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The weight two compactly supported Euler
characteristic of moduli spaces of curves

Sam Payne and Thomas Willwacher

Dedicated to Enrico Arbarello with gratitude and admiration

Abstract: We derive a formula for the generating function for the
weight two compactly supported Sn-equivariant Euler characteris-
tics of the moduli spaces of curves Mg,n, using graph complexes
and calculations inspired by operadic methods.

1. Introduction

The rational cohomology of moduli spaces of curves is of central interest
not only in algebraic geometry but also in topology, geometric group theory,
and mathematical physics. In the stable range, the cohomology is completely
understood, thanks to the celebrated proof of Mumford’s conjecture via sta-
ble homotopy theory [17]. Outside of the stable range, even the most basic
properties, such as the parameters k, g, n for which the rational cohomology
HkpMg,nq is zero or non-zero, have remained largely mysterious [18, §9].

Algebraic geometry techniques have recently yielded new nonvanishing
results and lower bounds on dimensions of cohomology groups in the unsta-
ble range [4, 5, 19]. The algebraic structure of Mg,n as a Deligne-Mumford
stack endows its rational cohomology with a mixed Hodge structure. Non-
vanishing results and lower bounds on dimensions of cohomology groups are
then obtained by studying the associated graded of the weight filtration, one
weight at a time. The first two nontrivial graded pieces of the weight fil-
tration may be expressed in terms of the cohomology of commutative graph
complexes. The weight zero cohomology is naturally identified with the co-
homology of the original commutative graph complex studied by Kontsevich
[13]. In weight two, which is the focus of the present paper, one finds more
general graph complexes closely related to those appearing in recent work on
the embedding calculus [6]. The identification of weight two cohomology with
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the cohomology of these graph complexes relies fundamentally on the results
and methods of Arbarello and Cornalba [1].

The cohomology groups of the graph complexes that arise in this context
are far from fully understood. In such cases where cohomology groups can-
not be computed directly, Euler characteristics often yield valuable insights.
For instance, Harer and Zagier famously computed the Euler characteristics
of Mg and deduced that these moduli spaces have cohomology groups that
grow superexponentially in both even and odd degrees [11]. This is especially
striking since the stable cohomology grows subexponentially and, at the time
of their writing and for nearly twenty years after, there were no known exam-
ples where HkpMgq is nonzero for odd k. The first such example was H5pM4q
[22]. All other known examples are proved using the associated graded of the
weight filtration and graph complex techniques; see [4, 19].

Even if one is primarily interested in the cohomology of Mg, for inductive
arguments using the boundary structure of the moduli space of stable curves
as in [1, 9], it is essential to understand the cohomology of moduli spaces
of curves with marked points Mg,n, and to understand these not only as
vector spaces but as representations of the symmetric group Sn, with the
action induced by permuting marked points. Thus, one is naturally led to
investigate the Sn-equivariant Euler characteristic of the associated graded of
the weight filtration on the rational cohomology of Mg,n. By Poincaré duality
[20, Theorem 6.3], it is equivalent to study the associated graded of the weight
filtration on compactly supported cohomology.

A closed formula for the weight 0 compactly supported Euler character-
istic of moduli spaces of curves is given in [3], and the weight 1 compactly
supported cohomology vanishes. Our main result is a formula for the gen-
erating function for the Sn-equivariant Euler characteristic of the weight 2
compactly supported cohomology of Mg,n.

1.1. Statement of main result

Let Vλ denote the irreducible representation of the symmetric group corre-
sponding to a Young diagram λ. For any graded Q-vector space W “ ‘kW k

with finite dimensional graded pieces and an action of the symmetric group
Sn, we consider the decomposition into isotypical components

W k –
à

λ

Vλ b Qnλ,k .
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Then the equivariant Euler characteristic of W is defined to be the symmetric
function

χSpW q “
ÿ

k,λ

p´1qknλ,ksλ,

with sλ the Schur function corresponding to λ.
We are particularly interested in the associated graded of the weight fil-

tration
gri H‚

c pMg,nq :“ WiH
‚
c pMg,nq{Wi´1H

‚
c pMg,nq,

which carries a natural Sn-action induced by permuting the marked points.
Let

χS
i pMg,nq :“ χSpgriH‚

c pMg,nqq.
We will give a formula for the generating function for the weight 2 equivariant
Euler characteristics

(1) ω2 :“
ÿ

g,n
2g`ně3

χS
2pMg,nq!g

in the ring of formal symmetric power series ! “ Qrrp1, p2, . . . ss. Here p" “
x"1 ` x"2 ` x"3 ` ¨ ¨ ¨ is the degree $ power sum. Let P" :“ 1 ` p" be the
inhomogeneous power sum. We define

Z" :“ 1
$

ÿ

d|"
µp${dqPd

!d ,(2)

where µ is the Möbius function and ! is a formal variable that will count the
genus, as well as

(3) ψ0pzq :“ ´
8ÿ

j“1

Bj

j

1
p´zqj and ψ1pzq :“ ´

8ÿ

j“0
Bj

1
p´zqj`1 .

Note that ψ0pzq ` log z and ψ1pzq are the asymptotic expansions as z Ñ 8 of
the digamma and trigamma function respectively. We identify the logarithm
with its power series expansion

logp1 ´ zq “ ´
8ÿ

j“1
zj .

Theorem 1.1. The generating function for S-equivariant weight 2 compactly
supported Euler characteristics of moduli spaces of curves is
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(4)

ω2 “ p! ´ 1qP1
2

«˜
´ !
P1

`
ÿ

"ě1

µp$q
$

´
logp$!"Z"q ` ψ0p´Z"q

¯¸2

`
ÿ

"ě1

µp$q
$

´
logp2$!2"Z2"q ` ψ0p´Z2"q

¯

`
ÿ

"ě1

´µp$q
$

¯2
ψ1p´Z"q ´ !2

P 2
1

ff

´ ! ` p!2 ´ 1qP1 ` 1
2

`
P 2

1 ` P2
˘
.

Let us discuss the convergence and structure of the formula. First note
that

1
Z"

“ $!"
P"p1 ` X"q

“ $!"
P"

ÿ

jě0
p´X"qj “ Op!"q

with

(5) X" :“
ÿ

d|"
d‰"

µp${dq!
"´dPd

P"
“ Op! "

2 q .

We can hence expand the terms within the square brackets in (4) as power
series in !. First,

logp$!"Z"q ` ψ0p´Z"q “ logP"´
ÿ

jě1

p´1qj
j

Xj
" ´

8ÿ

k“1

8ÿ

j“0

Bk

k

˜
´k

j

¸ ˆ
$!"
P"

˙k

Xj
"

(6)

ψ1p´Z"q “ ´
8ÿ

k“1

8ÿ

j“0
Bk´1

˜
´k

j

¸ ˆ
$!"
P"

˙k

Xj
" .(7)

Note in particular that, with the exception of the term logP", the expres-
sions (6) and (7) are (infinite) linear combinations of Laurent monomials of
the form

(8) !a
P b1
d1
P b2
d2

¨ ¨ ¨P bs
ds

P c
"

such that

$
&

%

di|$, for 1 ď i ď s,
b1 ` ¨ ¨ ¨ ` bs ď c,
a ` b1d1 ` ¨ ¨ ¨ ` bsds “ $c.

In particular, if we say that Pd has degree d, then the coefficient of !a for
a ą 0 in each of the expressions (6) and (7) is a finite linear combination of
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Laurent monomials of degree ´a in the inhomogeneous power sum symmetric
functions, each of the special form prescribed by (8). Inserting (6) and (7)
into (4) we find

ω2 “ p! ´ 1qP1
2

«˜
´ !
P1

`
ÿ

"ě1

µp$q
$

logP" `
ÿ

"ě1

µp$q
$

(9)

ˆ
˜

´
ÿ

jě1

p´1qj
j

Xj
" ´

8ÿ

k“1

8ÿ

j“0

Bk

k

˜
´k

j

¸˜
$!"
P"

¸k

Xj
"

¸¸2

`
ÿ

"ě1

µp$q
$

logP2" `
ÿ

"ě1

µp$q
$

ˆ
˜

´
ÿ

jě1

p´1qj
j

Xj
2" ´

8ÿ

k“1

8ÿ

j“0

Bk

k

˜
´k

j

¸˜
2$!2"

P2"

¸k

Xj
2"

¸

´
ÿ

"ě1

˜
µp$q
$

¸2 8ÿ

k“1

8ÿ

j“0
Bk´1

˜
´k

j

¸˜
$!"
P"

¸k

Xj
" ´ !2

P 2
1

ff

´ ! ` p!2 ´ 1qP1 ` 1
2

˜
P 2

1 ` P2

¸
.

