Riemann—Roch, the middle and right terms in (5.14)
have tautological Chern classes. It follows that the Chern classes of a;lf; are also tautological. The last
claim now follows from Corollary 5.11. O

Lemma 5.15. We have ci(a.L;) = —; in A (M;,n)'

Proof. Let f: C — M3 be the universal curve. The line bundle a*£; is the pullback of Ops+(—1)
along the composition

M5 5 ¢ — 0G(5,V) 5 PS*.

n
But the above composition also factors as

\fl

M3 — P(fiwys)” — PST,

n

and Opgs+(—1) restricts to Op( £, )v(—1). Hence, @}, L; is 07 Op(fw,)v (—1) = (cfwy)Y. O
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Lemma 5.16. Let &, be the tautological rank 7 — n subbundle on Gr(7 — n, Q). The pullback a;,&,
Sits in an exact sequence

0> Papli - (fwp) = apéy — 0. (5.15)
i=1

In particular, the Chern classes of a;,,, are tautological.

Proof. Recall that we defined Q,, as the cokernel of (5.12). The map onto the second factor in (5.13),
p: Gr(7-n,Q,) — Gr(7,8%), sends a 7 — n dimensional subspace to its preimage under the quotient
map ST — Q,,. Hence, there is an exact sequence on Gr(7 — n, Q,,)

0—>€B£,~—>p*€—>5n—>0.

i=1

Then note that a,,p*& is the same as the pullback of £ along M3, — M3 — Gr(7,5%), which is
the dual of the Hodge bundle. The last claim follows by combining the exact sequence (5.15) with
Lemma 5.15. m|

Lemma 5.17. The Chow ring of ./\/l° is generated by tautological classes.

Proof. By Lemma 5.13, we know that M is an open substack of Gr(7 —n, Q,,). The Chow ring of the
latter is generated by pullbacks of classes from OG(5, V)" and by the Chern classes of the tautological
subbundle &,. By Lemmas 5.14 and 5.16, respectively, both of these collections of classes restrict to
tautological classes on M;’n O

6. Applications to even cohomology

Here, we use the results from Sections 3, 4 and 5 to prove Theorem 1.5.

6.1. The degree 4 cohomology of ﬂg,n is tautological

Proof of Theorem 1.5(1). By [1], we know that H* (ﬂg,n) is tautological for k < 3. Therefore, using
Theorem 1.3, we deduce that H* (ﬂg,n) is contained in the STE generated by H* (Mgr,n/) forg’ <7
and n’ < 4. By Proposition 4.5, WaH*(My ) is tautological for g’ and n’ in this range, and it follows
that H*(M,_,) is tautological. O

Proof of Theorem 1.5(2). By Theorem 1.5(1) and [1], all classes in Hﬁ(mg,n) that are pushed forward
from the boundary are tautological. Also, H®(M g,n) is stable and hence tautological for g > 10 [35].

It follows that H® (Mg,,,) is tautological for g > 10. O

Remark 6.1. By Lemma 3.1, to show that H® (ﬂg,n) is tautological for all g and n, it would suffice to

show this for g < 9 and n < 6. In principle, this can be checked computationally as follows. By Theorem

1.5(3), we know that Hg(M, ,,) is tautological for all g and n. Thus, if the intersection pairing
RH®(M,.,) X RHg(Mg ) — Q

is perfect for g < 9 and n < 6, then H6(mg,n) is tautological. In principle, one could compute this

pairing using the Sage package admcycles [11]. In practice, however, this computation is too memory
intensive to carry out.
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6.2. The low degree even homology of ﬂg,,, is tautological

Let H ]fM denote Borel-Moore homology with coefficients in Q or Qg, together with its mixed Hodge
structure or Galois action. From the long exact sequence in Borel-Moore homology, we have a right
exact sequence

Hi(OMg ) — Hy(Mg ) — W  HEM (Mg ) — 0 (6.1)

for all k.

