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The weight two compactly supported Euler
characteristic of moduli spaces of curves
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Dedicated to Enrico Arbarello with gratitude and admiration

Abstract: We derive a formula for the generating function for the
weight two compactly supported S,-equivariant Euler characteris-
tics of the moduli spaces of curves M, ,, using graph complexes
and calculations inspired by operadic methods.

1. Introduction

The rational cohomology of moduli spaces of curves is of central interest
not only in algebraic geometry but also in topology, geometric group theory,
and mathematical physics. In the stable range, the cohomology is completely
understood, thanks to the celebrated proof of Mumford’s conjecture via sta-
ble homotopy theory [17]. Outside of the stable range, even the most basic
properties, such as the parameters k, g, n for which the rational cohomology
H*(My,,,) is zero or non-zero, have remained largely mysterious [18, §9].
Algebraic geometry techniques have recently yielded new nonvanishing
results and lower bounds on dimensions of cohomology groups in the unsta-
ble range [4, 5, 19]. The algebraic structure of M, ,, as a Deligne-Mumford
stack endows its rational cohomology with a mixed Hodge structure. Non-
vanishing results and lower bounds on dimensions of cohomology groups are
then obtained by studying the associated graded of the weight filtration, one
weight at a time. The first two nontrivial graded pieces of the weight fil-
tration may be expressed in terms of the cohomology of commutative graph
complexes. The weight zero cohomology is naturally identified with the co-
homology of the original commutative graph complex studied by Kontsevich
[13]. In weight two, which is the focus of the present paper, one finds more
general graph complexes closely related to those appearing in recent work on
the embedding calculus [6]. The identification of weight two cohomology with

Received January 17, 2022.

2415


https://www.intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.php

2416 Sam Payne and Thomas Willwacher

the cohomology of these graph complexes relies fundamentally on the results
and methods of Arbarello and Cornalba [1].

The cohomology groups of the graph complexes that arise in this context
are far from fully understood. In such cases where cohomology groups can-
not be computed directly, Euler characteristics often yield valuable insights.
For instance, Harer and Zagier famously computed the Euler characteristics
of Mg and deduced that these moduli spaces have cohomology groups that
grow superexponentially in both even and odd degrees [11]. This is especially
striking since the stable cohomology grows subexponentially and, at the time
of their writing and for nearly twenty years after, there were no known exam-
ples where H*(M,) is nonzero for odd k. The first such example was H°(M)
[22]. All other known examples are proved using the associated graded of the
weight filtration and graph complex techniques; see [4, 19].

Even if one is primarily interested in the cohomology of My, for inductive
arguments using the boundary structure of the moduli space of stable curves
as in [1, 9], it is essential to understand the cohomology of moduli spaces
of curves with marked points M, ,, and to understand these not only as
vector spaces but as representations of the symmetric group S,, with the
action induced by permuting marked points. Thus, one is naturally led to
investigate the S, -equivariant Euler characteristic of the associated graded of
the weight filtration on the rational cohomology of M, ,,. By Poincaré¢ duality
[20, Theorem 6.3], it is equivalent to study the associated graded of the weight
filtration on compactly supported cohomology.

A closed formula for the weight 0 compactly supported Euler character-
istic of moduli spaces of curves is given in [3], and the weight 1 compactly
supported cohomology vanishes. Our main result is a formula for the gen-
erating function for the S,-equivariant Euler characteristic of the weight 2
compactly supported cohomology of M, .

1.1. Statement of main result

Let V) denote the irreducible representation of the symmetric group corre-
sponding to a Young diagram \. For any graded Q-vector space W = @, W*
with finite dimensional graded pieces and an action of the symmetric group
S,, we consider the decomposition into isotypical components

Wh = PVieQmr.
A
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Then the equivariant Euler characteristic of W is defined to be the symmetric
function
W) =D (= 1)Fnaesa,
)

with sy the Schur function corresponding to A.
We are particularly interested in the associated graded of the weight fil-
tration

gr; HY (Mg,n) = W;H_ (Mg,n)/Wi—ng (Mgm)7

which carries a natural S,-action induced by permuting the marked points.
Let

X?(Mg,n) = XS(grz‘ H? (Mg,n))

We will give a formula for the generating function for the weight 2 equivariant
Euler characteristics

(1) w2 = Z X%(Mg,n)hg

g,n
2g+n=3

in the ring of formal symmetric power series A = Q[[p1,p2, ... ]]. Here py =
o+ 2f + 2§ + .-+ is the degree ¢ power sum. Let P, := 1 + p; be the
inhomogeneous power sum. We define

(2) : €Zu /) =

dje

where p is the Mébius function and £ is a formal variable that will count the
genus, as well as

B )=y

Note that 1g(z) +log z and 11 (z) are the asymptotic expansions as z — o0 of
the digamma and trigamma function respectively. We identify the logarithm
with its power series expansion

0
log(l—2) = Z

Theorem 1.1. The generating function for S-equivariant weight 2 compactly
supported Fuler characteristics of moduli spaces of curves is

o0
and Q/Jl Z ]-‘rl
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2
sz%K B (log(en 22) + (- )))

=1

+ Z <1 0g(20h* Zay) + 1o (— Z2IZ)>

(1) 1
0) h?
B ez

1
—h+(h2—1)P1+§(P12+P2).

Let us discuss the convergence and structure of the formula. First note
that

1 (R (R ,
= o = — > (= X)) = O(R)
Zg Pg(l + Xg) Pg j;)
with
f—d
P
(5) Xe:= > u(t/d) WP by

dje
d#¢L

We can hence expand the terms within the square brackets in (4) as power
series in h. First,

(6)
) - ﬂ i 0 0 % k ghé y
oB(th 20) + vu(~22) =106 1= 33 X kZlZOk(j)(Pe) o
tN"
(7) kZUZ;)Bk 1( )(—) X},

Note in particular that, with the exception of the term log P, the expres-
sions (6) and (7) are (infinite) linear combinations of Laurent monomials of
the form

d;|¢, forl1<i<s,
such that by +---+bs<c
a+bidy + -+ bgds = Le.

b b bs
(8) K Pd11 sz2 o Pds
Py

In particular, if we say that P; has degree d, then the coefficient of A% for
a > 0 in each of the expressions (6) and (7) is a finite linear combination of
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Laurent monomials of degree —a in the inhomogeneous power sum symmetric
functions, each of the special form prescribed by (8). Inserting (6) and (7)
into (4) we find

(9)

=1 =1 ¢
(—1) S & By [~k [ 20h*
x | — X}, - = . X3

By expanding the square and collecting terms, we arrive at the following
equivalent version of Theorem 1.1.