By expanding the square and collecting terms, we arrive at the following
equivalent version of Theorem 1.1.

Corollary 1.2. Let Ag and Cg be the coefficients of !g in the following power
series, with X" as in (5):

ÿ

g

Ag!g :“ ´P1

˜
´ !
P1

`
ÿ

"ě1

µp$q
$

(10)

ˆ
˜

´
ÿ

jě1

p´1qj
j

Xj
" ´

8ÿ

k“1

8ÿ

j“0

Bk

k

˜
´k

j

¸˜
$!"
P"

¸k

Xj
"

¸¸
;

ÿ

g

Cg!g :“ ´P1
2

«˜
´ !
P1

`
ÿ

"ě1

µp$q
$

ˆ
˜

´
ÿ

jě1

p´1qj
j

Xj
" ´

8ÿ

k“1

8ÿ

j“0

Bk

k

˜
´k

j

¸˜
$!"
P"

¸k

Xj
"

¸¸2
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`
ÿ

"ě1

µp$q
$

˜

´
ÿ

jě1

p´1qj
j

Xj
2"

´
8ÿ

k“1

8ÿ

j“0

Bk

k

˜
´k

j

¸˜
2$!2"

P2"

¸k

Xj
2"

¸

´
ÿ

"ě1

˜
µp$q
$

¸2 8ÿ

k“1

8ÿ

j“0
Bk´1

˜
´k

j

¸˜
$!"
P"

¸k

Xj
" ´ !2

P 2
1

ff

.

Then Ag is a finite linear combination of monomials

P b1
d1
P b2
d2

¨ ¨ ¨P bs
ds

P c
"

such that

$
&

%

di|$, for 1 ď i ď s,
b1 ` ¨ ¨ ¨ ` bs ď c ` 1,
g ` b1d1 ` ¨ ¨ ¨ ` bsds “ $c ` 1.

Similarly, Cg is a finite linear combinations of monomials

P b1
d1
P b2
d2

¨ ¨ ¨P bs
ds

P c1
"1
P c2
"2

such that

$
&

%

di|$1 or di|$2, for 1 ď i ď s,
b1 ` ¨ ¨ ¨ ` bs ď c1 ` c2 ` 1,
g ` b1d1 ` ¨ ¨ ¨ ` bsds “ $1c1 ` $2c2 ` 1.

Furthermore, the equivariant Euler characteristics χS
2pMg,‚q :“ ř

n χ
S
2pMg,nq

are expressed as follows:

χS
2pM0,‚q “ ´P1

2

»

–
˜

ÿ

"ě1

µp$q
$

logP"

¸2

`
ÿ

"ě1

µp$q
$

logP2"

fi

fl ´ P1 ` P 2
1
2 ` P2

2

χS
2pM1,‚q “ `P1

2

»

–
˜

ÿ

"ě1

µp$q
$

logP"

¸2

`
ÿ

"ě1

µp$q
$

logP2"

fi

fl

`
˜

ÿ

"ě1

µp$q
$

logP"

¸
A1 ` C1 ´ 1

χS
2pM2,‚q “

˜
ÿ

"ě1

µp$q
$

logP"

¸
pA2 ´ A1q ` C2 ´ C1 ` P1

χS
2pMg,‚q “

˜
ÿ

"ě1

µp$q
$

logP"

¸
pAg ´ Ag´1q ` Cg ´ Cg´1 for g ě 3

We remark that X1 “ 0, and hence the terms involving positive powers
of X1 can be dropped from the sums above. Furthermore, the individual
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terms appearing in the formulas for the Euler characteristics have natural
interpretations in terms of graphs. See §5, for details. The first few Laurent
polynomials Ag and Cg are:

A1 “ ´P 2
1 ´ P2
2P2

, C1 “ P 2
1 ` P2
2P2

, A2 “ 1
12P1

´ P 3
1

4P 2
2

` P1
2P2

´ P 2
1

3P3
,

C2 “ 1
8P1

` P 3
1

8P 2
2

´ P1P2
4P4

, A3 “ ´ P 4
1

6P 3
2

` P 2
1

2P 2
2

` P1
2P3

` P1P3
6P6

,

C3 “ 1
24P 2

1
` P 4

1
24P 3

2
` P 2

1
8P 2

2
´ 5

24P2
` P1

3P3
´ P 3

1
6P2P3

´ P1P3
6P6

,

A4 “ ´ 1
120P 3

1
´ P 5

1
8P 4

2
` P 3

1
2P 3

2
´ P1

6P 2
2

´ P 3
1

6P 2
3

´ P 2
1

5P5
` P1P2

6P6
,

C4 “ ´ 1
288P 3

1
` P 5

1
96P 4

2
` 5P 3

1
24P 3

2
´ 7P1

16P 2
2

´ 1
24P1P2

´ P 3
1

18P 2
3

´ 2
9P3

` P 4
1

12P 2
2P3

` 5P 2
1

12P2P3
´ P1P 2

2
8P 2

4
` P1

2P4
´ P1P2

6P6
´ P3

12P6
` P 2

1P3
12P2P6

,

A5 “ ´ P 6
1

10P 5
2

` P 4
1

2P 4
2

´ P 2
1

6P6
` P 2

1
2P 2

3
´ P 2

1
3P 3

2
` P1

2P5
` P5P1

10P10
,

C5 “ ´ P 6
1

240P 5
2

´ P 5
1

18P 3
2P3

´ P 4
1

12P2P 2
3

` 13P 4
1

48P 4
2

` 7P 3
1

24P 2
2P3

´ P 3
1

10P2P5

` P3P 3
1

24P 2
2P6

` 11P 2
1

36P6
` 5P 2

1
12P 2

3
´ 53P 2

1
72P 3

2
´ P1

4P2P3
` P1

5P5

´ P3P1
12P2P6

´ P5P1
10P10

´ P2
12P6

` 1
24P 2

2
´ 1

24P3P1
´ P3

72P6P1

´ 1
240P2P 2

1
´ 1

80P 4
1
.

1.2. Relations to the topological and weight zero Euler
characteristics

For fixed genus g, by work of Gorsky, the generating function
ř

n χ
SpMg,nq is

a finite sum of Laurent monomials of degree 2´2g in the inhomogeneous power
sum symmetric functions Pd, each of whose denominators is a pure power P c

" ,
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satisfying conditions analogous to (8) [10]. The coefficients involve certain
orbifold Euler characteristics χorbpMh,sq, and these have natural expressions
in terms of Bernoulli numbers, by the work of Harer and Zagier [11].

Gorsky’s method of proof is beautiful and elementary: one stratifies Mg

according to the topological type of the action of the automorphism group
and considers the action of automorphisms on the configuration spaces of n
points. Each topological type of a curve with an automorphism contributes
to precisely one monomial of the special form described above. The final
formula is then deduced using the basic properties of compactly supported
topological Euler characteristic, namely that it is additive for stratifications
and multiplicative for fibrations.

Weight graded Euler characteristics are more subtle than topological Eu-
ler characteristics. In particular, although weight graded Euler characteristics
of algebraic varieties and Deligne-Mumford stacks are additive with respect to
stratifications, they are not multiplicative with respect to algebraic fibrations
(flat families), even when the fibers are smooth and proper. Nevertheless, all
of the essential ideas in Gorsky’s computation can be adapted to compute
the Sn-equivariant weight zero Euler characteristic of Mg,n, using the inter-
pretation of weight zero cohomology as the singular cohomology of a moduli
space of stable tropical curves [3]. As a result, the weight zero Euler char-
acteristic has a structure closely analogous to that of Gorsky’s formula: for
fixed genus, the generating function is a finite sum of monomials of degree
1´g in the inhomogeneous power sum symmetric functions Pd, each of whose
denominators is a pure power, satisfying conditions analogous to (8). Roughly
speaking, each pair of a graph with an automorphism contributes to precisely
one monomial of the prescribed special form; see [3, Proposition 3.2]. In the
final formula, the coefficients are given by certain orbifold Euler characteris-
tics of spaces of graphs, which have natural expressions in terms of Bernoulli
numbers; see [3, Lemma 7.4], which is proved by induction starting from the
n “ 0 case, due to Kontsevich [7, 13].