Proof of Theorem 1.5(3). We now show that Hy (ﬂg,n) is tautological for even k > 14. For g = 0, we
have H*(My,,) = RH*(My_,)[18]. For g > 1, by [4, Proposition 2.1] and the duality between HM
and HX, we have:

k<2gandn=0,1;

HBM (M = 0 for
P ( g,n) {k<2g_2+nandn22-

Combining this with the exact sequence (6.1), we reduce inductively to the finitely many cases k > 2g
andn =0,1ork >2g—-2+nandn > 2. When g > 3, in all of these cases, with k < 14, we know
that Mg ,, has the CKgP and A* (M, ,,) = R* (M) (see Table 1). By Proposition 4.5, it follows that
W_kH,fM (Myg.n) is tautological, so again, by induction and the exact sequence (6.1), we reduce to
the cases of g = 1,2. When g = 1, all even cohomology is tautological [26]. When g = 2, we apply
Corollary 2.7. O

Corollary 6.2. As Hodge structures or Galois representations, we have
Hng’"'_M(mg,n)ss = @ Ldg,n,_7.

Proof. We proved H 14(/\_/lg,n) is tautological and hence algebraic. Applying Poincaré duality yields the
corollary. |

7. The 13th and 15th homology of M, ,

In this section, we prove Theorems 1.6 and 1.7. As a corollary, we obtain restrictions on the Hodge
structures and Galois representations appearing in Hi3(M, ,) and His(Mg ,).

7.1. 13th homology
As usual, we argue by induction on g and . First, we must treat one extra base case.
Lemma 7.1. The group H"3 (Mz,n) is in the STE generated by H'! (ﬂm).

Proof. We showed in [8] that H'! (/\_/lg,n) is in the STE generated by H'! (Ml,ll) for all g and n. Next,
we note that My 1o has the CKgP (see Table 1), so H 13(/\/12,10) consists of classes pushed forward

from the boundary by Proposition 4.5. In particular, H 13(ﬂ2,10) also lies in this STE. The claim then
follows from Lemma 3.2. O

Proof of Theorem 1.6. The proof is similar to that of Theorem 1.5(3). When g = 0, all odd cohomology
vanishes [18], so we can assume g > 1. By [4, Proposition 2.1] and the duality between HIB3M and HL1.3,
we have that for g > 1

13<2gandn=0,1

HEM (M =0 for
137 Men) {13<2g—2+nandn22.
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Combining this with the exact sequence (6.1), we reduce inductively to the finitely many cases where
13 > 2gandn = 0,1 or 13 > 2¢ —2+n and n > 2. All such cases except for (g,n) in Z =
{(2,11),(1,11), (1,12),(1,13)} have the CKgP (see Table 1). By Proposition 4.5, it follows that
W_13Hfg3M (Mg,n) = 0 for (g,n) ¢ Z. By induction and the exact sequence (6.1), we reduce to the
exceptional cases of (g,n) € Z. The case (g,n) = (2, 11) follows from Lemma 7.1 and hard Lefschetz.
The cases where g = 1 follow from Proposition 2.2 and induction on #. O

Following the proof strategy above, we obtain the following corollary.

Corollary 7.2. As Hodge structures or Galois representations, we have
Hng'n_IS(mg,n)ss ~ @ Lden-12g,,

for all g and n.
Proof. From the proof above, we see that W_13HF3M (Mg,n) =0for (g,n) ¢ Z, and so

H13 (6Mg,n) - H13(mg,n)

is surjective. Noting that pushforward along a gluing map just induces a Tate twist, by induction on g
and n, we reduce to the cases (g,n) € Z. The case (g,n) = (2, 11) follows from Lemma 7.1 and hard
Lefschetz. The cases where g = 1 follow from Proposition 2.2 and induction on n. O

7.2. 15th homology

Again, we will argue by induction on g and n. We first need to treat two additional base cases in genus 2.
The difficult one is with 12 markings.

