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Abstract

We study the weight 2 graded piece of the compactly supported rational coho-
mology of the moduli spaces of curves Mg , and show that this can be computed as
the cohomology of a graph complex that is closely related to graph complexes arising
in the study of embedding spaces. For n = 0, we express this cohomology in terms
of WoH? (Mg ) for g < g and n’ <2, and thereby produce several new infinite
Jamilies of nonvanishing unstable cohomology groups on Mg, including the first such
families in odd degrees. In particular, we show that diim H*¢7K (M) grows at least
exponentially with g for k € {8,9,11,12,14,15,16,18,19}.
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1. Introduction

The weight 0 compactly supported cohomology WoH 7> (Mg ,) is naturally isomor-
phic to the cohomology of the genus g part of the standard commutative graph com-
plex with n marked external vertices (see [8], [9]). Similar graph complexes arise
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in the study of rational homology and homotopy groups of higher-dimensional long
links (see [32]). In this article, we use commutative graph complexes with additional
decorations on the external vertices, similar to those appearing in the embedding cal-
culus (see [16]) to study the next nontrivial weight-graded piece of the compactly
supported cohomology of Mg ,. Throughout, all cohomology groups are taken with
rational coefficients.

The weight k graded piece of H (Mg ,) is

gl H;(Mg,n) = WkHc.(Mg,n)/ Wi H;(Mg,n)~

Note that gr; H? (Mg ) vanishes for all g and #; this follows from the vanishing of
H! (ﬂg,n) for all g and n via Deligne’s weight spectral sequence. The next nontrivial
weight-graded piece is gr, H? (Mg ), which we study by combining graph complex
techniques with the presentations and pullback formulas for H 2(ﬂg,n) from [2] and
[22].

Our first main result expresses gr, H> (Mg ,) as the cohnomology of a graph com-
plex X , generated by possibly disconnected simple graphs without loops or multi-
ple edges, with features and decorations as follows. Say that the 1-valent vertices are
external and all other vertices are internal.

. All internal vertices are at least trivalent.

. Each external vertex has a label from {1,...,n,€, w}.

. Each label 1,...,n appears exactly once, and the label w appears exactly
twice.

. The graph obtained by joining all external vertices marked € or w is connected
and has genus g.

. There is no connected component consisting of a single edge connecting two
external vertices with markings {¢,w} or {w, w}.

The edges that do not contain an external vertex with marking from {1,...,n} are

called structural. Each generator is equipped with a total ordering of its structural
edges, and reordering the structural edges induces multiplication by the sign of the
permutation. Note that some connected components may not have any internal ver-
tices. The degree of a generator for X, is the number of structural edges plus 1. In
figures, we replace each external vertex with its label and omit the edge ordering. For
example, the following is a generator of X» » in degree 6:

w—2 I>¥1

w
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The differential § on X, , is a sum of two parts § = Sepii¢ + Sjoin. Here Spii¢ is a
sum over all vertices and over all ways of splitting the vertex into two vertices joined
by an edge so that the new vertices are at least trivalent:

Sol = > T splituv, x'_) Z> ‘< (1)

v vertex

The part §joi, glues together a subset S of the €- and w-decorated external vertices,
where

o |S|>2,and S contains either O or 1 of the w-decorated vertices,

and then attaches an edge to a new external vertex. The new edge is decorated by w
if § contains an w-decorated vertex and by € otherwise:

€ Or w

Each graph produced by the differential has one new structural edge, which is taken
first in the ordering; the relative ordering of the remaining edges is preserved.

THEOREM 1.1
For all g and n such that 2g +n >3 and (g,n) # (1, 1), there is an S, -equivariant
isomorphism

ng Hc.(Mg,n) = H.(Xg,n, 8)

This isomorphism at the level of cohomology is achieved through a zigzag of
quasi-isomorphisms of complexes, relating the row of Deligne’s weight spectral
sequence that computes gr, H: (Mg ») to the graph complex Xg .

The cohomology of such commutative graph complexes is far from fully under-
stood. Nevertheless, a partial understanding of this graph cohomology is enough to
yield new results about the unstable cohomology of M, , in weight 2, just as in
weight 0. For n = 0, we express the weight 2 compactly supported cohomology of
M in terms of the weight O compactly supported cohomology of M,/ 1 and Mg >
for g’ < g as follows. Let

2

Ve,o:i= /\(@WOHCIC(M&I))v

g.k
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bigraded so that an element of WOHf(Mg,l) A WOHCk/(gMg/,l) is in degree (g +
g’k + k'). Let V, denote the antisymmetric part of an S,-representation V. By con-
vention, we set H (Mo 2) := 0.

THEOREM 1.2
For g > 2, there is an isomorphism of Q-vector spaces

gr, Hck (Mg) = Vop 30 WOHck_3(=Mg—1,2)as BOVe 1 k-4® WoHck_4(=Mg—2,2)as-

Remark 1.3

Note that the Hodge structure on gr, H Ck (Mg) is pure Tate; this follows from
Deligne’s weight spectral sequence associated to M, C ﬂg, which abuts to
gr, H¥(My), together with the fact that H2(Mgs /) is pure Tate for all g’ and n’
(see Section 2.3 below). The Hodge structure on gr, H¥ (M) is therefore obtained
from the Q-vector space description above by tensoring with Q(—1). For any variety
or Deligne-Mumford stack X for which gr; HX(X) = 0, such as Mg, the subspace
W>H}(X) is an extension of gr, HY(X) by WoH}(X), in the category of mixed
Hodge structures. For X = M, one might naturally expect that this extension is
trivial. To prove this, it would be enough to show that W, H} (M) is the mixed
Hodge realization of a mixed Tate motive over Z, by [13, (1.6.11)].

To understand the geometric meaning of the first two summands in this theorem,
let Dy C Mg be the locally closed substack parameterizing 1-nodal curves. We have
a natural identification

WoHck(D;) = Ve ® WoHN (Mg—12)us.

The cup product with the first Chern class of the normal bundle followed by the push-
forward for the open inclusion ¢ of Dy in the boundary d.Mg := Mg \ Mg and the
coboundary map § for the excision sequence give

. oy €1 . oy bx . s .
WoHZ (Dg) = g HIPA(Dg) = gry HE 20 Mg = gy HIP(My).

We expect that the geometric content of Theorem 1.2 is that this composition is injec-
tive and the image accounts for the first two summands in Theorem 1.2. As a first
step toward seeing this, note that c; is represented by a smooth differential form that
extends to the boundary. This pulls back to the normalization of d.M¢ and hence acts
on every page of the weight spectral sequence abutting to gr H? (M) (ct. the proof of
Theorem 1.6 in Section 8.4). This action can be interpreted graphically by following
our zigzag of quasi-isomorphisms. We do not have an analogous expected geometric
interpretation for the other two summands. (For a graphical illustration of the simplest
nontrivial cohomology classes produced by Theorem 1.2, see Section 3.4.)
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For applications, we will use only subspaces of V, , that arise from the images of
known classes under pullback to the universal curve Wy HS (Mg) — WoHZ (Mg 1).
Recall that W, chg (Mg) is nonvanishing for g =3, g =5, and g > 7, and its dimen-
sion grows at least exponentially with g (see [8, Theorem 1.1]); the proof relies
on connections with Grothendieck—Teichmiiller theory (see [39]) and a deep result
of Brown [5]. Here, we show furthermore that W, ch & Jr3(,M ¢) is nonvanishing for
g =6 and g > 8§, and its dimension again grows at least exponentially with g (see
Proposition 2.4). It follows that the dimensions of Vg 551 and Vg 544143 grow at
least exponentially with g whenever WoHZE e (Mgr) # 0 for some g’. Combin-
ing Theorem 1.2 with what is currently known about (B, Wo H? (M) and applying
Poincaré duality, we have the following corollary.

COROLLARY 1.4

The following unstable rational cohomology groups are nonzero:
(1) H* 8(M,) for g =9 and g > 11;

(2)  H*°(Mg)forg=6and g>8;

3) H* (M) for g =10 and g > 12;

4) H*712(Mg) forg=9and g > 11;

(5) H*1%(My) for g =15 and g > 17;

(6) H*715(My) for g = 14 and g > 16;

(7) H*715(M,) forg =13, g =15 and g > 17;

(8) H*~18(My) for g =17 and g > 19;

9) H*19(My) for g =16 and g > 18.

In each case, the dimension of gr, H*¢ k(M ¢) grows at least exponentially with g.

In particular, this gives the first infinite collections of nonvanishing odd coho-
mology groups on Mg. Only a few sporadic examples were known previously, such
as H>(My) (see [33]), and H > (Mg), H?3(Mg), and H?" (M) (see [8]). For the
proof of Corollary 1.4, see Section 2.7.

Remark 1.5

For context, let us recall that H *(M, ) is fully understood in the stable range, consist-
ing of degrees up to 2| g/3 |, where it agrees with the polynomial ring on the «-classes
(see [28], [37]). The Euler characteristic computations of Harer and Zagier [20] show
that the dimension of the unstable cohomology of M, grows super-exponentially with
g. This is far larger than the tautological subring generated by the «-classes, which is
nonzero precisely in the even degrees up to 2g — 4 (see [15], [27]). The problem of
understanding the rest of the cohomology of Mg, starting with the degrees in which
it is zero and nonzero, is highlighted in [29, Section 9].
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Until recently, there were only two instances of cohomology groups that were
known to be nonzero due to the presence of nontautological classes: H°(M3) (see
[26]) and H®(M4), each of which is 1-dimensional. It was previously conjec-
tured by Kontsevich [24] and independently by Church, Farb, and Putman [11] that
H*¢57F (M) vanishes for g > 0, when k is fixed. This is true for k < 0 for virtual
cohomological dimension reasons and for k = 0 by [10] and [30]. The main result
of [8] disproved the conjecture for k = 1. Corollary 1.4 shows that the conjecture is
false in nine more cases, namely for k € {3,4,6,7,9,10,11, 13, 14}. See Table 1, at
the end of the introduction, for a summary of what is now known about the vanishing
and nonvanishing of H*€—5~k (Mg).

Corollary 1.4 uses only the subspace of V, o that comes from Wy H>(Mg) —
WoHZ? (Mg 1). Explicit computations show that this inclusion is an isomorphism
for g < 7. For g = 8, the Euler characteristic formulas in [7] show that it is not
surjective, but we do not know in which degrees the cokernel is supported. Simi-
larly, Wo H? (Mg 2)as vanishes for g < 7, and for g = 8, its Euler characteristic is
nonzero but we do not know in which degrees it is supported. By Theorem 1.1,
any future improvement in our understanding of WoH?(Mg), WoH? (Mg 1), and
WoH? (Mg 2)as Will yield a corresponding improvement in our understanding of
gr, H?(M,). For an inspiring sense of what one might reasonably hope or expect to
be true about Wy H? (M), see [6, Conjecture 1, Table 2].

For n > 1 we do not have an analogue of Theorem 1.2 expressing gr, H_ (Mg »)
in terms of WoH_? (Mg n/). Nevertheless, we produce injections that prove nonvan-
ishing and lower bounds on dimensions in many cases. We begin with n = 1. Recall
that the pullback 7*: gr; H®(Mg) — gr, HZ (Mg, 1) is injective, as is the composi-
tion

. a* . N o
gty He (Mg) —> gry HZ (Mg,1) —> grpq0 H +2(Mg,1)v

because further composition with the Gysin pushforward is multiplication by 2g — 2.
For weight k = 0, we strengthen this by showing that ¥ A is itself injective.

THEOREM 1.6
Let g > 2. Multiplication by the -class at the marking yields an injection

YA WoHS (Mg 1) — gry HST2 (Mg ). (2)
Furthermore, the image of the injection
n*: gr, HY(Mg) — gry HY (Mg 1), 3)

intersects trivially with that of (2).
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For n > 2, we show that a quasi-isomorphic subcomplex of X, , can be split into
several direct summands, as detailed in Section 6. For some of these summands one
may evaluate the cohomology explicitly in terms of known data or weight 0 cohomol-
ogy. The summands whose cohomology can be computed correspond, in a sense to
be made precise below, to graphs of the form

PR

w

where '] is a connected component with one w-decoration and no other external
vertices. The genus g of the overall graph is the sum of the genera g; and g, of I'y
and I, respectively. The cohomology of the summands with g, =0 and g, = 1 are
explicitly understood, and the complementary part I'; contributes a tensor factor that
is identified with Wy H? (Mg, 1). In this way, one arrives at the following result.

THEOREM 1.7
For g > 2 and n > 2, one has an injection

HI 3 (Moy) @ WoH " (Mg,1) @ By ® WoHS ™3 (Mg_1,1) — gty HS (Mg ),

where By, is a vector space defined in (46) below, which has dimension at least (n —2)!
forn > 3.

2. Preliminaries

2.1. Notation and conventions

We work over the rational numbers QQ. All vector spaces are understood to be Q-
vector spaces, and likewise all homology and cohomology groups are taken with Q-
coefficients. If V' is a finite-dimensional vector space with the action of a finite group
G, then we identify the invariant subspace V¢ with the coinvariant space Vg, by
averaging over the group action.

For a graded vector space V' and an integer k, let V' [k] be the graded vector space
obtained by shifting all degrees by k; that is, the degree j part of V' is the degree
j — k part of V[k].

When working with graded vector spaces, we use the standard Koszul sign con-
vention. That is, for V' and W graded vector spaces the isomorphism V ® W =~
W ® V sends a tensor product v ® w of homogeneous elements v € V, w € W
of degrees |v|, |w| to the element (—1)/*!®ly ® v. Furthermore, let f € Hom(V, V")
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Table 1. A summary of vanishing and nonvanishing results for the rational cohomology groups
H*E _S_k(Mg). Black and dark gray boxes denote previously known and new nonvanishing
groups, respectively. The white boxes denote groups that are known to vanish, and the light gray
boxes denote those that are as yet unknown.

gk|0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
2

3

4

s

6 |

7

8

9

10

and g € Hom(W, W’) be two linear maps between graded vector spaces, of homo-
geneous degree | f| and |g|, respectively. Then we define the linear map f ® g €
Hom(V ® V', W ® W’) such that, for homogeneous v € V and w € W,

(f ®g)w®w) = (DM f)® g(w).

The phrase “differential graded” is abbreviated dg. We follow cohomological grading
conventions, so all differentials have degree 41 unless stated otherwise. The Koszul
sign rule will be particularly important when we consider the tensor product of dg
vector spaces (V,dy) and (W, dw ). The differential on V' ® W is then

dyvew =dy Qidw +idy Qdw .

When no confusion seems possible, we denote this by dy + dy, with the Koszul sign
convention understood.

We will consider many instances of spaces that depend on a genus g and a number
of marked points n, among them the moduli spaces Wg,n and the dg vector spaces
Xg¢.n. When n = 0, we follow the usual convention of omitting this from the notation;

for example, we write Mg := Mz o and X := Xy 0.



WEIGHT 2 COHOMOLOGY OF MODULI OF CURVES 3115

2.2. Quasi-isomorphisms and acyclicity

A morphism of dg vector spaces is a quasi-isomorphism if it induces an isomorphism
on cohomology, and a dg vector space (V,d) is acyclic if its cohomology vanishes.
We will make repeated use of the following elementary sufficient criteria for mor-
phisms of dg vector spaces to be quasi-isomorphisms, and for dg vector spaces to be
acyclic.