We do not have such a topological interpretation for weight two cohomol-
ogy of moduli spaces of curves, and the weight two Euler characteristic is of
a somewhat different form. In particular, for fixed genus g ě 2, the gener-
ating function

ř
n χ

S
2pMg,nq is not a finite sum of Laurent monomials in the

inhomogeneous power sum symmetric functions. Lacking a topological inter-
pretation for the weight two Euler characteristic, we express it as the Euler
characteristic of a complex of decorated graphs, and use basic properties of
symmetric sequences and an operadic identity (Proposition 3.2) to produce
the formula for the all genus generating function stated as Theorem 1.1. Spe-
cializing to a fixed genus, we obtain an expression involving logarithmic terms
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as well as Laurent monomials in the inhomogeneous power sum symmetric
functions, of two different degrees, with denominators that are products of
either one or two pure powers (Corollary 1.2).

1.3. Outline of proof

To show Theorem 1.1 we proceed in three steps. First, we show a general
formula, see Proposition 3.2, computing the Euler characteristic of graph
complexes spanned by graphs with one special vertex, decorated by an arbi-
trary symmetric sequence. Next, in Sections 3.5-3.6, we recall a recent result
of the authors, identifying the cohomology gr2 H‚

c pMg,nq with the cohomol-
ogy of a certain graph complex Xg,n, spanned by graphs with one suitably
decorated special vertex. Finally, in Section 4 we apply Proposition 3.2 to (a
close variant of) the graph complex Xg,n. After some algebraic rewriting and
simplifications one then arrives at the formula of Theorem 1.1.

1.4. Numerical computations

The generating function in Theorem 1.1 can be implemented to compute the
equivariant Euler characteristic of gr2 H‚

c pMg,nq for small values of g and n,
as shown in Figure 1.

Figure 1: The equivariant Euler characteristic of gr2 H‚
c pMg,nq for g ď 10

and n ď 5, computed using Mathematica and Sage from Theorem 1.1 and
expressed in terms of Schur functions.

Specializing to n “ 0, and writing out the terms for g ď 50, we find thatř
g χ2pMgq!g is equal to:

´ !8 ` 4!9 ´ 4!10 ` 4!11 ´ 7!12 ` 8!13 ´ 16!14 ` 10!15 ´ 10!16

` 28!17 ` 17!18 ` 94!19 ´ 12!20 ´ 382!21 ´ 196!22 ` 2181!23

´ 4304!24 ´ 43135!25 ` 50281!26 ` 737650!27 ´ 676300!28

´ 13670125!29 ` 13593898!30 ` 301176776!31 ´ 303061590!32
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´ 7579395579!33 ` 7577048267!34 ` 215276816193!35

´ 215186827379!36 ´ 6867916230403!37 ` 6867642573519!38

` 244534892486924!39 ´ 244525053194639!40

´ 9660791088309245!41 ` 9660393501146309!42 ` 421316847700113027!43

´ 421303860389448419!44 ´ 20188618782635720913!45

` 20188137225679260098!46 ` 1058435119750859223989!47

´ 1058415071189257113479!48 ´ 60478235401984833358102!49

` 60477318015911247931156!50 ` O
`
!51˘

.

For n “ 0 and g ď 200, we display |χ2pMgq| on a logarithmic scale, along
with a plot of the sign of χ2pMgq, which seems to be eventually periodic. See
Figure 2.

Figure 2: Plots of logp1 ` |χ2pMgq|q and the sign of χ2pMgq for g ď 200, on
the left and right, respectively.

Conjecture 1.3. For g ě 23, the sign of χ2pMgq is ´1 for g ” 0, 1 pmod 4q
and `1 for g ” 2, 3 pmod 4q.

2. Preliminaries

2.1. Notation and conventions

We work over the rational numbers Q. All vector spaces are understood to be
Q-vector spaces, and likewise all homology and cohomology groups are taken
with Q-coefficients. If V is a vector space with the action of a finite group
G, we identify the invariant subspace V G with the coinvariant space VG, by
averaging over the group action. The phrase differential graded is abbreviated
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dg. For a dg vector space V and an integer k, let V rks be the graded vector
space obtained by shifting all degrees by k, i.e., the degree j part of V is the
degree j ´ k part of V rks.

2.2. Symmetric sequences and products

A symmetric sequence is a collection C “ tCprqurě0 of Sr-modules in dg vector
spaces. Similarly, a bisymmetric sequence is a collection B “ tBpr, squr,sě0 of
Sr ˆ Ss-modules. We say that Cprq is the part of C of arity r, and Bpr, sq is
the part of B of arity pr, sq.

The category of symmetric sequences Seq has several monoidal products.
First, for two symmetric sequences C,D we have the symmetric sequence
C b D, given by

pC b Dqprq “ Cprq b Dprq,
with the diagonal Sr-action. Second, we have the symmetric sequence C b D
given by

pC b Dqprq “ ‘j`k“rIndSr
SjˆSk

Cpjq b Dpkq.
Let us note in particular that the symmetric sequence

Cbk “ C b ¨ ¨ ¨ b Clooooomooooon
kˆ

carries an action of Sk by permuting the factors. Thus, tpCbkqprqukě0,rě0 is
a bisymmetric sequence.

We then have a third monoidal product on symmetric sequences, the
plethysm product D ˝ C, given by

pD ˝ Cqprq “ ‘kě0Dpkq bSk Cbkprq.

The category of symmetric sequences Seq is monoidal with respect to the
plethysm product, with unit 1 given by

1prq “
#

Q if r “ 1,
0 otherwise.

Finally, given C and D symmetric sequences of dg vector spaces we define
the dg vector space

C bS D :“
à

rě0
Cprq bSr Dprq.
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2.3. Equivariant Euler characteristics

For F an endomorphism of a finite dimensional graded vector space V “ ‘iVi,
we denote by STrpF q the super-trace of F , that is, the alternating sum

STrpF q “
ÿ

i

p´1qiTrpF |Viq.

For σ P Sr a permutation we denote by ipσq “ pi1, i2, . . . q its cycle type, with
ik the number of cycles of length k. For ρ a graded Sr-representation on V ,
we denote the Sr-equivariant Euler characteristic in ! “ Qrrp1, p2, . . . ss by

χSpV q “ 1
r!

ÿ

σPSr

STrpρpσqqpipσq,

using the multi-index notation pipσq “ pi1pσq
1 pi2pσq

2 ¨ ¨ ¨ . This equivariant Euler
characteristic is actually a polynomial in p1, p2, . . .; we define it as a power
series in view of the case of symmetric sequences that we consider below. If
V has an additional (non-negative) grading with grading generator G (i.e.,
where G is equal to k times the identity on the subspace of degree k) we use
the notation

(11) χupV q “ 1
r!

ÿ

σPSr

STrpuGρpσqqpipσq P !rruss.

We freely generalize this notation to multiple gradings and other variables
counting the multidegree. For example, if V has an additional Z2-grading,
with grading generators G1, G2, then we write

χu,vpV q “ 1
r!

ÿ

σPSr

STrpuG1vG2ρpσqqpipσq P !rru, vss,

and similarly for a Z3-grading.
For A a symmetric sequence such that Aprq is finite dimensional for each

r, we write
χSpAq :“

ÿ

rě0
χSpAprqq

and similarly for χupAq, when A has an additional grading.
The operations on symmetric sequences discussed in §2.2 induce opera-

tions on symmetric functions. First,

χSpA b Bq “ χSpAqχSpBq.
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Second, there is a plethysm product ˝ on symmetric functions ˝ : ! b ! Ñ !
such that

χSpA ˝ Bq “ χSpAq ˝ χSpBq.
Concretely, the plethysm product on symmetric functions may be computed
by the following rules:

(12)
pf1 ` f2q ˝ g “ f1 ˝ g ` f2 ˝ g pf1f2q ˝ g “ pf1 ˝ gqpf2 ˝ gq

pn ˝ f “ fppn, p2n, p3n, . . . q for f “ fpp1, p2, p3, . . . q

In the presence of an additional grading, encoded by a variable u as in (11),
the last rule is replaced by

pn ˝ f “ fpun, pn, p2n, p3n, . . . q for f “ fpu, p1, p2, p3, . . . q(13)

For more details we refer to [16] or the concise introduction to symmetric
functions in [9].