Corollary 1.2. Let A, and Cy be the coefficients of h9 in the following power
series, with Xy as in (5):

(10)

ZAghg :_p1<_£_|_ M

9 LRI~

k
[ =Yl xd RN =) x7) )
Sy B (_L p(o)
gl =
g 2 Pzt
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=1 =
k
L2 () )
- = o | A
e LAY Do
2

Then Ay is a finite linear combination of monomials

d;|, for1l<i<
such that by + -+ bs <c+1
g+bidy + -+ bsds = le+ 1.

b1 pba bs
P Fay - Fay
C
PZ

Similarly, Cy is a finite linear combinations of monomials

d;|ty or d; ]627 for 1 <i<s,
such that b+ +bs<ci+co+ 1
g+bld1-‘r -+ byd, —61614-@2624-1.

b1 pba b
Phph ... ph
C1 C2
le Pé2

Furthermore, the equivariant Euler characteristics x5(Mge) = . X5(Mgn)
are expressed as follows:

S 1 M M 1 2
o) = — E log P, E 1 Pyl|-P+—+-—=
X2(Mo.e) o <£>1 0g ) + & 0g oy 1+ 5 + 2

P
X5 (M) = + 21 <Z A0 logP> + Z 20 longg

=1 =1 ]
14
+ (2 Mlog&) A +Cy—1
J4
=1
0)
( %long> AQ—A1)+CQ—C1+P1
=1
<Z MT long> A — Ag—l) + Cg — Cg_1 forg =3
=1

We remark that X; = 0, and hence the terms involving positive powers
of X1 can be dropped from the sums above. Furthermore, the individual
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terms appearing in the formulas for the Euler characteristics have natural
interpretations in terms of graphs. See §5, for details. The first few Laurent
polynomials A, and C, are:

P! - P, P? + Py 1 P} P P?
Alz— s 0127, A2: ~ T2 — = T,
2P, 2P, 12P, 4P 2P, 3P
o L P PP P PP PP
T 8P 8PZ 4Py’ ST 6Py " 2P T 2Py 6B
1 Pt P2 5 P P} PP
Cy= oo b oe + L TRl B LS
24P ' 24P} ' 8P 24P, 3P; GP,P; 6P
o1 PP PP P PP
YT 120P3 8P} T 2P3 6P} 6P2 5P | 6P
1 Py 5P TP 1 P} 2
Co=— 3T 1T 3 2~ - 2 9p,
288P3 ' 96P} ' 24P} 16P} 24PP, 18P 9P
p} 5P2 PP} P PP, Py PPy

+

12P2P,  12P,P,  8PZ 2P, 6B, 128,  12PB;’

PS pt PP PE PP P PP
Ag=——Lop 1“1 1 Sl 2
10P; ' 2Pf 6P 2P 3P} 2P ' 10Py

o P Pp Pl 1P TP P}
5T T240P;  18P3P;  12P,P? | 48P} ' 24PIP;  10P,P
PP3  11P? 5P 53P2 P P

" 24PIR, T 36R, T 12PI T T2F  iBP, | 5P

BP PP P ] 1 P
12P,P5  10Pyy 12P ' 24P2  24PsP,  T2P:P,
1 1

© 240P,PE SOPF

1.2. Relations to the topological and weight zero Euler
characteristics

For fixed genus g, by work of Gorsky, the generating function > x*(M,,,) is
a finite sum of Laurent monomials of degree 2—2¢ in the inhomogeneous power
sum symmetric functions Py, each of whose denominators is a pure power Py,
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satisfying conditions analogous to (8) [10]. The coefficients involve certain
orbifold Euler characteristics x”"?(Mp,s), and these have natural expressions
in terms of Bernoulli numbers, by the work of Harer and Zagier [11].

Gorsky’s method of proof is beautiful and elementary: one stratifies M,
according to the topological type of the action of the automorphism group
and considers the action of automorphisms on the configuration spaces of n
points. Each topological type of a curve with an automorphism contributes
to precisely one monomial of the special form described above. The final
formula is then deduced using the basic properties of compactly supported
topological Euler characteristic, namely that it is additive for stratifications
and multiplicative for fibrations.

Weight graded Euler characteristics are more subtle than topological Eu-
ler characteristics. In particular, although weight graded Euler characteristics
of algebraic varieties and Deligne-Mumford stacks are additive with respect to
stratifications, they are not multiplicative with respect to algebraic fibrations
(flat families), even when the fibers are smooth and proper. Nevertheless, all
of the essential ideas in Gorsky’s computation can be adapted to compute
the S,-equivariant weight zero Euler characteristic of M, ,,, using the inter-
pretation of weight zero cohomology as the singular cohomology of a moduli
space of stable tropical curves [3]. As a result, the weight zero Euler char-
acteristic has a structure closely analogous to that of Gorsky’s formula: for
fixed genus, the generating function is a finite sum of monomials of degree
1— g in the inhomogeneous power sum symmetric functions P, each of whose
denominators is a pure power, satisfying conditions analogous to (8). Roughly
speaking, each pair of a graph with an automorphism contributes to precisely
one monomial of the prescribed special form; see [3, Proposition 3.2]. In the
final formula, the coefficients are given by certain orbifold Euler characteris-
tics of spaces of graphs, which have natural expressions in terms of Bernoulli
numbers; see [3, Lemma 7.4], which is proved by induction starting from the
n = 0 case, due to Kontsevich [7, 13].

We do not have such a topological interpretation for weight two cohomol-
ogy of moduli spaces of curves, and the weight two Euler characteristic is of
a somewhat different form. In particular, for fixed genus g > 2, the gener-
ating function Y y3(M,,) is not a finite sum of Laurent monomials in the
inhomogeneous power sum symmetric functions. Lacking a topological inter-
pretation for the weight two Euler characteristic, we express it as the Euler
characteristic of a complex of decorated graphs, and use basic properties of
symmetric sequences and an operadic identity (Proposition 3.2) to produce
the formula for the all genus generating function stated as Theorem 1.1. Spe-
cializing to a fixed genus, we obtain an expression involving logarithmic terms



Weight two Euler characteristic of moduli of curves 2423

as well as Laurent monomials in the inhomogeneous power sum symmetric
functions, of two different degrees, with denominators that are products of
either one or two pure powers (Corollary 1.2).

1.3. Outline of proof

To show Theorem 1.1 we proceed in three steps. First, we show a general
formula, see Proposition 3.2, computing the Euler characteristic of graph
complexes spanned by graphs with one special vertex, decorated by an arbi-
trary symmetric sequence. Next, in Sections 3.5-3.6, we recall a recent result
of the authors, identifying the cohomology gry HS(M,,) with the cohomol-
ogy of a certain graph complex X ,,, spanned by graphs with one suitably
decorated special vertex. Finally, in Section 4 we apply Proposition 3.2 to (a
close variant of) the graph complex X, ,. After some algebraic rewriting and
simplifications one then arrives at the formula of Theorem 1.1.

1.4. Numerical computations
The generating function in Theorem 1.1 can be implemented to compute the

equivariant Euler characteristic of gry H? (M) for small values of g and n,
as shown in Figure 1.