LEMMA 2.1

Let (V,d) be a dg vector space with Vi C V a dg subspace. Suppose that there is a
decomposition of graded vector spaces V = Vy @ V1. Let my be the projection onto
Vi, and let D = my0d : Vo — V1. Then ker D CV and Vo ®im D C V are dg
subvector spaces. Moreover,

(D if D is surjective, then ker D — V is a quasi-isomorphism, and

) if D is injective, then V. — V/(Vo @im D) = coker D is a quasi-isomorphism.
In particular, if D is an isomorphism, then (V,d) is acyclic.

Proof

The differential d on V is a sum of three pieces dy, D, and d;:
dy d,
(R O\
ve v, .

The fact that d? = 0 translates into the three equations:
d¢=0, d?=0, diD+ Ddy=0.

It follows that ker D and V;, @ im D are dg subspaces of V.

Next, we show that if D is an isomorphism, then (V, d) is acyclic. Let x € V be a
cocycle, and write x = x + x1, with x; € V;. Since x is a cocycle, we have dgxg =0
and Dxg + d1x7 = 0. Thus

Dxy = —dix1 = —dlDD_lxl = DdoD_lxl.

Applying D™ to both sides shows that xg = dg D~ 'x;, and hence x =dD 'xj isa
coboundary, as required.

Statements (1) and (2) follow by applying this criterion for acyclicity to V' / ker D
and Vp @ im D, respectively. O

2.3. Deligne’s weight spectral sequence
The natural starting point for understanding the weight-graded compactly supported
cohomology of a smooth variety or Deligne-Mumford stack with a given normal
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crossings compactification is the Poincaré dual of Deligne’s weight spectral sequence
(see [12, Section 3.2]; cf. [31, Example 3.5]). We briefly recall this construction in
the special case of the Deligne-Mumford compactification of Mg , by the space
of stable n-marked curves Wg,n. It is naturally stratified by the topological type,
which is encoded combinatorially in the dual graph of the curve. Each stratum thus
corresponds to a stable n-marked graph I' of genus g, that is, a graph with n legs
labeled 1,...,n in which each vertex v is labeled by a nonnegative integer g, such
that 2g, + n, > 3, where n, denotes the valence of the vertex v, and such that
g=h' )+, g

For each such stable n-marked graph I" of genus g, the locus of curves with dual
graph I' is the image of the natural gluing map

El": Mr ﬁﬂg,n,

where Mp := [T, cp(r) Mgy.n, - This gluing extends naturally to M := [T, Mg, n,-
Let Dr := ér([], Mg, .n,) be the image of this extension; it is the closure of the
locus of curves with dual graph I'. The normalization of Dr is the smooth and proper
Deligne-Mumford stack

Dr = Mr/ Aut(T).

Note that the codimension of Dr in Wg,n is the number of edges in I". Let

5= || Br.
[EM|=Jj

The image of a small neighborhood of a point in D7 is contained in precisely j
analytic branches of the boundary divisor dMg » := Mg » . M ». The monodromy
action on these branches defines a local system of rank j on D7 whose determinant is
denoted €’. The E;-page of the weight spectral sequence for H? (Mg ,) is expressed
naturally in terms of cohomology with coefficients in this local system:

E{ak ~ Hk(BJ,GI)

Note that the branches of D that contain the image of a small neighborhood of a point
in Dr are naturally identified with the edges of T, and €/ is trivialized by pullback
to Mr. In this way, the local system €/ is identified with the determinant of the
permutation action of Aut(I") on E(T"). Thus, we have

Ef= @ (H*Mr) ®det ED)™ .

[E(M)|=Jj

The spectral sequence degenerates at E,. Hence gry ch Jrk(e/\/{g,n) is canonically
identified with H/ of the complex
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_ () e — "
s @ (HY M) @ det ED)MD L @ (HE(Mr) ® det (D))
D=1 =/
dj — u
_l) (Hk(MI‘) ® detE(F))A uT) —> ., (4)
E(T)|=j+1

All of the data in this spectral sequence is neatly encoded in the language of modular
operads (see [18]; cf. [31, Example 3.9]). More precisely, the cohomology groups
H ’(ﬂg,n) naturally form a modular cooperad, whose Feynman transform evaluated
at (g,n) is the direct sum, over all weights k, of the complex (4). Using the Kiinneth
decomposition, one may encode generators as linear combinations of graphs I" whose
vertices v are labeled with elements of H*> (Mg, ,) such that 3°, k, = k. The result
is now known as the Getzler—Kapranov graph complex and denoted GK];,,, (see, e.g.,
[1, Section 6.1] and [21]).

2.4. Modular cooperads and Feynman transform
We briefly recall the notion of modular cooperads and their Feynman transforms, and
refer the reader to [18] for details. A stable S-module is a collection of dg vector
spaces P = {P(g,n)}, for g,n > 0 and 2g + n > 3, with each P (g,n) equipped
with an action of S,,.

Let & be a stable S-module. For a stable graph I', we may define the tensor
product

®rP = Quev(r)P(gv. Nv).

Note that Aut(I") acts naturally on ® 4. A modular cooperad is a stable S-module
together with a morphism

P(g.n) = QrP

for every stable graph of genus g with n legs, satisfying suitable compatibility rela-
tions.

To a modular cooperad &, one naturally associates the Feynman transform % J,
which is a modular cooperad whose underlying stable S-module is

FP(g.n) = @(@gﬁ ® @[_1]®|E<r)|>

T Aut(T)

Here, the sum is over isomorphism classes of stable graphs of genus g with n legs,
| E(T)| is the set of edges of I", and the action of the automorphism group is diagonal
on @ and Q[—1]®/EMI by permutation of factors. Elements of ¥ #(g,n) can be
understood as isomorphism classes of graphs whose vertices are decorated by suitable
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elements of . In cases where & has no differential, the differential on ¥ & (g, n) has
two pieces,

8= Ssplit + ‘Sloop-

The piece Jgpyi¢ splits vertices similar to (1), using the cooperadic composition of
on decorations. Similarly, di,0p creates a loop at a vertex

ot NN

using the modular cooperadic map P (g,n) — #(g — 1,n + 2) on the decoration.

2.5. The Getzler—-Kapranov graph complex
The cohomology groups H*(M ¢,n) of the Deligne-Mumford compactified moduli
spaces Mg , assemble into a modular cooperad that we shall denote H (M). We con-
sider the Feynman transform % H (M) of this modular cooperad.

An element of % H(M)(g,n) is a linear combination of stable n-marked graphs
of genus g whose vertices v are decorated by elements of H (M, »,). As recalled in
the preceding section, the differential has two parts:

§= Ssplit + Sloop-

The dg vector spaces & H(M)(g,n) inherit the weight grading from H (M), where
the weight of a graph is the sum of the degrees of its vertex decorations.

DEFINITION 2.2
The weight k Getzler—Kapranov graph complex is
GKE , = gr, F H(M)(g.n).
Note that GK’;’,’ is also naturally identified with (4), the weight k row on the E;-

page of the weight spectral sequence for Mg, C Wg,n, and hence there is a canonical
isomorphism

H*GKE , = gy HY (M)

2.6. A nonvanishing result in weight O

Here we state and prove Proposition 2.4, a nonvanishing and exponential growth result
for Wo HZ 13 (M ¢)- This proposition, combined with Theorem 1.2 and the results on
WoH_Z? (M) in [8], gives the nonvanishing statements in Corollary 1.4.
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Let fGCy conn be the full commutative graph complex studied in [39]. The ele-
ments of fGCy conn are (possibly infinite) formal Q-linear combinations of isomor-
phism classes of connected graphs with vertices of any valence. It is a dg Lie algebra
with a combinatorially defined bracket, and the differential § is the bracket with a
single edge. The subspace GC, spanned by stable graphs is a direct summand, and
the restriction of § is exactly yii.. The cohomology of f{GCx conn is

H(fGC2 com) = H(GC5) & D Q[Lax+1], 5)

k>1

where L, denotes a loop of n edges, in which every vertex has valence 2 (see [39,
Proposition 3.4]).

Recall that the cohomological degree of a graph in fGC; cony of genus g with e
edges is e — 2g. There is an extra differential V on fGCs conn, given by bracket with
a loop edge, studied in [23].

LEMMA 2.3

Every class in H°(GC,) is represented by a §-cocycle F € {GCy conn such that
VF =0.

Proof

Let F € fGCy conn be a §-cocycle representing a nontrivial class in H(GC,). We must
show that there is some F’ € f{GC; conn such that F/ — F is §-exact and VF’' = 0.
First, note that 5V F = —V§F = 0. Since H(fGC3 ¢onn) vanishes in negative degrees
(see [39, Theorem 1.1]), we see that VF is §-exact; that is, there is F; € fGCy conn
such that §F} = VF. Moreover, §VF, = —V§F; = —V2?F = 0. Continuing in this
way, the number of edges remains fixed and the genus increases by 1 at each step, so
eventually we arrive at a sequence (F = Fy,..., Fy)

§F,=VF,_, and V(F,)=0. (6)

Then, since fGCy conn is V-acyclic in genus greater than 1 (see [23, Corollary 3]),
there is some G, such that VG, = F,,. If n > 1, then we can replace F,, with F,,_; +
3G, to get a shorter sequence that satisfies (6). Repeating the process, we arrive at
such a sequence with n = 1. Choose G such that VG = Fy, and set F' = F + 6G.

O

Recall from [8] that Wy H? (M) is identified with the genus g part of the coho-
mology of the complex of commutative stable graphs GC, and the dimension of
WoHZ¢ (Mg) grows at least exponentially with g.
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PROPOSITION 2.4
The weight O cohomology group WOHCZgH(:Mg) is nonzero for g = 6 and g > 8.
Moreover, its dimension grows at least exponentially with g.

Proof
Let us denote the genus g part of GC, by Gng). The main result of [8] shows
that Wo HZ ™ (M) = H¥(GC’). We recall that H®(GC,) is naturally identified
with the Grothendieck—Teichmiiller Lie algebra (see [39]). Using this identification,
it follows from the main results of [5] that H°(GC,) contains a free Lie subalgebra
generated by classes o, € HO(GC;g)) for odd g > 3 (see [6, (1.3)]).

We consider two linear maps induced by the Lie bracket:

[03,]]: H(GC,) - H°(GC,)  and  [Ls,]: H°(GC,) - H3*(GC»).

The natural target of [Ls,-] is H3(fGCz conn), but the image of any nontrivial class
has genus greater than 1; by (5), it must be in the summand H3(GC,). We claim that
the kernel of [Ls, -] is contained in the kernel of [03,-]. The proposition follows from
the claim, since the free Lie algebra generated by os,07, ... has trivial intersection
with the kernel of 03, ] and hence also with the kernel of [Ls5, -]. It remains to prove
the claim.

Let F € fGCy, conn be a cocyle of genus g representing a class in H O(Gng )).
Suppose that [Ls, F] is exact, and write it as §(4), with A € f{GCy ¢onn of genus g + 1.
We must show that [03, F] is exact. By Lemma 2.3, we may assume that VF = 0.

Recall that there is a graph y of genus 2 such that (§ + V)(Ls + y) = 03 (as in
[23, Figure 2]). Let ¢ := [y, F] — VA. Then { = [Ls + y, F] — (6 + V)A, and, using
the assumption that VF = 0, it follows that

(6 + V)¢ = o3, F]. (7

Note that ¢ is of genus g + 2 and [o03, F] is of genus g + 3, and § leaves the genus
invariant, while V increases it by 1. Hence, comparing terms of like genus in (7),
we find that separately 6¢ = 0 and V¢ = [o03, F]. Let D denote the vertex deletion
operation introduced by Zivkovi¢ in [40, Section 3]. Then V = 6D — D§ (see [40,
Proposition 3.3]) and hence

[03. F]=V{= (8D — D) =5(D). ()

This shows that [03, F] is exact, as required, and proves the proposition. We note that
[40, Proposition 3.3] is stated in a version of the graph complex that also contains
disconnected graphs. However, since the connected graphs span a direct summand
with respect to 8, given that (8) holds in the larger complex, it must also hold for the
connected part. O
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2.7. The support of H®*(Xg »)

Here we deduce bounds on the support of H*(Xg ,) from Theorem 1.1, using mixed
Hodge theory and known vanishing statements for H; (Mg ). We also explain how
Corollary 1.4 follows from Theorem 1.2.

COROLLARY 2.5
The graph cohomology H*(Xg ) is supported in degrees between max{2g,2g —2 +
n}and3g —2+n.

Proof
By Theorem 1.1, we must show that gr, H? (Mg ) is supported in the indicated range
of degrees. By Poincaré duality, we have

gry HY (Mgn) = grge_gi0n HO8 7020 (M )Y &)

To see the upper bound, recall (see [12]) that gr, H is supported in weights * < 2k.
Hence the right-hand side of (9) vanishes when e > 3g — 2 4 n. For n > 2, the lower
bound also follows from (9), since the virtual cohomological dimension (ved) of Mg ,,
is 4g —4 4 n. The lower bounds for » = 0 and 1 are similar; one uses that the veds
of Mg, and M, are 4g — 3 and 4g — 5, respectively, and that H*¢ 3 (M, 1) and
H*873(M) both vanish (see [10], [30]). O

Finally, we explain how Corollary 1.4 follows from Theorem 1.2 and Proposi-
tion 2.4.

Proof of Corollary 1.4

We start by recalling that

d WoHZE (Mg) is nonvanishing for g =3, g =5, and g > 7, by [8], and

. Wochg+3(Mg) is nonvanishing for g = 6 and g > 8§, by Proposition 2.4.

In both cases the dimension grows exponentially with g. Furthermore, we know that
WoHZ2"(M10) # 0; the corresponding graph cohomology computation is due to Bar-
Natan and McKay [3]. For this proof only, let us set

Wo =P WoHZ (Mg).  Wi:= D WoHZ 3 (My),
g g

W, = WoHZ2 M.

Then A\>W, contributes to Vg2 for g =8 and g > 10, and the dimension of
this subspace grows exponentially with g. Considering the third summand in The-
orem 1.2, this shows that gr, chngz(Mg) is nonzero for g = 9 and g > 11, and
grows exponentially with g. The corresponding statement for H*¢~8(M) follows
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by Poincaré duality since H*¢~8(M,) = HZ¥*?(M,)V. This proves Corollary 1.4
for H*88(My).

Corollary 1.4 for H*¢7?(M,) is an immediate consequence of Proposition 2.4
since H*¢™9(Mg) = HZ T3 (My)V.

The remaining cases of Corollary 1.4 are similar to the case of H*¢78(M). The
subspace Wy A W3 contributes to Vg 2043 for g =9 and g > 11, and the dimen-
sion of this contribution grows exponentially with g. Considering the third summand
in Theorem 1.2 and applying Poincaré duality shows that H*¢~11(M,) is nonzero
for g = 10 and g > 12, and its dimension grows exponentially with g. The corre-
sponding statements for H*¢~12(M) are proved similarly, using the first summand
in Theorem 1.2

The next three cases, for H*¢714(Mg), H*¢ 15(M,), and H*¢716(My), use
the contributions of /\2 W3 and Wo A W7 to Vg 5046 and Vg 5447, respectively.
The final two cases, for H*8~18(M,) and H*¢~1(M,), are deduced similarly from
the contribution of W3 A W7 to Vg 254 10. O

2.8. A vanishing result in weight 0

Our main motivation is to use what is known in weight 0 to prove new results about
the weight 2 cohomology gr, H? (M, ,). However, it is worth noting that the infor-
mation flows meaningfully in both directions, via Theorem 1.2. For instance, applying
basic results from mixed Hodge theory to the weight 2 cohomology, we deduce the
following vanishing result in weight 0.

