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Abstract
We study collections of subrings of 𝑚∗ (M𝜄,𝜓) that are closed under the tautological operations that map coho-
mology classes on moduli spaces of smaller dimension to those on moduli spaces of larger dimension and contain
the tautological subrings. Such extensions of tautological rings are well-suited for inductive arguments and flex-
ible enough for a wide range of applications. In particular, we confirm predictions of Chenevier and Lannes for
the 𝐵-adic Galois representations and Hodge structures that appear in 𝑚𝑇 (M𝜄,𝜓) for 𝐺 = 13, 14 and 15. We also
show that 𝑚4 (M𝜄,𝜓) is generated by tautological classes for all g and n, confirming a prediction of Arbarello and
Cornalba from the 1990s. In order to establish the final base cases needed for the inductive proofs of our main
results, we use Mukai’s construction of canonically embedded pentagonal curves of genus 7 as linear sections of an
orthogonal Grassmannian and a decomposition of the diagonal to show that the pure weight cohomology of M7,𝜓
is generated by algebraic cycle classes, for 𝐷 ≤ 3.

1. Introduction
The moduli spaces of stable curves M𝜄,𝜓 are smooth and proper over the integers, and this implies
strong restrictions on the motivic structures, such as 𝐵-adic Galois representations, that can appear in
𝑚∗(M𝜄,𝜓). Widely believed conjectures regarding analytic continuations and functional equations for
L-functions lead to precise predictions, by Chenevier and Lannes, about which such structures can appear
in degrees less than or equal to 22 [10, Theorem F]. These predictions are consistent with all previously
known results on 𝑚∗(M𝜄,𝜓). Recent work inspired by these predictions confirms their correctness in
all degrees less than or equal to 12 [4, 8]. Here, we introduce new methods to systematically study the
motivic structures in 𝑚𝑇 (M𝜄,𝜓) for 𝐺 > 12 and confirm these predictions in degrees 13, 14 and 15.

Throughout, we write 𝑚∗(𝑎) for the rational singular cohomology of a scheme or Deligne-Mumford
stack X endowed with its associated Hodge structure or 𝐵-adic Galois representation and 𝑚∗(𝑎)ss for its
semi-simplification. Let L := 𝑚2 (P1) and S12 := 𝑚11 (M1,11).

Theorem 1.1. For all g and n, we have 𝑚13(M𝜄,𝜓)ss !
⊕

LS12 and 𝑚14 (M𝜄,𝜓)ss !
⊕

L7. Moreover,
for 𝑐 ≥ 2, we have 𝑚15(M𝜄,𝜓)ss !

⊕
L2S12.

Theorem 1.1 confirms the predictions of Chenevier and Lannes for motivic weights 𝐺 ≤ 15. Note that
the Hodge structure on the cohomology of a smooth and proper Deligne–Mumford stack such as M𝜄,𝜓

is semi-simple, so the semi-simplification in Theorem 1.1 is relevant only when considering 𝐵-adic
Galois representations.

The proof of Theorem 1.1 uses the inductive structure of the boundary of the moduli space and
the maps induced by tautological morphisms between moduli spaces, as do the proofs of the precursor
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results mentioned above. Recall that the collection of tautological rings 𝐶𝑚∗(M𝜄,𝜓) ⊂ 𝑚∗(M𝜄,𝜓) is
the smallest collection of subrings that is closed under pushforward and pullback for the tautological
morphisms induced by gluing, forgetting and permuting marked points. For many inductive arguments,
including those used here, it suffices to consider the operations that produce cohomology classes on
moduli spaces of larger dimension from those on moduli spaces of smaller dimension.
Definition 1.2. A semi-tautological extension (STE) is a collection of subrings 𝐹∗(M𝜄,𝜓) of 𝑚∗(M𝜄,𝜓)
that contains the tautological subrings 𝐶𝑚∗(M𝜄,𝜓) and is closed under pullback by forgetting and
permuting marked points and under pushforward for gluing marked points.
Examples of STEs include the trivial extension 𝐶𝑚∗, the full cohomology rings 𝑚∗ and the collection of
subrings generated by algebraic cycle classes. Not every STE is closed under the additional tautological
operations induced by push-forward for forgetting marked points and pullback for gluing marked points.
However, the main examples we study here are indeed closed under all of the tautological operations
(see Proposition 2.4).

Note that any intersection of STEs is an STE. An STE is finitely generated if it is the smallest STE
that contains a given finite subset (or, equivalently, the union of finitely many Q-vector subspaces) of∐

𝜄,𝜓 𝑚
∗(M𝜄,𝜓). A finitely generated STE is suitable for combinatorial study via algebraic operations on

decorated graphs. See [22, 31] for discussions of the graphical algebra underlying the tautological ring,
and [24, 25] for applications of such operadic methods, with not necessarily tautological decorations, to
the weight spectral sequence for M𝜄,𝜓. Every STE that we consider is motivic, meaning that 𝐹∗ (M𝜄,𝜓) ⊂
𝑚∗(M𝜄,𝜓) is a sub-Hodge structure and its base change to Q𝐶 is preserved by the Galois action.
Theorem 1.3. For any fixed degree k, the STE generated by

{
𝑚𝑇′ (M𝜄′,𝜓′) : 𝐺 ′ ≤ 𝐺 , 𝑐′ < 3

2 𝐺
′ + 1, 𝐷′ ≤ 𝐺 ′, 4𝑐′ − 4 + 𝐷′ ≥ 𝐺 ′

}

contains 𝑚𝑇 (M𝜄,𝜓) for all g and n.

In particular, there is a finitely generated STE that contains 𝑚𝑇 (M𝜄,𝜓) for all g and n.
Corollary 1.4. For each k, there are only finitely many isomorphism classes of simple Hodge structures
(respectively, 𝐵-adic Galois representations) in

⊕
𝜄,𝜓 𝑚

𝑇 (M𝜄,𝜓)ss.
We developed the notion of STEs to study nontrivial extensions of tautological rings, such as the STE

generated by 𝑚11 (M1,11), but the same methods also yield new results on the tautological ring itself.
We apply the explicit bounds in Theorem 1.3, together with new tools and results for small g, n and k
to prove the following. At the level of Q-vector spaces, we identify 𝑚𝑇 (M𝜄,𝜓) with 𝑚2𝑍!,"−𝑇 (M𝜄,𝜓),
where 𝑏𝜄,𝜓 := 3𝑐 − 3 + 𝐷 is the dimension of M𝜄,𝜓. Similarly, when 𝐹∗ is an STE, we write 𝐹𝑇 (M𝜄,𝜓)
for the Q-vector space 𝐹2𝑍!,"−𝑇 (M𝜄,𝜓).
Theorem 1.5. The tautological ring 𝐶𝑚∗(M𝜄,𝜓) contains

1. 𝑚4 (M𝜄,𝜓), for all g and n,
2. 𝑚6 (M𝜄,𝜓), for 𝑐 ≥ 10,
3. 𝑚𝑇 (M𝜄,𝜓), for even 𝐺 ≤ 14, for all g and n.

Theorem 1.6. The STE generated by 𝑚11 (M1,11) contains 𝑚13(M𝜄,𝜓) for all g and n.

Theorem 1.7. The STE generated by 𝑚11 (M1,11) and 𝑚15 (M1,15) contains 𝑚15 (M𝜄,𝜓) for all g and n.
Theorem 1.5(1) confirms a prediction of Arbarello and Cornalba from the 1990s; they proposed

that their inductive method used to prove that 𝑚2(M𝜄,𝜓) is tautological should also apply in degree 4
[1, p. 1]. Shortly thereafter, Polito confirmed that 𝑚4 (M𝜄,𝜓) is tautological for 𝑐 ≥ 8 [32], but the
general case remained open until now. Theorem 1.5(3) implies that 𝑚𝑇 (M𝜄,𝜓) !

⊕
L𝑇/2 for even

𝐺 ≤ 14. The work of Chenevier and Lannes predicts that 𝑚𝑇 (M𝜄,𝜓) should also be isomorphic to
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⊕
L𝑇/2 for 𝐺 = 16, 18, 20. The Hodge and Tate conjectures then predict that these groups are generated

by algebraic cycle classes. However, generation by algebraic cycle classes is an open problem except in
the cases where 𝑚𝑇 (M𝜄,𝜓) is known to be generated by tautological cycle classes.

By Theorems 1.6 and 1.7, 𝑚13 (M𝜄,𝜓) and 𝑚15 (M𝜄,𝜓) lie in STEs generated by cohomology from
genus 1 moduli spaces. On the other hand, 𝑚17(M𝜄,𝜓) requires genus 2 data because𝑥17𝑚17 (M2,14) ≠
0 [13].

We note that any STE is top-heavy, in the sense that dim 𝐹𝑇 (M𝜄,𝜓) ≤ dim 𝐹𝑇 (M𝜄,𝜓) for 𝐺 ≤
dim M𝜄,𝜓 (cf. [30]). Moreover, the dimensions in even and odd degrees are unimodal. This is because
any STE contains 𝐶𝑚∗ and hence contains an ample class. Multiplication by a suitable power of the
ample class gives an injection from 𝐹𝑇 (M𝜄,𝜓) to 𝐹𝑇 (M𝜄,𝜓).

One could show that 𝑚𝑇 (M𝜄,𝜓) is generated by tautological cycles in the remaining cases covered
by Theorem 1.5(3) by showing that the pairing on 𝐶𝑚𝑇 (M𝜄,𝜓) × 𝐶𝑚𝑇 (M𝜄,𝜓) is perfect, for example,
using admcycles [11]. However, computational complexity prevents meaningful progress by brute force.
Note that Petersen and Tommasi showed that this pairing is not perfect in general for 𝐺 ≥ 22 [28, 30].
Graber and Pandharipande had previously shown that 𝑚22(M2,20) contains an algebraic cycle class that
is not tautological [17].

Conjecture 1.8. The tautological ring 𝐶𝑚∗(M𝜄,𝜓) contains 𝑚𝑇 (M𝜄,𝜓) for even 𝐺 ≤ 20.

The results above show that Conjecture 1.8 is true for 𝐺 ≤ 4, and for 𝐺 = 6 and 𝑐 ≥ 10. For 𝐺 ≤ 14,
the conjecture is true if and only if the pairing 𝐶𝑚𝑇 (M𝜄,𝜓) × 𝐶𝑚𝑇 (M𝜄,𝜓) is perfect. The examples
of Graber–Pandharipande and Petersen–Tommasi show that the conjectured bound of 𝐺 ≤ 20 is the
best possible. As further evidence for Conjecture 1.8, we note that the Arbarello–Cornalba induction
together with known base cases implies the vanishing of 𝑚16,0(M𝜄,𝜓) and 𝑚18,0 (M𝜄,𝜓) for all g and
n, as recently observed by Fontanari [15].

The inductive arguments used to study 𝑚𝑇 (M𝜄,𝜓) for all g and n rely on understanding base cases
𝑚𝑇′ (M𝜄′,𝜓′), where 𝑐′ and 𝐷′ are small relative to k. As k grows, more base cases are needed. With
the exception of 𝑚11 (M1,11), all base cases required for previous work with 𝐺 ≤ 12 have been pure
Hodge–Tate [1, 4, 6]. Substantial work went into establishing these base cases via point counts and other
methods. When 𝐺 ≥ 13, the problem becomes fundamentally more difficult, as an increasing number of
the required base cases are not pure Hodge–Tate. In particular, previous techniques for handling base
cases do not apply.

The advances presented here depend on a new technique for controlling the pure weight cohomology
of M𝜄,𝜓. A space X has the Chow–Künneth generation Property (CKgP) if the tensor product map on
Chow groups 𝑒∗(𝑎) ( 𝑒∗(, ) ) 𝑒∗(𝑎 × , ) is surjective for all Y. If X is smooth, proper and has the
CKgP, then the cycle class map is an isomorphism. However, in several of the base cases needed for
our arguments, the smooth and proper moduli space M𝜄,𝜓 has odd cohomology and hence does not
have the CKgP. Nevertheless, we show that the open moduli spaces M𝜄,𝜓 do have the CKgP for the
relevant pairs (𝑐, 𝐷). To apply this in the proof of our main results, the key new technical statement
is Lemma 4.3, which says that if X is smooth and has the CKgP, then 𝑥𝑇𝑚𝑇 (𝑎) is algebraic. This
extension of the aforementioned result on the cycle class map to spaces that are not necessarily proper
is essential for controlling the motivic structures that appear in 𝑚𝑇 (M𝜄,𝜓) for 𝐺 ≥ 13. For example,
using that M3,𝜓 has the CKgP for 𝐷 ≤ 11 [5, Theorem 1.4], we determine the Hodge structures and
Galois representations that appear in 𝑚∗(M3,𝜓), for 𝐷 ≤ 11.

Theorem 1.9. For 𝐷 ≤ 11, 𝑚∗(M3,𝜓)ss is a polynomial in L and S12.

Bergström and Faber recently used point counting techniques to compute the cohomology of M3,𝜓
as an S𝜓-equivariant Galois representation for 𝐷 ≤ 14. For 𝐷 ≥ 9, these computations are conditional on
the assumption that the only 𝐵-adic Galois representations appearing are those from the list of Chenevier
and Lannes [3]. Theorem 1.9 unconditionally confirms the calculations of Bergström and Faber for
𝐷 = 9, 10 and 11.
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In order to prove Theorems 1.1, 1.5(3) and 1.7, our inductive arguments require several base cases
beyond what was already in the literature. In particular, we prove the following results in genus 7, which
are also of independent interest.
Theorem 1.10. For 𝐷 ≤ 3, the moduli space M7,𝜓 has the CKgP and 𝐶∗(M7,𝜓) = 𝑒∗(M7,𝜓).
Here, 𝐶∗ denotes the subring of the Chow ring 𝑒∗ generated by tautological cycle classes. Previous
results proving that M𝜄,𝜓 has the CKgP and 𝐶∗(M𝜄,𝜓) = 𝑒∗(M𝜄,𝜓) for small g and n have primarily
relied on corresponding results for Hurwitz spaces with marked points [5]. Unfortunately, the numerics
for degree 5 covers prevented this technique from working with marked points. Here, we take a new
approach to the pentagonal locus, using a modification of Mukai’s construction [21] that includes
markings.

2. Preliminaries
In this section, we establish notation and terminology that we will use throughout the paper and discuss
a few basic examples of STEs. We also recall previously known facts about the cohomology groups
of moduli spaces, especially in genus 0, 1 and 2, that will be used in the base cases of our inductive
arguments.