00 0 0 0 4 —s3

1[0 51 0 0 —So11 5311 + 532 + Sa1

2 0 0 0 —891 — 53 Sy —Sg111 — S221 — S311 + 2541 + 255

3]0 | s S+ 52 25, D50y — 531 — 25, 350111 — Sa21 — 68311 + 2853 + 285

4 10 0 25111 351111 + 5211 — 3599 — 4831 — 354 5511111 + 282111 + 25391 — 68311 + $35 — 841 + 355

5] 0 51 511+ 355 5so1 + 253 51111 + 55911 — 453 — 954 2511111 + 105511y + Ulsgy — 1dsy, — 8ss

6 | 0 | =35, | —dsy; — s, 2511, + 853 T51111 + 85211 — 6535 + 1085, + 35, 6511111 + 218111 — A8991 + 15531, — 26535 — 2254, — 1955
710 ] s 251, 5111 + 4531 + 355 | —1551111 + (5311 + 15533 + 28531 + 955 25511111 + S2111 — 15201 + 355311 — 22537 — 26541 — 3755

B ED 8511 — 95, 65111 — 18591 + 453 | —851111 — 28551, — 1059y + 2dsy, + 425, 19511111 — 195501 + OLsgy; + 22535 + 8754, + 2085

9 | 4| 9, 511 + 52 25111 + 591 — 1753 | —Msy11; — Odsyyy + 1Tsgy — 17531 + 554 | —71s11111 — 8085111 + 55591 + 110551, + 19355, + 19354, + 6955
T0 | —4 | —9s, | —6s1, — 105, | 1251, — 4655, — 2955 | 385,111 — 08521, — 35502 — 79531 + 285; | 3511111 — 22759111 — 1555001 — 234531, + 50555 + 1965, + 20055

Figure 1: The equivariant Euler characteristic of gry H?(Myg,) for g < 10
and n < 5, computed using Mathematica and Sage from Theorem 1.1 and
expressed in terms of Schur functions.

Specializing to n = 0, and writing out the terms for g < 50, we find that
Zg X2(Mg)hd is equal to:

— 18+ 4h% — 4n™0 + 4pMt — 7R 4 8R! — 16RM + 10 — 10416
+ 28717 + 17R'8 + 94110 — 12170 — 382K%! — 196K2% + 2181K%
— 4304k — 43135k%° + 502811% + 737650%%" — 676300k

— 136701251 + 1359389873 4 30117677673 — 303061590432
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— 7579395579R33 + T577048267h3 + 2152768161934

— 215186827379h%0 — 6867916230403437 + 68676425735197

+ 24453489248692413° — 2445250531946397

— 9660791088309245h" + 96603935011463097*2 + 42131684770011302743
— 421303860389448419K™ — 20188618782635720913%*

+ 20188137225679260098%%° + 105843511975085922398947

— 1058415071189257113479R* — 604782354019848333581027:*°
+60477318015911247931156A™ + O (k) .

For n = 0 and ¢g < 200, we display |x2(My,)| on a logarithmic scale, along
with a plot of the sign of x2(M,), which seems to be eventually periodic. See
Figure 2.

500 -
400 -

0.5+
300 -

200 - ‘
100 -05¢

50 100 150 200

|

Figure 2: Plots of log(1 + |x2(M,)|) and the sign of x2(M,) for g < 200, on
the left and right, respectively.

Conjecture 1.3. For g > 23, the sign of x2(My) is —1 for g = 0,1 (mod 4)
and +1 for g =2,3 (mod 4).

2. Preliminaries
2.1. Notation and conventions

We work over the rational numbers Q. All vector spaces are understood to be
Q-vector spaces, and likewise all homology and cohomology groups are taken
with Q-coefficients. If V' is a vector space with the action of a finite group
G, we identify the invariant subspace V¢ with the coinvariant space Vg, by
averaging over the group action. The phrase differential graded is abbreviated
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dg. For a dg vector space V and an integer k, let V[k] be the graded vector
space obtained by shifting all degrees by k, i.e., the degree j part of V' is the
degree j — k part of V[k].

2.2. Symmetric sequences and products

A symmetric sequence is a collection C = {C(r)},>0 of S,-modules in dg vector
spaces. Similarly, a bisymmetric sequence is a collection B = {B(r, $)},s>0 of
S, x Sg-modules. We say that C(r) is the part of C of arity r, and B(r,s) is
the part of B of arity (r, s).

The category of symmetric sequences Seq has several monoidal products.
First, for two symmetric sequences C,D we have the symmetric sequence
C ® D, given by

(C®D)(r) =C(r)®D(r),

with the diagonal S,-action. Second, we have the symmetric sequence C [X] D
given by

(CHD)(r) = @jrh=rndg 5, C(j) @ D(k).

Let us note in particular that the symmetric sequence

Y —Cx---®C
k

carries an action of Sy, by permuting the factors. Thus, {(C®¥)(r)}r=0,>0 is
a bisymmetric sequence.

We then have a third monoidal product on symmetric sequences, the
plethysm product D o C, given by

(Do C)(r) = ®r=0D(k) ®s, C*(r).

The category of symmetric sequences Seq is monoidal with respect to the
plethysm product, with unit 1 given by

1(T):{@ ifr =1,

0 otherwise.

Finally, given C and D symmetric sequences of dg vector spaces we define
the dg vector space

CRsD := (—DC(T) ®s, D(r).

r=0
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2.3. Equivariant Euler characteristics

For F' an endomorphism of a finite dimensional graded vector space V = @;V;,
we denote by STr(F') the super-trace of F', that is, the alternating sum

STr(F) = Z(—1)iTr(F|%).

For o € S, a permutation we denote by i(c) = (i1, 142, ...) its cycle type, with
i the number of cycles of length k. For p a graded S,-representation on V/,
we denote the S,-equivariant Euler characteristic in A = Q[[p1,p2,...]] by

1
(V) == ), STe(p(0))p',
o€ES,
using the multi-index notation pi?) = p“(g) 2(0) .. This equivariant Euler
characteristic is actually a polynomial in p1, ps,...; we define it as a power

series in view of the case of symmetric sequences that we consider below. If
V has an additional (non-negative) grading with grading generator G (i.e.,
where G is equal to k times the identity on the subspace of degree k) we use
the notation

(11) Z STr(uCp(0))p'@) € A[[u]].