PROPOSITION 2.6
The cohomology Wy HX! (Mg 2)as vanishes for all g > 1. Also,

dim @ WoHZ¢ > (Mg1) < 1.
4

In other words, the graph complex G -2 computing WoH: (Mg ) (see Sec-
tion 4.1) has no antisymmetric cohomology in the top degree, corresponding to
trivalent graphs with two marked points. Furthermore the top degree cohomology of
&P < G (& corresponding to trivalent graphs, is at most 1-dimensional.

Proof

The antisymmetric part Wo Ho® ™' (Mg, 2), injects into gry Ho8 T2 (Mg11), via the
second summand in Theorem 1.2, and the Poincaré dual of gr, HZ¢ +2(Mg+1) is
8leg—n H 38=2(Mg+1), which vanishes because gr, H k is supported in weights * <
2k (see [12]). Similarly, the first summand in Theorem 1.2 gives an injection from
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N> D, Wo HZ¥7%(Mg,) into D, g, Hfg"‘(mg/), which vanishes for the same
weight reasons. O

It is not known whether Wy H 3¢ _z(eMg,l) vanishes, or equivalently, whether
every trivalent graph with one marked point is a coboundary in G &V, for all g.

3. The weight 2 Getzler—-Kapranov graph complex

3.1. Generators and relations

The decorated graphs that generate GK;n have a particularly simple description.
Each generator has an underlying stable graph of genus g and comes with a total
ordering of the structural edges, that is, the edges that are not incident to the external
vertices labeled 1, ..., n, subject to the relation that reordering the structural edges is
multiplication by the sign of the permutation. In addition, each vertex v is decorated
by an element of H*v (M,
Y ooky=2.

Since H%(M) = Q and H' (M) = 0 for each moduli space M attached to a ver-
tex, any generator for GKi,’n has a unique vertex v with decoration in H2(Mg, »,),
which we call the special vertex. After rescaling, we may assume that all other ver-
tices are decorated with the unit 1 € H O(ﬂ); for simplicity, we omit these trivial
decorations. We can thus give a finite generating set for GKg,n by specifying a finite

..y )> Where gy, and n,, are the genus and valence of v, and

generating set for H2(Mg /) for all g’ and n’.

Recall that H 2(ﬂg,n) is generated by the tautological classes: k, V1,..., ¥y,
Sirr, and 84 4 = 8g—q, 4c, for subsets A C {I,...,n} and 0 < a < g such that 2a +
|S|>2 and 2(g —a) + |A°| = 2. Thus GKZ,’,! is generated by graphs in which the
special vertex v is decorated by one of these tautological classes in H 2(ﬂgv,nv).
Here, the set {1,...,n,} is implicitly identified with the set of half-edges incident to
v.

For g > 3, the tautological classes form a basis H 2(ﬂg,,,); there are no further
relations. However, for g < 2, the tautological classes satisfy relations as follows (see
[2, Theorem 2.2]).

For g = 2, there is one relation:

n

Sk=5% Yi+8n—5Y Soa+7) b4
i=1 A A

For g = 1, there are n 4 1 relations:

n
K:ZI//,'— Z SO,A and 121//,':811-[4-12230“4.

i=1 |A]>2 icA
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For g = 0, the relations are generated by

k=Y (14-1)8oa.  Yi= Y Soa. and Sz =0.
AFx,y i€AFx,y
Here i and x # y run over elements of {1, ...,n}. See also Proposition 3.5 for another

presentation of H2(Mg ).

Example 3.1
The following is a generator in degree 9 for GK;I. The inscribed numbers in ver-
tices v represent the genera g,:

i
N

The special vertex is drawn with a double circle, and decorated by k € H 2(ﬂ3,3).

3.2. Graphical depiction of boundary and v -class decorations
We use suggestive graphical depictions of the decorations on the special vertex, indi-
cating a decoration y; with an arrow on the corresponding half-edge:

To indicate a decoration J,, 4, we replace the special vertex with two vertices con-

nected by a marked edge:
S
-
(10)

Here b = h — a, and A is the subset of the half-edges at the special vertex that are
connected to the vertex labeled a.

3.3. Graphical depiction of the differential

The differential § = Splic + S1o0p ON GK];,n acts on each generator by taking a sum over
the vertices. Roughly speaking, it amounts to splitting vertices and attaching loops
at vertices in all allowable ways and then pulling back cohomological decorations
along the corresponding clutching and gluing maps between moduli spaces. When
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the decoration on a given vertex is trivial, the differential acts just like the differential
on the standard commutative graph complex.

Thus, we may depict the contribution “I" split v’ from a nonspecial vertex v with
gv =h as

5im ¥ S0

avb=h (11)

On the right-hand side, the second sum is taken over all ways of distributing the half-
edges incident to the special vertex over the two new vertices of genus a and b such
that the resulting graph is stable. Similarly, we may depict the contribution to §jo0p

from a nonspecial vertex v as
-
(12)

with the right-hand side being understood as zero if 7 = 0. In both cases, the edge
orderings on the right-hand side are fixed so that the newly created edge is first and
the relative order of the other edges is unchanged.

Next, we turn to the special vertex. In what follows, it will be convenient to
consider curves with marked points labeled by a finite set S that is not necessarily
identified with {1,...,n}. We follow the usual notational convention (e.g., from [2]),
writing Mg s for the moduli space of smooth curves of genus g with |.S| marked
points labeled by a bijection to .S, and ﬂg, s for its compactification by stable curves.

To describe the differential, one needs to understand the pullback of the classes
in H2(Mj 1) under the maps

£ Mp—1,50(,4 — Mn,s and 0: Mg auigy — Mh.s,

where the latter is obtained by attaching a fixed curve of genus &4 — a with marked
points labeled by A€ U {r}, where A° := S \ A. (The map 6 depends on the choice
of this curve, but only up to homotopy, so the pullback map on cohomology is well
defined.) The relevant formulas are well known (see [2, Lemmas 3.2 and 3.3]).

First, for the pullback 6, which is related to dp; at the special vertex, we have

v ifies,

0 otherwise.

0%(k) =K.  07(6i) =8irr.  and O (¥i) ={

The resulting formulas for d,1;c When applied to graphs in which the special vertex is
decorated with «, 8y, or ¥; can then be depicted graphically in a way that naturally
generalizes (11). For example, when the special vertex is decorated with ;, we have
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Osplit - ﬁ"’ 2 Z

atb=h (13)

Here, the second sum is again taken over all ways of distributing the half-edges inci-
dent to the special vertex over the two new vertices of genus a and b such that the
resulting graph is stable.

Next, we discuss the formulas for 6*(p p). In the special case where A = S, we
have

6% 8y 5) = 82b-n,5U{q} — Vg if (b,B) = (a,S) or (b, B) = (h—a.9),
’ 8b.B + Sbt+a—h,BU{g) Otherwise.
If A# S, then
—Yq if (b, B) = (a,A) or (b, B) = (h—a, A°),
" 8p.B if BC A and (b, B) # (a, A),

6% (55,5) = | ] )
Sb-‘ra—h,(B\AC)U{q} if B D A€ and (b, B) 75 (h —a, A ),
0 otherwise.

Again, the resulting action of &y on a special vertex with decoration 8, g has a
convenient graphic depiction:

s P 3 SH@E - 3 50

b+b=
PR
(14)

Next, consider pullback £*, which is related to §jo0p at the special vertex. We have

£k =k, EY; =, and

65 A_{(Sa,A ifh=2a,A=5=0,
A =

Sa,A + 8a—1,AU{l,t’} otherwise.

These algebraic rules correspond to the following pictorial definition of §ioep:

Fof el
ooyl
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Note that these pictures are formally similar to (12).
For the boundary class §;,;, we have

E*Sirrzfgirr_wt—wt"i‘z Z Sa,A-

a teA,t’'¢A

This means that the action of the differential 8100p on a §y-decorated vertex may be
depicted graphically as

6,

3.4. Example of a nontrivial cocycle in GK;,n

Here we depict a representative in GK? of the first nontrivial cohomology class pro-
duced by Theorem 1.2. It lives in gr, H}®(Mg) = H'°(GK3) and arises from the
subspace Wo HE (M3,1) A Wo H!®(M,1) of Vg 16. A representative is given by

) (B

where the dashed edge should be attached to one vertex on the left and one on the
right, and one decorates it with an arrow pointing left, minus one pointing right. The
result is a linear combination of 10 graphs with 1-decorations:

AN AN N AL NS AN 74 AN A
N/ v % <3 5 N\ 3,

Remark 3.2

Note that Theorem 1.2 also provides another embedding of V, i into Hc(Mg41),
and the element of V3 ;6 underlying the degree 19 cocycle of genus 8 depicted above
gives rise to another nontrivial element of H2°(:Ms). The corresponding cocycle in
GKS has approximately three times as many terms, and we do not draw it here. In
the proof of Theorem 1.2 and Appendix A, we do provide an explicit algorithm for

obtaining the image of the corresponding cocycle in the quasi-isomorphic quotient
GK3 of GK3.
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3.5. The quotient GK
Let Iz, C GKg , be the graded subspace spanned by graphs that have at least one
vertex of positive genus. Then define the quotient

GKgn =GKgn/(Ign +81g.n).

In other words, @g,n is generated by graphs, all of whose vertices are of genus 0.
Among those graphs we impose relations of the form 8o, for I' running over

graphs with exactly one vertex of genus 1. The quotient GKg ,, inherits the weight
grading from GKg ,, where the weight is the sum of the cohomological degrees of
the vertex decorations. We denote the summand of weight k by

GR:, CGK, .

In particular, the weight O piece Wg,’n is generated by graphs without loop edges,

all of whose vertices have genus 0. After rescaling, we may assume that all vertex
decorations are trivial, that is, each decoration is the identity 1 € H O(ﬂo,k). One
main result of [8] and [9] is that the quotient GKg,n — Wg,n is a quasi-isomorphism
for all g, n.

In this paper, we prove an analogous result in weight 2. The weight 2 piece Wﬁn
is generated by graphs with all vertices of genus 0, and one special vertex decorated
by a tautological generator for H 2(ﬂo,k). We quotient by graphs with a loop edge
at a nonspecial vertex. Furthermore, if there is a loop edge at the special vertex, then
we impose the additional relations 8y 4 = O for sets of half-edges A that contain both
half-edges of the loop. (Since 8o, 4 = o, 4c in H 2(ﬂ0,k), this also kills graphs labeled
with 89,4, where A contains neither half-edge of the loop.)

THEOREM 3.3

. 2 % . .. .
The quotient map GKg’n — GKé,n is a quasi-isomorphism for all g, n except g =
n=1

For g = n =1, the right-hand complex is acyclic and the left-hand complex has
1-dimensional cohomology, spanned by the class of a single-vertex graph with deco-
ration 8,

3.6. Resolutions of H*(M )

In the proof of Theorem 3.3, we use the following presentation for H Z(ﬂo,n)- We
believe this is well known to experts. However, lacking a suitable reference, we
include a short proof.
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LEMMA 3.4

The cohomology group H 2(ﬂo,n) is generated by boundary classes 8o 4 for sub-
sets A C{1,...,n} with2 <|A| <n —2, and the V-classes Y1, ..., ¥, modulo the
relations

(1) 80,4 = do,4c,

2 VitV =2 ica,jeac S0.4-

Proof

These classes generate H2(Mo ) and dim H2(Mo ) =2""1 = (3) — 1 (see [22]).
The relations §p,4 = 8o, 4c are standard, and the quotient by these relations has dimen-
sion 2"~! — 1. The remaining (;) relations are independent, so it suffices to show
that they hold in H2?(My,). For n = 3, this is trivial. We proceed by induction
on n. Assume that (2) holds in HZ(WO,,,). Let 7: WO,,,H — ﬂo,n be the univer-
sal curve. Then apply the pullback formulas 7*v; = ¥; — 8¢ i n+1) and 7*80 4 =

80,4 + 80,4u¢n+1) (see [2, Lemma 3.1]) to deduce that (2) holds in Hz(ﬂo,nﬂ). O
The following proposition is an immediate consequence of Lemma 3.4.

PROPOSITION 3.5
There is an S, -equivariant short exact sequence

0> P 0~ (D ovi) e P4~ HA(Mon) —0

1<i<j<n 1<i<n 1€4

in which the first arrow is given by Eij +— Yi + ¥ — Y ;e 4 jeac 80,4. Note that here
we identify 80,4 = 80, 4c.

The S,-action is given by permuting all labels and setting E;; = E;; fori > j
and 89,4 = 69, 4c when 1 ¢ A.

4. Filtration by the number of vertices

The main idea of the proof of Theorem 3.3 is to use the filtration on GK, , by the
number of vertices and look at the associated spectral sequence. The associated graded
of this filtration gr GKg ,, can be identified with (GKj ,, 8i00p); that is, we kill the part
of the differential splitting vertices. As discussed in Section 4.3, this complex splits
into subcomplexes that are direct sums of tensor products of complexes associated to
single vertices. We begin by studying these single vertex complexes

Ve =D (H (Mg ni2n) ® Q[-1]%")g . (15)
h
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where the wreath product S; ¢ Sy, acts by permuting the last 24 marked points and
the factors Q[—1]®”, introducing signs via the Koszul sign rule (see Section 2.1). The
weight grading on Vg , is given by the cohomological degree in H .(Wg_h,n_}_zh),
and the complex decomposes into a direct sum of weight-graded pieces. We denote
the piece of weight k by V; ..+ in this paper, we focus on the cases k =0 and k = 2.

4.1. The single vertex complex in weight O
In weight 0, we have

Q forg=0,n>3,
H(Vy,)= { (16)

0 otherwise.
To see this, note that

Q forhe{0,1},

0/ s ®h —
(H (Mg—nn+21) ® Q[-1] )Sz?Sh - {0 otherwise

and the differential on Vgo, ,, 1s nontrivial when g is positive.
The complex W;n is generated by connected simple graphs of genus g with n
marked legs. Following [9], we denote this

Gem .= GKg,n.

One can deduce from (16) that GKg,n — Wg,n is a quasi-isomorphism. However,
we do not give the argument now. Instead, we proceed directly to the weight 2 case
and merely remark that the weight 0 case can be handled by a simplified version of
the argument in Section 4.3, filtering by the number of vertices and using (16) in place
of Proposition 4.2. Thus, the methods presented here give an alternative approach to

the following result.

THEOREM 4.1 ([8], [9])

The graph cohomology H(G®™) = H (GKg,n) is identified with the weight 0 part
WoHZ (Mg ) of the compactly supported cohomology of the open moduli space of
curves.

4.2. The single vertex complex in weight 2
Our proof of Theorem 3.3 will combine (16) with the following analogous statement
in weight 2.

PROPOSITION 4.2
For g > 2 and all n, one has
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HWVZ,)=0.
For g =1, one has
H(Vlz,n) =~ Q8 ® (H*(Mont2)s,/E*H* (M1 ).

For g = 0, the differential on V02,n vanishes.