Lemma 7.3. H' (Mz,n) is generated by classes pushed forward from the boundary. Hence,
H'"(Ma>.12) is contained in the STE generated by H'' (M 11).

The proof of Lemma 7.3 involves calculating intersection pairings via decorated graphs. In order to
simplify pictures for and language surrounding decorated graphs, we use the following conventions:

. A white circle o is a vertex of genus 1

. A black circle e is a vertex of genus 0

. All markings that are not drawn elsewhere are understood to be on the leftmost genus 1 vertex

. The decoration w; on a genus 1 vertex is shorthand for f;*w, where f;: M 12 — M 11 forgets the
ith marking and w € H'' (M 11). Similarly, w,; is shorthand for fw, where f;;: Mz — M
forgets the ith and jth markings.

5. As we vary the decoration w over H'! (Ml,ll) = Sy, pushforward along a map that glues e pairs

of marked points determines a morphism L°S;y — H''*2¢(M, ). We say that a collection of w-

decorated graphs “is a basis for H* (M, ,)” if the corresponding morphisms L¢Sj — H* (M )

form a basis for Hom(L¢Syp, H* (M, ,)) and we have H*(M, ,) = Hom(L°S2, H (M, ) ®

L¢S1s.

B W N =

Bergstrom and Faber’s implementation [2] of the Getzler—Kapranov formula in genus 2 shows that,
viewed as Galois representations,

HY (My,12)% = 836 2S5, (7.1)

In fact, we will produce 836 independent maps L3S, - H 15(ﬂ2,12) that arise through pushforward
from the boundary. From this, we will conclude that H'> (M3, 1) is semi-simple and decomposes as a
sum of these 836 copies of L2S,.
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Figure 2. Selected Kiinneth components of pullbacks of the 891 classes to boundary divisors. In the
chart, each row represents several rows of a block matrix. The number of rows in each group is listed to
its left. The two half-edges glued to make a boundary divisor (pictured across the top) are labeled q on
the left vertex and p on the right vertex.

As discussed above, an w-decorated graph with e edges represents a morphism L°S;; —
H'"*2¢ (M, ,). In Figure 2, we list 891 such decorated graphs for H'>(M> 1») and record particular
Kiinneth components of their pullbacks to boundary divisors. We then argue that there are 55 rela-
tions among these graphs, which allow us to conclude that there are 836 independent graphs among
them.

Before proving Lemma 7.3, we require some explicit bases for H'3(M,_,) for small g, n. Recall that

Getzler [16] showed that H'3 (M| ,)* = @ LS, for all n.

Lemma 7.4. The following 11 w-decorated graphs form a basis for H 13(./\_/11, 12)
|

o

(N

Proof. Consider the block diagonal pairing against the basis for H'! (M 1,) given by the set of genus
1 vertices decorated by w», . .., w1>. O
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Lemma 7.5. The following 429 w-decorated graphs form a basis for H13(m1,13)

. 3 i
°—_<'j wo;_<i w(:_<X

w k

(3) + I + (211 = 129

Above, x,y are any two markings. In the last group of classes, i or j can be equal to y.

Proof. Getzler [16] proved that H '3(ﬂ1,13)SS = 429 LSy,, so it suffices to show that the images of
these maps span. We know that H'3 (/\_/11,13) is pushed forward from the boundary by Proposition 2.2.
Modulo classes of the first kind, the second two kinds are pulled back from H 13(ﬂ1,12). Pulling back
the relations from H'3 (ﬂlylz), we can ensure that a fixed marking, such as y in the first case or x in the
next case, is on the genus 0 vertex. O

Lemma 7.6. Let {x,y, 1,...,12} be a set of 14 markings. The following 6,006 w-decorated graphs
form a basis for H'3 (M 14)

| :5 :x
o——é 0__"{' wx‘j i Wy J wij k
(%) 1 (';') Al + I * el 4+ ()1l = 6006

In the last grouping above, i, j or k can equal y.