: o€S,

We freely generalize this notation to multiple gradings and other variables
counting the multidegree. For example, if V has an additional Z?-grading,
with grading generators G, G, then we write

=5 35 STHu 0 %p(0))p € Alfu, vl

" o€S,

and similarly for a Z3-grading.
For A a symmetric sequence such that A(r) is finite dimensional for each

T, we write
S(A) = Z XS (A(r

r=0

and similarly for y“(.A), when A has an additional grading.
The operations on symmetric sequences discussed in §2.2 induce opera-
tions on symmetric functions. First,

XF(AR B) = x*(A)x*(B).
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Second, there is a plethysm product o on symmetric functions o : AQA — A
such that

X*(AoB) = x*(A) o x(B).
Concretely, the plethysm product on symmetric functions may be computed
by the following rules:

(fi+fa)og=fiog+ faoyg (fife)og=(fiog)(faoyg)

12
( ) pnof:f(pnap2nap3na-'-) forf:f(plap27p3a---)

In the presence of an additional grading, encoded by a variable u as in (11),
the last rule is replaced by

(13) pnof = f(unvpnvp2nvp3n7'”) for f = f(uvplap%p?n'”)

For more details we refer to [16] or the concise introduction to symmetric
functions in [9].

On the subspace of A consisting of symmetric polynomials (finite series),
there is an inner product given by

P p) = 0y H/{Zkzk! = H — | Kpl
k Opk -

k

(s)s)

Here, i = (i1,...) and j = (ji,...) are multi-indices, p := p%'p% ..., and 0ij
is the Kronecker symbol. This inner product has the property that for A, B

finite dimensional symmetric sequences

(15) X (A®s B) = (°(A), x*(B)).

2.4. Examples of symmetric sequences and their equivariant Euler
characteristics

For later use we shall recall the Euler characteristics of some symmetric se-
quences from the literature.

The commutative operad is a simple and natural symmetric sequence,
which we consider in two variations:

Q forr=1,

C =Q forr=>0, C = ,
omi(r) =Q forr om(r) {0 PO
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Here, QQ denotes the trivial S,-representation. The corresponding equivariant
Euler characteristics are [8, §5.1]:

(16) x°(Comy) = exp (Z %) x°(Com) = exp (Z %) — 1.

¢ L

The Lie operad is the symmetric sequence defined such that Lie(r) is the
subspace of the free Lie algebra Freelie(z1,...,z,) in r letters consisting of
linear combinations of Lie words in which each z; occurs exactly once. We
shall also need a degree shifted version Liey defined in the same way, except
that the generators x; are considered of cohomological degree one, and one
has an overall degree shift by —1, i.e.,

Lieo(r) = Lie(r) ® sgn,.[1 — r].

The corresponding equivariant Euler characteristics are

_ 14 _ l
a7 C(tie) = =Y M0t —p0, w¥(Lien) = 3 A bog(1 + o)
l l
=1 =1
See [8, Proposition 5.3 and Lemma 5.4].

The Poisson operad is the symmetric sequence Pois = Com o Lie. The
elements of Pois(r) can be understood as linear combinations of Poisson words
in letters x1,...,x, such that each letter occurs exactly once. We shall also
use a degree shifted version

Poisy = Com o Lieg .

Both Pois and Poisg carry a complezity grading by the number of Lie brackets.
More precisely, we define Lie(r) and Liey(r) to be concentrated in complexity
r — 1, and this descends to give the complexity grading on Pois and Poisy.
By [8, Proposition 5.5] and [2, Proposition 6.3], the graded equivariant Euler
characteristics, with the variable u counting the complexity as in (11), are:

(18) X (Pois) = [ (1 — upe)? Btz 1,
=1

(19) X“(Poisg) = [ J(1 + upg)? Tz 1.
=1

Also note that the complexity grading on Poisg is, by definition, equal to the
cohomological grading.
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Next consider the symmetric sequence concentrated in arity one

H(SH) =Q®Q[-1] forr=1

HS(r) = :
0 forr #1

Then one defines the symmetric sequence
BV( := Poisg o HS.

This is a version of the Batalin-Vilkovisky operad (see [15, §13.7]), hence the
notation. We declare the complexity grading on BVy to be the same as the
cohomological grading.

It is clear that x“(HS) = p1 — upy. From (12), (13), and (19) one then
finds

(20) x“(BVo) = H(l +ub(1 - ug)pg)%zdw““/d)fd — 1.

=1

Elements of BV (r) are identified with linear combinations of Poisson words in
variables x1,...,x,, Dx1,..., Dx,, with every index occurring exactly once,
for example

MR DLUQ AN [$3,Dl‘4] S BVO(4)

For technical reasons we also define the reduced sub-symmetric sequence
BVBed c BVjy to be spanned by those Poisson words that do not have a
factor x; for any j. In other words,

BVy = (BVSed Com;) ® Com.

X“(BVE?Y) = (x*(BVo) + 1)x(Comy) ™" — 1
(21) _ H 6—%pe(1 + uE(l _ uf)pe)%Zdw(d/é)ﬁ _1.

=1

Finally, note that the definition of the S-equivariant Euler characteristic
above has a natural generalization for bisymmetric sequences. We shall only
need the following example. Define the bisymmetric sequence Ag such that

(22) Ao(r s) = {@[ST] forr=s

0 otherwise
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Here the group ring Q[S,] is considered as an S, x S,-module by left and right
multiplication. We then have

1 , , 1
(Do) =D el > STra,(p(o, v)p' g ™) = exp <Z Epnqn>

r,s 77 oeSp n>1
VESs

€ Apvq = Q[[p17 q1,P2,4q2, .. ]]
3. Graph complexes associated to moduli spaces of curves

3.1. The graph complexes G(9™) and weight zero compactly
supported cohomology of M, ,

Let g and n be non-negative integers. The graph complex G9™ studied in
[5, 19] is generated by connected graphs of genus g with no loop edges and
no vertices of valence 2. Here, ¢ is the first Betti number of the geometric
realization of the graph. The vertices of valence 1 are called ezternal, and the
other vertices are internal. Each generator has precisely n external vertices,
labeled in bijection with {1,...,n}, and the symmetric group S, acts by
permuting these labels. The edges not connecting to univalent vertices are
called structural, and the cohomological degree of a generator is the number of
structural edges. Each generator comes with a total ordering of its structural
edges, and we impose the relation that reordering is multiplication by the
sign of the induced permutation. The differential dy;; on G is defined by
splitting internal vertices.

(23) Osplit]’ = Z I split v x — Z#

v vertex

Theorem 3.1 ([5]). For each g,n such that 2g + n = 3 there is an S,-
equivariant isomorphism

H(GO™)) = WoH (M)
with the weight zero part of the compactly supported cohomology of the moduli
space of curves.

The differential does not affect the Euler characteristic. In this paper we
will work with G(9™) and its variants primarily as graded representations of
symmetric groups.
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3.2. Two variants of G(9™)

Distinguishing structural edges from nonstructural edges in the definition of
G(@") will be inconvenient for the calculations that follow. For this reason, we
define the variant G(o™) exactly as above, except that the degree of a graph
is the number of edges, and the orientation is given by a total ordering of all
of the edges, not just the structural ones. For (g,n) # (0,2) one can readily
see that

Glon) ~ glon) g sgn,, [—n].

