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Abstract—5G-and-beyond cellular networks are set to enable
ultra-reliable, low-latency communications (URLLC), catering
to a wide range of applications such as real-time control and
extended reality (XR). For these URLLC applications, it is
crucial to ensure per-packet communication reliability and high
throughput. To this end, we propose a novel joint scheduling
and power control approach, denoted by PktR, that ensures
application-specific per-packet communication reliability as well
as high channel spatial reuse and high network throughput. PktR
is designed as a close-loop system, incorporating Gain-Ratio-
K (GRK) interference modeling, optimization, and transmit
power control mechanisms. PktR ensures predictable interference
control for receivers and fine-tunes transmit power at trans-
mitters in a highly agile manner. Our measurement studies
demonstrate for the first time the feasibility of ensuring per-
packet communication reliability in live cellular systems, by
showing that PktR ensures high per-packet communication SINR
(e.g., 20dB) and high success probability (e.g., 0.9) across diverse
network and environmental settings. Through local, distributed
coordination, PktR also outperforms state-of-the-art solutions
significantly. For instance, besides ensuring predictable guarantee
of required per-packet communication reliability in scenarios
where existing solutions are unable to provide such guarantees for
up to 31.01% of the network links, PktR improves the network
throughput by a factor up to 1.596.

I. INTRODUCTION

5G-and-beyond cellular network systems are increasingly
being explored for ultra-reliable, low-latency communications
(URLLC) in important domains such as industrial automa-
tion [1], [2], [3]. These applications demand a high level
of predictability in per-packet communication reliability to
ensure that data reaches their destinations within strict timing
constraints. Unpredictable packet loss introduces uncertainties
in communication reliability and timeliness, and it tends to
increase communication delay too, thus making it difficult
to support safety-critical, real-time industrial control applica-
tions. In extended reality (XR) applications and meta-universe
services [4], [5], reliable delivery of each packet enables
seamless, naturalistic 3D reconstruction of real-world scenes
(e.g., industrial processes), and unpredictable packet loss may
well lead to uncomfortable human experience [4], [6]. While
URLLC has been extensively studied in recent years, how
to ensure predicable per-packet communication reliability in
large-scale, multi-cell networks remains an open challenge.
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Major sources of packet loss in cellular systems are wireless
path loss, channel fading, and co-channel interference among
concurrent transmissions. Transmission power control is an
effective approach to addressing wireless path loss and channel
fading, and transmission scheduling is a basic mechanism to
control co-channel interference. The preliminary theoretical
investigation by Wang et al. [1] has highlighted the necessity
of joint scheduling and power control in achieving predictable
per-packet communication reliability. In particular, scheduling
can be leveraged to select a set of links where the neces-
sary communication reliability can be attained through proper
transmission power control; in the meantime, transmission
power control plays a crucial role in adapting to fading-
induced rapid fluctuations of channel conditions. Given the
non-local propagation of wireless signals in cellular networks,
the scheduling and transmission power control of individ-
ual links need to be coordinated. Effective scheduling and
transmission power control are challenging problems in large-
scale networks by themselves individually; how to develop
field-deployable joint scheduling and power control algorithms
to enable predictable per-packet communication reliability in
large-scale, dynamic cellular networks remains an unanswered
intellectual question, not to mention real-world demonstration
of running systems with guaranteed, predictably high per-
packet communication reliability.