2.1. Preliminaries on STEs
Recall that an STE is, by definition, closed under the tautological operations given by pushing forward
from the boundary or pulling back from moduli spaces with fewer marked points. Let 𝑍M𝜄,𝜓 denote
the normalization of the boundary. The sequence

𝑚𝑇−2(𝑍M𝜄,𝜓) ) 𝑚𝑇 (M𝜄,𝜓) ) 𝑥𝑇𝑚
𝑇 (M𝜄,𝜓) ) 0

is right exact.
Let .𝐵 : M𝜄,𝜓 ) M𝜄,𝜓−1 be the tautological morphism forgetting the ith marking, and let

Φ𝑇
𝜄,𝜓 := .∗1𝑥𝑇𝑚

𝑇 (M𝜄,𝜓−1) + · · · + .∗𝜓𝑥𝑇𝑚
𝑇 (M𝜄,𝜓−1) ⊂ 𝑥𝑇𝑚

𝑇 (M𝜄,𝜓).

The following lemma is a cohomological analogue of the “filling criteria” in [5, Section 4].
We consider the partial order in which (𝑐′, 𝐷′) ≺ (𝑐, 𝐷) if 𝑐′ ≤ 𝑐, 2𝑐′+𝐷′ ≤ 2𝑐+𝐷 and (𝑐′, 𝐷′) ≠ (𝑐, 𝐷).

The moduli space M𝜄,𝜓 is stratified according to the topological types of stable curves, and each stratum
of the boundary is a finite quotient of a product of moduli spaces M𝜄′,𝜓′ , such that (𝑐′, 𝐷′) ≺ (𝑐, 𝐷).
Recall that we write 𝑏𝜄,𝜓 := 3𝑐 − 3 + 𝐷.
Lemma 2.1. Let 𝐹∗ be an STE, and let 2𝑐 − 2 + 𝐷 > 0. If the canonical map

𝐹𝑇
′ (M𝜄′,𝜓′) ) 𝑥𝑇′𝑚

𝑇′ (M𝜄′,𝜓′)/
(
Φ𝑇′

𝜄′,𝜓′ + 𝐶𝑚𝑇′ (M𝜄′,𝜓′)
)

(2.1)

is surjective for (𝑐′, 𝐷′, 𝐺 ′) = (𝑐, 𝐷, 𝐺) and all (𝑐′, 𝐷′, 𝐺 ′) satisfying

(𝑐′, 𝐷′) ≺ (𝑐, 𝐷), 2𝑏𝜄′,𝜓′ − 𝐺 ′ ≤ 2𝑏𝜄,𝜓 − 𝐺 and 𝐺 ′ ≤ 𝐺 − 2, (2.2)

then 𝐹𝑇 (M𝜄,𝜓) = 𝑚𝑇 (M𝜄,𝜓).
Proof. The proof is by induction on g and n. Consider the diagram

𝐹𝑇−2((𝑍M𝜄,𝜓) 𝐹𝑇 (M𝜄,𝜓)

𝑚𝑇−2((𝑍M𝜄,𝜓) 𝑚𝑇 (M𝜄,𝜓) 𝑥𝑇𝑚𝑇 (M𝜄,𝜓) 0.

𝑀 𝐸
) (2.3)
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Here, we extend 𝐹∗ to (𝑍M𝜄,𝜓 in the natural way, by summing over components, using the Künneth
formula, and taking invariants under automorphisms of the dual graph. We claim that 𝜂 is an isomor-
phism. By the Künneth formula, the domain of 𝜂 is a sum of tensor products of 𝐹𝐶 (M*,+) with 𝐵 ≤ 𝐺−2
and (𝑧, 𝜁) ≺ (𝑐, 𝐷). Furthermore, by considering dimensions of the cycles involved, we must also have
2𝑏*,+ − 𝐵 ≤ 2𝑏𝜄,𝜓 − 𝐺 . This is because we must have 𝐺 −2− 𝐵 ≤ 2(𝑏𝜄,𝜓 −1− 𝑏*,+), so that the degree of
the other Künneth component does not exceed its real dimension. Now, suppose we are given (𝑐′, 𝐷′, 𝐺 ′)
that satisfy

(𝑐′, 𝐷′) ≺ (𝑧, 𝜁), 2𝑏𝜄′,𝜓′ − 𝐺 ′ ≤ 2𝑏*,+ − 𝐵 and 𝐺 ′ ≤ 𝐵 − 2.

Then (𝑐′, 𝐷′, 𝐺 ′) satisfies (2.2), so 𝐹𝐶 (M*,+) = 𝑚𝐶 (M*,+) by induction. This proves the claim.
Next, by induction, we have 𝑚𝑇 (M𝜄,𝜓−1) = 𝐹𝑇 (M𝜄,𝜓−1), so the image of

.∗𝐵 : 𝑚𝑇 (M𝜄,𝜓−1) ) 𝑚𝑇 (M𝜄,𝜓)

is contained in 𝐹𝑇 (M𝜄,𝜓) for all i. Hence, Φ𝑇
𝜄,𝜓 is contained in the image of 𝜄. The tautological classes

𝐶𝑚𝑇 (M𝜄,𝜓) + 𝑥𝑇𝑚𝑇 (M𝜄,𝜓) are also contained in the image of 𝜄 by definition. Thus, the surjectivity of

𝐹𝑇 (M𝜄,𝜓) ) 𝑥𝑇𝑚
𝑇 (M𝜄,𝜓)/

(
Φ𝑇

𝜄,𝜓 + 𝐶𝑚𝑇 (M𝜄,𝜓)
)

implies that 𝜄 is surjective. Hence, 𝚥 is also surjective, as desired. !

In order to apply Lemma 2.1, we need results that help us understand generators for
𝑥𝑇𝑚𝑇 (M𝜄,𝜓)/

(
Φ𝑇

𝜄,𝜓 + 𝐶𝑚𝑇 (M𝜄,𝜓)
)
. This is the topic of Sections 3 and 4.

2.2. Pure cohomology in genus 1 and 2
On M0,𝜓, the only nonvanishing pure cohomology is 𝑥0𝑚0(M0,𝜓). Below, we present the complete
classification of pure cohomology in genus 1, which is due to Getzler [16]. In genus 2, we present a
classification in low cohomological degree, following Petersen [27].

2.2.1. Genus 1
The following statement appeared in [23, Proposition 7]; the proof there is omitted. Here, we include
the proof (and corrected statement), which was explained to us by Petersen. Let S𝑇+1 denote the weight
k structure associated to the space of cusp forms of weight 𝐺 + 1 for SL2 (Z). Let . : 𝑄 ) M1,1 be
the universal curve, and let V be the local system 𝐶1.∗Q. By the Eichler–Shimura correspondence, we
have S𝑇+1 = 𝑥𝑇𝑚1(M1,1,V(𝑇−1). We will see that the latter is identified with 𝑥𝑇𝑚𝑇 (M1,𝑇 ). More
generally, we have the following. Given a partition 𝐼 of n, let 𝑀, be the associated Specht module
representation of S𝜓.

Proposition 2.2. For 𝐷 ≥ 𝐺 , a basis for 𝑥𝑇𝑚𝑇 (M1,𝜓) is given by the
(𝜓−1
𝑇−1

)
pullbacks from

𝑥𝑇𝑚𝑇 (M1,-), where A runs over all subsets of {1, . . . , 𝐷} of size k, such that 1 ∈ 𝑒. Consequently,
there is an S𝜓-equivariant isomorphism

𝑥𝑇𝑚
𝑇 (M1,𝜓) ! S𝑇+1 ( 𝑀𝜓−𝑇+1,1#−1 .

For 𝐷 < 𝐺 , we have 𝑥𝑇𝑚𝑇 (M1,𝜓) = 0.

Proof. Let . : 𝑄 ) M1,1 denote the universal elliptic curve, and 𝑗 : M1,1 ) 𝑄 the section. Associated
to the open embedding M1,𝜓 𝑇) 𝑄𝜓−1, we have a right exact sequence

⊕
𝑥𝑇−2𝑚

𝑇−2(𝑄𝜓−2) ) 𝑥𝑇𝑚
𝑇 (𝑄𝜓−1) ) 𝑥𝑇𝑚

𝑇 (M1,𝜓) ) 0. (2.4)
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Since 𝑦 : 𝑄𝜓−1 ) M1,1 is smooth and proper, the Leray spectral sequence degenerates at 𝑄2, and by
[12, Proposition 2.16], we have a direct sum decomposition

𝑚𝑇 (𝑄𝜓−1) =
⊕
.+/=𝑇

𝑚 . (M1,1, 𝐶
/ 𝑦∗Q). (2.5)

By the Künneth formula, we have

𝐶/ 𝑦∗Q =
⊕

𝐵2+···+𝐵"=/
𝐶𝐵2.∗Q ( · · · ( 𝐶𝐵".∗Q.

Let V := 𝐶1.∗Q, and note that 𝐶0.∗Q = Q and 𝐶2.∗Q = Q(−1).
Fix some p and (:2, . . . , :𝜓) with ; + :2 + · · · + :𝜓 = 𝐺 . If : 0 = 2, then, we claim that

𝑥𝑇𝑚
. (M1,1, 𝐶

𝐵2.∗Q ( · · · ( 𝐶𝐵".∗Q) ⊂ 𝑥𝑇𝑚
𝑇 (𝑄𝜓−1) (2.6)

lies in the image of the first map in (2.4). More precisely, let 𝜂 0 : 𝑄𝜓−2 ) 𝑄𝜓−1 be the locus where the jth
entry in 𝑄𝜓−1 agrees with the section 𝑗 : M1,1 ) 𝑄 . In other words, 𝜂 0 is defined by the fiber diagram

𝑄𝜓−2 𝑄𝜓−1

M1,1 𝑄 .

𝑀$

pr $

1

If : 0 = 2, we have ; + :2 + · · · + : 0−1 + : 0+1 + · · · + :𝜓 = 𝐺 − 2. Therefore, using the Leray spectral
sequence for 𝑄𝜓−2 ) M1,1, there is a corresponding term

𝑥𝑇−2𝑚
. (M1,1, 𝐶

𝐵2.∗Q ( · · · ( 𝐶𝐵 $−1.∗Q ( 𝐶𝐵 $+1.∗Q ( · · · ( 𝐶𝐵".∗Q) ⊂ 𝑥𝑇−2𝑚
𝑇−2(𝑄𝜓−2). (2.7)

Then the pushforward 𝜂 0∗ : 𝑚𝑇−2(𝑄𝜓−2) ) 𝑚𝑇 (𝑄𝜓−1) sends the subspace on the left of (2.7) isomor-
phically onto the subspace on the left of (2.6), which proves the claim.

It follows that 𝑥𝑇𝑚𝑇 (M1,𝜓) is generated by the terms 𝑥𝑇𝑚 . (M1,1, 𝐶𝐵2.∗Q ( · · · ( 𝐶𝐵".∗Q) in
𝑥𝑇𝑚𝑇 (𝑄𝜓−1), where all : 0 ≤ 1. By [26, Section 2], we have 𝑥𝑇𝑚 . (M1,1,V(/) = 0 unless ; = 1 and
< = 𝐺 − 1, in which case 𝑥𝑇𝑚1(M1,1,V(𝑇−1) = S𝑇+1 by Eichler–Shimura.

There are
(𝜓−1
𝑇−1

)
terms of the form 𝑚1(M1,1,V(𝑇−1) in (2.5) coming from choosing which 𝐺 − 1 of

the 𝐷−1 indices have : 0 = 1. Each of these terms is pulled back along the projection map 𝑄𝜓−1 ) 𝑄 𝑇−1,
which remembers the 𝐺 − 1 factors for which : 0 = 1. Let A be the collection of indices j, such that : 0 = 1
together with 1. There is a commutative diagram

𝑥𝑇𝑚𝑇 (𝑄𝜓−1) 𝑥𝑇𝑚𝑇 (M1,𝜓)

𝑥𝑇𝑚𝑇 (𝑄 𝑇−1) 𝑥𝑇𝑚𝑇 (M1,-).

It follows that 𝑥𝑇𝑚𝑇 (M1,𝜓) is generated by the pullbacks from 𝑥𝑇𝑚𝑇 (M1,-) as A ranges over all
subsets of size k containing 1. Finally, we note that there can be no relations among these

(𝜓−1
𝑇−1

)
copies

of 𝑥𝑇𝑚1(M1,1,V(𝑇−1) = S𝑇+1 since the image of the left-hand map of (2.4) lies in the subspace of
type L𝐵S𝑇+1−2𝐵 for : ≥ 1.

We have now shown that 𝑥𝑇𝑚𝑇 (M1,𝜓) = S𝑇+1 ( = for some
(𝜓−1
𝑇−1

)
-dimensional vector space U.

From the discussion above, it is not difficult to identify U as an S𝜓-representation. When 𝐷 = 𝐺 , the
S𝑇 action on 𝑥𝑇𝑚𝑇 (M1,𝑇 ) is the sign representation. To identify U for 𝐷 > 𝐺 , let S𝜓−1 ⊂ S𝜓 be the
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subgroup that fixes 1. Since 𝑥𝑇𝑚𝑇 (M1,𝜓) is freely generated by the pullbacks from 𝑥𝑇𝑚𝑇 (M1,-) as
A runs over subsets of size k containing 1, we have

ResS"S"−1
= = IndS"−1

S#−1×S"−# (sgn " 1).

By the Pieri rule, we have

IndS"−1
S#−1×S"−# (sgn " 1) = IndS"−1

S#−1×S"−# (𝑀1#−1 "𝑀𝜓−𝑇 ) = 𝑀𝜓−𝑇+1,1#−2 ⊕ 𝑀𝜓−𝑇 ,1#−1 . (2.8)

By the branching rule, 𝑀𝜓−𝑇+1,1#−1 is the unique S𝜓 representation whose restriction to S𝜓−1 is the
representation in (2.8). !

Since S14 = 0, we have the following.

Corollary 2.3. 𝑚13(M1,𝜓) lies in the STE generated by 𝑚11(M1,11) for all n.