On the subspace of ! consisting of symmetric polynomials (finite series),
there is an inner product given by

(14)

xpi, pjy “ δij
#

k

kik ik! “
#

k

˜˜
B

Bpk

¸ik

kjkpjkk

¸

pk“0

“
˜

#

k

˜

k
B

Bpk

¸ik

pj
¸

p1“p2“¨¨¨“0
.

Here, i “ pi1, . . . q and j “ pj1, . . . q are multi-indices, pi :“ pi11 p
i2
2 . . . , and δij

is the Kronecker symbol. This inner product has the property that for A,B
finite dimensional symmetric sequences

(15) χ pA bS Bq “ xχSpAq,χSpBqy.

2.4. Examples of symmetric sequences and their equivariant Euler
characteristics

For later use we shall recall the Euler characteristics of some symmetric se-
quences from the literature.

The commutative operad is a simple and natural symmetric sequence,
which we consider in two variations:

Com1prq “ Q for r ě 0, Comprq “
#

Q for r ě 1,
0 for r “ 0.

,
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Here, Q denotes the trivial Sr-representation. The corresponding equivariant
Euler characteristics are [8, §5.1]:

χSpCom1q “ exp
˜

ÿ

"

p"
$

¸
χSpComq “ exp

˜
ÿ

"

p"
$

¸
´ 1.(16)

The Lie operad is the symmetric sequence defined such that Lieprq is the
subspace of the free Lie algebra FreeLiepx1, . . . , xrq in r letters consisting of
linear combinations of Lie words in which each xj occurs exactly once. We
shall also need a degree shifted version Lie0 defined in the same way, except
that the generators xj are considered of cohomological degree one, and one
has an overall degree shift by ´1, i.e.,

Lie0prq “ Lieprq b sgnrr1 ´ rs.

The corresponding equivariant Euler characteristics are

χSpLieq “ ´
ÿ

"ě1

µp$q
$

logp1 ´ p"q, χSpLie0q “
ÿ

"ě1

µp$q
$

logp1 ` p"q.(17)

See [8, Proposition 5.3 and Lemma 5.4].
The Poisson operad is the symmetric sequence Pois “ Com ˝ Lie. The

elements of Poisprq can be understood as linear combinations of Poisson words
in letters x1, . . . , xr such that each letter occurs exactly once. We shall also
use a degree shifted version

Pois0 “ Com ˝ Lie0 .

Both Pois and Pois0 carry a complexity grading by the number of Lie brackets.
More precisely, we define Lieprq and Lie0prq to be concentrated in complexity
r ´ 1, and this descends to give the complexity grading on Pois and Pois0.
By [8, Proposition 5.5] and [2, Proposition 6.3], the graded equivariant Euler
characteristics, with the variable u counting the complexity as in (11), are:

χupPoisq “
#

lě1
p1 ´ u"p"q

1
"

ř
d|" µp"{dq 1

ud ´ 1,(18)

χupPois0q “
#

"ě1
p1 ` u"p"q

1
"

ř
d|" µp"{dq 1

ud ´ 1 .(19)

Also note that the complexity grading on Pois0 is, by definition, equal to the
cohomological grading.
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Next consider the symmetric sequence concentrated in arity one

HSprq “
#
HpS1q “ Q ‘ Qr´1s for r “ 1
0 for r ‰ 1

.

Then one defines the symmetric sequence

BV0 :“ Pois0 ˝ HS.

This is a version of the Batalin-Vilkovisky operad (see [15, §13.7]), hence the
notation. We declare the complexity grading on BV0 to be the same as the
cohomological grading.

It is clear that χupHSq “ p1 ´ up1. From (12), (13), and (19) one then
finds

χupBV0q “
#

"ě1
p1 ` u"p1 ´ u"qp"q

1
"

ř
d|" µp"{dq 1

ud ´ 1.(20)

Elements of BV0prq are identified with linear combinations of Poisson words in
variables x1, . . . , xr, Dx1, . . . , Dxr, with every index occurring exactly once,
for example

x1 ^ Dx2 ^ rx3, Dx4s P BV0p4q.
For technical reasons we also define the reduced sub-symmetric sequence
BVred

0 Ă BV0 to be spanned by those Poisson words that do not have a
factor xj for any j. In other words,

BV0 “ pBVred
0 b Com1q ‘ Com.

Hence

(21)
χupBVred

0 q “ pχupBV0q ` 1qχpCom1q´1 ´ 1
“

#

"ě1
e´ 1

"
p"p1 ` u"p1 ´ u"qp"q

1
"

ř
d|" µpd{"q 1

ud ´ 1.

Finally, note that the definition of the S-equivariant Euler characteristic
above has a natural generalization for bisymmetric sequences. We shall only
need the following example. Define the bisymmetric sequence ∆0 such that

(22) ∆0pr, sq “
#

QrSrs for r “ s

0 otherwise
.
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Here the group ring QrSrs is considered as an Sr ˆSr-module by left and right
multiplication. We then have

χSp∆0q :“
ÿ

r,s

1
r!s!

ÿ

σPSr
νPSs

STr∆0pρpσ, νqqpipσqqipνq “ exp
˜

ÿ

ně1

1
n
pnqn

¸

P !p,q :“ Qrrp1, q1, p2, q2, . . . ss.

3. Graph complexes associated to moduli spaces of curves

3.1. The graph complexes Gpg,nq and weight zero compactly
supported cohomology of Mg,n

Let g and n be non-negative integers. The graph complex Gpg,nq studied in
[5, 19] is generated by connected graphs of genus g with no loop edges and
no vertices of valence 2. Here, g is the first Betti number of the geometric
realization of the graph. The vertices of valence 1 are called external, and the
other vertices are internal. Each generator has precisely n external vertices,
labeled in bijection with t1, . . . , nu, and the symmetric group Sn acts by
permuting these labels. The edges not connecting to univalent vertices are
called structural, and the cohomological degree of a generator is the number of
structural edges. Each generator comes with a total ordering of its structural
edges, and we impose the relation that reordering is multiplication by the
sign of the induced permutation. The differential δsplit on Gpg,nq is defined by
splitting internal vertices.

δsplitΓ “
ÿ

v vertex
Γ split v ÞÑ

ÿ
(23)

Theorem 3.1 ([5]). For each g, n such that 2g ` n ě 3 there is an Sn-
equivariant isomorphism

HpGpg,nqq – W0HcpMg,nq

with the weight zero part of the compactly supported cohomology of the moduli
space of curves.

The differential does not affect the Euler characteristic. In this paper we
will work with Gpg,nq and its variants primarily as graded representations of
symmetric groups.

For the author's personal use only.

For the author's personal use only.



Weight two Euler characteristic of moduli of curves 2431

3.2. Two variants of Gpg,nq

Distinguishing structural edges from nonstructural edges in the definition of
Gpg,nq will be inconvenient for the calculations that follow. For this reason, we
define the variant Ǧpg,nq exactly as above, except that the degree of a graph
is the number of edges, and the orientation is given by a total ordering of all
of the edges, not just the structural ones. For pg, nq ‰ p0, 2q one can readily
see that

Ǧpg,nq – Gpg,nq b sgnnr´ns.
We also consider an enlargement of Ǧpg,nq obtained by relaxing the con-

nectedness assumption. Generators of the resulting graph complex |fG
pg,nq

are
possibly disconnected graphs of genus g with no loop edges and no vertices
of valence 2. The external vertices are labeled in bijection with t1, . . . , nu,
and the orientation is given by a total ordering of all edges. The genus g of a
possibly disconnected graph with e edges and v vertices is

g :“ e ´ v ` 1.