Contributions. To ensure predictable per-packet communi-
cation reliability in URLLC, we design and implement the
PktR framework for joint scheduling and power control in
large-scale, multi-cell networks, and we make the following
contributions:

e Our PktR framework extends and transforms the prelim-
inary theoretical insight by Wang et al. [1] into a field-
deployable, two-timescale approach to joint scheduling
and power control in ensuring predictable per-packet
communication reliability in URLLC.

o The scheduling in PktR features the Gain-Ratio-K (GRK)
interference model which is suitable for developing field-
deployable distributed scheduling algorithms, and PktR
schedules cellular transmissions in large-scale networks
to statistically bound the receiver-side interference so
that there is a feasible transmission power to ensure
per-packet communication reliability along each link.
PktR scheduling effectively leverages stochastic geometry
and optimization to address complex interactions among



links and to predict interference dynamics for optimal
transmission scheduling.

o PktR scheduling is complemented by fast-timescale, per-
packet transmit power control to ensure both high net-
work throughput and application-specific per-packet com-
munication reliability. In particular, leveraging the Can-
telli’s inequality, PktR power control regulates the quan-
tiles of receiver-side SINRs, thus ensuring the required
receiver-side per-packet SINR.

o« We implement PktR in the 5G open-source software
platform OpenAirlnterface. We experimentally validate
the PktR design and implementation through the sandbox
platform in the ARA wireless living lab[7], and we
demonstrate for the first time the feasibility of ensuring
predictable per-packet communication reliability in live
cellular systems. In particular, our measurement study
shows that the distributed scheduling and power control
in PktR facilitates network-wide convergence, ensuring
the desired per-packet communication reliability across
the entire network. In addition, with local, distributed
coordination alone, PktR achieves remarkable network
throughput. In fact, it outperforms the state-of-the-art
physical-model-based scheduler while maintaining the
necessary per-packet communication reliability. For in-
stance, besides ensuring predictable guarantee of required
per-packet communication SINR in scenarios where ex-
isting solutions are unable to provide such guarantees for
up to 31.01% of the network links, PktR improves the
network throughput by a factor up to 1.596.

The rest of the paper is organized as follows. We summarize
related work in Section II, present the system model and
problem definition in Section III, present the PktR framework
in Section IV, present the OAI5SG-based implementation of
PktR in Section V, evaluate the PktR framework in Section
VI, and make concluding remarks in Section VII.

II. RELATED WORK

A. Interference control with scheduling in wireless networks

Extensive research has been conducted on addressing inter-
ference in cellular networks. For interference control in multi-
cell networks, scheduling has been studied as optimization
problems where factors such as energy efficiency, spectral
efficiency, user rate, and interference have been considered
[8], [9], [10]. These studies, however, did not consider ensur-
ing predictable per-packet communication reliability, and the
associated solutions also required global information across
networks which may well be challenging to acquire in large-
scale, dynamic network settings. Machine learning (ML) meth-
ods have also been employed to address scheduling problems
related to interference control [11], [12], [13]. While these
approaches leverage ML to make intelligent decisions, they
do not consider the specific constraints and requirements of
URLLC applications. Additionally, the performance of the
learned policies heavily relies on the number of training steps
applied and the quality of training data. Therefore, interference

control using factors optimization approach and ML methods
cannot ensure the predictable per-packet communication reli-
ability required by URLLC.

In addition to the previous approaches, interference model-
based methods play a crucial role in interference control for
URLLC. One such approach is presented by Feng et al. [14],
where they derived a probabilistic resource allocation scheme
utilizing channel statistical characteristics. Gorantla et al. [15],
[16] considered the interference model where up to K links
can be assigned to each subchannel in a multi-cell scenario
with multiple uplink subchannels. However, the aforemen-
tioned studies utilized inaccurate interference models, resulting
in degraded network capacity. Furthermore, their solutions are
non-local, meaning they may not be suitable for distributed
protocol design.

B. Power control in wireless networks

Power allocation has been extensively studied in URLLC. In
many cases, power allocation is jointly optimized with other
resource allocation methods to achieve overall performance
improvements. Several studies have explored the joint opti-
mization of power allocation with resource block assignment,
blocklength, user clustering, UAV positions, and other factors.
Fang et al. [17], Almekhlafi et al. [18], and Sui et al.
[19] have studied joint optimization of power allocation with
resource block assignment to enhance network throughput
and energy consumption. Ren et al. [20] considered the joint
optimization of power allocation and blocklength to minimize
the decoding error probability. Elhattab et al. [21] investigated
power allocation in conjunction with user clustering. These
optimization-based solutions aimed to achieve optimal energy
consumption, network throughput, decoding error probability,
and other performance metrics while ensuring the reliability
required by URLLC use cases. However, such optimization
approaches often suffer from high computational complexity,
as they require solving complex mathematical problems in
real-time. Additionally, they tend to rely on global information,
which introduces significant coordination overhead and can be
challenging to obtain in dynamic network settings.