Let 𝐹∗2 denote the STE generated by 𝑚11(M1,11). Note that 𝐹∗2 is the STE generated by the class
> ∈ 𝑚11,0 (M1,11) associated to the weight 12 cusp form for SL2(Z),that is, it is the smallest STE whose
complexification contains >. In [8], we showed that 𝐹∗2 contains 𝑚11(M𝜄,𝜓), and hence 𝑚11 (M𝜄,𝜓),
for all g and n. In this paper, we show that it also contains 𝑚13(M𝜄,𝜓) for all g and n (Theorem 1.6). In
contrast with the system of tautological rings, an arbitrary STE need not be closed under pushforward
along maps forgetting marked points or pullback to the boundary. Nevertheless, we have the following
result for 𝐹∗2 (M𝜄,𝜓).
Proposition 2.4. The STE 𝐹∗2 is closed under the tautological operations induced by pushforward for
forgetting marked points and pullback for gluing marked points.

Proof. By [26], all even cohomology in genus 1 is represented by boundary strata. Therefore, any product
of two odd degree classes can be written as a sum of boundary strata. It follows that every class in
𝐹∗2 (M𝜄,𝜓) can be represented as a linear combination of decorated graphs, all of whose nontautological
decorations are 𝑚11-classes on genus 1 vertices.

The pushforward of 𝑚11 (M1,𝜓) along the maps forgetting marked points is zero. Since the tautolog-
ical rings are closed under pushforward, it follows that 𝐹∗2 is closed under pushforward.

By [8, Lemma 2.2], the image of 𝑚11(M1,𝜓) under pullback to the boundary lies in 𝐹∗2 . By the
excess intersection formula, and using the fact that ?-classes in genus 1 are boundary classes, it follows
that the pullback of any such decorated graph in 𝐹∗2 to any boundary stratum is a sum of decorated
graphs of the same form. In particular, 𝐹∗2 is closed under pullback to the boundary, as required. !

Remark 2.5. More generally, the Hodge groups 𝑚𝑇 ,0 (M1,𝑇 ) correspond to the space of cusp forms for
SL2 (Z) of weight 𝐺 + 1. Essentially the same argument shows that the STE generated by any subset of
these cusp form spaces is closed under all of the tautological operations.

2.2.2. Genus 2
Here, we summarize what we need about the pure weight cohomology of M2,𝜓 in low degrees, from
[28, 30].

Proposition 2.6. Let 𝐺 ≤ 10. Then 𝑥2𝑇𝑚2𝑇 (M2,𝜓) = 𝐶𝑚2𝑇 (M2,𝜓).

Proof. When 𝐷 < 20, we have 𝑚2𝑇 (M2,𝜓) = 𝐶𝑚2𝑇 (M2,𝜓) by [28, Theorem 3.8]. Hence,
𝑥2𝑇𝑚2𝑇 (M2,𝜓) = 𝐶𝑚2𝑇 (M2,𝜓) by restriction. For 𝐷 = 20 and 𝐺 ≤ 10, the same result holds (see
[28, Remark 3.10]). For 𝐷 > 20 and 𝐺 ≤ 10, all of 𝑥2𝑇𝑚2𝑇 (M2,𝜓) is pulled back from 𝑥2𝑇𝑚2𝑇 (M2,3)
where @ ≤ 20 (see Lemma 3.1, below). Because the tautological ring is closed under forgetful pull-
backs, the lemma follows. !

Applying Lemma 2.1 to the STE 𝐶𝑚∗ immediately implies Conjecture 1.8 for 𝑐 = 2.
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Corollary 2.7. If 𝐺 ≤ 10, then 𝑚2𝑇 (M2,𝜓) = 𝐶𝑚2𝑇 (M2,𝜓) for all n.

In odd degrees, there are restrictions on the possible motivic structures coming from the cohomology
of local systems on the moduli space of principally polarized abelian surfaces.

Proposition 2.8. In the category of Galois representations, the pure weight cohomology of M2,𝜓 in
degrees 13 and 15 is of the form

𝑥13𝑚
13(M2,𝜓)ss !

⊕
LS12 and 𝑥15𝑚

15(M2,𝜓)ss !
⊕

L2S12.

Proof. For every k, the surjection

𝑚𝑇 (M2,𝜓) ) 𝑥𝑇𝑚
𝑇 (M2,𝜓)

factors through 𝑥𝑇𝑚𝑇 (Mct
2,𝜓). Here, Mct

2,𝜓 is the moduli space of genus 2 curves of compact type with
n markings. By [28, Theorem 2.1(i) and (ii)],

𝑚𝑇 (Mct
2,𝜓) !

⊕
.+/=𝑇

𝑚 . (Mct
2 , 𝑒

/) ⊕ 𝑚 . (Sym2 M1,1, A
/),

where 𝑒/ and A/ are local systems of weight q, given by direct sums of Tate twists of symplectic local
systems. Moreover, the terms 𝑚 . (Sym2 M1,1, A/) map to zero under restriction to 𝑚𝑇 (M2,𝜓) by [28,
Lemma 3.3].

We now consider the terms 𝑚 . (Mct
2 , 𝑒

/). Let V be a Tate twist of a symplectic local system of
weight q on Mct

2 . If q is odd, then 𝑚 . (Mct
2 ,V) vanishes because the hyperelliptic involution acts on the

fibers of V by (−1)/ . When q is even, the possible Galois representations appearing in 𝑚 . (Mct
2 ,V)ss

are determined by [27, Theorem 2.1]. When ; + < = 13 (respectively, ; + < = 15), the only possibility
of pure weight is LS12 (respectively, L2S12). !

Corollary 2.9. On M2,𝜓, in the category of Galois representations, we have

𝑚13(M2,𝜓)ss !
⊕

LS12 and 𝑚15 (M2,𝜓)ss !
⊕

L2S12.

Proof. For degree 13, consider the right exact sequence

𝑚11 ( ,𝑍M2,𝜓) ) 𝑚13 (M2,𝜓) ) 𝑥13𝑚
13(M2,𝜓) ) 0.

By [8], the semi-simplification of the left-hand side is a sum of terms S12. Proposition 2.8 shows
that the semi-simplification of the right-hand side consists only of Tate twists of S12. Thus, the semi-
simplification of the middle term does, too.

Similarly, for degree 15, we consider the right exact sequence

𝑚13 ( ,𝑍M2,𝜓) ) 𝑚15 (M2,𝜓) ) 𝑥15𝑚
15(M2,𝜓) ) 0.

The boundary divisors on M2,𝜓 are finite quotients of products of moduli spaces for genus at most 2. In
particular, by the Künneth formula and vanishing of odd cohomology in degrees less than or equal to 9,
we see that the left-hand side is a sum of terms of the form 𝑚13(M𝜄′,𝜓′) or 𝑚2(M𝜄1 ,𝜓1 ) (𝑚11(M𝜄2 ,𝜓2 ),
where 𝑐′, 𝑐1, 𝑐2 ≤ 2. By the degree 13 result just proved, the semi-simplification of terms of the first
kind is a sum of LS12. Meanwhile, we know 𝑚2 (M𝜄1 ,𝜓1 ) is pure Tate by [1] and 𝑚11 (M𝜄2 ,𝜓2 )ss is a
sum of terms S12 by [8]. Hence, the semi-simplification of terms of the second kind is also a sum of
LS12. To conclude, note that Proposition 2.8 shows that the semi-simplification of the right-hand side
consists only of Tate twists of S12, so the semi-simplification of the middle term does too. !

Remark 2.10. See Lemma 8.1 for an analogous result in the category of Hodge structures.
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3. Finite generation
Let 𝐹∗ be an STE. By Lemma 2.1, 𝐹𝑇 (M𝜄,𝜓) contains 𝑚𝑇 (M𝜄,𝜓) for all g and n if and only if it surjects
onto 𝑥𝑇𝑚𝑇 (M𝜄,𝜓)/

(
Φ𝑇

𝜄,𝜓 + 𝐶𝑚𝑇 (M𝜄,𝜓)
)

for all g and n. Below we give a sufficient criterion for the
vanishing of 𝑥𝑇𝑚𝑇 (M𝜄,𝜓)/Φ𝑇

𝜄,𝜓. The argument is similar to the proof of Proposition 2.2, using the
Künneth decomposition of the Leray spectral sequence for the n-fold fiber product of the universal curve
C𝜓 ) M𝜄.

We are grateful to Petersen for explaining how an earlier version of this lemma could be strengthened
to the version presented here. This stronger version will also be useful for controlling some additional
base cases in Section 7. To state it, we define the subspace

Ψ𝑇
𝜄,𝜓 := ?1Φ𝑇−2

𝜄,𝜓 + · · · + ?𝜓Φ𝑇−2
𝜄,𝜓 ⊂ 𝑥𝑇𝑚

𝑇 (M𝜄,𝜓).

In other words, Ψ𝑇
𝜄,𝜓 is generated by pullbacks from moduli spaces with fewer markings multiplied with

?-classes. Given a g-tuple of integers 𝐼 = (𝐼1 ≥ 𝐼2 ≥ · · · ≥ 𝐼𝜄 ≥ 0), letV, be the associated symplectic
local system on M𝜄, as in [29]. Let |𝐼 | = 𝐼1+ · · · +𝐼𝜄, which is the weight of the local systemV,. When
|𝐼 | = 𝐷, as in the previous section, we write 𝑀, for the irreducible S𝜓 representation corresponding to 𝐼.

Lemma 3.1. (a) If 𝑐 ≥ 2, then

𝑥𝑇𝑚
𝑇 (M𝜄,𝜓)/(Φ𝑇

𝜄,𝜓 + Ψ𝑇
𝜄,𝜓) !

⊕
|, |=𝜓

𝑥𝑇𝑚
𝑇−𝜓 (M𝜄,V,) ( 𝑀,% .

(b) Moreover, if 𝐷 > 0 and 𝐷 ≥ 𝐺 , then 𝑥𝑇𝑚𝑇 (M𝜄,𝜓) = Φ𝑇
𝜄,𝜓.

Proof. (a) Let . : C ) M𝜄 be the universal curve. There is an open inclusion M𝜄,𝜓 ⊂ C𝜓, and hence
restriction gives a surjection from 𝑥𝑇𝑚𝑇 (C𝜓) to 𝑥𝑇𝑚𝑇 (M𝜄,𝜓). Given a subset 𝑒 ⊂ {1, . . . , 𝐷}, let
C𝜓 ) C- be the projection onto the factors indexed by A. We consider the following three subspaces of
𝑚𝑇 (C𝜓):

• Φ̃, the span of the pullbacks of 𝑚𝑇 (C {𝐵 }& ) along projection C𝜓 ) C {𝐵 }&

• Ψ̃, the span of ?𝐵 · 𝑚𝑇−2(C {𝐵 }& )
• Δ̃ , the span of Δ 𝐵 0 · 𝑚𝑇−2(C {𝐵, 0 }& ), where Δ 𝐵 0 denotes the pullback of the class of the diagonal in

𝑚2 (C {𝐵, 0 }).

Note that Δ̃ lies in the kernel of 𝑚𝑇 (C𝜓) ) 𝑚𝑇 (M𝜄,𝜓), and the images of the weight k parts of Φ̃ and
Ψ̃ under 𝑥𝑇𝑚𝑇 (C𝜓) ) 𝑥𝑇𝑚𝑇 (M𝜄,𝜓) are the subspaces Φ𝑇

𝜄,𝜓 and Ψ𝑇
𝜄,𝜓, respectively. To prove part (a),

it thus suffices to show that

𝑚𝑇 (C𝜓)/(Φ̃ + Ψ̃ + Δ̃) !
⊕
|, |=𝜓

𝑚𝑇−𝜓 (M𝜄,V,) ( 𝑀,% . (3.1)

We explain how (3.1) follows from [29].
Since 𝑦 : C𝜓 ) M𝜄 is smooth and proper, the Leray spectral sequence degenerates at 𝑄2, and by

[12, Proposition 2.16], we have a direct sum decomposition

𝑚𝑇 (C𝜓) =
⊕
.+/=𝑇

𝑚 . (M𝜄, 𝐶
/ 𝑦∗Q).

Applying the Künneth formula, we obtain

𝑚𝑇 (C𝜓) =
⊕
.+/=𝑇

𝐵1+...+𝐵"=/

𝑚 . (
M𝜄, 𝐶

𝐵1.∗Q ( · · · ( 𝐶𝐵".∗Q
)
. (3.2)
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As observed in [29, Section 5.2.2], the subspace Φ̃ corresponds to the span of the summands where
some :4 = 0. Meanwhile, modulo Φ̃, the subspace Ψ̃ corresponds to the span of summands where
some :4 = 2. This follows from the formulas for the projector .2 (which projects onto such summands)
in [29, Section 5.1]. Quotienting by Φ̃ + Ψ̃ thus leaves the term with :1 = . . . = :𝜓 = 1. The local
system (𝐶1.∗Q)(𝜓 corresponds to the nth tensor power of the standard representation of Sp2𝜄. It thus
decomposes into a direct sum of irreducible local systems, as in [29, Section 3.2]. As explained there,
we have a natural projection

(𝐶1.∗Q)(𝜓 )
⊕
|, |=𝜓
V, ( 𝑀,% , (3.3)

whose kernel is spanned by the image of the
(𝜓
2
)

insertion maps

(𝐶1.∗Q)(𝜓−2 ) (𝐶1.∗Q)(𝜓

given by inserting the class of the symplectic form. Modulo other Künneth components, the class of the
diagonal Δ 𝐵, 0 is the class of the symplectic form in 𝑚1 (C) ( 𝑚1 (C) ⊂ 𝑚2 (C {𝐵, 0 }). Summarizing, we
have found

𝑚𝑇 (C𝜓)/(Φ̃ + Ψ̃) ! 𝑚𝑇−𝜓 (M𝜄, (𝐶1.∗Q)(𝜓) )
⊕
|, |=𝜓

𝑚𝑇−𝜓 (V,) ( 𝑀,% ,

and the kernel is spanned by Δ̃ . This establishes (3.1)
(b) Now assume 𝐷 ≥ 𝐺 . If some :4 = 2 and :1 + · · · + :𝜓 = 𝐺 , we must have some other :4′ = 0.

It follows that Ψ̃ ⊂ Φ̃, and hence Ψ𝑇
𝜄,𝜓 ⊂ Φ𝑇

𝜄,𝜓. Thus, it suffices to see that the right-hand side of (a)
vanishes when 𝐷 ≥ 𝐺 and 𝐷 > 0. This is immediate when 𝐷 > 𝐺 . Meanwhile, for the case 𝐷 = 𝐺 , we have
𝑚0 (M𝜄,V,) = 0 since V, is nontrivial. !

We note a neat consequence of Lemma 3.1(a) in genus 2, which was also pointed out to us by
Petersen.