Note that some disconnected graphs have negative genus.
From |fG

pg,nq
, we build the symmetric sequence |fG defined by

|fGprq :“
à

gPZ
|fG

pg,rq
.

On this symmetric sequence we consider two different gradings: the genus
grading, in which |fG

pg,rq
is of genus g, and the complexity grading in which

|fG
pg,rq

is of complexity g ` r ´ 1. This is the genus of the connected graph
obtained by fusing all external vertices into one. Note that the complexity
grading is non-negative, and the number of isomorphism classes of graphs of
a given complexity is finite.

3.3. Graph complexes with one special vertex

Let A be a symmetric sequence. Consider

A bS |fG.

This is a graded vector space whose elements are naturally interpreted as
linear combinations of graphs as above, but with one special vertex that

For the author's personal use only.

For the author's personal use only.



2432 Sam Payne and Thomas Willwacher

carries a decoration in A.

a

P |fG

bS

P A

More precisely, the decoration of the special vertex is in Aprq, with r the
valence of the special vertex. The complexity grading on |fG induces a com-
plexity grading on AbS |fG, in which the complexity of a graph with one ver-
tex decorated by A is equal to its genus. The following result gives a general
formula for the complexity-graded Euler characteristic of such A-decorated
graph complexes.
Proposition 3.2. Let A be any symmetric sequence in finite dimensional
graded vector spaces. Then we have

χu
´
A bS |fGq

¯
“ χu

`
pA ˝ Lie0q bS BVred

0
˘

“
@
χSpAq ˝ χSpLie0q,χupBVred

0 q
D
,

with u counting the complexity, and χup´q being the graded Euler character-
istic.
Note that the graded Euler characteristic is well-defined since the number
of graphs of any given complexity is finite. Note also that the complexity
grading is derived solely from the factor |fG, or respectively BVred

0 . The other
factors Lie0 or A do not contribute to the complexity, i.e., they are considered
to be of complexity zero. Finally, recall that χSpLie0q and χupBVred

0 q are given
in (17) and (21), respectively.

3.4. Proof of Proposition 3.2

In the proof, we will use the Kontsevich graphical operad Graphs0. We briefly
sketch its construction and main properties. For details we refer to Kontse-
vich’s original paper [12], or recollections elsewhere, for example [6, §2.9f].
Elements of Graphs0prq are series of graphs with r labeled external vertices
and an arbitrary number of internal vertices such as in the following picture.

1 2 3 4 5
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The symmetric group Sr acts by permuting the labels 1, . . . , r of external
vertices. The graph is oriented by a total ordering of its edgs. The sign con-
ventions are thus identical to those for Ǧpg,nq above. The degree is the number
of edges. One allows loops at both internal and external vertices. Note that
the symmetric sequence Graphs0 carries a dg operad structure in which the
differential is given by vertex splitting; however, the differential does not mat-
ter for the purposes of computing Euler characteristics.

We also consider the variant BVGraphs0, obtained as a quotient of Graphs0
by setting to zero graphs with loop edges at internal vertices. (Loops are still
allowed at external vertices.) Both Graphs0 and BVGraphs0 have a complexity
grading: the complexity of a graph with v internal vertices and e edges is
e ´ v.

Furthermore, we consider the subspaces

Graphsred0 Ă Graphs0 BVGraphsred0 Ă BVGraphs0

spanned by graphs all of whose external vertices have valence ě 1.

Theorem 3.3 (Kontsevich [12], Lambrechts-Volic [14]1). There are operad
quasi-isomorphisms Pois0 Ñ Graphs0 and BV0 Ñ BVGraphs0 that preserve the
complexity gradings and restrict to quasi-isomorphisms on the reduced parts
p´qred. In particular,

χupBVGraphsred0 q “ χupBVred
0 q.

The connection between BVGraphsred0 and our |fG is as follows.

Lemma 3.4. Let B be any symmetric sequence and C P Z. Then

(24) B bS grC BVGraphsred0 – pB ˝ Comq bS grC |fG,

with grCp´q referring to the part of complexity C. In particular, if B is finite-
dimensional in each arity then

χu
`
B bS BVGraphsred0

˘
“ χu

´
pB ˝ Comq bS |fG

¯
.

Proof. As in the previous section the right-hand side of (24) may be in-
terpreted as the space of linear combinations of graphs of genus (i.e., loop
number) C, with one special vertex decorated by B ˝ Com. Equivalently such

1Only the result for Graphs0 is stated in the given references, but the version for
BVGraphs0 is an easy consequence.
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graphs may be interpreted as 3-level graphs with one vertex decorated by B,
connected to another layer of vertices contributed by the factor Com.

P |fG

b

bS
P Com

P B

But the left-hand side of (24) also has the interpretation as linear combina-
tions of three-level graphs of genus C. In this case the middle layer of vertices
is contributed by the external vertices of graphs in BVGraphsred0 .

P BVGraphsred0

b

bS

P B

Hence we conclude that both sides of (24) are identical.
As a final ingredient we will use the Koszul property of the commutative

operad [15, Theorem 7.6.4(i) and Proposition 13.1.7]. This means that the
symmetric sequence (the Koszul complex) Lie˚

0 ˝ Com carries a differential,
such that the resulting cohomology is concentrated in arity 1. Here Lie˚

0 is
the linear dual of Lie0. In particular, this implies that on the level of Euler
characteristics we have that

(25)
p1 “ χSpLie˚

0 ˝ Comq “ χSpLie˚
0q ˝ χSpComq

“ χSpLie0q ˝ χSpComq “ χSpLie0 ˝ Comq.

Here we also used that the equivariant Euler characteristic of a symmetric
sequence and its dual are identical, due to the fact that all representations
of the symmetric group are self-dual. We also note that one can alternatively
derive (25) directly from (16) and (17), using the plethysm rules (12).
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Proof of Proposition 3.2. The plethysm product with p1, f ÞÑ f ˝ p1, is the
identity. Hence, from (25) it follows that on the level of Euler characteristics

χupA bS |fGqq “ χuppA ˝ Lie0 ˝ Comq bS |fGqq.

Using Lemma 3.4 this is the same as

χuppA ˝ Lie0q bS BVGraphsred0 qq.

Using Theorem 3.3 this in turn is identified with

χuppA ˝ Lie0q bS BVred
0 q,

Applying (the graded version of) (15) we can evaluate this further to

χuppA ˝ Lie0q bS BVred
0 q “ xχSpA ˝ Lie0q,

χupBVred
0 qy “ xχSpAq ˝ χSpLie0q,χupBVred

0 qy,

and hence Proposition 3.2 follows.

3.5. The graph complexes Xg,n and weight two compactly
supported cohomology of Mg,n

The main result of [19] is the identification of gr2 H‚
c pMg,nq with the coho-

mology of a graph complex Xg,n that is close to graph complexes arising in
knot theory and the embedding calculus. We shall use this identification to
show our main Theorem 1.1, by computing the Euler characteristic of Xg,n.

Recall from [19] that the generators for Xg,n are simple graphs without
loops or multiple edges, in which no vertices have valence 2. The vertices
of valence at least 3 are internal and those of valence 1 are external. Each
external vertex is decorated with an element from the set tε,ω, 1, . . . , nu, such
that:

• Each label 1, . . . , n appears exactly once and the label ω appears exactly
twice;

• The graph obtained by joining all external vertices labeled ε or ω is
connected and has genus g;

Say that an edge with two external vertices labeled a and b is an pa, bq-edge.
We further require that

• No connected component is an pε,ωq or pω,ωq edge;
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An edge is structural if it does not contain an external vertex with label from
t1, . . . , nu. The degree of a graph is the number of structural edges plus one.
Each generator comes with a total ordering of the structural edges, and we
impose the relation that permuting the structural edges is multiplication by
the sign of the permutation.

The differential δ on Xg,n is a sum of two parts δ “ δsplit ` δjoin, defined
by splitting internal vertices

δsplitΓ “
ÿ

v vertex
Γ split v ÞÑ

ÿ
(26)

and joining external vertices

δjoin
Γ “

ÿ

SĂ{ε- and ω- legs u
|S|ě2

Γ

ε or ω

.(27)

We refer to [19] for details.