Proof. Getzler [16] proved that H 13(ﬂ1 14)% = 6006 LS5, so it suffices to show that the images of
these maps span. Modulo classes of the first and second kinds above, the last three kinds are pulled back
from M 2. Thus, using the relations on H 13 (/\/ll 12), we can ensure that a fixed marking among those
12 is on the genus 0 vertex. O

Lemma 7.7. The following 264 w-decorated graphs form a basis for H 13(M2,12)

(':) + i2- 1l + (‘ﬂ = 264
Proof. Bergstrom and Faber’s implementation [2] of the Getzler—Kapranov formula in genus 2 shows
that, as Galois representations, H 13(m2,12)55 = 264 LS,. Thus, it suffices to show that the above 264
maps are independent. We verify this by computing their pullbacks to H ]3(ﬂ1,14) and using Lemma
7.6 to see that those maps are independent. Indeed, the pullback is given by the graph that replaces the
rightmost genus 1 vertex with a genus 0 vertex and adds two markings labeled x, y to that vertex. O

Remark 7.8. Theorem 1.6 says that H13(Mg,n) is contained in the STE generated by H “(ﬂl,l -
Thus, it has a graphical presentation in which the generators are graphs of the sort appearing in Lemmas
7.4=7.7. In forthcoming work, we will show that H 13(/\_/lg,n) is also contained in this STE. There, we
take a more systematic approach and provide a complete list of relations among the corresponding
decorated graph generators.

Proof of Lemma 7.3. Figure 2 represents a matrix with 891 rows. We first show that the matrix has rank
825 and describe the 66 relations among the rows.
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First, notice that the rows in A1 are the only rows with nonzero entries in the first column. Next, rows
in A2, A3 and A4 have entries in column 2 that are independent from the other entries that appear in that
column for later rows (by Lemma 7.5). This shows that the rows in Al through A4 are independent and
independent from the remaining five rows. Meanwhile, the bottom four rows are block upper triangular.
This shows that the rank of the matrix is at least 825.

Meanwhile, it is not hard to check that the following 66 relations exist among the rows:

1 1
Ry (i) + ﬁRz(U) +R3[i, j1 + R3[j,i] — Ra(ij) + ERS(ij) =0.

To verify these relations, one needs to make use of known relations among tautological classes in
H4(./\/l1,3) and HZ(MLQ) and Hz(./\/ll,l).
Now, let

< i N .
M“:: o—-—L—o +’I"‘"—Q{ + o— o +D——l—0——i -—o——o—.<1'+,|—-O<‘
t W W J W J w W J 12

J we J

We claim M;; # 0. To see this, consider the intersection of M;; with Rs(ik) for k # j. The intersection
of Rs(ik) with the first five terms in the above equation vanish, since there is no H'! on a genus 1 vertex
with less than 11 markings. Meanwhile, the intersection Rs(ij) - Rs(ik) is nonzero using the usual rules
for intersecting decorated graphs, as in [17]. To see this, one should take the w decoration on the M 1;
vertex in Rs(ij) to be dual to the decoration used on the Ml,n vertex in Rs(ik).

Finally, the S, action on the symbols M;; is Indzig (Vi) =V, 110@Vj 1o, which is a sum of irreducible
representations of dimension 11 and 55. It follows that there are either 11 or 55 relations among the
M;;. There cannot be only 11 relations among the M;; because then there would be more than 836
independent copies of %Sy, in H (ﬂz,n), violating the dimension count (7.1). Hence, there must be
exactly 55 relations among the M;;. This shows that the 891 copies of LS, listed on the left of the
table generate an 836-dimensional space, so they span all of H 15 (mlu). O

Remark 7.9. One could instead prove that the 891 classes span a space of rank 836 by computing the
pairing of this space against itself. By the argument above, the pairing must have rank 836.