Lemma 3.2. Suppose n is odd. The STE generated by 𝑚𝑇 (M2,𝜓−1),𝑚𝑇−2(M2,𝜓−1) and 𝑚𝑇−2(M1,3)
for @ ≤ 𝐷 + 2 contains 𝑚𝑇 (M2,𝜓).

Proof. The STE generated by 𝑚𝑇 (M2,𝜓−1),𝑚𝑇−2(M2,𝜓−1) and 𝑚𝑇−2(M1,3) for @ ≤ 𝐷+2 contains all
classes in 𝑚𝑇 (M2,𝜓) that are pushed forward from the boundary, pulled back from less marked points
or products of ? classes with classes pulled back from less marked points. It, therefore, suffices to show
that 𝑥𝑇𝑚𝑇 (M2,𝜓)/(Φ𝑇

2,𝜓 +Ψ𝑇
2,𝜓) = 0. By Lemma 3.1(a), this quotient is a sum of the pure cohomology

of local systems of weight n. But on M2, the hyperelliptic involution acts on local systems of weight n
by (−1)𝜓, so local systems of odd weight have no cohomology. !

Proof of Theorem 1.3. Let 𝐹∗ be the STE generated by the cohomology groups listed in the
statement of the theorem. By Lemma 2.1, it suffices to check that 𝐹∗ (M𝜄′,𝜓′) surjects onto
𝑥𝑇′𝑚𝑇′ (M𝜄′,𝜓′)/

(
Φ𝑇′

𝜄′,𝜓′ + 𝐶𝑚𝑇′ (M𝜄′,𝜓′)
)

for all (𝑐′, 𝐷′, 𝐺 ′) with 𝐺 ′ ≤ 𝐺 − 2. By Lemma 3.1(b), the
target vanishes when 𝐷′ > 𝐺 ′. By the vcd of M𝜄′,𝜓′ , it also vanishes when 𝐺 ′ > 4𝑐′ − 4 + 𝐷′. Finally,
𝑚𝑇′ (M𝜄′,𝜓′) is tautological for 𝐺 ′ ≤ 2𝜄′−2

3 [35]. !

Remark 3.3. One can prove analogues of Theorem 1.3 and Lemma 2.1 for homology. In particular, for
each k, there is a finitely generated STE that contains 𝑚𝑇 (M𝜄,𝜓) for all g and n, with explicit bounds
on the generators.
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Figure 1. The argument in the proof of Theorem 1.3 shows that𝑥17𝑚17(M𝜄,𝜓)/(Φ17
𝜄,𝜓+𝐶𝑚17(M𝜄,𝜓))

vanishes for (𝑐, 𝐷) outside the gray shaded region. Note that this quotient does not vanish for (𝑐, 𝐷)
equal to (1, 17) and (2, 14), which are pictured by purple dots.

4. The Chow–Künneth generation Property
In this section, we prove a key lemma about the cycle class map for spaces that have the following
property.
Definition 4.1. Let X be a smooth algebraic stack of finite type over a field, stratified by quotient stacks.
We say that X has the CKgP if for all algebraic stacks Y (of finite type, stratified by quotient stacks), the
exterior product

𝑒∗(𝑎) ( 𝑒∗(, ) ) 𝑒∗(𝑎 × , )

is surjective.
For convenience, we record here several properties of the CKgP, all of which are proven in [5,

Section 3.1].
Proposition 4.2. Let X be a smooth algebraic stack of finite type over a field, stratified by quotient stacks.
1. if = ⊂ 𝑎 is open and X has the CKgP, then U has the CKgP;
2. if , ) 𝑎 is proper, surjective, representable by DM stacks, and Y has the CKgP, then X has the

CKgP;
3. if X admits a finite stratification 𝑎 =

∐
5∈S 𝐹, such that each S has the CKgP, then X has the CKgP;

4. if 𝑀 ) 𝑎 is an affine bundle, then V has the CKgP if and only if X has the CKgP;
5. if X has the CKgP, and B ) 𝑎 is a Grassmann bundle, then G has the CKgP;
6. if 𝑎 = BGL𝜓,BSL𝜓 or BPGL𝜓, then X has the CKgP.

If X is smooth and proper and has the CKgP, then the cycle class map for X is an isomorphism
[5, Lemma 3.11].

When X is smooth but not necessarily proper and has the CKgP, the cycle class map is not necessarily
an isomorphism. Nevertheless, we have the following useful substitute (cf. [20, 33] for slightly different
statements with similar proofs).
Lemma 4.3. Let X be an open substack of a smooth proper Deligne–Mumford stack 𝑎 over the complex
numbers. If X has the CKgP, then the cycle class map

cl :
⊕
𝐵

𝑒𝐵 (𝑎) )
⊕
𝑇

𝑥𝑇𝑚
𝑇 (𝑎)
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is surjective. In particular, if k is odd, then 𝑥𝑇𝑚𝑇 (𝑎) = 0, and if k is even, then 𝑥𝑇𝑚𝑇 (𝑎) is pure
Hodge–Tate.

Proof. Set 𝑏 := dim 𝑎 and C := 𝑎 \ 𝑎 . Let Δ ⊂ 𝑎 × 𝑎 denote the diagonal. Because X has the CKgP,
the exterior product map

𝑍⊕
𝐶=0

𝑒𝐶 (𝑎) ( 𝑒𝑍−𝐶 (𝑎) ) 𝑒𝑍 (𝑎 × 𝑎)

is surjective. We have the excision exact sequence

𝑒𝑍 (𝑎 × C) ) 𝑒𝑍 (𝑎 × 𝑎) ) 𝑒𝑍 (𝑎 × 𝑎) ) 0.

It follows that we can write the class of the diagonal in 𝑒𝑍 (𝑎 × 𝑎) as

Δ = Γ + Δ0 + Δ1 + · · · + Δ𝑍 , (4.1)

where Γ is supported on 𝑎 × C and each Δ𝐶 is a linear combination of cycles of the form 𝑀𝐶
𝐵 ×𝑥𝑍−𝐶

𝐵 ,
where 𝑀𝐶

𝐵 and 𝑥𝑍−𝐶
𝐵 are subvarieties of 𝑎 of codimension 𝐵 and 𝑏 − 𝐵, respectively.

Let ;1 and ;2 be the projections of 𝑎 × 𝑎 to the first and second factors, respectively. Given a
class Ψ ∈ 𝑚∗(𝑎 × 𝑎), we write Ψ∗ : 𝑚∗(𝑎) ) 𝑚∗(𝑎) for the associated correspondence, defined by
Ψ∗𝜂 = ;2∗(;∗1𝜂 · Ψ).

Let D ∈ 𝑥𝑇𝑚𝑇 (𝑎). Let 𝜂 be a lift of a in 𝑥𝑇𝑚𝑇 (𝑎) = 𝑚𝑇 (𝑎). Then

𝜂 = Δ∗𝜂 = (Γ∗ + Δ0
∗ + Δ1

∗ + · · · + Δ𝑍
∗ )𝜂.

First, we study Δ𝐶
∗𝜂 = ;2∗(;∗1𝜂 ·Δ𝐶). Note that ;∗1𝜂 ·Δ𝐶 vanishes for dimension reasons if 𝐺 + 2𝐵 > 2𝑏.

Furthermore, since ;2 is of relative dimension d, the pushforward by ;2 of any cycle will vanish if
𝐺 + 2𝐵 < 2𝑏. Thus, the only nonzero terms occur when 𝐺 = 2𝑏 − 2𝐵. Moreover, Δ𝐶

∗𝜂 is a linear
combination of the form

∑
E𝐵𝑥𝑍−𝐶

𝐵 , so it lies in the image of the cycle class map.
Next, we study Γ∗𝜂. It suffices to treat the case that Γ is the class of a subvariety of 𝑎 × 𝑎 contained

in 𝑎 × C, as it is a linear combination of such subvarieties. In this case, the map ;2 |Γ : Γ ) 𝑎 factors
through C ) 𝑎 . Thus, Γ∗𝜂 maps to zero under the restriction to𝑥𝑇𝑚𝑇 (𝑎) because the correspondence
map factors through the cohomology of the boundary D. Thus, 𝜂 |6 = D is in the image of the cycle
class map. !

Remark 4.4. Essentially the same argument (only with Q𝐶-coefficients) gives a similar statement for
the cycle class map to 𝐵-adic étale cohomology over an arbitrary field.

The first two authors have previously given many examples of moduli spaces M𝜄,𝜓 that have the
CKgP and also satisfy 𝑒∗(M𝜄,𝜓) = 𝐶∗(M𝜄,𝜓) [5, Theorem 1.4]. For the inductive arguments in this
paper, we need more base cases in genus 7. In the next section, we prove that M7,𝜓 has the CKgP
and 𝑒∗(M7,𝜓) = 𝐶∗(M7,𝜓), for 𝐷 ≤ 3. The table below records the previously known results from
[5, Theorem 1.4] together with Theorem 1.10.

The following is a consequence of Lemma 4.3.

Proposition 4.5. For all 𝑐 ≤ 7 and 𝐷 ≤ E(𝑐) as specified in Table 1, we have

𝑥𝑇𝑚
𝑇 (M𝜄,𝜓) = 𝐶𝑚𝑇 (M𝜄,𝜓).

In particular, if k is odd and 𝐷 ≤ E(𝑐), then

𝑥𝑇𝑚
𝑇 (M𝜄,𝜓) = gr7𝑇 𝑚𝑇

8 (M𝜄,𝜓) = 0.
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Table 1. M!," has the CKgP and -∗ (M!,") = 9∗ (M!,") , for 𝜓 ≤ 8 (𝜄) , by [5, Theorem 1.4] and Theorem 1.10..

g 0 1 2 3 4 5 6 7

8 (𝜄) ∞ 10 10 11 11 7 5 3

Proof of Theorem 1.9, assuming Theorem 1.1. By the hard Lefschetz theorem, it suffices to prove that
𝑚𝑇 (M3,𝜓)ss is a polynomial in L and S12 for fixed 𝐺 ≤ 17 and 𝐷 ≤ 11. Consider the right exact sequence

𝑚𝑇−2( ,𝑍M3,𝜓) ) 𝑚𝑇 (M3,𝜓) ) 𝑥𝑇𝑚
𝑇 (M3,𝜓) ) 0.

By Theorem 1.1 and [8, Theorems 1.1, 1.2 and Lemma 2.1], for 𝐺 ′ ≤ 15, 𝑚𝑇′ (M𝜄′,𝜓′)ss is a poly-
nomial in L and S12 for all 𝑐′ ≠ 1 and all 𝐷′ as well as for 𝑐′ = 1 and 𝐷′ ≤ 13. Since we assume
𝐷 ≤ 11, no M1,𝜓′ with 𝐷′ ≥ 14 appears as a factor in a component of the normalized boundary. It
follows that, 𝑚𝑇−2( ,𝑍M3,𝜓)ss is a polynomial in L and S12. By [5, Theorem 1.4], M3,𝜓 has the CKgP
and 𝑒∗(M3,𝜓) = 𝐶∗(M3,𝜓) for 𝐷 ≤ 11. Thus, 𝑥𝑇𝑚𝑇 (M3,𝜓) = 𝐶𝑚𝑇 (M3,𝜓) by Lemma 4.3. Hence,
𝑥𝑇𝑚𝑇 (M3,𝜓) is pure Hodge–Tate, and the theorem follows. !

5. The CKgP in genus 7 with at most three marked points
In order to prove Theorems 1.1, 1.5(3) for 𝐺 = 14 and 1.7, we need more base cases in genus 7. The
required base cases are given by Theorem 1.10, which we now prove.

In order to prove Theorem 1.10, we filter M7,𝜓 by gonality:

M2
7,𝜓 ⊂ M3

7,𝜓 ⊂ M4
7,𝜓 ⊂ M5

7,𝜓.

Here, M𝑇
7,𝜓 is the locus parametrizing smooth curves C with n marked points that admit a map of

degree at most k to P1. Standard results from Brill–Noether theory show that the maximal gonality of a
genus 7 curve is 5. By Proposition 4.2(3), to show that M7,𝜓 has the CKgP, it suffices to show that each
gonality stratum

M𝑇
7,𝜓 \ M𝑇−1

7,𝜓

has the CKgP. Moreover, to show that 𝑒∗(M7,𝜓) = 𝐶∗(M7,𝜓), it suffices to show for each k, that all
classes supported on M𝑇

7,𝜓 are tautological up to classes supported on M𝑇−1
7,𝜓 . In other words, we must

show that every class in 𝑒∗(M𝑇
7,𝜓 \ M𝑇−1

7,𝜓 ) pushes forward to a class in 𝑒∗(M7,𝜓 \ M𝑇−1
7,𝜓 ) that is the

restriction of a tautological class on M7,𝜓.

5.1. Hyperelliptic and trigonal loci
By [5, Lemma 9.9], if 𝐷 ≤ 14, then M3

7,𝜓 has the CKgP and all classes in 𝑒∗(M7,𝜓) supported on M3
7,𝜓

are tautological. Note that this includes the hyperelliptic locus.

5.2. The tetragonal locus
To study the tetragonal locus M4

7,𝜓 \M3
7,𝜓, we will use the Hurwitz stack H4,𝜄,𝜓 parametrizing degree

4 covers 𝑦 : F ) P1, where C is a smooth curve of genus g with n marked points. There is a forgetful
morphism

𝚥𝜓 : H4,𝜄,𝜓 ) M𝜄,𝜓.
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Restricting to curves of gonality exactly 4, we obtain a proper morphism

𝚥′𝜓 : H"4,𝜄,𝜓 := H4,𝜄,𝜓 \ 𝚥−1
𝜓 (M3

𝜄,𝜓) ) M𝜄,𝜓 \ M3
𝜄,𝜓

with image M4
𝜄,𝜓 \M3

𝜄,𝜓. To show that M4
7,𝜓 \M3

7,𝜓 has the CKgP, it suffices to show that H"4,7,𝜓 has
the CKgP by Proposition 4.2(2). We will do so by further stratifying H"4,7,𝜓.

In [6, Section 4.4], the first two authors studied a stratification of H4,7 := H4,7,0 with no markings.
Here, we carry out a similar analysis with marked points. The Casnati–Ekedahl structure theorem [9]
associates to a point in H4,𝜄 a rank 3 vector bundle E and a rank 2 vector bundle F on P1, both of
degree 𝑐 + 3, equipped with a canonical isomorphism det 𝑄 ! det G [7, Section 3]. Let B be the moduli
stack of pairs of vector bundles (𝑄 , G) on P1 of degree 𝑐 + 3, together with an isomorphism of their
determinants as in [7, Definition 5.2]. Let . : P ) B be the universal P1-fibration, and let E and F be
the universal bundles on P . There is a natural morphism H4,𝜄 ) B that sends a degree 4 cover to its
associated pair of vector bundles. Moreover, the Casnati–Ekedahl construction gives an embedding of
the universal curve C over H4,𝜄 into PE/.