Theorem 3.5 (Theorem 1.1 of [19]). There is an Sn-equivariant isomorphism

HpXg,nq – gr2 HcpMg,nq

for each pg, nq ‰ p1, 1q with 2g ` n ě 3.

To show Theorem 1.1 we may hence compute the equivariant Euler char-
acteristic of the graph complexes Xg,n, that is, we may use the following
corollary.

Corollary 3.6.
ω2 “ !p1 `

ÿ

g,n
2g`ně3

!nχSpXg,nq

3.6. Two variants of Xg,n

We shall also consider variant of the complexes Xg,n above. First, we define
the complexes X̌g,n in the same manner as above, except that we treat all
edges in the same way, and declare the degree to be the total number of edges
and the ordering of edges to be defined on all edges. In other words,

(28) X̌g,n “ Xg,n b sgnnr´n ´ 1s.
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These graph complexes assemble naturally into symmetric sequences

Xprq :“
à

g

Xg,r and X̌prq :“
à

g

X̌g,r.

We consider also the enlargement }fXg,n Ą X̌g,n obtained by relaxing
the connectedness assumption on generating graphs. In other words, }fXg,n

is defined just as X̌g,n except that the generators are allowed to be possibly
disconnected graphs of genus g without vertices of valence 2, with exter-
nal vertices labeled by symbols t1, . . . , n, ε,ωu, such that each label 1, . . . , n
appears exactly once and every connected component contains at least one
external vertex. The generators are oriented by a total ordering of the edges
set. Note that we allow graphs with any number of ε- or ω-legs, with pε,ωq-
and pω,ωq-edges, and we also allow disconnected graphs. The complexity of
a generator for }fXg,n is the genus of the graph obtained by fusing all exter-
nal vertices. We again assemble the graph complexes }fXg,n into a symmetric
sequence

}fXprq :“
à

g

}fXg,r.

Lemma 3.7. We have an isomorphism of symmetric sequences

}fX – p∆0 b Com1 b Com1q bS |fG.

with ∆0 the bisymmetric sequence (22), and with b and bS operating on the
first symmetric sequence structure.

Proof. Unpacking the notation, both sides are the same.

4. Euler characteristics

The goal of this section is to prove Theorem 1.1. The strategy of the proof is to
first compute the equivariant Euler characteristic of the enlarged complexes
}fXg,n, and then extract from this the Euler characteristic of X̌g,n. We then
deduce the Euler characteristic of Xg,n, and hence that of gr2 HcpMg,nq.

The proof uses some elementary but tedious computations with power
series arising from the asymptotic expansions of polygamma functions. We
perform these computations in §4.1, in order not to clutter the main argument
line of §4.2. The reader is encouraged to skip §4.1 on the first reading.
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4.1. Auxiliary computations of derivatives

We will use the following identity involving gamma functions.
Proposition 4.1 (after Songhafouo Tsopméné and Turchin [21]). Let X and
u be formal variables and $ P N. Abbreviate

E" :“ 1
$

ÿ

d|"
µp${dq 1

ud
λ" :“ u"p1 ´ u"q$.(29)

Then we have the equality of formal power series in u

(30) p1 ` BaqXe´ap1 ` λ"aqE" |a“0“ p´λ"qXΓp´E" ` Xq
Γp´E"q

“: U"pX, uq,

where on the right-hand side one inserts the asymptotic expansions as u Ñ
0´, and on the left-hand side one defines p1`BaqX :“ expp´X

ř
jě1

p´1qj
j Baq.

Furthermore, the coefficient of each power of u in the series on either side is
a polynomial in X.

Let us note that, from the standard recurrence relation Γpz ` 1q “ zΓpzq,
one obtains the formula

(31)
U"pX ` p, uq

“ p´λ"qpp´E" ` Xqp´E" ` X ` 1q ¨ ¨ ¨ p´E" ` X ` p ´ 1qU"pX, uq,

for any non-negative integer p.
The formula (30) is a variation of a formula found in [21, §2.2] and [23,

Proposition 15.7]. The only difference is that in loc. cit. one replaces λ" by
$u". However, this change does not alter the proof of the formula. Hence we
shall only sketch the derivation (due to Turchin) here.
Proof of Proposition 4.1. First, one checks that both sides of (30) are power
series in u with coefficients that are polynomials in X. Since any polynomial
is completely determined by its values on non-negative integers, it is sufficient
to show (30) for X “ 0, 1, 2, . . . . For X “ 0 the identity (30) is trivial – both
sides are 1. For X “ p a non-negative integer one has, using (31),

U"pp, uq “ λp
"E"pE" ´ 1q ¨ ¨ ¨ pE" ´ p ` 1q.

Similarly, the left-hand side of (30) becomes

p1`Baqpe´ap1`λ"aqE" |a“0“ Bp
ap1`λ"aqE" |a“0“ λp

"E"pE"´1q ¨ ¨ ¨ pE"´p`1q,
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and the proposition follows.

Recall Stirling’s asymptotic expansion of the Γ function

(32) log Γpzq „
ˆ
z ´ 1

2

˙
log z ´ z ` 1

2 logp2πq ` Bpzq as z Ñ 8

with

(33) Bpzq “
ÿ

rě2

Br

rpr ´ 1q
1

zr´1 .

Using this expansion one can write U"pX, uq more explicitly as

logU"pX, uq “ log p´λ"qXΓp´E" ` Xq
Γp´E"q

“ Xplogpλ"E"q ´ 1q `
ˆ

´E" ` X ´ 1
2

˙
log

ˆ
1 ´ X

E"

˙

` Bp´E" ` Xq ´ Bp´E"q.
Furthermore, note that we may compute, for non-negative integers k,

plogp1 ` Baqqkp1 ` BaqXe´ap1 ` λ"aqE" |a“0“ Bk
XU"pX, uq.

For later use, let us list the following special cases:

(34) plogp1 ` Baqqp1 ` BaqXe´ap1 ` λ"aqE" |a“0

“ BXU"pX, uq “ plogpλ"pE" ´ Xqq ` ψ0p´E" ` XqqU"pX, uq

(35) plogp1 ` Baqqp1 ` BaqX`1e´ap1 ` λ"aqE" |a“0“ BXU"pX ` 1, uq

“
ˆ

logpλ"pE" ´ Xqq ` ψ0p´E" ` Xq ` 1
´E" ` X

˙

¨ p´λ"qp´E" ` XqU"pX, uq

(36) plogp1 ` Baqq2p1 ` BaqXe´ap1 ` λ"aqE" |a“0“ B2
XUpX, uq

“
`
plogpλ"pE" ´ Xqq ` ψ0p´E" ` Xqq2 ` ψ1p´E" ` Xq

˘
U"pX, uq

(37) plogp1 ` Baqq2p1 ` BaqX`1e´ap1 ` λ"aqE" |a“0“ B2
XU"pX ` 1, uq

“
ˆ´

logpλ"pE" ´ Xqq ` ψ0p´E" ` Xq ` 1
´E"`X

¯2
` ψ1p´E" ` Xq ´ 1

p´E"`Xq2

˙

¨ p´λ"qp´E" ` XqU"pX, uq
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Here we use the recurrence relation (31) and the notation (3) for the
digamma and trigamma series.

4.2. Euler characteristic of }fX

The graded vector space }fX has additional gradings from the complexity-
grading, and from the number of ε and ω-legs. We can hence define the tri-
graded S-equivariant Euler characteristic

χu,v,wp}fXq P !rru, v, wss,

with u, v, w being the formal variables tracking the complexity and the num-
ber of ε- and ω-legs, respectively. In other words, the Euler characteristic of
the subcomplex with k ε- and l ω-legs and complexity m is the coefficient of
umvkwl in the formal power series. Then we have:

Proposition 4.2. The equivariant Euler characteristic of }fX is

χu,v,wp}fXq “
#

"

U"

¨

˝1
$

ÿ

d|"
µp${dqppd ` vd ` wdq, u

˛

‚

with the function U" defined in Proposition 4.1 above.

Proof. We note that

χv,wp∆0 b Com1 b Com1q “ exp
˜

ÿ

"ě1

1
$

pq" ` v" ` w"qp"
¸

P !p,qrrv, wss.