We also consider an enlargement of G obtained by relaxing the con-
nectedness assumption. Generators of the resulting graph complex fé(g’n) are
possibly disconnected graphs of genus g with no loop edges and no vertices
of valence 2. The external vertices are labeled in bijection with {1,... n},
and the orientation is given by a total ordering of all edges. The genus g of a

possibly disconnected graph with e edges and v vertices is
g=e—v+ 1

Note that some disconnected graphs have negative genus.
From fé(gm), we build the symmetric sequence f\é defined by

= 4 (gr)
fG(r)=P G .
geZ
On this symmetric sequence we consider two different gradings: the genus
grading, in which ]?é(g’r) is of genus g, and the complexity grading in which

=~ (g,7)

fG is of complexity g + r — 1. This is the genus of the connected graph
obtained by fusing all external vertices into one. Note that the complexity
grading is non-negative, and the number of isomorphism classes of graphs of
a given complexity is finite.

3.3. Graph complexes with one special vertex

Let A be a symmetric sequence. Consider
ARs fG.

This is a graded vector space whose elements are naturally interpreted as
linear combinations of graphs as above, but with one special vertex that
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carries a decoration in A.

0

More precisely, the decoration of the special vertex is in A(r), with r the
valence of the special vertex. The complexity grading on fé induces a com-
plexity grading on A®s fG, in which the complexity of a graph with one ver-
tex decorated by A is equal to its genus. The following result gives a general
formula for the complexity-graded Euler characteristic of such A-decorated
graph complexes.

Proposition 3.2. Let A be any symmetric sequence in finite dimensional
graded vector spaces. Then we have

Xu <A ®S %)) = Xu ((.A o Lieo) ®S BVBed) <X Lleo) U(nged)> 7

with w counting the complexity, and x*(—) being the graded Euler character-
1stic.

Note that the graded Euler characteristic is well-defined since the number
of graphs of any given complexity is finite. Note also that the complexity
grading is derived solely from the factor f G, or respectively BVred The other
factors Liey or A do not contribute to the complexity, i.e., they are considered
to be of complexity zero. Finally, recall that x°(Lieg) and X“(nged) are given
n (17) and (21), respectively.

3.4. Proof of Proposition 3.2

In the proof, we will use the Kontsevich graphical operad Graphs,. We briefly
sketch its construction and main properties. For details we refer to Kontse-
vich’s original paper [12], or recollections elsewhere, for example [6, §2.91].
Elements of Graphs,(r) are series of graphs with r labeled external vertices
and an arbitrary number of internal vertices such as in the following picture.

oo
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The symmetric group S, acts by permuting the labels 1,...,r of external
vertices. The graph is oriented by a total ordering of its edgs. The sign con-
ventions are thus identical to those for G(9™) above. The degree is the number
of edges. One allows loops at both internal and external vertices. Note that
the symmetric sequence Graphs, carries a dg operad structure in which the
differential is given by vertex splitting; however, the differential does not mat-
ter for the purposes of computing Euler characteristics.

We also consider the variant BVGraphs;, obtained as a quotient of Graphs,,
by setting to zero graphs with loop edges at internal vertices. (Loops are still
allowed at external vertices.) Both Graphs, and BVGraphs, have a complexity
grading: the complexity of a graph with v internal vertices and e edges is
e—v.

Furthermore, we consider the subspaces

GraphsléCd c Graphs, BVGraphsBCd < BVGraphs,

spanned by graphs all of whose external vertices have valence > 1.

Theorem 3.3 (Kontsevich [12], Lambrechts-Volic [14]'). There are operad
quasi-isomorphisms Poisy — Graphs, and BVy — BVGraphs, that preserve the
complexity gradings and restrict to quasi-isomorphisms on the reduced parts
(—)d. In particular,

x“(BVGraphsd) = y*(BVid).

The connection between BVGraphsBed and our fé is as follows.

Lemma 3.4. Let B be any symmetric sequence and C € Z. Then
(24) B ®s gr’ BVGraphsyd = (B o Com) ®s gr” fé,

with gr® (=) referring to the part of complexity C. In particular, if B is finite-
dimensional in each arity then

X" (B ®s BVGraphsy®) = x* ((B o Com) ®s f@) )
Proof. As in the previous section the right-hand side of (24) may be in-

terpreted as the space of linear combinations of graphs of genus (i.e., loop
number) C, with one special vertex decorated by BB o Com. Equivalently such

1Only the result for Graphs, is stated in the given references, but the version for
BVGraphs, is an easy consequence.
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graphs may be interpreted as 3-level graphs with one vertex decorated by B,
connected to another layer of vertices contributed by the factor Com.

But the left-hand side of (24) also has the interpretation as linear combina-

tions of three-level graphs of genus C'. In this case the middle layer of vertices

is contributed by the external vertices of graphs in BVGraphsBed.

€ BVGra phsged

eB

Hence we conclude that both sides of (24) are identical. O

As a final ingredient we will use the Koszul property of the commutative
operad [15, Theorem 7.6.4(i) and Proposition 13.1.7]. This means that the
symmetric sequence (the Koszul complex) Lief o Com carries a differential,
such that the resulting cohomology is concentrated in arity 1. Here Liej is
the linear dual of Lieg. In particular, this implies that on the level of Euler
characteristics we have that

(25) p1 = x°(Lie} o Com) = x°(Lie}) o x°(Com)
— x5(Lieg) o x°(Com) = x°(Liey o Com).
Here we also used that the equivariant Euler characteristic of a symmetric
sequence and its dual are identical, due to the fact that all representations
of the symmetric group are self-dual. We also note that one can alternatively
derive (25) directly from (16) and (17), using the plethysm rules (12).
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Proof of Proposition 3.2. The plethysm product with py, f — f o py, is the
identity. Hence, from (25) it follows that on the level of Euler characteristics

X"(A®s fG)) = x"((Ao Liey o Com) ®s fC)).
Using Lemma 3.4 this is the same as
x“((A o Lieg) ®s BVGraphsicd)).
Using Theorem 3.3 this in turn is identified with
x“((A o Liey) ®s BVFY),
Applying (the graded version of) (15) we can evaluate this further to

x“((A o Lieg) ®s BVir?) = (x°(A o Liey),
X“(BVED)) = (X°(A) o x*(Lieo), x“(BVE™)),

and hence Proposition 3.2 follows. O

3.5. The graph complexes X ,, and weight two compactly
supported cohomology of Mg ,,

The main result of [19] is the identification of gry H?(M,,) with the coho-
mology of a graph complex X ,, that is close to graph complexes arising in
knot theory and the embedding calculus. We shall use this identification to
show our main Theorem 1.1, by computing the Euler characteristic of X ,,.