Consider the natural commutative diagram

C𝜓 C PE/

H4,𝜄,𝜓 H4,𝜄 B,

: ;

1' (5.1)

where C𝜓 is the universal curve over H4,𝜄,𝜓. For each i, the map D ◦ H ◦ 𝑗𝐵 sends a pointed curve to the
image of the ith marking under the Casnati–Ekedahl embedding. Taking the product of these maps for
: = 1, . . . , 𝐷, we obtain a commutative diagram

H"4,𝜄,𝜓 H4,𝜄,𝜓 (PE/)𝜓

H"4,𝜄 H4,𝜄 B.

(5.2)

Lemma 5.1 (Lemma 10.5 of [5]). Suppose I ∈ 𝑒∗(H"4,𝜄,𝜓) lies in the image of the map 𝑒∗((PE/)𝜓) )
𝑒∗(H"4,𝜄,𝜓). Then 𝚥′𝜓∗I is tautological on M𝜄,𝜓 \ M3

𝜄,𝜓.

The splitting types of the Casnati–Ekedahl bundles E and F induce a stratification on H4,7. We write
𝑄 = (J1, J2, J3) and G = ( 𝑦1, 𝑦2) to indicate that the bundles have splitting types

𝑄 = O(J1) ⊕ O(J2) ⊕ O(J3) and G = O( 𝑦1) ⊕ O( 𝑦2).

We will consider a stratification into three pieces

H4,7,𝜓 = 𝑎𝜓 1 ,𝜓 1 K𝜓.

The three strata correspond to unions of splitting types of E and F. The possible splitting types are
recorded in [6, Section 4.4]. The locus K𝜓 is the set of covers with maximally unbalanced splitting
types, and parametrizes hyperelliptic curves [6, Equation 4.5]. Its image in M7,𝜓 is contained in M3

7,𝜓,
which has the CKgP when 𝐷 ≤ 14, as noted above. We will show that 𝑎𝜓 and ,𝜓 have the CKgP and
that 𝑒∗((PE/)𝜓) surjects onto the Chow ring of their union, which is H"4,7,𝜓. We start with 𝑎𝜓.

Let 𝑎𝜓 ⊂ H4,7,𝜓 denote the locus of covers with splitting types 𝑄 = (3, 3, 4) and G = (5, 5), or
𝑄 = (3, 3, 4) and G = (4, 6).
Lemma 5.2. If 𝐷 ≤ 3, then 𝑎𝜓 has the CKgP and 𝑒∗((PE/)𝜓) ) 𝑒∗(𝑎𝜓) is surjective.
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Proof. Taking 𝑦 = 4 in [5, Definition 10.8], we have 𝑎𝜓 = H4
4,7,𝜓. The result then follows from [5,

Lemmas 10.11 and 10.12] with 𝑐 = 7 and 𝑦 = 𝑦1 = 4. !

Now let ,𝜓 ⊂ H4,7,𝜓 be the union

,𝜓 = Σ2,𝜓 1 Σ3,𝜓,

where Σ2,𝜓 parametrizes covers with splitting types 𝑄 = (2, 4, 4) and G = (4, 6), and Σ3,𝜓 parametrizes
covers with splitting types 𝑄 = (2, 3, 5) and G = (4, 6).

Recall that . : P ) B is the structure map for the P1 bundle P . Let 𝑧 : PE/ ) P denote the structure
map and L𝐵 : (PE/)𝜓 ) PE/ denote the ith projection. Define

M𝐵 := L∗𝐵 𝑧
∗E1 (OP (1)) and N𝐵 := L∗𝐵 E1 (OPE/ (1)).

Then M𝐵 and N𝐵 generate 𝑒∗((PE/)𝜓) as an algebra over 𝑒∗(B). Write Σ𝐶 := Σ𝐶 ,0.

Lemma 5.3. For 𝐵 = 2, 3 and 𝐷 ≤ 3, there is a surjection

𝑒∗(Σ𝐶) [M1, . . . , M𝜓, N1, . . . , N𝜓] ) 𝑒∗(Σ𝐶 ,𝜓)

induced by Σ𝐶 ,𝜓 ) Σ𝐶 and restriction from (PE/)𝜓. Moreover, Σ𝐶 ,𝜓 has the CKgP.

Proof. Let 2J and 2𝑦 be the splitting types associated to Σ𝐶 , and let B2<, 2= ⊂ B be the locally closed
substack that parametrizes pairs of bundles (𝑄 , G) with locally constant splitting types 2J and 2𝑦 . We
write O( 2J) := O(J1) ⊕ · · · ⊕ O(J𝑇 ). By construction, Σ𝐶 ,𝜓 is the preimage of B2<, 2= along H4,7,𝜓 ) B.
We, therefore, study the base change of (5.2) along B2<, 2= ) B:

Σ𝐶 ,𝜓 (PE/ |B 2(, 2)
)𝜓

Σ𝐶 B2<, 2= .

(5.3)

We now recall the description of Σ𝐶 as an open substack of a vector bundle on B2<, 2= , as in [6, Lemma
3.10]. Let

= ⊂ 𝑚0 (P1,O( 2𝑦 )/ ( Sym2 O( 2J)) = 𝑚0(PO( 2J)/, 𝑧∗O( 2𝑦 )/ ( OPO ( 2<)/ (2))

be the open subset of equations that define a smooth curve, as in [6, Lemma 3.10]. Then

Σ𝐶 = [(= × G3)/SL2 !(Aut(O( 2J)) × Aut(O( 2𝑦 )))] .

The stack B2<, 2= is the part obtained by forgetting U:

B2<, 2= = [G3/SL2 !(Aut(O( 2J)) × Aut(O( 2𝑦 )))] .

As explained in [6, Equation 3.1], there is a product of stacks BGL𝜓 which is an affine bundle over
BAut(O( 2J)). As such, B2<, 2= has the CKgP by Proposition 4.2(4) and (5). It follows that Σ𝐶 also has the
CKgP by Proposition 4.2(1) and (4).

Let us define the rank 2 vector bundle W := 𝑧∗F/(OPE/ (2) onPE/. Write W2<, 2= for the restriction of
W to PE/ |B 2(, 2)

. The discussion above says that Σ𝐶 is an open substack of the vector bundle (. ◦𝑧)∗W2<, 2=
on B2<, 2= .
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Next, we give a similar description with marked points. Consider the evaluation map

(. ◦ 𝑧)∗(. ◦ 𝑧)∗W2<, 2= ) W2<, 2= .

Pulling back to the fiber product (PE/ |B 2(, 2)
)𝜓, we obtain

L∗0 (. ◦ 𝑧)∗(. ◦ 𝑧)∗W2<, 2= )
𝜓⊕
𝐵=1

L∗𝐵W2<, 2= . (5.4)

Note that L∗0 (. ◦ 𝑧)∗(. ◦ 𝑧)∗W2<, 2= is independent of j. The kernel Y of (5.4) parametrizes tuples of n
points on PO( 2J)/ together with a section of

𝑚0 (PO( 2J)/, 𝑧∗O( 2𝑦 )/ ( OPO ( 2<)/ (2))

that vanishes on the points. There is, therefore, a natural map Σ𝐶 ,𝜓 𝑇) Y defined by sending a pointed
curve to the images of the points on PO( 2J)/ and the defining section of the curve. The kernel Y is not
locally free. Nevertheless, its restriction to the open substack=𝜓 ⊂ (PE/ |B 2(, 2)

)𝜓 where (5.4) is surjective
is locally free.

We claim that the map Σ𝐶 ,𝜓 ) Y factors through Y |>" . To see this, suppose F ⊂ PO( 2J)/ is the
vanishing of a section of 𝑧∗O( 2𝑦 )/ (OPO ( 2<)/ (2) and C is smooth and irreducible. By [5, Lemma 10.6],
if 𝐷 ≤ 3, the evaluation map (5.4) is surjective at any tuple of n distinct points on C. It follows that the
image of the composition Σ𝐶 ,𝜓 ) Y ) (PE/ |B 2(, 2)

)𝜓 is contained in =𝜓. Hence, Σ𝐶 ,𝜓 𝑇) Y |>" .
In summary, we have a sequence of maps

Σ𝐶 ,𝜓 𝑇) Y |>" ) =𝜓 𝑇) (PE/ |B 2(, 2)
)𝜓 ) (P |B 2(, 2)

)𝜓 ) B2<, 2= ,

each of which is an open inclusion, vector bundle or product of projective bundles. Since B2<, 2= has the
CKgP, it follows that Σ𝐶 ,𝜓 also has the CKgP by Proposition 4.2(1), (4) and (5). Moreover, we see that

𝑒∗(B2<, 2= ) [M1, . . . , M𝜓, N1, . . . , N𝜓] ) 𝑒∗(Σ𝐶 ,𝜓)

is surjective. Finally, note that Σ𝐶 ,𝜓 ) B2<, 2= factors through Σ𝐶 , so 𝑒∗(B2<, 2= ) ) 𝑒∗(Σ𝐶 ,𝜓) factors
through 𝑒∗(Σ𝐶). This proves the claim. !

Corollary 5.4. For 𝐷 ≤ 3, H"4,7,𝜓 has the CKgP. Hence, M4
7,𝜓 has the CKgP.

Proof. We have H"4,7,𝜓 = 𝑎𝜓 1 ,𝜓. By Lemmas 5.2 and 5.3, each of these pieces has the CKgP. Note
that H"4,7,𝜓 maps properly onto M4

7,𝜓 \ M3
7,𝜓, and M3

7,𝜓 has the CKgP. Thus, the result follows by
Proposition 4.2(2)–(3). !

The next step is to show that all classes in 𝑒∗(Σ𝐶 ,𝜓) are restrictions from (PE/)𝜓.
Lemma 5.5. For 𝐵 = 2, 3 and 𝐷 ≤ 3, the restriction 𝑒∗((PE/)𝜓) ) 𝑒∗(Σ𝐶 ,𝜓) is surjective.
Proof. Consider the following diagram:

𝑒∗((PE/)𝜓) 𝑒∗(Σ𝐶 ,𝜓)

𝑒∗(B) [M1, . . . , M𝜓, N1, . . . , N𝜓] 𝑒∗(Σ𝐶) [M1, . . . , M𝜓, N1, . . . , N𝜓] .

(5.5)

The map 𝑒∗(B) ) 𝑒∗(Σ𝐶) is surjective by [6, Lemma 4.2] for 𝐵 = 2, and by [6, Lemma 4.3(1)] for
𝐵 = 3. Therefore, the bottom horizontal arrow is surjective. By Lemma 5.3, the right vertical arrow is
also surjective. Hence, the top horizontal arrow is surjective. !
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Lemma 5.6. For 𝐷 ≤ 3, the pullback map 𝑒∗((PE/)𝜓) ) 𝑒∗(H"4,7,𝜓) is surjective.

Proof. First, we fix some notation. Let

Σ3,𝜓
?

𝑇−) ,𝜓
@

𝑇−) H"4,7,𝜓

denote the natural closed inclusion maps. Let 𝜄 : H"4,7,𝜓 ) (PE/)𝜓 be the map from the top left to top
right in diagram (5.2). We let 𝜄′ : 𝑎𝜓 ) (PE/)𝜓 be the composite of the open inclusion 𝑎𝜓 𝑇) H"4,7,𝜓
and 𝜄. Let ? := 𝜄 ◦ O, and let ? ′ be the composite of the open inclusion Σ2,𝜓 𝑇) ,𝜓 and ?.

Consider the following commutative diagram, where the bottom row is exact

𝑒∗((PE/)𝜓)

𝑒∗−2(,𝜓) 𝑒∗(H"4,7,𝜓) 𝑒∗(𝑎𝜓) 0.

)∗ )′∗

@∗

(5.6)

By Lemma 5.2, 𝜄′∗ is surjective. It thus suffices to show that the image of O∗ is contained in the image
of 𝜄∗. To do so, we consider another commutative diagram where the bottom row is exact

𝑒∗((PE/)𝜓)

𝑒∗−1(Σ3,𝜓) 𝑒∗(,𝜓) 𝑒∗(Σ2,𝜓) 0.

A∗ A′∗

?∗

(5.7)

By Lemma 5.5, ? ′∗ is surjective. Moreover, by the projection formula and Lemma 5.5, the image of P
is generated as an 𝑒∗((PE/)𝜓) module by the fundamental class [Σ3,𝜓] ∈ 𝑒∗(,𝜓). Therefore, any class
𝜂 ∈ 𝑒∗(,𝜓) can be written as

𝜂 = ?∗𝜂0 + [Σ3,𝜓]?∗𝜂1 = O∗𝜄∗𝜂0 + [Σ3,𝜓]O∗𝜄∗𝜂1,

where 𝜂𝐵 ∈ 𝑒∗((PE/)𝜓). By the projection formula,

O∗𝜂 = [,𝜓]𝜄∗𝜂0 + [Σ3,𝜓]𝜄∗𝜂1,

where now the fundamental class [Σ3,𝜓] is a class on H"4,7,𝜓. It thus suffices to show that the classes
[,𝜓] and [Σ3,𝜓] are in the image of 𝜄∗.

By [6, Lemma 4.8], [Σ𝐶] is in the image of 𝑒∗(B) ) 𝑒∗(H"4,7). Because [Σ3,𝜓] is the pullback of
[Σ3] along 𝑒∗(H"4,7) ) 𝑒∗(H"4,7,𝜓) and [,𝜓] is the pullback of [Σ2], both [Σ3,𝜓] and [,𝜓] are in the
image of 𝑒∗(B) ) 𝑒∗(H"4,7,𝜓). Hence, they are in the image of 𝜄∗. !

Recall that proper, surjective maps induce surjective maps on rational Chow groups. Since the map
𝚥′𝜓 : H"4,7,𝜓 ) M7,𝜓 \M3

7,𝜓 is proper with image M4
7,𝜓 \M3

7,𝜓, every class supported on the tetragonal
locus is the pushforward of a class from H"4,7,𝜓. Combining Lemmas 5.1 and 5.6, therefore, proves the
following.

Lemma 5.7. If 𝐷 ≤ 3, then all classes supported on M4
7,𝜓 \ M3

7,𝜓 are tautological.