We write V2, in the form
0— Hz(ﬂg,n) - Hz(ﬂgfl,nJrz)Sz g Hz(ﬁgfz,n+4)822Sz - Hz(ﬂgfln)SzZS_z . (17)

Here, the action of S, ? Sy, is understood to include a sign that accounts for the per-
mutation of the tensor factors Q[—1]®” in (15). To make this concrete, recall that
Hz(ﬂg,n) is generated by the tautological classes «, V;, Sir and §g.4 = §g—q,4c,
with relations for g <2 as discussed in Section 3. Then the action of S, ? Sy, is induced
by a signed permutation action on this set of tautological generators, as follows. One
may think of each generator as a graph with a single internal vertex of genus g — &
incident to & loop edges and n marked legs, equipped with a decoration by a tauto-
logical generator for H z(ﬂg_h,n+2h). Then each copy of S, acts by exchanging the
half-edges in a loop (without sign). The quotient map to Sy, is given by the permuta-
tion of the loop edges, and the induced permutation on generators is twisted by the
sign of this Sp-action.

LEMMA 4.3

As a vector space, V2, = @y H*(Mg_pni21)sys, is generated by the following
classes:

(1) K or 8y, for h €0, 1},

2) Yy, withi €{1,...,n}, forh €{0,1},

(3) Yy with j ¢{1,...,n}, forhe{1,2}

4) 84,4, for h€{0,1,2,3}.

In particular, the complex (17) vanishes beyond h = 3.

Proof
Any other tautological generator for H Z(Wg_h,,ﬂrzh) is preserved by an element of
Sz ¢ Sy, that acts by a transposition on the set of loop edges. ([

Proof of Proposition 4.2 for g > 4
For g > 4, there are no nontrivial relations among the above generators for Vé s
that is, all relations are induced by isomorphisms of marked and decorated graphs.

In this case, we can see that the complex is acyclic by constructing a null-homotopy
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as follows. Depict boundary classes and y-classes by marked edges and half-edges,
respectively, as in Section 3. Thus the generators of ng, ,, are depicted by graphs that
have either one or two vertices. Say that a vertex v is active if either g, > 0 or if there
is a loop attached to v. Note that each vertex has at most one loop attached, since
otherwise there is an odd automorphism interchanging two loops.

For each loop edge, there is a natural contraction, in which the loop edge is
deleted and the genus of the attached vertex is increased by 1. The orientation on
the resulting graph is determined as follows: after reordering, we may assume that the
contracted loop was first in the loop order, and then the remaining edges keep their
induced ordering. The null-homotopy takes the sum of all such contractions, divided
by the number of active vertices. O

When g = 0, there is nothing to prove. When g = 1, 2, or 3, additional argu-
ments are required. For simplicity, we give complete proofs for n > 1; the cases where
n = 0 are similar. Throughout the remainder of the proof, we use S to denote an arbi-
trary subset of {1, ..., n}, subject to restrictions as specifically indicated. For instance,
“So,s, 1 € §” refers to the 2"~ elements of the form 80,5 where S is a subset of
{1,...,n} that contains 1.

Proof of Proposition 4.2 for g =3
The complex V3, has the form

H*(Ms3) — H* (M pi2)s, — H*(Minta)sys, — H>(Mopnt6)syss - (18)

By [2, Theorem 2.10], we know that H2(M3 ) — H?(M3 n+2)s, is injective. We
now check exactness at the remaining places, working from right to left. Let s, s, ¢,
t’, and u, u’ be the pairs of markings added to {1,...,n} at each step. We claim that
Ho(ﬂo,n+6)g22§3 has a basis consisting of the classes

50,SU{s,s’,t}a 1e€8§.

This can be seen by taking coinvariants of the resolution in Proposition 3.5; each E;;
is stabilized by an element of S, ¢ S3 that acts by a simple transposition on the set of
three loops, and hence the coinvariants of B, ; QE;; vanish.

Next, recall that H2 (M ,4) is freely generated by boundary classes, which are
permuted by S, ? S,. Taking coinvariants, we see that H 2(ﬂ15n+4)52352 has a basis
consisting of:

SO,SU{S}a |S| > 1; SO,SU{s,s’}; 5O,SU{s,s/,t)-

Working with respect to these bases, the same chain homotopy argument used
for g > 4 shows that (18) is exact at H?(Mo +6)sps; and at H2(M1 44)ss,- It
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remains to check that it is exact at H 2(ﬂz,n+2)gz. We prove this when n > 0 by
counting dimensions and computing the Euler characteristic; the argument for n = 0
is similar.

Assume that n > 0. Then H2(W2,n+2)g2 has a basis given by v¥1,..., ¥, Vs,
and §;;; together with:

So,s. IS|>2: 81,s: 82.58; So,su{sy,  ISI=1; 81,5u(s3, L €S.

The dimension of H z(ﬂg,,n) is 2-2" 4 1. Counting the bases above shows that
x(VE)=@2-2" +1)—4-2"+2"" )+ (32" —1)—2""",

which is zero, as required. U

Proof of Proposition 4.2 for g = 2
The complex V7, has the form

H*(M2n) — H* (M1 n12)s, = H*(Mon+4)s,5,-

By [2, Theorem 2.10], we know that the first arrow is injective. We proceed to prove
exactness at the remaining two places, working from right to left.

Say s, s” and 7, t’ are the two pairs of markings added at each step. First, we claim
that H Z(WO,,,+4)S22§2 has a basis consisting of:

80.sU{s.sy, 1€S; do.sutsy. IS = 2. (19)

To see this, consider the (S; ? S;)-coinvariants of the resolution of H Z(Wo’n+4)
from Proposition 3.5. The coinvariant space of @i, ; QE;; has a basis consisting
of Esy together with Ey, ..., E,s. Similarly, the coinvariant space of (EBi Qvi) @
(B Q6o,s) has a basis consisting of:

Vs SO,SU{s,s’}v l1€s§; 50,SU{S}, |S|> 1.

By examining the differential, one checks that E; ;s can be used to eliminate ¥y,
while E;g can be used to eliminate 8¢ ¢; 53 for i € {1,...,n}. Hence the images of the
remaining basis elements listed in (19) form a basis for H Z(WO,n+4)gz 'S, as claimed.

Next, recall that H 2(ﬂ1,n+2) is freely generated by boundary classes, which are
permuted by the S;-action. One then sees that the coinvariant space H 2(ﬁl,n+2)§2
has a basis consisting of:

Birrs do,s. |S]=2; So.sugsy, IS =1 81,s. (20)

Working with these bases, the same chain homotopy argument that works for g > 4
gives a splitting of the map to H 2(M05n+4)522§2. It remains to check that sz,n is
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exact at H Z(ﬂl,n“)gz. Just as for g = 3, we do this by counting dimensions and
computing the Euler characteristic. For simplicity, we assume thatn > 1;the n =0
case is similar.

The dimension of H2(M3 ) is 2" 42", Counting the bases (19) and (20) then
shows that

x(VZ)=@2"+2""H—@3-2"—n—D)+ Q" +2" ' =n—1),

which is zero, as required. O

We use the following lemma in the proof of Proposition 4.2 for g = 1, and also
in the proof of Proposition 5.3.

LEMMA 4.4
The classes 8o,s in H*(M1 ) for S C{1,...,n}, |S| > 2 have linearly independent
images in H*(Mo n+2)s,, where Sy acts by transposing the last two marked points.

Proof

These classes are S;-invariant, so it suffices to show that they are linearly independent
in H z(ﬂo,nJrz). We claim that there is a curve C in ﬂo,nﬂ that intersects §o s at
finitely many points and is disjoint from &g s/ for all other subsets S” C {1,...,n}.
Fix n + 2 general points in P!. Let G,, act so that the coordinates of the points in S
are multiplied by z and the rest are multiplied by z~!, and let C be the closure of this
G, -orbit. The image of G, is contained in the open moduli space My , 42, and the
remaining two points of C are general in §o 5. This proves the claim, and the lemma
follows. O

Proof of Proposition 4.2 for g =1
We now consider the two-term complex Vlz’n,

H*(M1,) = H*(Mopnt2)s, -

Recall that H 2(ﬂl,n) is freely generated by the boundary classes 8 and 8¢.s, |S| >
2. Also, H?(Mo n+2)s, is generated by the classes

o5, |S1=2; So,sutsy.  ISI>1,|S°]> L.

The differential is then given by 8 +> 0 and 8o s — Jo,s. The statement of Proposi-
tion 4.2 for g = 1 reduces to saying that the kernel of the differential is generated by
Sirr. This follows from Lemma 4.4, since the classes 8¢,s, |S| > 2 have linearly inde-
pendent images in H z(ﬂo,n_m)gz. This completes the proof of Proposition 4.2. [
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4.3. The filtered map of filtered complexes
We now prove Theorem 3.3, showing that the projection

2 ~K2
GK?, —GK2, 1)

is a quasi-isomorphism for any (g,n) # (1, 1). We do this by filtering both sides by
the number of vertices and showing that the induced map between spectral sequences
is an isomorphism at E,. From this it follows that (21) is a quasi-isomorphism by the
spectral sequence comparison theorem (see [38, Theorem 5.2.12]).

Proof of Theorem 3.3

Let ?pGK;n C GKi,’n and .?71’@&2,’” C Wén be the dg subvector spaces ofGKZ,,n
and Wf,’n,
and ¥ 'W;n are decreasing filtrations of dg vector spaces, and (21) respects the
filtrations. We now consider the spectral sequences associated to these filtrations and
the induced map between them.

On Ej, we have the associated graded dg vector spaces

grGK2 =~ (GK2 S1oop) and grGK2 =~ (GK2 ,,0).

g.n = g.n’ g.n = g.n’

. . . o2
respectively, spanned by graphs with at least p vertices. So ¥ °GK ,

Say that the loopless core of a stable graph is the stable graph obtained by con-
tracting all loop edges and increasing the genera of the adjacent vertices accordingly.
Note that §jo0p does not change the loopless core, and hence (GKz,n’ S1o0p) decom-
poses as a direct sum

(GK;n » Sloop) = @(GKF » 5loop),
r

where I ranges over isomorphism classes of n-marked stable graphs of genus g with-
out loop edges and GKr is the dg subspace spanned by graphs with loopless core T".

Since 8jo0p acts independently on all vertices, we furthermore have the isomor-
phism of dg vector spaces

(@Krdo) = Q) Vi, O-112AC)

Au(T)’
veVert(T)

where E(T) is the set of structural edges of I'. Since taking coinvariants with respect
to finite group actions commutes with taking cohomology, we find that

H(GKr,&mp)g( (09 H(V;vv’nv)®Q[_1]®E(F))

veVert(T') Au(T’)

Recall that k, = 0 for all vertices except one special vertex w which has k,, = 2.
By (16), the right-hand side vanishes if I" has a nonspecial vertex of positive genus.
Otherwise, the right-hand side is
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2 QE(I
(H(ngynw) ® @[_1] ( ))Aut(r)'

In other words, H (G K;n, 8100p) can be identified with a graded vector space of stable
graphs without loop edges where all vertices have genus 0 except possibly one special
vertex w that is decorated by H (ngw,nw ), oriented by a total ordering of the structural
edges.

The differential on the E;-page of our spectral sequence is then induced by the
part 8 of the original differential. Our goal is to show that the projection

(H(G K;n ’ 510013)7 Ssplit) g (W;n ’ 85plil) (22)

is a quasi-isomorphism. The right-hand side is also a graded vector space of stable
graphs. Now all vertices have genus 0, but loop edges are allowed, and one special
vertex w is decorated by H2(My ,,), modulo the image of §jo0p. Applying Proposi-
tion 4.2, we see that (22) is surjective, with kernel K, ,, generated by stable graphs in
which all vertices have genus 0 except one special vertex of genus 1 that is decorated
with 8. Equivalently, Kz, is a commutative graph complex generated by graphs
with one special vertex in which all vertices have valence at least 3 except the spe-
cial vertex, which may also have valence 1 or 2. We prove the acyclicity of Kg , as
follows.

Let Ky C Kg , be the dg subspace spanned by graphs in which the special ver-
tex has valence 1, and let K>, C K, be the complementary subspace spanned by
graphs having a special vertex of valence at least 2. The differential ;. decomposes
accordingly into the following pieces

A
K., —> K, .

The part s splits off the special vertex as shown,

S > [d >—@,
with the special vertex marked by double circles. It is clear that this map s: K5 —

K is injective. It is also surjective if (g,n) # (1,1). Applying Lemma 2.1, it follows
that K , is acyclic, as required. O

5. A zigzag of quasi-isomorphisms of graph complexes

In this section, we discuss the graph complex X, , in more detail. We then describe a

zigzag of quasi-isomorphisms relating @é,n to X » and thereby prove Theorem 1.1.
Recall that we consider X, , only for nonnegative integers g and n such that

2g +n>3.
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5.1. Generators for Xg ,,

The generators for X, , are simple graphs without loops or multiple edges, in which
no vertices have valence 2. The vertices of valence at least 3 are internal and those of
valence 1 are external. Each external vertex is decorated with an element from the set
{e,w, 1,...,n} such that

. each label 1,...,n appears exactly once and the label w appears exactly twice;
. the graph obtained by joining all external vertices labeled € or w is connected

and has genus g.

Say that an edge with two external vertices labeled a and b is an (a, b)-edge. We
further require that

. no connected component is an (¢, w)- or (w, w)-edge.
An edge is structural if it does not contain an external vertex with label from
{1,...,n}. Note that there are exactly n nonstructural edges. The degree of a graph is

the number of structural edges plus 1. Each generator comes with a total ordering of
the structural edges, and we impose the relation that permuting the structural edges is
multiplication by the sign of the permutation.

The differential § on X , is a sum of two parts § = splic + Sjoin. Here Sy is a
sum over all vertices and over all ways of splitting the vertex into two vertices joined
by an edge:

Sepiic | = Z I split v, x = Z>._'<

v vertex

The part §joi, glues together a subset S of the €- and w-decorated external ver-
tices, such that |S| > 2, and S contains either O or 1 of the w-decorated vertices. It
then attaches an edge to a new external vertex decorated by € or w, respectively:

51.01.,1/@\ =Z‘ /% .

€ or w

In both parts, there is precisely one new structural edge, and the ordering is chosen so
that the new edge comes first and the relative ordering of the old edges is preserved. It
is straightforward to verify that applying sy and join to generators for X , produces
a sum of generators for X, ,, and that § squares to zero (as do Ggyiic and Sjoin).

In pictures, we draw graphs in X, ,, with filled black vertices, to distinguish them
from graphs in GK .

Remark 5.1
The graph complex X, , is closely related to the graph complexes studied by Fresse,
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Turchin, and the second author [16] in the context of the embedding calculus. For
suitable submanifolds M C R™ they showed that the rational homotopy groups of
the (long) embedding spaces modulo immersions Emb, (M, R") can be expressed as
the cohomology of a graph complex HGC 7 y, in which external vertices are labeled
by elements of the augmentation ideal A of a dg commutative algebra model of
the one-point compactification M U {oo}. Furthermore, the cohomology groups of
Emby(M,RY) are computed by the Chevalley complex of HGC 4,n» and this latter
complex can be identified with a complex of (possibly) disconnected graphs.

In particular, if M is a union of n copies of R¥ and $2¢, then the corresponding
model A has a basis consisting of € in degree 0, @ in degree 2¢, and {wy,...,w,} in
degree k, with product given by €2 = ¢, ew = v, and €w; = 0? = w;0 = w;w; = 0.