Finally, applying Lemma 3.2(a) together with Lemmas 7.3 and 7.7, and Corollary 2.3, we obtain one
more base case.

Lemma 7.10. H‘S(ﬂz,lg) lies in the STE generated by H'! (mml).

Proof of Theorem 1.7. The proof is similar to that of Theorem 1.6. When g = 0, all odd cohomology
vanishes [18], so we can assume g > 1. By [4, Proposition 2.1] and the duality between HEM and HY,
we have that for g > 1

HEM (My) = 0 for {15 <2gandn=0,1
15<2g—-2+nandn > 2.

Combining this with the exact sequence (6.1), we reduce inductively to the finitely many cases 15 > 2g
andn =0,10r15 > 2¢ —2+nand n > 2. In such cases, when g > 3, M, , has the CKgP, and so
by induction and the exact sequence (6.1), we reduce to the cases where g = 1 and 11 < n < 14, or
g=2and 11 < n < 13. When g = 2 and n = 11, the result follows from hard Lefschetz and Lemma
7.1. When g =2 and 12 < n < 13, the result follows from Lemmas 7.3 and 7.10. For g = 1, the claim
follows from Proposition 2.2. O
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Corollary 7.11. As Hodge structures or Galois representations, we have

Hng,n—IS(mg’n)ss ~ @ Lden—13g,, @ EB Lden15g, ¢
for all g and n.

Proof. The proof is similar to that of Corollary 7.2, using the additional input that H'5 (M ;5)%
S16 ® 186263 L2S), by [16, p. 491].

o oI

We expect that Theorem 1.7 can be improved as follows.

Conjecture 7.12. The STE generated by H' (M 11) contains H (M ) for g > 2.

The proof of Theorem 1.1 in the next section shows that for g > 2, H 15(J\_/lg,n)ss contains no copies
of Sy6. Conjecture 7.12 is, therefore, equivalent to the assertion that the STE generated by H'' (M 11)
and H'3 (M 15) contains H'> (M, ) for all g and n.

8. Proof of Theorem 1.1

The first two statements of Theorem 1.1 follow immediately from Corollaries 6.2 and 7.2 by Poincaré
duality. From Corollary 7.11, we can similarly conclude that H'> (M ¢,n)> is a direct sum of copies of
LS}, and Sy. To finish, it suffices to show that when g > 2, no copies of S;¢ appear.

Lemma 8.1. The STE generated by H''! (ﬂl,l 1) contains His (./\_/lz,n)for all n. Hence, HIS(HZ,,,)SS &~
e L2S15, as Galois representations or Hodge structures.

Proof. When g = 2, as Galois representations, there are no copies of Si4 in H'> (ﬂz,n)ss by Corollary
2.9. This shows that Hys5(M>_,)® is a direct sum of copies of L47~13S, in the category of Galois
representations. But we know that His (ﬂg,n) lies in the STE generated by H 1 (Ml 11)and H 15 (./\_/11 15)
by Theorem 1.7. By considering the Galois representations involved, it follows that H1s (Hz,n) lies in the
STE generated by H'' (M 11). In particular, Hjs(M,_,,)* is a direct sum of copies of L ~13S 5, either
as Galois representations or Hodge structures. The second statement follows by Poincaré duality. O

To show there are no copies of Sj¢ when g > 3, we will use a similar strategy to that of [8]. We study
the first two maps in the weight 15 complex:

HY M) S P H MM — B # (M) @ det )™M, 38.0)
E(D) =1 E(D)|=2

Here, I is a stable graph of genus g with n legs. The first map is the pullback to the normalization of
the boundary 0. My ,,. The second map is explicitly described in [8, Section 4.1].

Lemma 8.2. If g > 3, then the pullback map « in (8.1) is injective.