5.3. The pentagonal locus
It remains to study the locus M◦

7,𝜓 = M7,𝜓 \ M4
7,𝜓 of curves of gonality exactly 5. Mukai showed that

every curve in M◦
7 is realized as a linear section of the orthogonal Grassmannian in its spinor embedding
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OG(5, 10) 𝑇) P15 [21]. To take advantage of this construction, we first develop a few lemmas about the
orthogonal Grassmannian.

5.3.1. The orthogonal Grassmannian
Let V be the universal rank 10 bundle on BSO10. The universal orthogonal Grassmannian is the quotient
stack [OG(5, 10)/SO10], which we think of as the orthogonal Grassmann bundle with structure map
. : OG(5,V) ) BSO10. By construction, the pullback of V along . satisfies .∗V = U ⊕ U/ where U
is the universal rank 5 subbundle on OG(5,V).

Lemma 5.8. The stack

OG(5,V) ! [OG(5, 10)/SO10]

has the CKgP. Moreover, its Chow ring is freely generated by the Chern classes of U .

Proof. Let 𝑀 = span{J1, . . . , J10} be a fixed 10-dimensional vector space with quadratic form

Q =
(

0 R5
R5 0

)
.

Let = = span{J1, . . . , J5}, which is an isotropic subspace. The stabilizer of SO10 acting on OG(5, 10)
at U is

Stab> =
{
S =

(
𝑒 A
0 C

)
: SBQS = Q

}
⊂ SO10.

Expanding, we have

SBQS =
(
𝑒B 0
AB CB

) (
0 R5
R5 0

) (
𝑒 A
0 C

)
=
(

0 𝑒B C
CB 𝑒 AB C + CB A

)
.

Thus, Stab> is defined by the conditions C = (𝑒B )−1 and AB C + CB A = 0.
Note that Stab> is a maximal parabolic subgroup and OG(5, 10) = SO10/Stab> . As such, the quotient

[OG(5, 10)/SO10] is equivalent to the classifying stack BStab> . To gain a better understanding of the
latter, consider the group homomorphism

GL5 𝑇) Stab> , 𝑒 ↦)
(
𝑒 0
0 (𝑒B )−1

)
.

For fixed D, the condition AB C + CB A = 0 is linear in B. Specifically, it says that B lies in the (CB )−1

translation of the A10 of skew symmetric 5 × 5 matrices. In particular, the cosets of the subgroup
GL5 𝑇) Stab> are isomorphic to affine spaces A10. In other words, the induced map on classifying
spaces BGL5 ) BStab> ! OG(5,V) is an affine bundle. It follows that OG(5,V) has the CKgP by
Proposition 4.2(4) and (5).

Furthermore, by construction, the tautological subbundle U on OG(5,V) pulls back to the tautological
rank 5 bundle on BGL5. It follows that 𝑒∗(BStab> ) ! 𝑒∗(BGL5) and is freely generated by the Chern
classes of the tautological bundle. !

Remark 5.9. There is also a natural map Stab> ) GL5 that sends
(
𝑒 A
0 C

)
to A. The kernel of

Stab> ) GL5 is the subgroup B ! (G;)10, where 𝑒 = R5,C = R5 and A + AB = 0. This shows that
Stab> is actually a semi-direct product B " GL5. The map BStab> ) BGL5 is a BB-banded gerbe.
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Lemma 5.10. Let V be a rank 2𝜁 vector bundle with quadratic form on X.

1. The rational Chow ring of OG(𝜁,𝑀) is generated over the Chow ring of X by the Chern classes of
the tautological subbundle.

2. If X has the CKgP, then OG(𝜁,𝑀) has the CKgP.

Proof. The argument is very similar to that for Grassmannians in type A.
First consider the case when X is a point. The orthogonal Grassmannian OG(𝜁, 2𝜁) is stratified by

Schubert cells, each of which is isomorphic to an affine space. By Proposition 4.2(3), it follows that
OG(𝜁, 2𝜁) has the CKgP. Moreover, the fundamental classes of these cells are expressed in terms of
the Chern classes of the tautological quotient or subbundle via a Giambelli formula [19, p. 1–2]. Note
that this formula involves dividing by 2, so it is important that we work with rational coefficients for
this claim. In conclusion, the Chern classes of the tautological subbundle generate the Chow ring of
OG(𝜁, 2𝜁).

More generally, for a fiber bundle 𝑦 : OG(𝜁,𝑀) ) 𝑎 , to prove (1), we stratify X into locally closed
subsets 𝑎𝐵 over which V is trivial, such that 𝑎 𝐵 ⊃ 𝑎 0 for : ≤ T and 𝑎𝐵 has codimension at least i. To
check that the desired classes generate 𝑒𝑇 (OG(𝜁,𝑀)) for a given k, it suffices to show that they generate
𝑒𝑇 ( 𝑦 −1(𝑎0 ∪ 𝑎1 ∪ · · · ∪ 𝑎𝑇 )).

Over each piece of the stratification, 𝑦 −1(𝑎𝐵) = 𝑎𝐵 × OG(𝜁, 2𝜁). Since OG(𝜁, 2𝜁) has the CKgP, the
Chow ring of 𝑦 −1(𝑎𝐵) = 𝑎𝐵 × OG(𝜁, 2𝜁) is generated by 𝑒∗(𝑎𝐵) and restrictions of the Chern classes
from the tautological subbundle on OG(𝜁,𝑀). By excision and the push-pull formula, the Chow ring of
any finite union 𝑦 −1(𝑎0) ∪ 𝑦 −1(𝑎1) ∪ · · · ∪ 𝑦 −1(𝑎𝑇 ) is generated by the desired classes.

Finally, (2) follows from (1) exactly as in [5, Lemma 3.7]. !

Corollary 5.11. For any 𝐷 ≥ 1, the n-fold fiber product

OG(5,V)𝜓 := OG(5,V) ×BSO10 · · · ×BSO10 OG(5,V)

has the CKgP, and its Chow ring is generated by the Chern classes of the tautological subbundles
U1, . . . ,U𝜓 pulled back from each factor.

Proof. The case 𝐷 = 1 follows from Lemma 5.8. For 𝐷 > 1, the n-fold fiber product is an orthogonal
Grassmann bundle over the (𝐷 − 1)-fold fiber product, so the claim follows from Lemma 5.10. !

Remark 5.12. By Proposition 4.2(2), the fact that OG(5,V) has the CKgP implies that BSO10 also has
the CKgP. It should be possible to show that BSO10 has the CKgP (with integral coefficients as well)
using the calculation of its Chow ring by Field [14]. If the calculation there holds over any field, it would
show that BSO10 has Totaro’s “weak Chow–Künneth Property,” which is equivalent to the CKgP by the
proof of [34, Theorem 4.1].

5.3.2. Review of the Mukai construction
We first review Mukai’s construction and then explain how to modify it for pointed curves. The canonical
model of a pentagonal genus 7 curve F ⊂ P6 lies on a 10-dimensional space of quadrics. The vector
space W of these quadrics is defined by the exact sequence

0 ) 𝑥 ) Sym2 𝑚0(F,>C ) ) 𝑚0(F,>(2
C ) ) 0. (5.8)

For each ; ∈ F, the subspace 𝑥. ⊂ 𝑥 of quadrics that are singular at p is 5-dimensional. It appears in
the exact sequence (see [21, Section 3])

0 ) 𝑥. ) Sym2 𝑚0(F,>C (−;)) ) 𝑚0(F,>C (−;)(2) ) 0. (5.9)

Mukai shows that 𝑥/ has a canonical quadratic form and 𝑥⊥
. is an isotropic subspace, so one obtains a

map F ) OG(5,𝑥/) via ; ↦) [𝑥⊥
. ] ∈ OG(5,𝑥/) [21, Theorem 0.4].
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Let OG(5, 10) 𝑇) P𝐹+ be the spinor embedding, as in [21, Section 1]. The composition

F ) OG(5,𝑥/) ! OG(5, 10) 𝑇) P𝐹+

realizes C as a linear section F = OG(5, 10) ∩ P6 ⊂ P𝐹+, and F ⊂ P6 is canonically embedded [21,
Theorem 0.4]. Conversely, if a linear section P6 ∩ OG(5, 10) is a smooth curve, then it is a canonically
embedded pentagonal genus 7 curve [21, Proposition 2.2]. This construction works in families, and
Mukai proves that there is an equivalence of stacks

M◦
7 ! [(Gr(7, 𝐹+) \ Δ)/SO10], (5.10)

whereΔ ⊂ Gr(7, 𝐹+) is the closed locus of linear subspacesP6 ⊂ P𝐹+ whose intersection with OG(5, 10)
is not a smooth curve [21, Section 5].

The spinor representation of SO10 corresponds to a rank 16 vector bundle S+ on the classifying
stack BSO10. Then, the equivalence (5.10) shows that M◦

7 is an open substack of the Grassmann bundle
Gr(7,S+) over BSO10:

M◦
7 Gr(7,S+)

BSO10 .

𝑀0

(5.11)

We note that the tautological subbundle E on Gr(7,S+) restricts to the dual of the Hodge bundle on
M◦

7. In other words, if 𝑦 : C ) M◦
7 is the universal curve, then 𝜂∗

0E = ( 𝑦∗> = )/. The universal version
of the Mukai construction furnishes a map C ) OG(5,V) over BSO10.

5.3.3. The Mukai construction with markings
For 𝐷 ≤ 4, we describe M◦

7,𝜓 in a similar fashion to (5.11) but this time as an open substack of
a Grassmann bundle over OG(5,V)𝜓. To do so, let O : OG(5,V) 𝑇) PS+ be the universal spinor
embedding, and let L := O∗OPS+ (−1). The embedding O is determined by an inclusion of vector bundles
L 𝑇) .∗S+ on OG(5,V). On the n-fold fiber product OG(5,V)𝜓, let L𝐵 and U𝐵 denote the pullbacks of
L and U , respectively, from the ith factor. Let .𝜓 : OG(5,V)𝜓 ) BSO10 be the structure map. Consider
the sum of the inclusions

𝜓⊕
𝐵=1

L𝐵
)"−−) .∗𝜓S+. (5.12)

Let K𝜓 ⊂ OG(5,V)𝜓 be the open substack where 𝜄𝜓 has rank n. In other words, K𝜓 is the locus where
the n points on OG(5,V) have independent image under the spinor embedding.

Let Q𝜓 be the cokernel of 𝜄𝜓 |D" , which is a rank 16−𝐷 vector bundle on K𝜓. The fiber of Gr(7−𝐷,Q𝜓)
over (;1, . . . , ;𝜓) ∈ OG(5,V)𝜓 parametrizes linear spaces P6 ⊂ P𝐹+ that contain the n points ;𝐵 . Thus,
we can identify Gr(7 − 𝐷,Q𝜓) with the locally closed substack

{(;1, . . . , ;𝜓,Λ) : ;𝐵 ∈ PΛ and ;𝐵 independent} ⊂ OG(5,V)𝜓 ×BSO10 Gr(7,S+). (5.13)

Lemma 5.13. For 𝐷 ≤ 4, there is an open embedding 𝜂𝜓 of M◦
7,𝜓 in the Grassmann bundle

M◦
7,𝜓 Gr(7 − 𝐷,Q𝜓)

K𝜓 OG(5,V)𝜓.

𝑀"

Hence, M◦
7,𝜓 has the CKgP.

0����	  ��1��7/ ������� .������������:�21�0����4214�����

��71�/���41��7�1����7���

https://doi.org/10.1017/fmp.2024.24


Forum of Mathematics, Pi 21

Proof. Let 𝑦 : C ) M◦
7,𝜓 be the universal curve, and let 𝑗𝐵 : M◦

7,𝜓 ) C be the ith section. The universal
version of the Mukai construction gives a morphism C ) OG(5,V). Precomposing with each of the
sections 𝑗𝐵 defines a map M◦

7,𝜓 ) OG(5,V)𝜓 over BSO10. We claim that, for 𝐷 ≤ 4, the images of
𝑗1, . . . ,𝑗𝜓 must be independent. Indeed, suppose the images of the sections in a fiber, ;1, . . . , ;𝜓 ∈ F,
are dependent under the canonical embedding. Then ;1 + · · · + ;𝜓 would give a 𝑐1

𝜓 on C, but curves in
M◦

7,𝜓 have no 𝑐1
𝜓 for 𝐷 ≤ 4 by definition.

We also have the map M◦
7,𝜓 ) M◦

7 ) Gr(7,S+) that sends a curve to its span under the spinor
embedding. Taking the product of these maps over BSO10 yields a map

M◦
7,𝜓 ) OG(5,V)𝜓 ×BSO10 Gr(7,S+).

This map sends a family of pointed curves (F, ;1, . . . , ;𝜓) over a scheme T to the data of sections
;𝐵 : U ) F ) OG(5,𝑥/) and the subbundle of the spinor representation of 𝑥/ determined by the
span of the fibers ofF ⊂ OG(5,𝑥/) ⊂ P𝐹+ over T. The map evidently factors through the locally closed
locus in (5.13), which we identified with Gr(7−𝐷,Q𝜓). In fact, the image is precisely Gr(7−𝐷,Q𝜓) \Δ ,
where Δ is the closed locus, such that PΛ∩OG(5,𝑥/) is not a family of smooth curves. Indeed, on the
complement of Δ , an inverse map Gr(7 − 𝐷,Q𝜓) \ Δ ) M◦

7,𝜓 is defined by sending (;1, . . . , ;𝜓,Λ) to
the curve F = PΛ ∩ OG(5,𝑥/) together with the sections ;𝐵 ∈ PΛ ∩ OG(5,𝑥/) = F.

By Corollary 5.11, we know OG(5,V)𝜓 has the CKgP. To complete the proof, apply Proposition
4.2(1) and (5). !

We now identify the restrictions of the universal bundles on OG(5,V)𝜓 and Gr(7 − 𝐷,Q𝜓) to M◦
7,𝜓

along 𝜂𝜓.

Lemma 5.14. Let 𝑦 : C ) M◦
7,𝜓 be the universal curve, and let 𝑗𝐵 denote the image of the ith section.

The vector bundle 𝜂∗
𝜓 U𝐵 sits in an exact sequence

0 ) 𝜂∗
𝜓 U𝐵 ) Sym2 𝑦∗(> = (−𝑗𝐵)) ) 𝑦∗((> = (−𝑗𝐵))(2) ) 0. (5.14)

In particular, all classes pulled back from OG(5,V)𝜓 to M◦
7,𝜓 are tautological.