Then, up to unimportant degree shifts, X, , may be identified with a subquotient
of the Chevalley complex of HGC 4.n» for N even, corresponding to genus g graphs
without loop edges that contain each decoration w; exactly once, and that are con-
nected after fusing the - and w-decorated legs. We shall not need this connection to
the embedding calculus elsewhere in the paper, and leave the more precise compari-
son of the cohomology of X, , and the cohomology of embedding spaces to future
work.

5.2. A resolution ofﬁén

Our goal is to relate Wén to Xg n by a zigzag of quasi-isomorphisms. To this end,
we now construct a quasi-isomorphism GK? , — GKZ , such that GKZ ,, also maps
naturally onto X ,. Roughly sp;eaking GK;n is constructed from W;n by resolving
the space of decorations H 2(e/\/(o,k), as in Proposition 3.5. One can also construct a
quasi-isomorphism Xg , — GKf,’n (see Appendix A). The construction of the map
is explicit, but the proof that it is a quasi-isomorphism uses the resolution é‘Rf,n 5
GK2,,, ch
Concretely, GK;n is a graph complex analogous to GK;,n generated by graphs

and so we have chosen to focus on the zigzag.

with the following features. All vertices have genus 0 and there is exactly one special
vertex with extra decoration. There are no loop edges at nonspecial vertices. The
special vertex is decorated with one of the following:

. a symbol 8 4, where A is a subset of the k half-edges at the special vertex
suchthat2 <|S| <k —2;

. a symbol v;, where i is a half-edge at the special vertex; or

. asymbol E;;, where i, j are distinct half-edges at the special vertex.

We impose the relations 89 4 = §o,4c and E;; = E ;. Furthermore, if there is a loop
at the special vertex with half-edges ¢ and ¢’, then we impose the loop relations:
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1
Vi=0.  Yr=yr=g > S Eiy=Eiy=0;
ted,t’¢A (23)

S0.4=0 ifz,t €S (ort,t’ € S).

As usual, each generator comes equipped with an ordering of the structural edges, and
permuting this ordering induces multiplication by the sign of the permutation. For-
mally, these decorations should be interpreted as elements of a dg vector space resolv-
ing H 2(ﬂo,k), as in Proposition 3.5. In this resolution, 89,4 and y; have degree 2,
while E;; has degree 1. Thus, a generator with n structural edges has degree n + 2
unless its decoration is Ej;, in which case the degree is n + 1.

We continue to depict the decoration at the special vertex by adding combinatorial
features to the graph. The depictions of ¥; and §, s are exactly as in Section 3.2. We
depict the decoration E;j, with i and j distinct half-edges incident to the special
vertex, by marking the two half-edges with arrows as follows:

i

The loop relations (23) then take on the following graphical form:

Ro=o R S Roso el

Note that any graph with two or more loops at the special vertex is set to zero by these
relations.
The differential on GKZ , is the sum of two parts

§= Ssplit + Sres’

where 6, encodes the resolution of H 2(ﬂo,n) from Proposition 3.4. Recall that the
resolution is given by

Ej-vyi+¥,— Y. os.

ieS,jeS¢

The differential §.s applies this formula to the E;;-decoration at the special vertex,
with a conventional sign (—1)¢, where e is the number of structural edges. Graphi-
cally, this may be depicted as

oo S o K25

(25)
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If the special vertex is decorated by 8o 4 or V;, then 8 vanishes. Note that &y is
homogeneous of degree 1.

The part §gy15¢ splits undecorated vertices as usual. When the special vertex is split,
this is done as follows.

. If decorated by v;, the special vertex is again split as in (13).
. If decorated by Jy, s, the special vertex is split as in (14).
. If decorated by E;;, some subset S of half-edges is split off that does not

contain both i and j (but might contain neither of them), as shown:
o Ko E T Y3 1\

PROPOSITION 5.2
The differential on GKé,n is well defined and squares to zero.

(26)

Proof

First, we need to show that this differential is well defined, that is, that it respects the
loop relations (24). That it respects the first and third relations is relatively straightfor-
ward. To see that it respects the second loop relation, note that the differential applied

to the left-hand side is
Z + Z % |

27

The differential applied to the right-hand side produces

_Zﬂ+27®—$+zm—z—
(28)

The first term in (27) agrees with that in (28), with the sign due to interchanging the
two edges. The second term agrees with the second term in (28) due to the relations.
Each summand in the third term appears twice, with opposite sign, by applying 8¢ to
two different terms in the sum appearing in (24). The verification that the differential
respects the fourth loop relation is similar.

Now we must check that the differential squares to zero. Suppose that I' is a
generator for ’Cﬁ/(i,n We must show that

(asplit + 5re5)2F = (Sszpmr + ((Ssplitgres + 8re585plit)r =0.
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The argument for cancellation of terms that arise from splitting nonspecial vertices is
identical to the proof that the differential squares to zero on the ordinary commutative
graph complex. The same argument adapts easily to cases where the special vertex is
decorated with v; or 8o 4, because in these cases s = 0.

Suppose that the special vertex is decorated by E;;. The standard argument shows
that SSzme' = 0. It remains to show that (8spicSres + Sresspic) [ = 0. Applying Sres to
the right-hand side of (26) gives (—1)¢*! times

Z&+ZM_Z>\¢<+Z%+Z%
_Z>@+/<+Z)T+Z>j\<—2iﬂ<‘z>j\<' (29)

We need to compare this to 8¢ applied to the right-hand side of (25). The fourth
and seventh terms together match &yp1;c applied to the second term of (25), with oppo-
site sign. Likewise, the second and the eighth term of (29) match 8y applied to the
first term of (25). The cancellation of the remaining terms is similar. O

PROPOSITION 5.3
There is a quasi-isomorphism

AK?2 K2
GK3, — GK5 ,
that sets E;j to zero and imposes the relation ¥ + ¥ j — ZieS,jeSC 80.S-

Proof

We first verify that this projection is a well-defined map of complexes. It clearly
respects the differential on all generators where the special vertex is decorated by
Y or 8g,4. Consider a generator I' € é?i,’n whose special vertex is decorated by Ej;.
Then 8" also has an E;;-decorated special vertex and is hence sent to zero. Fur-
thermore, 8,5 is sent to zero since its special vertex is just decorated by the relation
between - and §-classes.

To see that this projection is a quasi-isomorphism, we filter both sides by the
number of vertices and consider the associated spectral sequences. We claim that the
map fGT(/;n — W;n induces a quasi-isomorphism already on the associated graded
complex. Proceeding as in Section 4.3, one can see that it therefore suffices to consider
the complex associated to the special vertex. The differential on the associated graded
of @Z,’n is zero, and the differential on the associated graded of fG\I_(E,n does not add
any edges. We can therefore consider separate cases according to whether or not there
is a loop at the special vertex.
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If there is no loop, then the loop relations listed above do not come into play, and
the statement boils down to Proposition 3.5, which says that

P QE; - ( . Q%) ® P Qso.s

1<i<j<k 1<i<k

is a resolution of H?(Mg ).
It remains to consider the case where there is a loop at the special vertex. Let ¢,
t’ denote the last two marked points on Mg k4. We must show that the complex

P QE;—- @B Qo.uuvey.— H*Mosiz)s,/ ~ (30)

1<i<j<k AcC{1,... .k}

is exact, where “~” is the quotient by the loop relations 8y, 4 = 0 for A C {1,...,k}.
To see this, we begin by taking the S,-coinvariants of the resolution of H 2(ﬂ0,k+2)
from Proposition 3.5. Then the S,-coinvariant space of the first term € QE;; has a
basis consisting of

Similarly, the S,-coinvariant space of the second term (6D Qv;) ® (P Q8o 4) has a
basis consisting of

vi, 1<i<k: Y Soa AC{l... .k}, [S|=2
So.autrys A CHL ..k} Al >1,]A° > 1.

By Lemma 4.4, the subspace spanned by the basis elements 8¢, 4, for A C{l,...,k},
|A| > 2 maps isomorphically onto its image in H2(Mg k+2)s,, which is precisely the
span of the loop relations. We can then use Ej; to eliminate ¥; and E;; to eliminate
Y, and see that (30) is exact, as required. O

5.3. Completing the zigzag
We now complete the zigzag from GKéz,’n to X , by producing a quasi-isomorphism

®:GK,y — Xgn.

Let I be a graph in éT(/g,n with e structural edges. Say that the half-edges incident to

external vertices are legs.

. If the special vertex of I is decorated by 8¢, 4, then we define &(I") = 0.

. If the special vertex of I' is decorated by E;;, then we let ®(I") be the marked
graph obtained by deleting the special vertex, making the half-edges incident
to the special vertex into legs, and decorating the external vertices on i, j by
 and the other newly created external vertices by e:
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| (31)

Note that the structural edges in I" and in ®(I") are in 1-1 correspondence; we
retain their ordering.

. If the special vertex of I is decorated by ¥;, then we define ®(I") by cutting
the edge and pairing each of its half-edges with an w-decorated leg, with an
overall sign of (—1)¢:

Note in particular that if the half-edge opposite i is a leg, say, incident to
an external vertex with some marking j, then ®(I") will have a connected
component that is an (w, j)-edge:

*>@+j 2 (—1)6% U
¢ (33)

In both cases (32) and (33), ®(I") has one more edge than I'. We may assume,
without loss of generality, that the decorated edge (of which i is one half-edge)
is the first in the ordering of edges. Then we order the structural edges in ®(I")
such that the edge containing i is first, the edge containing the opposite half-
edge of i is second, and the relative order of the remaining edges is unchanged.

LEMMA 5.4
The map ® is a map of complexes.

Proof
It is clear that the map ® respects the degrees and genera and is hence a well-defined
map of graded vector spaces. We need to verify that it commutes with the differentials,

§(I) = d(ST).

Recall that the differential on GKg n 18 8 = Sgpiit + Sres, While the d1fferent1al on Xg »
is 6 = Sspiic + Sjoin. We furthermore decompose the operation i on GKg » Into two
terms,

85P11t - Sspht + Sspht’

with 83, splitting the specml vertex and §2

we write Ospii P(I') = (65

s SPlitting the other vertices. Similarly,
)®(I") in X, , with 65 . splitting the vertex that is
t g

spht %ph split
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the image of the special vertex, when the decoration on I' is v;, and 8;’pﬁt splitting the
other vertices. (When the decoration on I is E;;, we set Sg‘pmcb(F) = 0.) Since away

from the special vertex the graph is not altered by ®, we have

q’(gfpmr) = 8fpmq)(r)-

Keep in mind that if I" has a v/ ;-decoration then ®(I") has one more structural edge
than I', producing an additional minus sign upon applying 8;’plit. However, due to the
sign (—1)¢ in the definition of ® the signs on both sides of the above equation still

agree. Next, we then need to check that
(8§plit + 8join)q)(r) = q)(((gsp]it + Sres)r)-

We consider cases according to the decoration at the special vertex of I'.
First, suppose that the special vertex of I" is decorated by 8¢, 4. Then we have
®(I") = 0 and §,sI" = 0, so we need to check that

(8, T)=0.

split

The only terms of §3,; I' that do not themselves carry a §-decoration (and are hence

sent to zero by @) are those appearing in the last line of (14). Both of these terms are
mapped to the same graph via ® as depicted in (32), with opposite orderings of the
two w-edges, and hence the matching terms cancel.

Next, suppose that the special vertex of I" is decorated by 1/;. We have 6" =0,
and, since ®(I") has no e-legs, §join®(I") = 0. We need to check that

S P = PS5, 1)

Applying the definitions shows that both sides have the same form

Y e

Finally, suppose that the special vertex of I is decorated by E;;. The differential
dres sends I' to (—1)¢ times a graph whose special vertex is decorated by v; + ¥; —
Zies,jes(, 80,s. The 8¢, s-terms can be dropped upon applying @. The two i -terms
produce graphs

i\w J
w ‘] i ww
A
(34)

where one has to remember that in each case the w-edge adjacent to the depicted
vertex is the first in the ordering. Furthermore, note that the two factors (—1)¢ from
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the definitions of ® and §,s cancel. Next consider the terms Sgpml“, which are given

by replacing the special vertex by two vertices in one of three ways as follows:
i J
i J J i
DB IO NI

Applying ®, we obtain terms
. ; i . . J
l AN / ’ % 7 ! ' \ ﬁ
IS LS Y
- T\ ™~ ~
(35)

Note that in all terms there is at least one e-leg. Next we look at ®(T"). In this case
85t @(I') = 0, since ® removes the special vertex. Applying Sjoin to the right-hand
side of (31) produces several graphs, by fusing a subset of e-legs together to produce
a new e-leg, or fusing a subset of the e-legs to one w-leg. The two cases in which all
the e-hairs are fused to one w-leg precisely contribute (34). The cases where one or
more €-legs remain contribute the terms (35). To confirm the signs, note that in all
cases considered the newly added edge is the first in the ordering.

Hence we conclude that §oi, @(I') = <I>(8;‘me ~+ SresI), as required. O
PROPOSITION 5.5
The map ® is a surjective quasi-isomorphism with kernel generated by graphs in
which the special vertex is decorated by some 8¢5, and by symmetric combinations
of graphs with \r-decorations on either half of some edge:

VAYAYAYA

Proof

We begin by showing that ® is surjective. Let I' be a graph in X ,. We will construct
a graph Te /G\l_(/g,n such that ®(T') = T. First, consider the case where I has at least
one e-decorated external vertex. Then we build T’ by joining the €- and w-decorated
external vertices to a new internal vertex, decorated by Ej;, with i, j corresponding
to the legs at the two w-decorations:

AN

€EE W W
©
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This cannot produce a “forbidden graph” with decoration E;; or E;s, where ¢t and
¢’ are the half-edges of a loop, because, in defining X, ,, we excluded graphs with
(¢,w)- and (w, w)-edges. By construction, CD(f) =T.

It remains to consider the case where I" has no e-decorated external vertices.
Then we build T by deleting the two w-decorated external vertices and their incident
legs, joining the two unpaired half-edges into a new edge, and adding a y-decoration
on one of the two, as shown:

TP . DP.D
w w w

In either case, CID(F) = I". Here we also use that at least one of the w-legs is adjacent
to an internal vertex. Indeed, if this were not the case, then the graph would be either a
single (w, w)-edge, or the union of an (w, 1)-edge and an (w, 2)-edge. In either case,
we would have 2g + n < 3, which we have excluded from consideration.

The map takes graphs with decoration 8 s to zero, and the orientation data
ensures that symmetric combinations of yr-decorations on paired half-edges also map
to zero. Otherwise, distinct generators for G\Rg,n map to distinct generators of Xy »,
so nothing else is in the kernel.

It remains to check that J := ker ® is acyclic. Decompose J = Js & Jy,, where
Js and Jy, are linear combinations of graphs with §- or v-decorations, respectively.
The differential sy on J then splits into the following pieces:

(- (-
Js ——=>J, .

Note that u appears in the last terms in (14), and takes the form

In these graphical depictions, u replaces a marked edge with a symmetric combination
of 1-decorations on its paired half-edges. This map gives a bijection between bases
for Js and for Jy,, and is hence an isomorphism. It then follows by Lemma 2.1 that J
is acyclic, as required. O

Combining Propositions 5.3 and 5.5 gives the desired zigzag of quasi-isomor-

— — @
phisms GKg , < GK, , — Xg 1.
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6. A quasi-isomorphic subcomplex

Although we do not fully understand the cohomology of X ,, we can describe many
nontrivial classes. We do so by identifying a quasi-isomorphic subcomplex X7 , and
constructing an involution on X7 ,, that simplifies the differential. In this simplified
subcomplex, we find direct summands whose cohomology we can either compute or
bound from below.