Proof. The map « is injective when gr)l H'> (M) = 0. By [4, Proposition 2.1], this holds whenever
2¢ —2+n > 15. When 2g - 2 +n < 15, M, , has the CKgP (see Table 1). The result follows from
Proposition 4.5. O

We now assume g > 3, and we study the second map in (8.1) as a morphism of Hodge structures. In
particular, we consider the H'>- part:

Hls,o(mF)Aut(r)i @ (HIS,O(HF)®detE(F))Aut(r). (8.2)
|E(D)|=1 |E(T)[=2

By Lemma 8.2, to prove the theorem in the category of Hodge structures, it suffices to show that g
is injective. The domain is a direct sum over graphs with one edge. If I" has one vertex and a loop, then
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Figure 3. The graph T on the left and T’ on the right.

HSO(Mr) = H>(Mg_1 u42) = 0 by induction on g. If T has two vertices with an edge connecting
them, then by the Kiinneth formula, we have

HY(Mr) = H(Ma,aup) @ H' O (Mp acug).

Assume a > b. By induction, the above is nonvanishing only if » = 1 and |A“| > 14. Because g > 3, it
follows that H'>-0(Mr) = H'5-%(M cuq) in this case. Let I be the graph obtained from I by adding
a loop on the genus g — 1 vertex and decreasing the genus accordingly, as in Figure 3. Then H'>0( M)
has a summand H'>0(Mj_scu,), and the map H'>0(Mr) — H'>0(My) injects into that summand.
This completes the proof of Theorem 1.1 in the category of Hodge structures.

Finally, we explain how to deduce the result in the category of Galois representations from the result
in the category of Hodge structures. To do so, we need one more lemma.

Lemma 8.3. Let V ¢ H' (/\_/11,15) be the subspace of classes pushed forward from the boundary,
and let W C Hls(./\/ll,15) be the image of Hgs(./\/ll,w) — H15(M1,15). Then there is a direct sum

decomposition H" (./Vl,l 5s) =V @ W, as Hodge structures or as Galois representations. Moreover, we
have W = S5 and V** = 186263 L*Sy>.

Proof. There is an exact sequence
0>V — H®(Mi5) > WisH> (My,15) — 0.
It thus suffices to show that the composition

W — H'S(M, 15) — WisH'>(M15) = Si6 (8.3)

is an isomorphism. The pairing H'3 (/Vl,ls) xH (Hl,ls) — Qequips HP (/71,15) with a nondegener-
ate bilinear form, under which the inclusion of W is dual to the quotient A3 (ﬂms) — WisHS (M 15).
To show (8.3) is an isomorphism is, therefore, equivalent to showing that the restriction of the pairing
to W with itself is full rank. This becomes clear in the category of Hodge structures: Since V has type
H'3? @ H>'3 and W has type H'>? @ H*'3, the pairing between V and W is trivial, so W must be full
rank on itself. This claim holds at the level of Q-vector spaces. Since all the maps above are also maps
of Galois representations, we have a direct sum decomposition as Galois representations too.

The identification of the remainder V** = 186263 LS, follows from [16, p. 491]. |

By Poincaré duality, to prove Theorem 1.1, it suffices to show that when g > 2, there are no copies of
L4»~1534 in the right-hand side of Corollary 7.1 1. The proof of Theorem 1.7 exhibits H>%s.n =15 (M an)
as a quotient of a direct sum of the form

Pt o H" (M) @ P L% @ H (M 15) » H* 7 (M ),

where the map from each summand on the left is a composition of a forgetful pullback with a gluing
pushforward. By Lemma 8.3, it suffices to show that, for each of these maps, the composition with the
inclusion of W ¢ H'3 (M 1s),

LA @ W — LU @ H' (M,15) — H*n ™ (M), (8.4)
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vanishes. When we view (8.4) as a map of Hodge structures, we see that it vanishes, since we have
already proved Theorem 1.1 in the category of Hodge structures. Thus, (8.4) vanishes as a map of
Q-vector spaces, and so also as a map of Galois representations.
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