Proof. The composition of 𝜂𝜓 with projection onto the ith factor of K𝜓 is the map that sends a pointed
curve (F, ;1, . . . , ;𝜓) to the image of ;𝐵 under the canonical map from C to OG(5,𝑥/) ! OG(5, 10).
By construction, the fiber at ;𝐵 of the universal rank 5 bundle on OG(5, 10) is 𝑥⊥

. . Equation (5.14)
is the relative version of (5.9). By Grothendieck–Riemann–Roch, the middle and right terms in (5.14)
have tautological Chern classes. It follows that the Chern classes of 𝜂∗

𝜓U𝐵 are also tautological. The last
claim now follows from Corollary 5.11. !

Lemma 5.15. We have E1 (𝜂∗
𝜓L𝐵) = −?𝐵 in 𝑒1 (M◦

7,𝜓).

Proof. Let 𝑦 : C ) M◦
7,𝜓 be the universal curve. The line bundle 𝜂∗L𝐵 is the pullback of OPS+ (−1)

along the composition

M◦
7,𝜓

1'−−) C ) OG(5,V) @−) PS+.

But the above composition also factors as

M◦
7,𝜓

1'−−) C
|2 ) |−−−−) P( 𝑦∗> = )/ ) PS+,

and OPS+ (−1) restricts to OP( =∗2 ) )/ (−1). Hence, 𝜂∗
𝜓L𝐵 is 𝑗∗

𝐵 OP( =∗2 ) )/ (−1) = (𝑗∗
𝐵 > = )/. !
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Lemma 5.16. Let E𝜓 be the tautological rank 7 − 𝐷 subbundle on Gr(7 − 𝐷,Q𝜓). The pullback 𝜂∗
𝜓E𝜓

sits in an exact sequence

0 )
𝜓⊕
𝐵=1

𝜂∗
𝜓L𝐵 ) ( 𝑦∗> = )/ ) 𝜂∗

𝜓E𝜓 ) 0. (5.15)

In particular, the Chern classes of 𝜂∗
𝜓E𝜓 are tautological.

Proof. Recall that we defined Q𝜓 as the cokernel of (5.12). The map onto the second factor in (5.13),
; : Gr(7 − 𝐷,Q𝜓) ) Gr(7,S+), sends a 7 − 𝐷 dimensional subspace to its preimage under the quotient
map S+ ) Q𝜓. Hence, there is an exact sequence on Gr(7 − 𝐷,Q𝜓)

0 )
𝜓⊕
𝐵=1

L𝐵 ) ;∗E ) E𝜓 ) 0.

Then note that 𝜂∗
𝜓;

∗E is the same as the pullback of E along M◦
7,𝜓 ) M◦

7 ) Gr(7,S+), which is
the dual of the Hodge bundle. The last claim follows by combining the exact sequence (5.15) with
Lemma 5.15. !

Lemma 5.17. The Chow ring of M◦
7,𝜓 is generated by tautological classes.

Proof. By Lemma 5.13, we know that M◦
7,𝜓 is an open substack of Gr(7−𝐷,Q𝜓). The Chow ring of the

latter is generated by pullbacks of classes from OG(5,V)𝜓 and by the Chern classes of the tautological
subbundle E𝜓. By Lemmas 5.14 and 5.16, respectively, both of these collections of classes restrict to
tautological classes on M◦

7,𝜓. !

6. Applications to even cohomology
Here, we use the results from Sections 3, 4 and 5 to prove Theorem 1.5.

6.1. The degree 4 cohomology of M!," is tautological

Proof of Theorem 1.5(1). By [1], we know that 𝑚𝑇 (M𝜄,𝜓) is tautological for 𝐺 ≤ 3. Therefore, using
Theorem 1.3, we deduce that 𝑚4 (M𝜄,𝜓) is contained in the STE generated by 𝑚4(M𝜄′,𝜓′) for 𝑐′ < 7
and 𝐷′ ≤ 4. By Proposition 4.5, 𝑥4𝑚4(M𝜄′,𝜓′) is tautological for 𝑐′ and 𝐷′ in this range, and it follows
that 𝑚4(M𝜄,𝜓) is tautological. !

Proof of Theorem 1.5(2). By Theorem 1.5(1) and [1], all classes in 𝑚6(M𝜄,𝜓) that are pushed forward
from the boundary are tautological. Also, 𝑚6 (M𝜄,𝜓) is stable and hence tautological for 𝑐 ≥ 10 [35].
It follows that 𝑚6(M𝜄,𝜓) is tautological for 𝑐 ≥ 10. !

Remark 6.1. By Lemma 3.1, to show that 𝑚6(M𝜄,𝜓) is tautological for all g and n, it would suffice to
show this for 𝑐 ≤ 9 and 𝐷 ≤ 6. In principle, this can be checked computationally as follows. By Theorem
1.5(3), we know that 𝑚6 (M𝜄,𝜓) is tautological for all g and n. Thus, if the intersection pairing

𝐶𝑚6(M𝜄,𝜓) × 𝐶𝑚6(M𝜄,𝜓) ) Q

is perfect for 𝑐 ≤ 9 and 𝐷 ≤ 6, then 𝑚6 (M𝜄,𝜓) is tautological. In principle, one could compute this
pairing using the Sage package admcycles [11]. In practice, however, this computation is too memory
intensive to carry out.
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6.2. The low degree even homology of M!," is tautological
Let 𝑚EF

𝑇 denote Borel–Moore homology with coefficients in Q or Q𝐶 , together with its mixed Hodge
structure or Galois action. From the long exact sequence in Borel–Moore homology, we have a right
exact sequence

𝑚𝑇 ((𝑍M𝜄,𝜓) ) 𝑚𝑇 (M𝜄,𝜓) ) 𝑥−𝑇𝑚
EF
𝑇 (M𝜄,𝜓) ) 0 (6.1)

for all k.

Proof of Theorem 1.5(3). We now show that 𝑚𝑇 (M𝜄,𝜓) is tautological for even 𝐺 ≥ 14. For 𝑐 = 0, we
have 𝑚∗(M0,𝜓) = 𝐶𝑚∗(M0,𝜓)[18]. For 𝑐 ≥ 1, by [4, Proposition 2.1] and the duality between 𝑚EF

𝑇
and 𝑚𝑇

8 , we have:

𝑚EF
𝑇 (M𝜄,𝜓) = 0 for

{
𝐺 < 2𝑐 and 𝐷 = 0, 1;
𝐺 < 2𝑐 − 2 + 𝐷 and 𝐷 ≥ 2.

Combining this with the exact sequence (6.1), we reduce inductively to the finitely many cases 𝐺 ≥ 2𝑐
and 𝐷 = 0, 1 or 𝐺 ≥ 2𝑐 − 2 + 𝐷 and 𝐷 ≥ 2. When 𝑐 ≥ 3, in all of these cases, with 𝐺 ≤ 14, we know
that M𝜄,𝜓 has the CKgP and 𝑒∗(M𝜄,𝜓) = 𝐶∗(M𝜄,𝜓) (see Table 1). By Proposition 4.5, it follows that
𝑥−𝑇𝑚EF

𝑇 (M𝜄,𝜓) is tautological, so again, by induction and the exact sequence (6.1), we reduce to
the cases of 𝑐 = 1, 2. When 𝑐 = 1, all even cohomology is tautological [26]. When 𝑐 = 2, we apply
Corollary 2.7. !

Corollary 6.2. As Hodge structures or Galois representations, we have

𝑚2𝑍!,"−14(M𝜄,𝜓)ss !
⊕

L𝑍!,"−7.

Proof. We proved 𝑚14(M𝜄,𝜓) is tautological and hence algebraic. Applying Poincaré duality yields the
corollary. !

7. The 13th and 15th homology of M!,"

In this section, we prove Theorems 1.6 and 1.7. As a corollary, we obtain restrictions on the Hodge
structures and Galois representations appearing in 𝑚13(M𝜄,𝜓) and 𝑚15 (M𝜄,𝜓).

7.1. 13th homology
As usual, we argue by induction on g and n. First, we must treat one extra base case.

Lemma 7.1. The group 𝑚13 (M2,11) is in the STE generated by 𝑚11 (M1,11).

Proof. We showed in [8] that 𝑚11(M𝜄,𝜓) is in the STE generated by 𝑚11(M1,11) for all g and n. Next,
we note that M2,10 has the CKgP (see Table 1), so 𝑚13 (M2,10) consists of classes pushed forward
from the boundary by Proposition 4.5. In particular, 𝑚13 (M2,10) also lies in this STE. The claim then
follows from Lemma 3.2. !

Proof of Theorem 1.6. The proof is similar to that of Theorem 1.5(3). When 𝑐 = 0, all odd cohomology
vanishes [18], so we can assume 𝑐 ≥ 1. By [4, Proposition 2.1] and the duality between 𝑚EF

13 and 𝑚13
8 ,

we have that for 𝑐 ≥ 1

𝑚EF
13 (M𝜄,𝜓) = 0 for

{
13 < 2𝑐 and 𝐷 = 0, 1
13 < 2𝑐 − 2 + 𝐷 and 𝐷 ≥ 2.
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Combining this with the exact sequence (6.1), we reduce inductively to the finitely many cases where
13 ≥ 2𝑐 and 𝐷 = 0, 1 or 13 ≥ 2𝑐 − 2 + 𝐷 and 𝐷 ≥ 2. All such cases except for (𝑐, 𝐷) in K =
{(2, 11), (1, 11), (1, 12), (1, 13)} have the CKgP (see Table 1). By Proposition 4.5, it follows that
𝑥−13𝑚EF

13 (M𝜄,𝜓) = 0 for (𝑐, 𝐷) ∉ K . By induction and the exact sequence (6.1), we reduce to the
exceptional cases of (𝑐, 𝐷) ∈ K . The case (𝑐, 𝐷) = (2, 11) follows from Lemma 7.1 and hard Lefschetz.
The cases where 𝑐 = 1 follow from Proposition 2.2 and induction on n. !

Following the proof strategy above, we obtain the following corollary.

Corollary 7.2. As Hodge structures or Galois representations, we have

𝑚2𝑍!,"−13 (M𝜄,𝜓)ss !
⊕

L𝑍!,"−12S12

for all g and n.

Proof. From the proof above, we see that 𝑥−13𝑚EF
13 (M𝜄,𝜓) = 0 for (𝑐, 𝐷) ∉ K , and so

𝑚13 ((𝑍M𝜄,𝜓) ) 𝑚13 (M𝜄,𝜓)

is surjective. Noting that pushforward along a gluing map just induces a Tate twist, by induction on g
and n, we reduce to the cases (𝑐, 𝐷) ∈ K . The case (𝑐, 𝐷) = (2, 11) follows from Lemma 7.1 and hard
Lefschetz. The cases where 𝑐 = 1 follow from Proposition 2.2 and induction on n. !

7.2. 15th homology
Again, we will argue by induction on g and n. We first need to treat two additional base cases in genus 2.
The difficult one is with 12 markings.

Lemma 7.3. 𝑚15 (M2,12) is generated by classes pushed forward from the boundary. Hence,
𝑚15 (M2,12) is contained in the STE generated by 𝑚11 (M1,11).

The proof of Lemma 7.3 involves calculating intersection pairings via decorated graphs. In order to
simplify pictures for and language surrounding decorated graphs, we use the following conventions:

1. A white circle ◦ is a vertex of genus 1
2. A black circle • is a vertex of genus 0
3. All markings that are not drawn elsewhere are understood to be on the leftmost genus 1 vertex
4. The decoration >𝐵 on a genus 1 vertex is shorthand for 𝑦 ∗𝐵 >, where 𝑦𝐵 : M1,12 ) M1,11 forgets the

ith marking and > ∈ 𝑚11(M1,11). Similarly, >𝐵 0 is shorthand for 𝑦 ∗𝐵 0>, where 𝑦𝐵 0 : M1,13 ) M1,11
forgets the ith and jth markings.

5. As we vary the decoration > over 𝑚11(M1,11) ! S12, pushforward along a map that glues e pairs
of marked points determines a morphism L<S12 ) 𝑚11+2< (M𝜄,𝜓). We say that a collection of >-
decorated graphs “is a basis for 𝑚𝑇 (M𝜄,𝜓)” if the corresponding morphisms L<S12 ) 𝑚𝑇 (M𝜄,𝜓)
form a basis for Hom(L<S12,𝑚𝑇 (M𝜄,𝜓)) and we have 𝑚𝑇 (M𝜄,𝜓) ! Hom(L<S12,𝑚𝑇 (M𝜄,𝜓)) (
L<S12.

Bergström and Faber’s implementation [2] of the Getzler–Kapranov formula in genus 2 shows that,
viewed as Galois representations,

𝑚15(M2,12)ss = 836 L2S12. (7.1)

In fact, we will produce 836 independent maps L2S12 ) 𝑚15 (M2,12) that arise through pushforward
from the boundary. From this, we will conclude that 𝑚15(M2,12) is semi-simple and decomposes as a
sum of these 836 copies of L2S12.
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Figure 2. Selected Künneth components of pullbacks of the 891 classes to boundary divisors. In the
chart, each row represents several rows of a block matrix. The number of rows in each group is listed to
its left. The two half-edges glued to make a boundary divisor (pictured across the top) are labeled q on
the left vertex and p on the right vertex.

As discussed above, an >-decorated graph with e edges represents a morphism L<S12 )
𝑚11+2< (M𝜄,𝜓). In Figure 2, we list 891 such decorated graphs for 𝑚15 (M2,12) and record particular
Künneth components of their pullbacks to boundary divisors. We then argue that there are 55 rela-
tions among these graphs, which allow us to conclude that there are 836 independent graphs among
them.

Before proving Lemma 7.3, we require some explicit bases for 𝑚13(M𝜄,𝜓) for small 𝑐, 𝐷. Recall that
Getzler [16] showed that 𝑚13(M1,𝜓)ss =

⊕
LS12 for all n.

Lemma 7.4. The following 11 >-decorated graphs form a basis for 𝑚13(M1,12)

.

Proof. Consider the block diagonal pairing against the basis for 𝑚11(M1,12) given by the set of genus
1 vertices decorated by >2, . . . ,>12. !
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Lemma 7.5. The following 429 >-decorated graphs form a basis for 𝑚13 (M1,13)

.

Above, I, V are any two markings. In the last group of classes, i or j can be equal to y.