6.1. A quasi-isomorphic subcomplex
Recall that every connected component of a generator I" for X, , contains an external
vertex labeled by € or w.

DEFINITION 6.1
A connected component that contains an w-decoration is an w-component. All other
connected components are e-components.

DEFINITION 6.2
Let X ;,n C Xg,n be the subspace spanned by generators in which the union of all €-
components contains no internal vertices and at most one decoration from {1, ...,n}.

In other words, if I is a generator for X ,, then the union of its e-components
is either empty or consists of an (¢, €)-edge, an (e, j)-edge, or one of each. Here are

two examples:

LEMMA 6.3
The graded subspace X; , C X¢ n is a subcomplex.

Proof
Let I" be a generator for X g*,n. The differential is a sum of two parts Sgyiic + Sjoin-
The part g acts separately on the internal vertices of each connected component.
It cannot create internal vertices in a component that does not already have any, and
it does change the decorations. So SSme‘ is a linear combination of generators for
Xgn-

Now consider the terms that appear in i, I", which are obtained by joining
external vertices of one or several components. If at least one of the joined compo-
nents is an w-component, then the resulting graph is a generator for X ;,‘,n. However,



3148 PAYNE and WILLWACHER

if all components that are joined are e-components, then the resulting graph has either
a loop or two e-labeled external vertices adjacent to the same internal vertex, and
hence is zero in Xg 5. O

PROPOSITION 6.4
The inclusion X ,, C Xg n is a quasi-isomorphism.

Proof
Filter the complexes X

*
g.n
components. We claim that the inclusion induces a quasi-isomorphism between

and X, , by the number of internal vertices in w-

the associated graded complexes with respect to this filtration.

The associated graded complexes have differential 85 + 85 ;. with 855 the part
of 8ﬁ,in (as defined in the proof of Lemma 6.3) that joins e-legs of e-components
only and 8y, the part of 8yt that splits vertices in €-components only. Note that the
differential on X g*,n is zero. Furthermore, we have the direct sum decomposition

(X Bigin + 851 = Xg.n ® (W5 + 850

&:1> “join split join split

with W C X , spanned by graphs that are not generators for X g’n. Generators of W
are graphs in which the e-components contain an internal vertex or more than one leg
labeled 1,...,n. We further decompose

WZW/@W//,

where W’ is spanned by graphs that do not contain an (e, €)-edge, and W” is spanned
by those that do. Note that W” is isomorphic (up to degree shift) to the W’ summand
that arises in Xg_1 5, so it suffices to show that W' is acyclic. To this end, consider
the decomposition of graded vector spaces

A o

W= w e W,,

with W] (resp., Wéz) spanned by graphs that have 1 (resp., at least 2) e-decorations
in e-components. Using again Lemma 2.1, it suffices to check that the map (part of
the differential 8;0’;)

/! !/
ZZQW]

is an isomorphism. Combinatorially, this map joins all e-decorated external vertices
in e-components, attaching a new internal vertex together with an e-leg:
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e i e e

w
ati e
€:"" € € € € €
€

This map is injective; it has a one-sided inverse obtained by removing both new ver-
tices and the edge between them, and adding an external vertex labeled € to each of
the dangling edges. This map is also surjective, since the unique e-decoration in an €-
component of a graph in W] must be adjacent to an internal vertex. (If it was adjacent

to a j-decorated leg the graph would not be in W, and (¢, w)-edges are forbidden in
Xgn.) O

S

S

We note that in the above proof the presence of the part of the differential Sj‘gin
played no role. The same proof also shows the following auxiliary result, which we

will use in the proof of Proposition 7.2.

LEMMA 6.5
The inclusion (X, 8ﬁ)in + Sspiit) = (Xg, S;)in + Ssplit) IS a quasi-isomorphism of dg
vector spaces.

6.2. A simplifying involution
We now construct an involution of X7 , that simplifies the differential. This involution
is given by reattaching subsets of the e-decorated external vertices in all possible ways
and motivates the introduction of the subcomplex X g*,n (see Remark 6.6).

Let I" be a generator for X ,. We write Rg(I) for the sum of all graphs obtained
by reattaching a subset S of the e-decorated external vertices of I" to internal vertices,
in all possible ways without forming loop edges:

joge Rsmz@%.

The structural edges of each graph in Rg(I") are in bijection with those of I", and we
keep the given ordering.

Remark 6.6
The restriction on the union of all e-components of graphs in X; , (see Definition 6.2)
guarantees that the reattachment operation does not produce connected components
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without any €- or @-decoration. For this reason, Ry is well defined on X . It is not
well defined on X 5.

We now consider the graded endomorphism E of X; ,, given by
E(N) = (-D*) Rs(I),
s

where the sum runs over all subsets of the set of e-decorations, and #¢ is the number
of e-decorations in I".

LEMMA 6.7
The map B is an involution, that is, it is invertible and 2~ = E.

Proof

Any graph appearing in & o E (I') is obtained by reattaching some subset S of the -
decorated legs to internal vertices. Each such graph appears 2/5! different ways, with
signs that cancel unless S = @. O

For I € X7 , a graph, S a nonempty subset of its e-decorated external vertices,

and j =1,...,n,let Ré (") be the graph obtained by reattaching the external vertices
in S to the midpoint of the edge that contains the j-decoration:

RNl
~
§ j

This operation creates precisely one new structural edge, which we take to be first in
the ordering, preserving the relative ordering of the remaining edges. Note that the
operation also makes sense if applied not to a numbered leg, but an w-labeled leg,
and we shall denote the sum of such operations applied to the two w-legs by RS.

We also define

8D = D S| RE(D),

[S]=1

where the sum runs over all nonempty subsets of the set of e-legs of I'. We then have
the following result.
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PROPOSITION 6.8
Let

n
§:= Ssplit + 5jeoin - Z 5jjoin‘

i=1
Then § = E o8 o B. In particular, E defines an isomorphism of dg vector spaces

E: (X} ,.8) > (X],.9).

Proof
The proof is similar to that of [36, Lemma 3.6]; the argument there goes through
essentially unchanged, even though the complexes X; , we consider here are differ-
ent. We give only a condensed sketch of the proof.

We introduce the following notation. For S a subset of the e-legs in some graph
I' € X7 ,,, we denote by R$(I") the graph obtained by reattaching the legs in S to a

g.n’
B ORSROY
——
N €

new e-decorated vertex:
Furthermore, we denote by R’ (I") the sum of graphs obtained from R (I") by attach-
ing the newly formed e-leg to an internal vertex of I':

R -zl G

S

Using the fact that E-1=E, one computes that

(E 0 8qi 0 E)I) =8eie(T) + Y IS[- RS + > (IS|—1) - Rg()

[S]=2 [S|=2
Py Y RO
[S|=1je{l,...,n,0}

Here S runs over subsets of the set of e-legs. Similarly, one may compute

(B o

€m0 B)XI) =D (1—1[S])-R§M)+ Y _ (1—1S])- Rg(I).

|S1=2 [S1=2
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Together, we find that

(E o (Ssplit + Jom) o H)(F) (Sgpllt + JOll’l + (Sj(gln)r + Z Z Rg(r)

|S|>1 je{1,...,n}
=8+ > Y. RLD).
|S|>1 je{1,...,n}
Then one may finally compute that
(a oY Rgoa)(r) 3 ISI- RYT) = 8,(D).
1S|=1 1S|=1

Putting the above computations together, we find that
BodoE=Eo ( split + Jom Z JOll’l) =4 + Z join Z _]0111 -

which proves the proposition. ([

7. The weight 2 compactly supported cohomology of M,

We now focus on the special case where n = 0. Using the quasi-isomorphic subcom-

plex X7 C Xg, with its simplified differential 8, we shall see that the cohomology

of X, can be fully expressed through the cohomology of the ordinary commutative

graph complexes G €' of Section 4.1, withn' =1,2and g' =g, g —1,g — 2.
When n = 0, the differential §in Proposition 6.8 further simplifies to 8y + 8_]01[1

We define the subcomplex
Hg C (X, Sspiic + 855 (36)

spanned by graphs with either no e-decorations, or exactly two on an (e, €)-edge.

Note that &7, vanishes on Hg.

We also introduce the space

G — @ G&m,
which inherits an additional grading by the genus. We also define the exterior product

W, = /2\ G,

This comes with a grading inherited from the genus grading; let W, be the homoge-
neous part of genus g.
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LEMMA 7.1
The subspace Hg is a subcomplex with respect to § = Sgpiix + &5

e and (Hg ) is
isomorphic to

We[-31@ GED[-3] @ W1 [-4] @ GE >V [-4].

Here the subscript (—)as refers to taking the antisymmetric part under the S,-action
permuting the labels 1, 2.

Proof

Graphs in H, have exactly two w-decorated legs, and every connected component has
an w- or e-decorated leg. There are four possibilities, with and without an (e, €)-edge,
and with one or two w-components:

On @ 0O . @ ..

w w

The graded vector space H, decomposes into a direct sum of four subcom-

plexes accordingly; these subcomplexes are identified with Wg[—3], G2 [-3],

We—1[—4], and G2 [—4], respectively, since 8F;, vanishes on Hg. O

PROPOSITION 7.2
The inclusion (36) is a quasi-isomorphism.

Proof
First note that one has a commutative diagram of morphisms of dg vector spaces:

(36)
(Hg ) Ssplit) —— (X;: ) Ssplit + 5j€0in)
(Xg s Ssplit + Sjeoin)

The vertical map is a quasi-isomorphism by Lemma 6.5. It hence suffices to show that
the diagonal inclusion

(Hg’ Ssplit) - (Xga Ssplit + Sji)in)

is a quasi-isomorphism. Each complex splits, as in the proof of Proposition 6.4, into
one piece generated by graphs that do not have any (e, €)-edge and a complementary
piece spanned by those that do. So, we write H, and X, for the subcomplexes of Hg
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and X, respectively, spanned by graphs that do not have any (e, €)-edge. Similarly,
we write H &/,’ and X zi'/ for the subcomplexes spanned by graphs with an (e, €)-edge.
We then have

Hy=H,®H])., X;=X,®X].

Note that H,' =~ H,_,[~1] and Xy = X _,[—1], so it suffices to show that H, C X
is a quasi-isomorphism.
We furthermore have a direct sum decomposition of complexes

(Xg» Sspiic + Sioin) = (H . 8spiie) ® (U, Sepiic + 85oin) s

where U C X, is the subcomplex spanned by graphs with at least one e-leg. It
remains to show that U is acyclic.
We proceed as in Proposition 6.4 and decompose

R

U= Ul @ UZZ’

with the graded subspace U; C U (resp., U, C U) being spanned by graphs with
exactly one (resp., at least two) e-legs. The drawn arrows indicate various parts of the
differential. In particular, the part

D:Us,— U
arising from &7, joins all e-legs into one:
D: w —Q— w P W w
€ €
€

This part is injective, since the operation can be undone by removing the two
newly added vertices, and adding back the e-decorations on legs. By Lemma 2.1, we
hence conclude that the projection

U — coker D

is a quasi-isomorphism. The cokernel of D is spanned by graphs in U; such that the
unique €-leg is connected to a vertex v that is connected to an w-leg. (Recall that we
forbade (e, w)-edges in the definition of X ,.)
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However, we can continue in the same fashion and filter the cokernel of D as

Lo

coker(D)= U} & U, ,

with U] (resp., U,) being spanned by graphs for which the vertex v has valence 3
(resp., at least 4). The part of the differential

D':U,— Uj
is injective. Hence, applying Lemma 2.1 again, we find that the projection
coker(D) — coker(D")

is a quasi-isomorphism. The cokernel of D’ is spanned by graphs in U] such that the
unique vertex w neighboring v has an w-hair attached:

Repeating the argument once more, we split
D

L—
coker(D)= U] & Uj,

with U/’ (resp., U,') being spanned by graphs for which the vertex w has valence 3
(resp., at least 4). Now the piece of the differential

D":Uy - U/

is a bijection, since there are only two w-legs. Hence by Lemma 2.1 we have that
coker(D’) is acyclic, and hence so are coker(D) and U. This proves the proposition.
O



3156 PAYNE and WILLWACHER

Proof of Theorem 1.2
By Propositions 6.4, 6.8, and 7.2, the composition
Hg — (X*a Ssplit + .

]
Sjoin) - (Xg’ Ssplit + 8join) — Xg

is a quasi-isomorphism. The cohomology of the right-hand side is gr* H? (:M). The
cohomology of Hy is expressed via Lemma 7.1 through the cohomology of the com-
plexes G & 1) that compute gr® H? (Mg /) by Theorem 4.1, and Theorem 1.2 fol-
lows. O

8. Direct summands with marked points
g
generator has some number of e-decorations and precisely two w-decorations. The

Let I" be a generator for X and let us now assume that » > 1. Recall that each such
remaining external vertices are decorated by a bijectionto {1, ...,n}. Each component
has at least one decoration from {¢, w}.

DEFINITION 8.1
A connected component of T is isolated if it contains no decorations from {1,...,n,

€}.

In other words, a component is isolated if all of its external vertices are decorated
with . Components that do have a decoration from {1,...,n,€} are nonisolated.
We decompose X g*,n according to the number of w-decorations that are contained in
nonisolated components.

DEFINITION 8.2
Let Hg n, Jg n, and K ;, be the graded subspaces ofX;,n spanned by graphs with 0,
1, or 2 of their w-decorations contained in nonisolated components, respectively.

No term of the differential § can make an isolated connected component into a
nonisolated one or vice versa, so we have a direct sum decomposition of dg vector
spaces

(X;’n,g) =Hen®Jgn ®Kgn. (37)

We will study the cohomology of the summands separately. Unfortunately, we have
nothing to say about H (K, ,).

8.1. The cohomology of Hg
The summand Hyg , contributes to the cohomology of X7 , only when n = 1, and
that contribution is well understood.
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LEMMA 8.3
We have Hy 1 = Hy and Hg , =0 for n > 2.

Proof

By the definition of X; ,, the nonisolated components that do not contain -
decorations consist of either an (e, €)-edge, an (e, j)-edge, or one of each. If n > 2,
then none of the generators for Xz , are in Hg ,. Moreover, the generators for Hy

are precisely the graphs of the form

©®

where I is a (possibly disconnected) generator for H, and the lemma follows. O

We remark that the identification Hg 1 = Hg of the lemma is induced by the
pullback under the forgetful map ﬂg,l — ﬂg (see Appendix A.1 below).

Combining Lemmas 7.1 and 8.3, we can express the cohomology of Hy , through
the graph cohomology H (G ©"""), or equivalently through Wo H, (M g/

8.2. The graphsin Jg
Each generator for Jg , has exactly one isolated component, and can be drawn as:

l...n

w CP
[SEREN < w

The differential acts by &1i; on the isolated component, so Jg , decomposes as a
direct sum of subcomplexes determined by the genus of the isolated component. The
subcomplex where the nonisolated part has genus /4 can be written as a tensor product
J ,;n ®GW-D[—1],where h+h' = g and J . 18 a graph complex perfectly analogous
to X, except that each generator has exactly one w-decoration instead of two, and
this w-decoration must be part of a nonisolated component.'