Recall from [19] that the generators for X, are simple graphs without
loops or multiple edges, in which no vertices have valence 2. The vertices
of valence at least 3 are internal and those of valence 1 are ezternal. Each

external vertex is decorated with an element from the set {€,w, 1,...,n}, such
that:
e Eachlabel 1,...,n appears exactly once and the label w appears exactly
twice;

e The graph obtained by joining all external vertices labeled ¢ or w is
connected and has genus g;

Say that an edge with two external vertices labeled a and b is an (a, b)-edge.
We further require that

« No connected component is an (e, w) or (w,w) edge;
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An edge is structural if it does not contain an external vertex with label from
{1,...,n}. The degree of a graph is the number of structural edges plus one.
Each generator comes with a total ordering of the structural edges, and we
impose the relation that permuting the structural edges is multiplication by
the sign of the permutation.

The differential 6 on X ,, is a sum of two parts 0 = dspiit + 0join, defined
by splitting internal vertices

(26) Osplit]’ = Z I split v x — ZH
v vertex

and joining external vertices

(27) 80in /gQ\ = >

Sc{e- and w- legs }
GE
€ 0or w

We refer to [19] for details.

Theorem 3.5 (Theorem 1.1 of [19]). There is an S, -equivariant isomorphism
H(Xgn) = gry He(Mgn)

for each (g,n) # (1,1) with 2g +n = 3.

To show Theorem 1.1 we may hence compute the equivariant Euler char-
acteristic of the graph complexes X, that is, we may use the following
corollary.

Corollary 3.6.
wo = hpy + Z XS (Xgn)

2g+n=3

3.6. Two variants of X ,,

We shall also consider variant of the complexes X, above. First, we define
the complexes )v(gm in the same manner as above, except that we treat all
edges in the same way, and declare the degree to be the total number of edges
and the ordering of edges to be defined on all edges. In other words,

(28) )v(g,n = Xgn ®sgn,[—n —1].
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These graph complexes assemble naturally into symmetric sequences

X(r) =P X, and X(r) = (—B)V(g,r.
9 g

We consider also the enlargement J?)/(gm - )V(g,n obtained by relaxing
the connectedness assumption on generating graphs. In other words, f X,

is defined just as )V(gyn except that the generators are allowed to be possibly
disconnected graphs of genus g without vertices of valence 2, with exter-
nal vertices labeled by symbols {1,...,n, € w}, such that each label 1,...,n
appears exactly once and every connected component contains at least one
external vertex. The generators are oriented by a total ordering of the edges
set. Note that we allow graphs with any number of e- or w-legs, with (¢, w)-
and (w,w)-edges, and we also allow disconnected graphs. The complexity of
a generator for ]T)?gm is the genus of the graph obtained by fusing all exter-

nal vertices. We again assemble the graph complexes f)/(gyn into a symmetric
sequence

fX0r) =D X,
g
Lemma 3.7. We have an isomorphism of symmetric sequences
f\)? = (Ao C0m1 C0m1> Qs f\‘-é

with Ag the bisymmetric sequence (22), and with [X] and ®s operating on the
first symmetric sequence structure.

Proof. Unpacking the notation, both sides are the same. O
4. Euler characteristics

The goal of this section is to prove Theorem 1.1. The strategy of the proof is to
@Et compute the equivariant Euler characteristic of the enlarged complexes
J Xy, and then extract from this the Euler characteristic of Xym. We then
deduce the Euler characteristic of X, ,, and hence that of gr, H.(M, ).

The proof uses some elementary but tedious computations with power
series arising from the asymptotic expansions of polygamma functions. We
perform these computations in §4.1, in order not to clutter the main argument
line of §4.2. The reader is encouraged to skip §4.1 on the first reading.
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4.1. Auxiliary computations of derivatives

We will use the following identity involving gamma functions.

Proposition 4.1 (after Songhafouo Tsopméné and Turchin [21]). Let X and
u be formal variables and ¢ € N. Abbreviate

(29) By %Zu(ﬁ/d)% Mo = ul(1 — u)e.
dJe

Then we have the equality of formal power series in u

(—)\g)XF(—Eg + X)
I'(—Ep)

(30)  (1+0a) e (1 + Ma)’ |omo= =: Uy(X, u),

where on the right-hand side one inserts the asymptotic expansions as u —
0—, and on the left-hand side one defines (1+0,)% = exp(—X 21 (7]—,1)16(1).
Furthermore, the coefficient of each power of u in the series on either side is

a polynomial in X.

Let us note that, from the standard recurrence relation I'(z + 1) = 2I'(2),
one obtains the formula

UE(X +Dp, U)

B AP (Bt X)(—Bot X+ 1) (—Ey+ X +p— DU(X, 1),

for any non-negative integer p.

The formula (30) is a variation of a formula found in [21, §2.2] and [23,
Proposition 15.7]. The only difference is that in loc. cit. one replaces Ay by
(u®. However, this change does not alter the proof of the formula. Hence we
shall only sketch the derivation (due to Turchin) here.

Proof of Proposition 4.1. First, one checks that both sides of (30) are power
series in u with coefficients that are polynomials in X. Since any polynomial
is completely determined by its values on non-negative integers, it is sufficient
to show (30) for X =0,1,2,.... For X = 0 the identity (30) is trivial — both
sides are 1. For X = p a non-negative integer one has, using (31),

Ue(p,u) = Ny Ee(Ee — 1) -+ (B, —p +1).
Similarly, the left-hand side of (30) becomes

(14+0,)Pe (1 + M) |aco= O2(1+Mea)™ |ao= N Ey(Ep—1) -+ (B —p+1),
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and the proposition follows. O
Recall Stirling’s asymptotic expansion of the I' function
1 1
(32) logI'(2) ~ <z - 5) logz — z + 3 log(2m) + B(z) as z — o

with

(33) B(z) = Y. B 1

71 :
= r(r—1)z"

Using this expansion one can write Uy(X, u) more explicitly as

(=A)XT(—E; + X)
[(—Ep)

= X(log(AeEy) — 1) + <E€ X ;) log<1 N 27(6)

+ B(—E; + X) — B(—E).

log Uy(X, u) = log

Furthermore, note that we may compute, for non-negative integers k,
(log(1 + 02))"(1 + 04) e (1 + Mea)™* |ao= 5 Ue(X, u).
For later use, let us list the following special cases:

(34)  (log(1 + 84))(1 + 02) e (1 + Ma)®* |o=o
= OxUr(X,u) = (log(A\e(Er — X)) + o(—E¢ + X)) Ug(X, u)
(35)  (log(1 4 4))(1 + 0,) e (1 + Mpa)®* |ao= OxUs(X + 1,u)
= (10g(>\e(E£ — X)) +Yo(—E; + X) + —Ee%)
. (—)\g)(—Eg + X)Ug(X, u)

(36)  (log(1 4 04))*(1 + 8,) e~ *(1 + Na)?" |ao= 0% U (X, u)
= ((log(Me(Er — X)) + vo(—E¢ + X))* + U1 (—Ep + X)) Ug(X, u)
(37)  (log(1 4 8)%(1 + 02)* e (1 + Ma)®* |ao= % U(X + 1,u)

= <(10g()\z(Ez = X)) + vo(—E¢ + X) + ﬁ)z +U1(—E+ X) - (E,31+X)2>

. (—)\g)(—Eg + X)Ug(X, u)
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Here we use the recurrence relation (31) and the notation (3) for the
digamma and trigamma series.