Proof. Getzler [16] proved that 𝑚13(M1,13)ss = 429 LS12, so it suffices to show that the images of
these maps span. We know that 𝑚13(M1,13) is pushed forward from the boundary by Proposition 2.2.
Modulo classes of the first kind, the second two kinds are pulled back from 𝑚13 (M1,12). Pulling back
the relations from 𝑚13 (M1,12), we can ensure that a fixed marking, such as y in the first case or x in the
next case, is on the genus 0 vertex. !

Lemma 7.6. Let {I, V, 1, . . . , 12} be a set of 14 markings. The following 6, 006 >-decorated graphs
form a basis for 𝑚13(M1,14)

.

In the last grouping above, :, T or k can equal y.

Proof. Getzler [16] proved that 𝑚13 (M1,14)ss = 6006 LS12, so it suffices to show that the images of
these maps span. Modulo classes of the first and second kinds above, the last three kinds are pulled back
from M1,12. Thus, using the relations on 𝑚13(M1,12), we can ensure that a fixed marking among those
12 is on the genus 0 vertex. !

Lemma 7.7. The following 264 >-decorated graphs form a basis for 𝑚13 (M2,12)

.

Proof. Bergström and Faber’s implementation [2] of the Getzler–Kapranov formula in genus 2 shows
that, as Galois representations, 𝑚13(M2,12)ss = 264 LS12. Thus, it suffices to show that the above 264
maps are independent. We verify this by computing their pullbacks to 𝑚13 (M1,14) and using Lemma
7.6 to see that those maps are independent. Indeed, the pullback is given by the graph that replaces the
rightmost genus 1 vertex with a genus 0 vertex and adds two markings labeled I, V to that vertex. !

Remark 7.8. Theorem 1.6 says that 𝑚13(M𝜄,𝜓) is contained in the STE generated by 𝑚11 (M1,11).
Thus, it has a graphical presentation in which the generators are graphs of the sort appearing in Lemmas
7.4–7.7. In forthcoming work, we will show that 𝑚13(M𝜄,𝜓) is also contained in this STE. There, we
take a more systematic approach and provide a complete list of relations among the corresponding
decorated graph generators.

Proof of Lemma 7.3. Figure 2 represents a matrix with 891 rows. We first show that the matrix has rank
825 and describe the 66 relations among the rows.
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First, notice that the rows in A1 are the only rows with nonzero entries in the first column. Next, rows
in A2, A3 and A4 have entries in column 2 that are independent from the other entries that appear in that
column for later rows (by Lemma 7.5). This shows that the rows in A1 through A4 are independent and
independent from the remaining five rows. Meanwhile, the bottom four rows are block upper triangular.
This shows that the rank of the matrix is at least 825.

Meanwhile, it is not hard to check that the following 66 relations exist among the rows:

𝐶1 (: T) +
1

24𝐶2 (: T) + 𝐶3 [:, T] + 𝐶3 [ T , :] − 𝐶4(: T) +
1

12𝐶5(: T) = 0.

To verify these relations, one needs to make use of known relations among tautological classes in
𝑚4 (M1,3) and 𝑚2(M1,2) and 𝑚2(M1,1).

Now, let

.

We claim S𝐵 0 ≠ 0. To see this, consider the intersection of S𝐵 0 with 𝐶5(:𝐺) for 𝐺 ≠ T . The intersection
of 𝐶5 (:𝐺) with the first five terms in the above equation vanish, since there is no 𝑚11 on a genus 1 vertex
with less than 11 markings. Meanwhile, the intersection 𝐶5 (: T) · 𝐶5(:𝐺) is nonzero using the usual rules
for intersecting decorated graphs, as in [17]. To see this, one should take the > decoration on the M1,11
vertex in 𝐶5(: T) to be dual to the decoration used on the M1,11 vertex in 𝐶5 (:𝐺).

Finally, the S12 action on the symbols S𝐵 0 is IndS12
S10

(𝑀110) = 𝑀2,110 ⊕𝑀3,19 , which is a sum of irreducible
representations of dimension 11 and 55. It follows that there are either 11 or 55 relations among the
S𝐵 0 . There cannot be only 11 relations among the S𝐵 0 because then there would be more than 836
independent copies of L2S12 in 𝑚15(M2,12), violating the dimension count (7.1). Hence, there must be
exactly 55 relations among the S𝐵 0 . This shows that the 891 copies of L2S12 listed on the left of the
table generate an 836-dimensional space, so they span all of 𝑚15(M2,12). !

Remark 7.9. One could instead prove that the 891 classes span a space of rank 836 by computing the
pairing of this space against itself. By the argument above, the pairing must have rank 836.

Finally, applying Lemma 3.2(a) together with Lemmas 7.3 and 7.7, and Corollary 2.3, we obtain one
more base case.

Lemma 7.10. 𝑚15(M2,13) lies in the STE generated by 𝑚11 (M1,11).

Proof of Theorem 1.7. The proof is similar to that of Theorem 1.6. When 𝑐 = 0, all odd cohomology
vanishes [18], so we can assume 𝑐 ≥ 1. By [4, Proposition 2.1] and the duality between 𝑚EF

15 and 𝑚15
8 ,

we have that for 𝑐 ≥ 1

𝑚EF
15 (M𝜄,𝜓) = 0 for

{
15 < 2𝑐 and 𝐷 = 0, 1
15 < 2𝑐 − 2 + 𝐷 and 𝐷 ≥ 2.

Combining this with the exact sequence (6.1), we reduce inductively to the finitely many cases 15 ≥ 2𝑐
and 𝐷 = 0, 1 or 15 ≥ 2𝑐 − 2 + 𝐷 and 𝐷 ≥ 2. In such cases, when 𝑐 ≥ 3, M𝜄,𝜓 has the CKgP, and so
by induction and the exact sequence (6.1), we reduce to the cases where 𝑐 = 1 and 11 ≤ 𝐷 ≤ 14, or
𝑐 = 2 and 11 ≤ 𝐷 ≤ 13. When 𝑐 = 2 and 𝐷 = 11, the result follows from hard Lefschetz and Lemma
7.1. When 𝑐 = 2 and 12 ≤ 𝐷 ≤ 13, the result follows from Lemmas 7.3 and 7.10. For 𝑐 = 1, the claim
follows from Proposition 2.2. !
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Corollary 7.11. As Hodge structures or Galois representations, we have

𝑚2𝑍!,"−15(M𝜄,𝜓)ss !
⊕

L𝑍!,"−13S12 ⊕
⊕

L𝑍!,"−15S16

for all g and n.

Proof. The proof is similar to that of Corollary 7.2, using the additional input that 𝑚15(M1,15)ss !
S16 ⊕ 186263 L2S12 by [16, p. 491]. !

We expect that Theorem 1.7 can be improved as follows.

Conjecture 7.12. The STE generated by 𝑚11(M1,11) contains 𝑚15 (M𝜄,𝜓) for 𝑐 ≥ 2.

The proof of Theorem 1.1 in the next section shows that for 𝑐 ≥ 2, 𝑚15 (M𝜄,𝜓)ss contains no copies
of S16. Conjecture 7.12 is, therefore, equivalent to the assertion that the STE generated by 𝑚11(M1,11)
and 𝑚15(M1,15) contains 𝑚15 (M𝜄,𝜓) for all g and n.

8. Proof of Theorem 1.1
The first two statements of Theorem 1.1 follow immediately from Corollaries 6.2 and 7.2 by Poincaré
duality. From Corollary 7.11, we can similarly conclude that 𝑚15 (M𝜄,𝜓)ss is a direct sum of copies of
L2S12 and S16. To finish, it suffices to show that when 𝑐 ≥ 2, no copies of S16 appear.

Lemma 8.1. The STE generated by 𝑚11(M1,11) contains 𝑚15 (M2,𝜓) for all n. Hence, 𝑚15(M2,𝜓)ss !⊕
L2S12, as Galois representations or Hodge structures.

Proof. When 𝑐 = 2, as Galois representations, there are no copies of S16 in 𝑚15(M2,𝜓)ss by Corollary
2.9. This shows that 𝑚15 (M2,𝜓)ss is a direct sum of copies of L𝑍2,"−13S12 in the category of Galois
representations. But we know that 𝑚15 (M𝜄,𝜓) lies in the STE generated by 𝑚11 (M1,11) and 𝑚15 (M1,15)
by Theorem 1.7. By considering the Galois representations involved, it follows that 𝑚15(M2,𝜓) lies in the
STE generated by 𝑚11 (M1,11). In particular, 𝑚15 (M2,𝜓)ss is a direct sum of copies of L𝑍2,"−13S12, either
as Galois representations or Hodge structures. The second statement follows by Poincaré duality. !

To show there are no copies of S16 when 𝑐 ≥ 3, we will use a similar strategy to that of [8]. We study
the first two maps in the weight 15 complex:

𝑚15 (M𝜄,𝜓)
𝑀−)

⊕
|G (Γ) |=1

𝑚15(MΓ)Aut(Γ) )
⊕

|G (Γ) |=2
(𝑚15 (MΓ) ( det 𝑄 (Γ)

)Aut(Γ)
. (8.1)

Here, Γ is a stable graph of genus g with n legs. The first map is the pullback to the normalization of
the boundary (𝑍M𝜄,𝜓. The second map is explicitly described in [8, Section 4.1].

Lemma 8.2. If 𝑐 ≥ 3, then the pullback map 𝜂 in (8.1) is injective.

Proof. The map 𝜂 is injective when gr715 𝑚
15
8 (M𝜄,𝜓) = 0. By [4, Proposition 2.1], this holds whenever

2𝑐 − 2 + 𝐷 > 15. When 2𝑐 − 2 + 𝐷 ≤ 15, M𝜄,𝜓 has the CKgP (see Table 1). The result follows from
Proposition 4.5. !

We now assume 𝑐 ≥ 3, and we study the second map in (8.1) as a morphism of Hodge structures. In
particular, we consider the 𝑚15,0 part:

⊕
|G (Γ) |=1

𝑚15,0 (MΓ)Aut(Γ) 𝐸−−)
⊕

|G (Γ) |=2

(
𝑚15,0 (MΓ) ( det 𝑄 (Γ)

)Aut(Γ)
. (8.2)

By Lemma 8.2, to prove the theorem in the category of Hodge structures, it suffices to show that 𝚥
is injective. The domain is a direct sum over graphs with one edge. If Γ has one vertex and a loop, then
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Figure 3. The graph Γ on the left and Γ′ on the right.

𝑚15,0 (MΓ) = 𝑚15,0 (M𝜄−1,𝜓+2) = 0 by induction on g. If Γ has two vertices with an edge connecting
them, then by the Künneth formula, we have

𝑚15,0(MΓ) = 𝑚15,0 (M;,-∪.) ⊕ 𝑚15,0(M:,-&∪/).

Assume D ≥ H. By induction, the above is nonvanishing only if H = 1 and |𝑒8 | ≥ 14. Because 𝑐 ≥ 3, it
follows that 𝑚15,0 (MΓ) = 𝑚15,0 (M1,-&∪/) in this case. Let Γ′ be the graph obtained from Γ by adding
a loop on the genus 𝑐− 1 vertex and decreasing the genus accordingly, as in Figure 3. Then 𝑚15,0 (MΓ′)
has a summand 𝑚15,0 (M1,-&∪/), and the map 𝑚15,0 (MΓ) ) 𝑚15,0 (MΓ′) injects into that summand.
This completes the proof of Theorem 1.1 in the category of Hodge structures.

Finally, we explain how to deduce the result in the category of Galois representations from the result
in the category of Hodge structures. To do so, we need one more lemma.
Lemma 8.3. Let 𝑀 ⊂ 𝑚15(M1,15) be the subspace of classes pushed forward from the boundary,
and let 𝑥 ⊂ 𝑚15(M1,15) be the image of 𝑚15

8 (M1,15) ) 𝑚15(M1,15). Then there is a direct sum
decomposition 𝑚15(M1,15) = 𝑀 ⊕𝑥 , as Hodge structures or as Galois representations. Moreover, we
have 𝑥 ! S16 and 𝑀 ss ! 186263 L2S12.
Proof. There is an exact sequence

0 ) 𝑀 ) 𝑚15 (M1,15) ) 𝑥15𝑚
15 (M1,15) ) 0.

It thus suffices to show that the composition

𝑥 ) 𝑚15(M1,15) ) 𝑥15𝑚
15(M1,15) ! S16 (8.3)

is an isomorphism. The pairing 𝑚15(M1,15)×𝑚15(M1,15) ) Q equips 𝑚15 (M1,15) with a nondegener-
ate bilinear form, under which the inclusion of W is dual to the quotient𝑚15 (M1,15) ) 𝑥15𝑚15 (M1,15).
To show (8.3) is an isomorphism is, therefore, equivalent to showing that the restriction of the pairing
to W with itself is full rank. This becomes clear in the category of Hodge structures: Since V has type
𝑚13,2 ⊕ 𝑚2,13 and W has type 𝑚15,0 ⊕ 𝑚0,15, the pairing between V and W is trivial, so W must be full
rank on itself. This claim holds at the level of Q-vector spaces. Since all the maps above are also maps
of Galois representations, we have a direct sum decomposition as Galois representations too.

The identification of the remainder 𝑀 ss = 186263 L2S12 follows from [16, p. 491]. !

By Poincaré duality, to prove Theorem 1.1, it suffices to show that when 𝑐 ≥ 2, there are no copies of
L𝑍!,"−15S16 in the right-hand side of Corollary 7.11. The proof of Theorem 1.7 exhibits 𝑚2𝑍!,"−15(M𝜄,𝜓)
as a quotient of a direct sum of the form⊕

L𝑍!,"−13 ( 𝑚11(M1,11) ⊕
⊕

L𝑍!,"−15 ( 𝑚15(M1,15) # 𝑚2𝑍!,"−15(M𝜄,𝜓),

where the map from each summand on the left is a composition of a forgetful pullback with a gluing
pushforward. By Lemma 8.3, it suffices to show that, for each of these maps, the composition with the
inclusion of 𝑥 ⊂ 𝑚15 (M1,15),

L𝑍!,"−15 (𝑥 ) L𝑍!,"−15 ( 𝑚15(M1,15) ) 𝑚2𝑍!,"−15 (M𝜄,𝜓), (8.4)
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vanishes. When we view (8.4) as a map of Hodge structures, we see that it vanishes, since we have
already proved Theorem 1.1 in the category of Hodge structures. Thus, (8.4) vanishes as a map of
Q-vector spaces, and so also as a map of Galois representations.
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