III. PRELIMINARIES

System Model and Problem Specification. We investigate
cellular networks of multiple cells, where each cell consists
of a Base Station (BS) and multiple user equipment (UEs).
Within each cell, there are uplinks for transmissions from UEs
to the BS and downlinks for transmissions from the BS to
UEs. Our network architecture aligns with existing wireless
systems such as 3GPP cellular systems. In this context, a
fundamental resource allocation unit is a Resource Block
(RB) which represents a spectrum resource unit over a certain
time slot. For instance, with the 5G numerology 1 where the
subcarrier spacing is 30KHz, a RB consists of a sequence of
12 consecutive subcarriers in the frequency domain, and it can
occupy a time slot of 0.5ms in the time domain.

Our study focuses on joint scheduling and power control
of data transmissions at the MAC layer, with a particular



emphasis on managing interference. We consider one-hop data
transmissions between close-by nodes, although the network
itself is of large scale such that not every two nodes are within
communicate range of one another. We focus on URLLC
traffic, which has stringent reliability requirements. Given
these network and traffic characteristics, our study addresses
the online slot-scheduling and power control problem. That
is, at any given time, we aim to schedule a maximal subset
of links and control their transmission powers in a distributed
manner, allowing for concurrent transmissions while ensuring,
for each scheduled link, an application-specific lower bound
on the success probability of the receiver-side SINR being
no less than a threshold required by the application. Ensuring
the receiver-side SINR helps ensure per-packet communication
reliability, which is not only important for URLLC itself but
also helps reduce the need for retransmission and thus reduce
latency. Maximizing concurrent transmissions helps improve
network throughput, thus helping reduce latency too [22].

As we will see in the design of PktR, its approach to
joint scheduling and power control only involves distributed
coordination among close-by nodes, and the approach ensures
receiver-side SINR in the presence of network and environ-
mental dynamics and uncertainties such as those in wireless
channels. Therefore, PktR is applicable to large-scale wireless
networks with dynamic channels. As a first step towards
ensuring predictable per-packet communication reliability in
multi-cell URLLC networks, we focus on scenarios where
nodes are mostly immobile (e.g., in many private industrial
5G networks). For highly mobile networks, techniques such
as those leveraging cyber-physical dynamics models [23] may
be applied; their detailed study is an interesting future research
topic. Similarly, we focus on ensuring receiver-side SINR in
URLLC networks; the question of how to optimize MCS and
transmission rate for a given SINR is an interesting research
question but beyond the scope of this work.

Interference Model. For predictable interference control,
Zhang et al. [24] have identified the Physical-Ratio-K (PRK)
interference model that defines pair-wise interference relations
between close-by nodes only while ensuring mean communi-
cation reliability (i.e., mean receiver-side SINR) in the pres-
ence of background noise and real-world wireless complexities
such as multi-path fading and cumulative interference from
all concurrent transmitters in the network. However, the PRK
model [24] and existing studies on PRK-based scheduling
[25], [26], [23] have mainly focused on scenarios where
nodes’ transmission powers are fixed even though different
links can use different transmission powers. Accordingly, the
PRK interference model is based on receiver-side signal and
interference power, and scheduling is used to control the
receiver-side cumulative interference power. Given that trans-
mission power control directly impacts receiver-side signal
and interference power and for the purpose of decoupling
the impact of scheduling and transmission power control, the
PRK interference model needs to be refined to be applicable
to joint scheduling and power control. To this end, we observe

that, give a transmitter X and a receiver R, the receiver-side
signal/interference power Sp = Px x G x g, where Py is the
transmission power at X and Gx g is the wireless channel
gain from X to R. Therefore, we propose to use a variant of
the PRK model based on wireless channel gain, denoted as
the Gain-Ratio-K (GRK) model. As shown in Figure 1, in the
GRK model, given a link L between the transmitter 7" and its
receiver R, a node C is regarded as not interfering thus can
transmit concurrently with the transmission from 7' to R if
and only if the following holds:

Gr,r
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where G¢ov g and G g is the average channel gain from C’
and T to R, respectively. KT R~ i the minimum real
number chosen such that, in the presence of channel fading,
cumulative interference from all concurrent transmitters, and
power control strategies at individual links, the per-packet
communication reliability required by application, v g, is
satisfied. The GRK model defines,
for each link (T, R), an exclusion
region Er R ., around the re-
ceiver R such that a node C' €
Er Rrypr Will not transmit con-
currently if and only if Gor >
KTG}:»YIZ =~ As we will show in
Section VI, the GRK model en-
ables effective joint scheduling and
power control for ensuring per-
packet communication reliability.

Fig. 1.
model

GRK interference

IV. PKTR DESIGN

A. Overview

The theoretical investigation by Wang et al. [1] has shown
the necessity of joint scheduling and power control in achiev-
ing predictable per-packet communication reliability, but it left
open the questions of whether it is feasible and how to develop
field-deployable joint scheduling and power control algorithms
that can ensure predictable per-packet communication reliabil-
ity in cellular network systems using the software and hard-
ware platforms available today. Key open challenges include
complex interactions among the scheduling and transmission
power control decisions across individual links, complex and
fast-varying dynamics of wireless channels and interference,
and real-world implementation of novel algorithms subject to
the current 3GPP standards on cellular systems. We address
these open systems challenges and validate the theoretical
insight of Wang et al. [1] in this work.

To decouple the design of scheduling and power control
policies and to decouple the interactions across different links,
we leverage the two timescales of scheduling and power
control decisions at the MAC and PHY layers respectively, and
we propose the following framework. The adaptation of the
GRK model parameter K (as defined in section III) happens
at a relative slower timescale (e.g., tens/hundreds of time



slots and at a timescale of sub-seconds/seconds) so that GRK-
based transmission scheduling can control the statistics of the
receiver-side interference to ensure the existence of a feasible
power control strategy required for a certain per-packet com-
munication reliability. In the meantime, the transmission power
along each link is controlled on a per-packet basis and at a
timescale of milliseconds/sub-milliseconds (e.g., each time
slot) to adapt to fast-varying channel fading and instantaneous
receiver-side interference.

he aforementioned framework for joint scheduling and
power control is denoted as PktR and is shown in Figure 2.
As the individual data packets are transmitted, receivers col-
lect interference and channel statistics (shown as “Receiver
measurement”). In the meantime, base stations collect network
information such as average transmission power and path loss
(shown as “Network info maintenance”). These information
is used to adapt the GRK model parameter K  and data
transmission power (shown as “K-Adaptation” and ‘“Power
control” respectively). The GRK model parameters of close-
by links are shared among one another through *“Protocol
Signaling”, and they are used to enable “TDMA scheduling”
of individual packet transmissions. TDMA scheduling can use
any well-established algorithm such as that from PRK-based
scheduling [26], [25], and we will discuss PktR implementa-
tion details such as protocol signaling and network information
maintenance in Section V. In what follows, we elaborate on
the design of two key PktR components — power control and
K-Adaptation.

B. IPC: per-packet instantaneous power control

Ensuring per-packet communication reliability can be trans-
lated into finding a feasible SINR regime that guarantees
the delivery reliability on a per-packet basis. In particular,
for a link L of transmitter 7" and receiver R, it can be
expressed as a success probability requirement as follows:
Prob{SINR, > vyr.r} > P, where SIN Ry, is the SINR at
the receiver of link L, vy g is the receiver-side SINR threshold
to satisfy a communication reliability requirement, and 3y, is a
lower bound on the probability guarantee of SINR;, > vyr g
to meet the need of a given URLLC application.