Hence
χv,wpp∆0 b Com1 b Com1q ˝ Lie0q

“ exp
˜

ÿ

"ě1

ÿ

kě1

µpkq
$k

pq" ` v" ` w"q logp1 ` pk"q
¸

“ exp

¨

˝
ÿ

"ě1

1
$

ÿ

d|"
µp${dqpqd ` vd ` wdq logp1 ` p"q

˛

‚

“
#

"ě1
p1 ` p"q

1
"

ř
d|" µp"{dqpqd`vd`wdq.

For the author's personal use only.

For the author's personal use only.



Weight two Euler characteristic of moduli of curves 2441

We hence compute, using Lemma 3.7 and Proposition 3.2:

χu,v,wp}fXq
“ χu,wpp∆0 b Com1 b Com1q bS |fGq
“ χu,v,wpp∆0 b Com1 b Com1q ˝ Lie0q bS BVred

0 q

“ xχv,wp∆0 b Com1 b Com1q ˝ χpLie0qq,χupBVred
0 qy

“
#

"

p1 ` Baq 1
"

ř
d|" µp"{dqpqd`vd`wdqe´ap1 ` u"p1 ´ u"q$aq 1

"

ř
d|" µp"{dq 1

ud |a“0

“
#

"

U"

¨

˝1
$

ÿ

d|"
µp${dqpqd ` vd ` wdq, u

˛

‚ .

In the first three steps, we use Proposition 3.2, (15), and (14), respectively.
In the last step, we use the function U" of Proposition 4.1. Note that here we
had to work with bisymmetric sequences and hence two sets of power sums
pj , qj , so that in the final expression the formula is in !q “ Qrrq1, q2, . . . ss
instead of !. But the trivial replacement qd Ñ pd yields the proposition.

We note that the part of }fX spanned by graphs without any ε- or ω-legs
agrees with |fG. Hence we obtain, by setting v “ w “ 0 in the formula of
Proposition 4.2:
Corollary 4.3.

χup |fGq “ χu,v,wp}fXqpv “ w “ 0q “
#

"

U"

¨

˝1
$

ÿ

d|"
µp${dqpd, u

˛

‚ .

We note that this corollary has been found earlier in [21].

4.3. Euler characteristic of the connected part with two ω-legs

Next we reduce the computation of the Euler characteristic of X̌g,n to that of
}fXg,n. As a first step we defined the sub-symmetric sequence }fXconn Ă }fX
generated by graphs in which each connected component has at least one ε-
or ω-leg. We then have

}fX “ }fXconn b |fG.
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Hence, by Corollary 4.3, the Euler characteristic of }fXconn is

χu,v,wp}fXconnq “ χu,v,wp}fXq
χu,v,wp}fXqpv “ w “ 0q

“
#

"

U"p1
"

ř
d|" µp${dqppd ` vd ` wdq, uq
U"p1

"

ř
d|" µp${dqpd, uq

Furthermore, we shall only be interested in the subcomplexes

}fXconn,j Ă }fXconn

spanned by graphs with j “ 0, 1, 2 ω-legs, and we do not want to fix the
number of ε-legs since the latter is not invariant under the differential. The
relevant Euler characteristic is computed by the coefficient of wj , evaluated
at v “ 1. For example, for j “ 0 we set w “ 0 to obtain

χup}fXconn,0q “ χu,v,wp}fXconnqpv “ 1, w “ 0q

“
#

"ě1

U"p1
"

ř
d|" µp${dqppd ` 1q, uq

U"p1
"

ř
d|" µp${dqpd, uq

“ U1pp1 ` 1, uq
U1pp1, uq “ up1 ´ uqY ´

1 ,

where we used that
ř

d|" µp${dq “ δ1", equation (31), and the abbreviation

Y ˘
" :“

ÿ

d|"
µp${dqpu´d ˘ pdqq.

Next, for j “ 1:

χup}fXconn,1q “ Bw |w“0 χu,v,wp}fXconnqpv “ 1q

“ BXU1pp1 ` 1, uq
U1pp1, uq ` U1pp1 ` 1, uq

U1pp1, uq

˜
ÿ

"ě2

µp$q
$

BXU"p1
"

ř
d|" µp${dqpd, uq

U"p1
"

ř
d|" µp${dqpd, uq

¸

“ up1 ´ uqY ´
1

˜

´ 1
Y1

`
ÿ

"ě1

µp$q
$

`
logp$u"p1 ´ u"qY"q ` ψ0p´Y ´

" q
˘
¸

To obtain the second line, we used again that
ř

d|" µp${dq “ δ1". The first term
in the second line is the evaluated using (35), while the other derivatives are
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computed using (34). Factoring out the common factor up1 ´ uqY ´
1 then

produces the third line. Similarly, one computes the second derivative.

χup}fXconn,2q “ 1
2B2

w |w“0 χu,v,wp}fXconnqpv “ 1q

“ 1
2

B2
XU1pp1 ` 1, uq
U1pp1, uq ` 1

2
U1pp1 ` 1, uq
U1pp1, uq

ˆ
˜

ÿ

"ě2

˜
µp$q
$

¸2 B2
XU"p1

"

ř
d|" µp${dqpd, uq

U"p1
"

ř
d|" µp${dqpd, uq

¸

` U1pp1 ` 1, uq
U1pp1, uq

˜
ÿ

"ě2
2|"

µp${2q
$

BXU"p1
"

ř
d|" µp${dqpd, uq

U"p1
"

ř
d|" µp${dqpd, uq

¸

` BXU1pp1 ` 1, uq
U1pp1, uq

˜
ÿ

"ě2

µp$q
$

BXU"p1
"

ř
d|" µp${dqpd, uq

U"p1
"

ř
d|" µp${dqpd, uq

¸

` U1pp1 ` 1, uq
U1pp1, uq

ÿ

"ą"1ě2

˜
µp$q
$

BXU"p1
"

ř
d|" µp${dqpd, uq

U"p1
"

ř
d|" µp${dqpd, uq

¸

ˆ
˜
µp$1q
$1

BXU"1 p 1
"1

ř
d|"1 µp$1{dqpd, uq

U"1 p 1
"1

ř
d|"1 µp$1{dqpd, uq

¸

“ 1
2up1 ´ uqY ´

1

«˜

´ 1
Y ´

1
`

ÿ

"ě1

µp$q
$

˜

logp$u"p1 ´ u"qY ´
" q ` ψ0p´Y ´

" q
¸¸2

`
ÿ

"ě1

µp$q
$

˜
logp2$u2"p1 ´ u2"qY ´

2" q ` ψ0p´Y ´
2" q

¸

´ 1
pY ´

1 q2 `
ÿ

"ě1

µp$q2

$2
ψ1p´Y ´

" q
ff

To obtain the final equality we evaluated all terms using (31) and (34)-(37),
and simplified the resulting expression. The steps of the final simplification
are elementary and are omitted here, only the end result is shown.

4.4. Euler characteristic of X̌

Here, we show:
Proposition 4.4.

χupX̌q “ χup}fXconn,2q ` uχup}fXconn,1q ` pu ` u2qχup}fXconn,0q

For the author's personal use only.

For the author's personal use only.



2444 Sam Payne and Thomas Willwacher

Proof. The symmetric sequence X̌ differs from }fXconn,2 only in so far that
generators in X̌ are not allowed to contain pε,ωq- or pω,ωq-edges, while we
have not imposed such a condition in }fXconn,2. To show the proposition we
hence have to correct for those graphs.

A general graph in }fXconn,2 with pω,ωq-edge has the form

ω ω Γ0 ,

with the right-hand part Γ0 a general graph in }fXconn,0. Hence to account
for those graphs we have to subtract the expression ´uχup}fXconn,0q from
χup}fXconn,2q, with the factor ´u accounting for the degree and genus shift
introduced by the pω,ωq-edge.

Similarly, a graph in }fXconn,2 with pε,ωq-edge has the form

ε ω Γ1 ,

with Γ1 P }fXconn,1, except for the caveat that Γ1 must not contain an pε,ωq-
edge itself. But the graphs in }fXconn,1 with pε,ωq-edge themselves have the
form

ε ω Γ0 ,

with Γ0 again a general graph in }fXconn,0. Adding and subtracting the cor-
responding Euler characteristics one has shown the Proposition.