4.2. Euler characteristic of f)/(

The graded vector space ]7)/( has additional gradings from the complexity-
grading, and from the number of € and w-legs. We can hence define the tri-
graded S-equivariant Euler characteristic

XU (FX) € Alfu, v, w]],

with u, v, w being the formal variables tracking the complexity and the num-

ber of e and w-legs, respectively. In other words, the Euler characteristic of

the subcomplex with k e- and [ w-legs and complexity m is the coefficient of
u™vFw! in the formal power series. Then we have:

Proposition 4.2. The equivariant Euler characteristic oij)/( 18

YU (FX) = HU@ Zué/d pa + v? +w?), u
d\é

with the function Uy defined in Proposition 4.1 abowve.

Proof. We note that

1
X" (Ap X1 Comy [x] Comy) = exp <Z z(q@ + b+ wf)pe) € Apgl[v, w]].

=1

Hence
X" ((Ap x1 Comy Coml) o Lieg)

= exp (Z Z (k) q + o + w') log(1 —i—pkg))
>1k>1

= exp 2 Eué/d qq + v* + w?) log(1 + py)
=k dje

= H(l —|—pe ZZd\Z”(Z/d)(Qd"rUd-i-wd).
=1
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We hence compute, using Lemma 3.7 and Proposition 3.2:

—

Xu,v,w fX)
= x""((Ap X Com; [x] Comy) ®s fG)
= x"“""((Ag X Comy I Comy ) o Lieg) ®s BVE™)

= (X" (Ag X Com; [x] Comy) o x(Liep)), x“(BVE?))

_ H(l + aa)%Zdw,u(é/d)(QdJrvderd)e—a(l + uﬂ(l o uz)éa)%zwl‘(é/d)ﬁ |
l

[T | 3 St/ara+ ot +w),u
¢ djt

In the first three steps, we use Proposition 3.2, (15), and (14), respectively.
In the last step, we use the function U, of Proposition 4.1. Note that here we
had to work with bisymmetric sequences and hence two sets of power sums
Pj, ¢j, so that in the final expression the formula is in Ay, = Q[[q1,¢2,...]]
instead of A. But the trivial replacement g; — pg yields the proposition. [

We note that the part of ﬁ spanned by graphs without any e- or w-legs
agrees with fG. Hence we obtain, by setting v = w = 0 in the formula of
Proposition 4.2:

Corollary 4.3.

X(T8) = X (TR = w = 0) = [T 3 2 n(/dpau
¢ dj¢

We note that this corollary has been found earlier in [21].
4.3. Euler characteristic of the connected part with two w-legs

Next we reduce the computation of the Euler characteristic of X, , to that of
]?)/(g’n. As a first step we defined the sub-symmetric sequence J?)/(CO"" c f\)/(
generated by graphs in which each connected component has at least one e-
or w-leg. We then have

FX = FXeomn 5 G,
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Hence, by Corollary 4.3, the Euler characteristic of 7)?“’”" is

()
X“”“’(fX)(U =w=0)
1—[ Ue(3 Zd\eﬂ ¢/d)(pa + v* + w?),u)
¢ Ue(3 Zd\e 1(¢/d)pa, u)

XU,U,’U) (f‘XCO’fl?’L) —

Furthermore, we shall only be interested in the subcomplexes
?Xconn,j c ‘?)/(conn

spanned by graphs with j = 0,1,2 w-legs, and we do not want to fix the
number of e-legs since the latter is not invariant under the differential. The
relevant Euler characteristic is computed by the coefficient of w’, evaluated
at v = 1. For example, for 7 = 0 we set w = 0 to obtain

XU(fxmn0) = X“’”’w(f)/(“’””)(v =1,w=0)
B H Zdwﬂ l/d)(pa + 1), u)
=1 UZ Zd|£ u(t/d)pa, w)

_ Ul( p1 + 1,u)
Ui(p1,u)

where we used that >}, 1(¢/d) = 01¢, equation (31), and the abbreviation

= u(l _u)}/l_7

£ m N (/) (£ pa)).

dje
Next, for j = 1:

Xu(ﬁconn,l) _ aw |w:O Xu,v,w(F)/(conn)( _ 1)
. axUl(pl + 1,u) U1 p1 + 1, u < u f aXUZ Zdwﬂ(g/d)pdv ))

g

Ur(p1,u) Ui(p1,u = Ue(g 2y 1(t/d)pa, w)

—u(l—u1< +ZM (log(Cu’ (1 — u*)Ye) + who (=Y, >>>

=1

To obtain the second line, we used again that ) ae (L /d) = 01¢. The first term
in the second line is the evaluated using (35), while the other derivatives are
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computed using (34). Factoring out the common factor u(l — u)Y;" then
produces the third line. Similarly, one computes the second derivative.

u vconn 1 u, v vconn
X“(fX ’2)255% lw=0 X" (fX") (v = 1)

_1&Ui(pr+L,w)  1Ui(p1 + 1,u)
2 Ui(pr,u) 2 Ui(py,u)

(3 (m Zai(Ue(;de(e/d)pd,u))
022 ¢ Ue(y 2d|£ n(l/d)pa, u)

N Ui(pr1 + 1, u (Z w(l/2) aXUz Zd|£ p(l/d)pa, u ))

Ul ]91; = Utf Zd\gﬂ(g/d)pdy )
216
n (9)(U1 p1 +1 u 2 ,IL aXUZ Zd|€ /L(f/d)pd, )
Ui(p1,u > Ue(g Sy 1t/ d)pa, )

+ M 1(4) aXU@(Z Zdw p(t/d)pa, w)
Ui(pru) 2\ € Udlg gy (t/d)pa, w)

y (0 OxUp (g5 Yo (¢ /d)pas )
¢ Ue (% Zdw u(¢'/d)pa, w)

( 2“ <1ogeu< umvwo(—n—)))
1 =1

+ Z (log 20u* (1 — u?) Yo ) + on(_}éz))

>1
Z lugz i (=Y,)

=1

= %u(l —u)Y;

To obtain the final equality we evaluated all terms using (31) and (34)-(37),
and simplified the resulting expression. The steps of the final simplification
are elementary and are omitted here, only the end result is shown.

4.4. Euler characteristic of X

Here, we show:

Proposition 4.4.

XX = XUFXE2) ux (FXE™™) 4 (u -+ 1)y (FX0)



2444 Sam Payne and Thomas Willwacher

Proof. The symmetric sequence X differs from ]?)?60”"’2 only in so far that
generators in X are not allowed to contain (e,w)- or (w,w)-edges, while we
have not imposed such a condition in ]?)/(C"”"*Q. To show the proposition we
hence have to correct for those graphs.