We then have a decomposition

Jen= P Ji, ®G" V-1 (38)
h+h'=g

The degree shift on the factor G (&) is due to the additional structural edge that con-
tains the w-decoration. The degree of a generator for J;*  is the number of structural

I'The latter condition is automatically satisfied if n > 2.
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edges plus 1, just as for X ,. The cohomology of J;*, is difficult to evaluate when
h is large; we leave its study for 4 > 2 to future work. Theorems 1.6 and 1.7 use only

the cohomology of Jg, and J*,, which we now describe.

1,n>
8.3. The cohomology of J§,,

We now explain how the cohomology of Jg,, is closely related to Wo H . (Mo,») and
WoH 7 (Mon+1)- Let V1 C Jg, be the subcomplex generated by graphs with no e-
decorations. Each generator for V; is a rooted tree with n leaves labeled {1,...,n}
and a root labeled w. Let V be the complementary graded subspace generated by
graphs with an e-decoration. Since the genus is zero, there are no (e, €)-edges, and
no connected component can have both an e-decoration and also an w-decoration. So
each generator for Vj has two connected components, an (e, j )-edge and an w-rooted
tree with (n — 1) leaves labeled {1,..., J,...,n}. As an immediate consequence, we
see that

Joo=0 and Jo1 = Q[—1], spanned by the graph l-o

We now compute the cohomology of J,, for n > 2.

PROPOSITION 8.4
Forn =2, H(J§,.0) has dimension (n — 2)! and is concentrated in degree n — 1.
More precisely, there is an isomorphism of S, -modules

H" 1 (J§,.8) = H! > (Mo,n) = Lie((n)) ® sgn,

with the n-ary part of the cyclic Lie operad Lie((n)).

Proof
The differential on Jo*, ,, splits into pieces as

0

Vo =5V,
where the internal arrows on Vp and V; are 8. Note that V; & G +D[-2], and
(Vo. 8spiit) = D'j—; G©™[-2]. Therefore, H(V;) = Wo H (Mo n+1)[—2] has dimen-
sion (n — 1)!, supported in degree n, and H (Vp, 8spiic) has dimension n(n — 2)!, sup-
ported in degree n — 1. By Lemma 2.1(1), the first statement of Proposition 8.4 follows
if we can show that

Sioin = H(Vo, Sspiit) — H(V1)

is surjective. For 1 < j <mn,let D C Mo 41 be the locally closed divisor parameter-
izing 1-nodal curves where j and w collide. Then D = My ,, the union Mo 41 U
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(W; D;)isopenin Mo nt1,and | | ; Dj isclosed in this union. Then §join is naturally
identified with the excision coboundary map

J: @ W()HC.(D]') — W0H6.+1(M07n+1).
J
We must show that § is surjective. We will give a short algebraic proof of this surjec-
tivity.
To this end, it will be convenient to work with the S,,-modules

Jon = Jo, ®sgn,.

Tensoring with sgn, can be nicely incorporated in the sign conventions on graph
complexes; we take generators for j(;n to be graphs with a total ordering of all
edges (not just the structural edges), and impose the relation that permutmg the edges
induces multiplication by the sign of the permutation. Decompose JO* ~ Vo @V, as

above.
Then we can identify the cohomology groups with subspaces of free Lie alge-
bras
H(Vo, Sspiic) = @Lle(xl, Xy xa)nl, HOR) = Lie(xy, ..., xp)[-n — 1]
j=1
with Lie(xy,...,x,) the part of the free Lie algebra with generators x1,...,x, for

which each generator appears exactly once. Here the identification between (triva-
lent) trees and Lie words is such that the root of our tree is taken to be w, every
vertex is replaced by one Lie bracket, and the j-labeled leaf is replaced by x; for
example,

The differential is then given by
n
(Fi,.... Fa) = Y _[xj. Fjl, (39)

which is surjective, as required.
For the second statement of Proposition 8.4, we take for granted the well-known
fact that H? 3 (Mo ,) = Lie((n)) ® sgn,,. It then remains to check that the kernel of
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(39) can be identified with Lie((n)) as an S,-module. We may do this by providing
an injective map

¢ Lie((n)) —>@Lie(x1,...,)%j,...,xn)

j=1

whose image is in the kernel of (39). To construct ¢, we use the following nota-
tion for elements of Lie((n)). We have that Lie((n)) =~ Lie(x;,...,x,—1) and we
write

Fx1,o xn) = (fa(x1.... . Xn=1). Xn) € Lie((n))

for the element corresponding to a Lie expression f,(x1,...,X,—1) € Lie(xy,...,
Xn—1). The Sy-action on Lie((n)) is defined by permuting variables, consid-
ering (—,—) formally as an invariant inner product. In particular, for each j
we have Lie expressions fj(x1,...,%j,...,%,) € Lie(xy,...,%j,...,x,) such
that

f(x1,...,xn) :(fj(xl,...,)?j,...,xn),xj).

We then define the map ¢ such that
n
()= (fi. foreoon fr) eEPLie(xr..... 2j. ... xa).
j=1

It is clear that ¢ is an injection since f may be recovered from any of the f;.
We are hence left with checking that the composition of ¢ and (39) is zero. To
this end, note that in Lie((rn + 1)) we have the equality

([xj fiGxr, .o Ry ox) | X)) = —(fi (1o Ry X)L [ Xnga])
=[xt a1, x5 xn)
:(fn(xlw--v[xn+1axj]v---vxn—1)7xn)a

for j = 1,...,n — 1, using invariance of our formal inner product (—,—) and the

definition of the f;. Thus in Lie((n + 1)) we have that

<Xn:[xj’fj(xl’-~-,)ej,...,xn)],xn+l>

j=1

n—1

= <—[Xn+17fn(x1, X))+ Z S (1o Pongr x50 vxn—l)»xn>

j=1

=0
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by the Jacobi identity. Hence Z;;l[xj,fj (X1,...,Xj,...,xp)] = 0 as desired and
the second statement of Proposition 8.4 follows. O

The second statement of Proposition 8.4 was kindly pointed out to us by the
anonymous referee, whom we thank for her or his contribution.

Example 8.5
In particular, Proposition 8.4 states that H(Jj,) is 1-dimensional, concentrated in
degree 1. Tracing the proof, one can see that a representative is given by the cocycle

w——1 w—-"72

€ 1 .

2 €

8.4. The cohomology of J{,

Each generator for J{*,, has one of six combinatorial types: with or without an (e, j)-
edge, and with 0, 1, or 2 other e-decorations. The following diagram depicts one
generator of each type (for varying values of n). We denote the corresponding graded
subspaces of J{", by V; x, as shown. The notation is chosen so that a generator for
Vi x has 1 — k edges of type (¢, j) and 2 — i e-decorations on other components:

w w 1
€—¢€ w
2 2
1 3 1 € 2
Vo Vi Vo
w w 1
€—4
€—3 w €—3
2 €e—e¢ 2
1 3 1 € 2
Voo Vio Voo

Let us filter J l*n by the number of e-decorations and consider the associated spectral
sequence. On the Ey-page (the associated graded), the differential is Ssplil’ which pre-
serves each of the six combinatorial types. So E is the direct sum of the homologies
of the associated graph complexes, with respect to SSpm. Each term then has an evident
interpretation in terms of weight 0 cohomology of moduli spaces; for instance,

H(Vi0) = @ WoHc(Mon)[-3]  and  H(Va,) = WoHe(Mint1)[-2].
Jj=1

Note that the cohomology of V; . is supported in degree n + i + k.
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The differential on E is the part of Sjoin that reduces the number of e-decorations
by exactly 1. This further decomposes as two parts, one that eliminates an (e, j )-edge,
and one that decreases the number of other e-decorations by 1. Therefore, the E{-page
is the total complex of a diagram of the following form:

WoH Moy )[=3] ————— WoH Mg 0[-3] —————— WoH M, ;0 (-2]

T T T

@?:l WOHC(MO,II)[_3] — @};:l WOHC(MOAUH)[_?’] — @_’;zl WOHL‘ML,n[_Z]' (40)

The arrows are once again coboundary maps in excision sequences arising from strat-
ifications of moduli spaces.

As in our computation of H (J(;, ), we find it helpful to tensor once again with
sgn,, and then give an algebraic interpretation for the resulting diagram. Let J 1* L, =
J 1*’,, ®sgn,,, with differential §= Sspm + gjoin. Similarly, let 17,-,k ;= V; 1 ®sgn, . Recall
that tensoring with sgn, amounts to equipping each generator with a total ordering
of all of its edges, not just the structural edges, and imposing the usual relation that
reordering the edges is multiplication by the sign of the induced permutation. We then
have

HWVo1,85p) = Lie(xi,...,x,)[-n —1],

H(V1,1, Sspiir) = ASSOC(X1, . . ., Xn)[-11 — 2], 1)
H(Va,1, 8gpiic) = ASSOC(x1, . .., Xn)s, [—11 — 3]. 42)
Here, Assoc(xy, ..., Xy) is the subspace of the free associative algebra spanned

by words in which each variable appears exactly once, and S, acts by reversing
each word (corresponding to the symmetry reversing the orientation of a based loop).
Under the identification (4 1), the associative word x1 - - x,, corresponds to the graph

wﬁ...rﬂ

Similarly, under the identification (42) the associative word x; --- X, corresponds to
the graph
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The cohomology groups in the second row of (40) are similar, but one must take a
direct sum over the decorations j that appear in an (e, j)-edge, and omit the variable
x;, that is, H(Vp,0, Sspiit) = @'}=1 Lie(x1,...,%;,...,X)[—n], and so on.

With these identifications, the E;-page of our spectral sequence (see diagram
(40)) hence becomes isomorphic to the total complex of the following diagram, from
which we omit degree shifts for notational brevity:”

Lie(x;,..., x,) ————— Assoc(xy, ..., x,) —————— > Assoc(xy, ..., X,)s,

1 1 I

D, LieGxy, .., s x) —> D Assoc(xy, ..oy B x,) — D Assoc(xy, .., & eu Xy)s, (43)

Each vertical arrow in (43) is defined by the formula

n

(Fi.....Fa) = Y _[x. Fjl. (44)
j=1

The horizontal arrows are the canonical inclusions and projections, so that the coho-
mology of each row of (43) is concentrated in the middle term. It is hence easy to
check (for example, using Lemma 2.1 again) that the total complex of (43) is quasi-
isomorphic to the two-term complex built from its row-wise cohomology. It hence
remains to study these middle cohomology groups of each row, and the induced map
between them.

To this end, let Pois(xy,...,x,) be the part of the free Poisson algebra in
X1,...,X, in which each x; appears exactly once. Its elements are linear combina-
tions of Poisson expressions of the form

Fxi,....xn)= filx1,...,xn) Ao A fre(X1, .0, Xn),

where the f; are Lie words, such that each variable x; appears exactly once in F.
Let Pois* (x1,...,X,) be the subspace spanned by expressions that are products of
exactly k Lie words. There is a natural map

n
D} - @PPois*(x1.....%;.....x0) > Pois* (x1.....xp). (45)
j=1

given again by the expression (44), that is, (Fi,..., Fy) — Z;'-Zl[xj, F;]. Let us
define

Al,i :=ker D,’f, IB%I; := coker Df

2The bottom left space is concentrated in degree 72, and each arrow increases the degree by 1.
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and

A=Ay, B.:=PB/. (46)

=1 Jj=1

All objects here are naturally S, -representations, by changing the variable indices and
order of summands on the left-hand side of (45). For example, we have A} =B, =
A; =B, = A3 =0, B3 and A4 are 1-dimensional trivial representations, and By is a
3-dimensional irreducible representation of Sy.

PROPOSITION 8.6
We have Jl*’0 = 0. For n > 1, we have an isomorphism of graded Sy, -modules

H(J],.8) = (Ap[—n — 1] ® By[—n —2]) ® sgn, .

Proof

Equivalently, we must show that H (J n S) ~ A, [—n — 1] & B, [—n — 2]. Poincaré—
Birkhoff-Witt gives an S,-equivariant isomorphism Pois(xy, ..., x,) = Assoc(x,
..., Xn). Applying this to the center and right-hand columns of (43), we get the dia-

gram

@, Lietx,..., Fjoorsxy) — D, Pois(xy, ..., £jsorxy) — D, Pois(xy, ..., Bjsos s, (47)

The vertical arrows in (47) are still given by (44). Furthermore, note that taking S,-
coinvariants in the right-hand column is the same as reducing to Poisson words con-
taining evenly many Lie words; that is,

Pois(x1.....Xn)s, = @D Pois™ (x1.....xp).
j>0

Then the total complex of (47) is quasi-isomorphic to the complex of its row-wise
cohomology groups:

Drs1 Pois™ T (x1, ... xn) (48)
Y« D T
@' — Brsy POis™ T (x1.. . K xn)

The cohomology of (48) is the kernel plus the cokernel of the differential ), D,’f,
that is, the direct sum of A, and B, as defined above. The proposition follows, after
suitably accounting for the required degree shifts. O
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The above description of the spaces A, and B, is not very explicit. However, we
can at least provide the following lower bound on the dimensions.

LEMMA 8.7
For n > 3, we have

dimB, > (n —2)!.

Proof
From the definition of B,,, we have

dim B, > dim( P Pois™ ! (x1,....x,))
k>1

n
_dim<@@Poi32k+l(x1,...,fcj,...,xn)).
Jj=1k>1

From the top row of (43), we have

dim(@ Poi32k+1(x1,...,xn)) = dim(AssoC(x1. ..., xn))
k>1

— dim(AssoC(x1, ..., Xn)s,)
—dim(Lie(x1,...,xp))
n!
=nl———mn-1),
=2 —e-1)
which simplifies to %(n — 2)(n — 1)!. Here, we have used that the action of S, on

associative words of length at least 2 is faithful in computing dim(Assoc(x, ...,
Xn)s,) = "7' By the same computation (valid for n > 3) we also see that

dim(é@PoiSZk“(xl,...,fcj, . ,x,,)) — %n(n —3)(n—2).

j=1k>1
Hence
1
dimB, > 5((11 —2)(n—1)—n(n-3))(n—-2)!,
which is (n — 2)!, as required. O

Proof of Theorems 1.6 and 1.7
By (37), we know that H(Hg ») ® H(Jg,,) injects into the cohomology of X7 ,,. The
latter is identified with the cohomology of Xg , and hence with gr, H.(Mg ,). The
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summand H(H, ) is evaluated by Lemma 8.3. It contributes only for n = 0, 1. For
n = 1, it produces an injection of the form (3). This injection agrees with the pullback
map 77 *, as shown in Appendix A.1.

For the summand H(Jg ), we can use that by the decomposition (38) we have
an injection of

H(J§,) ® HGED)[-1]® H(J],) ® H(GED)[-1] (49)

into its cohomology. The second factors in the tensor products compute the weight 0
cohomology of Mg,1 and Mg_1,1, respectively. The first factors H(Jg,) and
H(J{,) are evaluated by Propositions 8.4 and 8.6, respectively.