‘ TDMA scheduling ‘

i set of concurrent
i transmission links
cross-link interference relation !

—‘ Protocol Signaling
GRK model parameter
Kr Ryrn ()

a{ K-Adaptation

interference &|channel gain feedback
Network info "
. Receiver
maintenance
measurement
network statistics(e.g., average

transmission power, path loss) Control Plane !

transmission power Pr(t);

Power control

Data Packet
Transmission

Data Plane

Fig. 2. PktR framework for joint scheduling and power control

Based on the mathematical analysis in our technical report
[27], the success probability requirement implies the following
condition:

Pr(t) > Gra(®) + Ta® + -+ ong| 105 @)

where Pr(t) is the transmission power of the transmitter 7" at
time instant ¢, G () is the average channel gain between the
transmitter 7" and receiver R, o, is the standard deviation of
(Sg — Ir) with Sk being the receiver-side data signal power,
IRr(t) is the average receiver-side interference power at time
instant ¢, and is determined by Ig(t+ 1) = clg(t) + (1 —
¢)Ir(t + 1). The parameter ¢ of the exponentially-weighted-
moving-average (EWMA) filter in the constraint represents a
weighting factor that governs the balance between stability
and agility in estimating the measured interference. The term
Gr r(t) + Ir(t) + vyr,r is the minimum transmission power
required to achieve the mean target SINR 1 , and the term

oLy 1 f %L is derived from Cantelli’s inequality [28] to ensure
the required success probability. Since higher transmission
power along a link means larger interference to other links in
the network and thus reduced network throughput [1], PktR
uses the minimum transmission power that satisfies Inequality
(2), that is, the right-hand-side (RHS) of (2), and we denote
this method as Instantaneous-reliability Power Control (IPC).
The statistics of G g(t), Ir, and Sg in equation (2) can be
collected at fast timescales, thus the IPC method enables fast-
timescale, per-packet adaptation of the transmission power to
in-situ channel and interference conditions.

Let P4, be the maximum transmission power feasible for
the transmitter of link L, (2) implies the following:

BL
1-p1’

where E™*[[] is the maximum expected interference power
for which the PktR transmission power control can guarantee
the minimum required SINR ~7 . Therefore, E™**[Ig] is a
constraint when controlling receiver-side interference through
the adaptation of GRK interference model.

E™e* [IR] = Pma:c - (3)

Grr(t) —yr,r — 0oL

C. K-Adaptation

Towards predictable interference control for a link L of
transmitter 7' and receiver R, the parameter K7 g,  Of
the GRK model needs to be instantiated according to in-situ,
potentially unpredictable network and environmental condi-
tions. In particular, if the receiver-side SINR is below (or
above) yr g, K1 R~ nNeeds to be increased (or decreased)
so that the concurrent transmissions around the receiver R are
decreased (or increased) accordingly, to control the receiver-
side interference at an appropriate level. For convenience, we
denote this mechanism as K-Adaptation. The choice of the
GRK model parameter K impacts not only the local state of
a link (e.g., communication reliability) but also the overall
network throughput. A link can try to increase its K to
increase the receiver-side SINR, but this will decrease the



network throughput. To strike an optimal balance between
these competing metrics, we focus on precise control of
receiver-side interference. In particular, we aim at optimal
interference power control at the receiver side so as to meet
the SINR requirements while maximizing concurrent commu-
nications. In what follows, we elaborate on the approach to
K-Adaptation, starting with the definition of the states and
their evolution equations.