A general graph in F)/(CO””’Q with (w,w)-edge has the form

w w 7

with the right-hand part I'g a general graph in ]?)/(C""”’O. Hence to account
for those graphs we have to subtract the expression —ux“(ﬁc"”’“o) from
X“(f)/(c‘”mg), with the factor —u accounting for the degree and genus shift
introduced by the (w,w)- edge

Xeonn2 with (e, w)-edge has the form

¢ (@)

with I'; € ]?)/(CO””’I, except for the caveat that I'y must not contain an (e,w)-
edge itself. But the graphs in fX®"! with (e,w)-edge themselves have the

form
7

with I'g again a general graph in F)/(CO”’“O. Adding and subtracting the cor-

Similarly, a graph in f

responding Euler characteristics one has shown the Proposition. O
4.5. Proof of Theorem 1.1

According to (28) the complexes X'g’n are obtained from X, by a degree
shift and multiplication by the sign representation sgn,,. Hence we find that

XU(X) = _Xu<X)(_Qn N Qn)a

with the notation meaning that each occurrence of ¢, should be replaced by
—@n on the right-hand side. But using Proposition 4.4 and the formulas of
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§4.3, we hence see that

i) = MmUY 2“ (log(~20u®(1 — ) Yy) + bo(~Y;))
=1
2
( et 3 oy fufuu@m*)wo(n*)))
=1
wu(l
“T L g

+ 2 <_YL + Z % (log(—Lu‘(1 — u)Y,") + ho(-Y, )))

1 =1

+u?(u? — 1)yt

This expression can be simplified further. First, one has the following
equality of formal power series

S0 g S ()
=1 tn=1 N=1 \d|N

Using this formula three times to absorb the factors (1 — u*) and (1 — u?)
inside the logarithms we obtain

) = WS 1O 0 oty v(-v;))
&
¥ (_YL ) PO (g (v + %(—1@*)))2
- +[>21“€2 DY) |+ P - 1y
ML) ) MO o207 + (- 13)
¥ (_YL ) PO (g (v + %(—17)))2

+u?(u—1)Y;"

1 u(f )
Ve " X ()
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Proof of Theorem 1.1. To show Theorem 1.1 we just use the above formula
for x*(X), with the following modifications. First, to obtain the generating
function in terms of genera instead of complexity one has to perform the
replacements

(38) u—hand p,— hi‘ps, or equivalently, wu — h and Yt — Z.

Second, one needs to mind that the sum (1) runs only over stable indices
2g+n > 3, while X9 = Q[—1] is nontrivial by our definition. Hence we need
to subtract a term

1 1
(39) —§(p%+p2):—§(P12+P2)—P1

from the Euler characteristic to account for this difference.

Finally, by Corollary 3.6 there is a further correction Ap; arising from the
contribution of ¢ = n = 1. Thus, we start from the formula for y*(X) above,
then apply the substitution rule (38), add Ap; and subtract (39) to finally
obtain the formula of Theorem 1.1. O

5. Discussion of terms in the Euler characteristic formula

The literature contains two complementary toolsets for computing dimensions
(Hilbert series) and Euler characteristics of graph complexes. The first is the
calculus of symmetric functions, typically paired with operadic methods, as in
[9, 21] and this paper. The second is combinatorial counting weighted by au-
tomorphisms, along the lines of the Pdlya enumeration theorem, as in [3, 24].
When the first toolset is applicable, it typically yields relatively economical
proofs and closed expressions for the generating functions. However, it also
tends to obfuscate natural correspondences between terms in the resulting
formulas and subsets of generators for the graph complex. In this section,
we shall hence briefly discuss how the individual terms in the formulas of
Theorem 1.1 and Corollary 1.2 relate to graph generators for X, .

First recall from [19, §6.1] that X, ,, is quasi-isomorphic to its subcomplex
X generated by graphs I' that are disjoint unions of one or two connected

g
components with w-decorations together with one of the following:

(empty graph), € €, € J,
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The contribution of these four graphs to the generating function of the Euler
characteristic is precisely

(1—h)P,

which explains the corresponding factor in (4).
Now, consider the disjoint union of the connected components that con-
tain w-decorations. In genus 0, the only possible graphs are pairs of two trees,

as shown.
1 3
K{Q 4 5
w w

The Euler characteristic of the graph complex of rooted trees, like that of
Lieg, is equal to -, #log P,. Since we have two trees in the graph, we
have to take a symmetric product of two such rooted tree complexes. On the
level of Euler characteristics taking the symmetric product translates to the
plethysm with the symmetric function hy = 5(pf + p2), and

2
h20<2#10g]3@>=% <Z#log&> +Z#]ogp2€ )

=1 =1 =1

explaining the corresponding terms in the genus 0 and 1 Euler characteristics.

In genus g = 2, there are still some graphs with one of the two w-legs
being the root of a tree. The corresponding contributions to the Euler char-
acteristic hence have a factor >}, # log P, as well from the tree part, which
is multiplied by the contribution from the non-tree part.

Let us next turn to the remaining terms in the Euler characteristic for-
mulas, coming from the non-tree connected components in graphs. The char-
acteristic feature of those terms is that they are finite linear combinations of
monomials in the P; and Pj_l. This can be seen directly from using graph
counting techniques to compute the Euler characteristic, using the same strat-
egy of proof as in [3].

Consider an arbitrary graph I' in X ,,. We call the core v = [I'] of I" the
graph obtained by the following algorithm:

» Remove all numbered external vertices and their adjacent edges.
» Recursively remove all univalent internal vertices thus created, with
their adjacent edges.
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e Remove the bivalent vertices thus produced and merge the two edges
adjacent to them.

Let X7, < Xy be the subcomplex spanned by graphs with core v, and

set
s
Ry = Z X (Xg,n)
n=0

Then we have >}, ~ o x*(Xgn) = 2., %y with the first sum being over all (iso-
morphism classes of) genus g cores 7. Assume for simplicity that the core
only has connected components of genera > 1. Then one may show as in [3,
Proposition 3.2] that

(71)6(’7)4—1
7 TAut(y)]

pilrv) pi(e)

2, sen(Te) gy —
TeAut(y) pitrm)

(40)

with e(7) the number of structural edges of v, 7/, 7g, and 7y the permutations
on the sets of vertices, edges and half-edges of 7, with i(c) = (i1(0),...) the
cycle type of a permutation ¢, and with the multi-index notation

pio) = ppIpelo) e,

Since in every genus there are only finitely many possible core graphs con-
tributing, the Euler characteristic in this genus must hence be a finite linear
combination of such Laurent monomials in the P;, of the form given by (40).

Next suppose that the core consists of a single isolated external vertex
decorated by w, and another higher genus component. The graphs with this
core are unions of trees with w-labelled root and some other graph with only
one w-decoration.

These graphs then contribute summands of the form
l
(Z §logpé> f(PhPQv"')v
=1

with f some finite sum of Laurent monomials of the special form given by (40).
This then explains the structure of the terms appearing in Corollary 1.2.
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