For n =1, one only has a contribution from H(Jg ;) = Q[—1], while H(J{ ) =
0. This produces the injection (2). To see that this injection indeed corresponds to
multiplication with the /-class at the marking as is claimed in Theorem 1.6, we have
to trace the representatives. Say that I' € G&-1) is a cocycle representing a cohomol-
ogy classin Wy H, f (Mg,1). Then the corresponding class in H (X, ;, 3) is represented

g
by
F,=<rP U)*l,

w

(=)

The action of the morphism E on this cocycle is trivial since there are no e-legs.
Hence T" is also a cocycle in (Xg,1, S) and in X ;. From (33), we see that the cor-
responding class in G/\Ré’l is obtained, up to a sign, by decorating the unique leg
in T with a -class. We claim that this is the graphical representation of multi-
plying with a ¥ -class at the marking in H; (Mg 1). To see this, note that H*® acts
on H} via cup product, and recall that the weight spectral sequence abutting to
gr H®(Mg 1) is induced by a natural filtration on the sheaf of smooth differential
forms with logarithmic poles along the boundary of ﬂg’l (see [25, Chapter 4, Sec-
tion 3]). It is related via Poincaré duality to the spectral sequence that we study
here, abutting to gr H’ (Mg, 1), which is likewise induced by a natural filtration on
currents. The -class is of pure weight 2 in H 2(ﬂg,l) and is represented by a
smooth and closed differential form 1 without logarithmic poles. The cup product
YU: gry HY(Mg1) — grerp H2T?(Mg,1) is therefore induced by the action of 7 on
currents, which also induces a compatible action on every term on every page in our
weight spectral sequence. The £p-pullback of ¥ is the corresponding v/-class on M,
and it follows that ¥ U is induced by multiplication by ¥ on every term of GK, ;. The
claim follows by descending from GuKZ,’1 to W;l and then lifting to fGT(/é’l. This
finishes the proof of Theorem 1.6.
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To show Theorem 1.7, we consider again the injection from (49) to gr, HZ (Mg 5),
for n > 2. Then Proposition 8.4 directly produces the first summand in the formula
of Theorem 1.7, and Lemma 8.6 produces the second summand. The assertion on the
dimension of B,, is shown in Lemma 8.7. O

Remark 8.8
Proposition 8.6 yields an additional summand to gr, H: (Mg ) corresponding to the
subspace

(Ap[-n—1]®sgn,) C H(J,).

Lacking lower bounds on the dimension of A,, we omitted this summand from the
statement of Theorem 1.7.

8.4.1. Examples

Let us illustrate Theorem 1.7 with pictures of the simplest nontrivial cohomology
classes that it provides. First, consider the first summand in Theorem 1.7 for (g,n) =
(3,2). This summand has dimension 1, concentrated in degree 8. A generating cocycle
in (X3,, S) is given by the linear combination

w— 1 w -2

€E—2 €—1

w w

Here the component with internal vertices is the generator of H°(G®:D), which is
isomorphic to sWo HE(M3,1). The disjoint union of two isolated edges corresponds
to the generator of H(J',) of Example 8.5. (Note that H(J,) has dimension 1, by
Proposition 8.4.) The corresponding cocycle in (X ;,2, 8) is obtained by applying the
involution E. Up to a conventional overall sign that we omit, it is:

w -1 w—1 w—1

+ 3 + - (1e2).
€—2 2 2

w w w

Here “(1 <> 2)” stands for the same terms, with the labels 1 and 2 interchanged. The
corresponding cocycle in GK§,2 is then

N §> .
3 + (1e2).
2 ‘@' 2

1 1
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By [34], we know that gr, HS(M3,) = Q @ sgn,, supported in degree 8. Our
computation shows that the summand sgn, is naturally identified with H(Jg§,) ®
H(GGV)[-1].

Next, we turn to the second summand in Theorem 1.7. The first nontrivial class
is found in gry H}?(My 3). It corresponds to the generator of B3 ® H®(G3™)[—1],
and is represented by the following degree 12 cocycle in (X ‘{:3, S);

sgn(o-)
€S, a(1)
a(2)

o3) €

Finally, as explained in Remark 8.8, there is one more summand of gr, H> (Mg ,)
coming from A, which is not mentioned in Theorem 1.7. The first case where this
summand is nontrivial arises when (g,n) = (4,4). We then have A4 =~ Q, and the
graph cocycle in (X . 8) corresponding to Ay ® H6(GG:D)[—1] has the form

o) —e
sgn(o-)
= o (1)
o(2)
o3) €

Appendix A. A direct map X, , — Wz

We have connected the complexes Xgon and GK2  through a zigzag of quasi-

g,n
isomorphisms. Here, we construct a direct map F': Xy, — W;n that fits into a
homotopy commutative triangle with the maps in the zigzag.

The map F is useful for giving geometrically meaningful representatives in
W;n of the cohomology classes we have constructed in X, ,,. By Theorem 3.3, for
(g,n) # (1,1), the projection GK2 — @2 is a quasi-isomorphism. Hence each
cocycle in GK , lifts to a cocycle on GKg ,» uniquely up to exact terms. We now
turn to the constructlon of the map F', which we define initially as a map of graded
vector spaces.

Let I' be a generator for X, ,, with e structural edges. First, suppose that I" has
no e-decorations. At least one of the w-decorations must be adjacent to an internal
vertex. If both w-decorations are adjacent to internal vertices, then F(y) is obtained
by joining the w-legs to form a new edge, and decorating either half-edge by ¥;, in
the antisymmetric linear combination:
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Y el

To fix the sign, in this case and in all following cases, draw I" so that the left-hand w-
edge precedes the right-hand w-edge in the ordering. Then the new edge comes first,

(50)

the relative order of the remaining edges is preserved, and the sign is as indicated.
Otherwise, if there are no e-decorations and only one w-decoration is adjacent to an
internal vertex, then F is given simply by

\+/ j %/
i —(=1)°

J

It remains to consider the cases where I has a positive number of e-decorations.
First, suppose that both of the w-decorations are adjacent to internal vertices. By the
orientation relations, we may assume that these internal vertices are distinct. Call
them v and v’. Then let I', be the graph formed by making v the special vertex,
attaching all €- and w-decorated legs to that vertex and decorating it by &g s with S
the union of the half-edges adjacent to the e-decorations and the half-edge toward v’.
Then F(I') = 1(I", — I'y). Pictorially:

e )

Next, if exactly one w-decoration is adjacent to an internal vertex v, then we
define 'y, as above and set F(y) = %I‘v:

(5D

Finally, if neither w-decoration is adjacent to an internal vertex, then we set
F(y)=0.

PROPOSITION A.1
Themap F: Xgn — GKé,n is a map of complexes and fits into a homotopy commu-
tative triangle
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Proof

We begin by constructing a degree —1 map of graded vector spaces
h: /G\Rzn — @;n,

and show that it satisfies the required equation (52) to give a chain homotopy from

F o ® to w. We will then use / to show that F is a map of complexes, and thereby

prove the proposition.

Let I be a generator for fG\Rz,,n. We define h(T") by a local replacement at the
special vertex as follows. Suppose that the special vertex of I' is decorated by ;, and
i is not joined to a leg, so the half-edge is joined to a half-edge at an internal vertex
v. Then we let 4(I") be the graph obtained by merging the special vertex with v, and
decorating the new special vertex by %8055, where S is the set of half-edges incident
to v. Pictorially:

el TS

To fix the sign, we assume here that the y/-decorated edge is first in the ordering. In
all other cases we set #(I") = 0.

We claim that & satisfies the required equation to give a chain homotopy from
F o & to mr, that is:

F(®(T)) —n(T) = 8h(T) + h(8(I)). (52)

We prove this case by case, according to the decoration on the special vertex of I'.

First, suppose that the decoration on the special vertex of the graph I' € éT(/g,n
is 8o,s. Then ®(I"') = 0 and /#(I") = 0. Furthermore, 7 (I") is the class in W;n rep-
resented by the decorated graph I'. Note that §T" consists of some terms with 8o 7-
decorations, plus terms with ¥ -decorations, and only the latter contribute upon apply-
ing h. Furthermore, they contribute exactly I". Pictorially:

B(e=o) = (o = S o) = 25 e

with (---) representing terms killed by /(—).
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Next, suppose that the special vertex of I' is decorated by v;, with i a half-edge
incident to the special vertex. Then 7 (I") is once again the class in ann represented
by the decorated graph I. If the half-edge i connects to a leg, then F(®(I")) =T and
h(T) = h(6T) =0, so (52) holds.

If the half-edge i points toward an internal vertex, then F(®(I")) is obtained by
antisymmetrizing over the two y-decorations one can put on the i -edge,

F(®I)) = % (S = =),
In this case, we have

Sh(I) + h(ST) = —% (>o+o§ + %%) ,

so (52) holds.

Finally, suppose that the special vertex of I' is decorated by E;;, with i, j half-
edges incident to the special vertex. Then 7 (I") = 0 and ~£(I") = 0. We must show that
F(®(T")) = h(6T), and we consider cases according to whether i and j are joined to
legs. If both are joined to legs, then F(®(I")) = h(6T") = 0. If only j is joined to a
leg, then one computes, with e the number of structural edges of T,

61\1/ j 61\1/ j
F@() = (13 X and KT = h@,,,1) = (<) X

as required. If neither i nor j connects to a leg, then they connect to distinct internal
vertices and one computes

(N
F@@) = (=1)°5 %—V = h(sT).

This completes the proof of (52). ~
Having proved (52), we have that for all " € GKg,n,

§F(®(I")) — F(§9(I")) =0.

By Proposition 5.5, the map @ is surjective, and hence § o F = F o §. We conclude
that F' is a map of chain complexes, and /4 is chain homotopy from F o ® to x, as
required. O
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A.l. The pullback map
Recall that the projection 7 : Mg 1 — My is proper and extends to a morphism on
the stable curves compactifications, also denoted 7 : ﬂg,l — ﬂg. Recall also that
the boundary divisors d.Mg 1 := Mg 1 ~ Mg 1 and dMg := Mg \ Mz have normal
crossings. Applying the “fundamental simplicial constructions” as in [ 14, Section IL.I]
gives an induced morphism 7 * from the simplicial resolution of the constant sheaf Q
on d Mg to that of the constant sheaf (Q on d.M, 1, induced by the normal crossings
structure. After realizing the compactly supported cohomology of Mg ; and of Mg
as the reduced cohomology of the mapping cones for the inclusions d Mg | — ﬂg,l
and OMg — ﬂg, respectively, we get an induced pullback morphism between the
weight spectral sequences that abuts to 7*: gr He(Mg) — gr He (Mg 1).

We consider the graphical interpretation of the induced map on the E;-page of
the weight spectral sequence, that is, the induced map between the Getzler—Kapranov
graph complexes. We claim that 7*: GKg o — GKg 1 is given by the formula

7T =Y pu(D), (53)

where the sum is over all vertices of the graph I' € GK, o, and p,(I") is obtained
from I' by attaching a leg labeled by 1 to a vertex v. If the old decoration of v is o €
H "(ﬂh,k), then the new decoration on the vertex is given by n*a € H i(ﬂh,kﬂ),
with 7 : ﬂh,kﬂ — ﬂh,k forgetting the new marking. To see this, note that if I" has
j edges, then the underlying graphs of p,(I"), obtained by attaching a leg labeled 1
to a vertex v of I', correspond precisely to the strata of codimension j that map onto
the codimension j stratum &p(Mr) C M, and the operation on decorations that we
have described corresponds, via the Kiinneth decomposition, to the induced pullback
on the cohomology of strata in the simplicial resolution.
The same formula (53) also defines a pullback operation

7T*: Wg’() %Wg,h

and the projection map GKg , — @g,n intertwines the two operations 7 *. We fur-
thermore define another operation

w*: (Hg.8) — (X} 1.9)

by taking minus the disjoint union with an (e, 1)-edge,
(D) 1.

LEMMA A.2
The following diagram commutes:
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(X}1.8) —— (X},.6) — X, —— GK,,

;
dl "

(Hy,8) —=— (X;,6) — X, —— GK,

—

(54)

Proof sketch

A graph I € H, contains either no e-leg, or exactly two, on an (e, €)-edge. We con-
sider both cases in turn. Suppose first that I' € H contains no e-leg. Then its image
under the first two horizontal maps in (54) is just the same unaltered graph I". Apply-
ing F produces the linear combination (50). Applying * afterwards produces a lin-
ear combination of graphs of the form

gy

1 1 (55)
In the first two sums one sums over all ways of attaching the 1-labeled leg to a vertex,
including the special vertex. Here we are using [2, Proposition 3.1(ii)] to compute
the pullback of the v-class, and the additional 8¢ s-terms there produce the last two
summands. To compare, let us now follow our graph I' along the lower rim of (54).
The vertical arrow @w™ adds one (e, 1)-edge to T'. Call the resulting graph —T" €
X ;,1' Applying E then produces I'" plus the sum of all graphs obtained by attaching
a 1-labeled leg to I'. Applying F produces from this latter sum the two sums in
(55). Applying F to I'" produces the last two summands in (55) via (51). This shows
commutativity of (54) for I' € H, without an (e, €)-edge. The proof in the case where
I' € H, has an (¢, €)-edge is essentially similar, although the map E produces more
terms in the presence of an (¢, €)-edge. O

Appendix B. Numerical results

We record the cohomology groups of the graph complexes G €, X gn> and Jg o,
with the characters of their S, -representations for small g and 7, obtained by calcu-
lations in Sage. For example, the entry '!s, 1 + ¢!%s; 1 1 in Figure 1 for (g,n) =
(4,3) indicates that Wy H!! (M4 3) is the 2-dimensional irreducible representation of
S3 with character s, 1, WOHCIZ(,M4,3) is the sign representation, and Wy H_? (M4 3)
vanishes in all other degrees. The full cohomology of M , is well understood for
g =0, since My, is a hyperplane arrangement complement, and also for g =1 (see

[17], [19]). For g = 2, we understand that Tommasi [35] has computed the cohomol-
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gn |0 1 2 3 4 5 6

0 |- |- - 53 115‘24,2 1253,1,1 t3(s33 +Sq00t

$201.1)

1 - 0 0 t3sl,l 1 t4s3 1 P(s5+830+801+ 511,111

20 Jo [Fs, |0 Osg+15y,,

3|0 1651 0 1953 1952,1’1 + tmsm

410 o 0 Moy +17511,

5 [/ tlosl t14sz 113s3 + 114‘92’1

6 [ s,

Figure 1. The Sy,-equivariant Poincaré polynomials of H®(G &™) = WoH2 (M g.n) for small g

and n.
gn |01 2 3 4 5 6
0 |-|- - 0 t2S4 t3s32 f4(332 L+ S410)
1 |-10 0 0 Psy11 | P30+ 830+541)
2 [o]o 0 (53 + 5, | 5,
310 tgsl tg(sz +511) 2[9s3
4 [0]0 0 2%,
5 0] 12 (5,45, )42 s,
6 |0 2t1531 +t]7s]

Figure 2. The S, -equivariant Poincaré polynomials of H®(Xg ) = gr, HS (Mg ) for small g

and n.
gn |1 2 3 4 5 6
0 | ‘ %5 £s s E
51 S11 1S3 522 $3.1.1 (54118334 520,1,1)
1[0 0 tSSHJ sy paa+0ss, 153,11+ (55+532+5501+
RIRRRY)

2 0 l7S2 18y t8(2x4+.\'3.1)+t9.\'2.1_]

3 tssl txsl‘] t9s3 + t“s3

4 10 0 125y 1+ (53455
14
LEINN!

5 11231 25y 41 sy sy 05,

Figure 3. The S, -equivariant Poincaré polynomials of H*®(J, g,n) for small g and n.

ogy of My ,, for n <5 (cf. [4] for weight 0 and n < 4). The additional computations
in Figure 1 were previously known as Q-vector spaces (see [9, Appendix A]). We
include the details here to facilitate comparison with the computations in Figures 2

and 3. To the best of our understanding, the computations in Figure 2 are new for

g > 3, as are all of the computations in Figure 3.
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