4.5. Proof of Theorem 1.1

According to (28) the complexes X̌g,n are obtained from Xg,n by a degree
shift and multiplication by the sign representation sgnn. Hence we find that

χupXq “ ´χupX̌qp´qn Ð qnq,

with the notation meaning that each occurrence of qn should be replaced by
´qn on the right-hand side. But using Proposition 4.4 and the formulas of
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§4.3, we hence see that

χupXq “ upu ´ 1qY `
1

2

«
ÿ

"ě1

µp$q
$

plogp´2$u2"p1 ´ u2"qY `
2" q ` ψ0p´Y `

2" qq

`
˜

´ 1
Y `

1
`

ÿ

"ě1

µp$q
$

plogp´$u"p1 ´ u"qY `
" q ` ψ0p´Y `

" qq
¸2

´ 1
pY `

1 q2 `
ÿ

"ě1

µp$q2

$2
ψ1p´Y `

" q

` 2u
˜

´ 1
Y `

1
`

ÿ

"ě1

µp$q
$

plogp´$u"p1 ´ u"qY `
" q ` ψ0p´Y `

" qq
¸ff

` u2pu2 ´ 1qY `
1 .

This expression can be simplified further. First, one has the following
equality of formal power series

ÿ

"ě1

µp$q
$

logp1 ´ x"q “ ´
ÿ

",ně1

µp$q
$

1
n
xn" “ ´

ÿ

Ně1

¨

˝
ÿ

d|N
µpdq

˛

‚xN “ ´x.

Using this formula three times to absorb the factors p1 ´ u"q and p1 ´ u2"q
inside the logarithms we obtain

χupXq “ upu ´ 1qY `
1

2

«
ÿ

"ě1

µp$q
$

plogp´2$u2"Y `
2" q ` ψ0p´Y `

2" qq

`
˜

´ 1
Y `

1
`

ÿ

"ě1

µp$q
$

plogp´$u"Y `
" q ` ψ0p´Y `

" qq
¸2

´ u2 ` u2 ´ 2u2 ´ 1
pY `

1 q2 `
ÿ

"ě1

µp$q2

$2
ψ1p´Y `

" q
ff

` u2pu2 ´ 1qY `
1

“ upu ´ 1qY `
1

2

«
ÿ

"ě1

µp$q
$

plogp´2$u2"Y `
2" q ` ψ0p´Y `

2" qq

`
˜

´ 1
Y `

1
`

ÿ

"ě1

µp$q
l

plogp´$u"Y `
" q ` ψ0p´Y `

" qq
¸2

´ 1
pY `

1 q2 `
ÿ

"ě1

µp$q2

$2
ψ1p´Y `

" q
ff

` u2pu ´ 1qY `
1 .
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Proof of Theorem 1.1. To show Theorem 1.1 we just use the above formula
for χupXq, with the following modifications. First, to obtain the generating
function in terms of genera instead of complexity one has to perform the
replacements

u Ñ ! and p" Ñ !´"p", or equivalently, u Ñ ! and Y `
" Ñ Z".(38)

Second, one needs to mind that the sum (1) runs only over stable indices
2g`n ě 3, while X0,2 – Qr´1s is nontrivial by our definition. Hence we need
to subtract a term

(39) ´1
2pp2

1 ` p2q “ ´1
2pP 2

1 ` P2q ´ P1

from the Euler characteristic to account for this difference.
Finally, by Corollary 3.6 there is a further correction !p1 arising from the

contribution of g “ n “ 1. Thus, we start from the formula for χupXq above,
then apply the substitution rule (38), add !p1 and subtract (39) to finally
obtain the formula of Theorem 1.1.

5. Discussion of terms in the Euler characteristic formula

The literature contains two complementary toolsets for computing dimensions
(Hilbert series) and Euler characteristics of graph complexes. The first is the
calculus of symmetric functions, typically paired with operadic methods, as in
[9, 21] and this paper. The second is combinatorial counting weighted by au-
tomorphisms, along the lines of the Pólya enumeration theorem, as in [3, 24].
When the first toolset is applicable, it typically yields relatively economical
proofs and closed expressions for the generating functions. However, it also
tends to obfuscate natural correspondences between terms in the resulting
formulas and subsets of generators for the graph complex. In this section,
we shall hence briefly discuss how the individual terms in the formulas of
Theorem 1.1 and Corollary 1.2 relate to graph generators for Xg,n.

First recall from [19, §6.1] that Xg,n is quasi-isomorphic to its subcomplex
X‹

g,n, generated by graphs Γ that are disjoint unions of one or two connected
components with ω-decorations together with one of the following:

pempty graphq, ε ε , ε j ,
ε j

ε ε
.
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The contribution of these four graphs to the generating function of the Euler
characteristic is precisely

p1 ´ !qP1,

which explains the corresponding factor in (4).
Now, consider the disjoint union of the connected components that con-

tain ω-decorations. In genus 0, the only possible graphs are pairs of two trees,
as shown.

ω

1 3
2

ω

4 5

The Euler characteristic of the graph complex of rooted trees, like that of
Lie0, is equal to

ř
"ě1

µp"q
" logP". Since we have two trees in the graph, we

have to take a symmetric product of two such rooted tree complexes. On the
level of Euler characteristics taking the symmetric product translates to the
plethysm with the symmetric function h2 “ 1

2pp2
1 ` p2q, and

h2 ˝
˜

ÿ

"ě1

µp$q
$

logP"

¸
“ 1

2

»

–
˜

ÿ

"ě1

µp$q
$

logP"

¸2

`
ÿ

"ě1

µp$q
$

logP2"

fi

fl ,

explaining the corresponding terms in the genus 0 and 1 Euler characteristics.
In genus g ě 2, there are still some graphs with one of the two ω-legs

being the root of a tree. The corresponding contributions to the Euler char-
acteristic hence have a factor

ř
"ě1

µp"q
" logP" as well from the tree part, which

is multiplied by the contribution from the non-tree part.
Let us next turn to the remaining terms in the Euler characteristic for-

mulas, coming from the non-tree connected components in graphs. The char-
acteristic feature of those terms is that they are finite linear combinations of
monomials in the Pj and P´1

j . This can be seen directly from using graph
counting techniques to compute the Euler characteristic, using the same strat-
egy of proof as in [3].

Consider an arbitrary graph Γ in Xg,n. We call the core , “ rΓs of Γ the
graph obtained by the following algorithm:

• Remove all numbered external vertices and their adjacent edges.
• Recursively remove all univalent internal vertices thus created, with

their adjacent edges.
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• Remove the bivalent vertices thus produced and merge the two edges
adjacent to them.

Let Xγ
g,n Ă Xg,n be the subcomplex spanned by graphs with core ,, and

set
zγ :“

ÿ

ně0
χSpXγ

g,nq.

Then we have
ř

ně0 χ
SpXg,nq “ ř

γ zγ with the first sum being over all (iso-
morphism classes of) genus g cores ,. Assume for simplicity that the core ,
only has connected components of genera ě 1. Then one may show as in [3,
Proposition 3.2] that

(40) zγ “ p´1qepγq`1

| Autp,q|
ÿ

τPAutpγq
sgnpτEqP

ipτV qP ipτEq

P ipτHq

with ep,q the number of structural edges of ,, τV , τE , and τH the permutations
on the sets of vertices, edges and half-edges of ,, with ipσq “ pi1pσq, . . . q the
cycle type of a permutation σ, and with the multi-index notation

P ipσq “ P i1pσq
1 P i2pσq

2 ¨ ¨ ¨ P !.

Since in every genus there are only finitely many possible core graphs con-
tributing, the Euler characteristic in this genus must hence be a finite linear
combination of such Laurent monomials in the Pi, of the form given by (40).

Next suppose that the core consists of a single isolated external vertex
decorated by ω, and another higher genus component. The graphs with this
core are unions of trees with ω-labelled root and some other graph with only
one ω-decoration.

ω

1 3
2

ω

4

These graphs then contribute summands of the form
˜

ÿ

"ě1

µp$q
$

logP"

¸
fpP1, P2, . . . q,

with f some finite sum of Laurent monomials of the special form given by (40).
This then explains the structure of the terms appearing in Corollary 1.2.
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