State. PktR models the in-situ instantaneous interference
at the receiver R at time instant ¢, denoted by I(t), as the
state variable. Then Ir(t + 1) = Ig(t) + AIr(t) + Aly(t),
where Alg(t) and Aly(t) are the changes in the receiver-
side interference introduced by nodes within and outside the
exclusion region, respectively, due to the change of the GRK
model parameter from ¢ to ¢ + 1. Aly(t) is treated as a
disturbance to the system with mean value p,, and Aly(t)
tends to be uncorrelated with Alg(t). Therefore, the time
dynamics of receiver-side interference is modeled as dIg (¢ +
1) = AlIg(t) + Aly(t). In addition, we also take the [-th
quantile value of the receiver side SINR Qg INRp(+) &S @ state

variable, and Q%yp 1) = Qérvpn + ASINRR(1),

with ASTN Rg(t) being the change of Q5N Ry () due to the
change of the GRK model parameter from ¢ to ¢ + 1.

Control variable & cost function. Given the probabilistic
nature of wireless communications, the link SINR is expected
to be inherently random. Therefore, the receiver R adapts
KT R~pr to control SINR(t) to be as close to the target
SINR ~7 r as possible. In K-Adaptation, each link L with
transmitter 7" and receiver X computes the desired change of
receiver-side interference power Alg(t) at a time slot ¢. If
Alg(t) < 0 (or AIg(t) > 0), it increases (or decreases)
Kt R~y such that the sum of the expected interference
power from all the nodes newly added to (or removed from)
the exclusion region ER7 g .. , is no less (or no more) than
|AIR(t)|. Therefore, we treat Al(t) as the control variable
of the system.

In order to control the interference to satisfy the SINR
success probability requirement, the tail distribution of SINR
has to be considered. From Equation (2), we know that the
SINR success probability requirement implies the following
condition: E[Ig(t)] < E[Sg(t)] — vr.r — oL %,
Sr(t) is the received power at time slot ¢t. Therefore, we
can treat the right-hand side of the above equation as the
target interference, and try to control the expected interference
E[Ir(t)] to be as close to the desired target as possible. More
formally, the control design at time ¢ is a model predictive
control problem as follows:

where

min (Ir(t+1) —E[Sg(t+1)]+y1r.r + 0L

1-p
s.t. IR(t + 1) = CIR(t) + (1 - C)IR(t + 1),

4
where E[Sgr(t + 1)] is the expected receive signal power( a%

time slot ¢ + 1 (denoted by Sgr(t+ 1)), Ir(t+ 1) and Ir(?)
are the measured average value of interference at time £+41 and

t respectively, and Ir(t 4 1) is the instantaneous interference
power at time ¢ + 1. From the objective function and the
constraint, we have

B
=)

[(CIR(t) (1—C)IR(t+1) SR(t"rl +Yr,R + 0Ly ) ]

E[(cIr(t) + (1 — o)(Ir(t) + AIR(t) + Aly(t)) — Sgr(t + 1)+

E[(Ir(t+1) — Sr(t+1) +y1,r + 0L

B
mﬁ

=E[(cIr(t) + (1 — )(Ir(t) + AIr(t) + pu) — Sr(t + 1)+
8

=5

We need cIg(t)+(1—c)(Ir(t) + AIR(t) + i)

Yr,R +0L

Yr,r + 0L

—Splt+1)+

YT,R+ 0L\ 125 = 0 to minimize the objective. Accordingly,
we have
Aln(t) — Sr(t+1) —vr.rR — oL /1%/; —clr(t) — (1 — ¢)Ir(t) s
SR(“FU*’YTR*UL\/ 25 — cIr(t) + cIr(t — 1) — Ir(t)
1—c
= Hu
SR(I‘—FI)—’yTR—O'LH (C+1)IR(t)+CIR(t—1)
1 — — M-
5)
Furthermore, we let
ASINRR(t) = v — Qi pnce): (6)

Thus ASINRg(t) denotes the difference between ground
truth 3y -th quantile value of SINR and the target SINR.

Based on the above analysis, for a link L with transmitter
T and receiver R, we develop Algorithm 1 for computing the
optimal control Alg(t). Firstly, each link updates its estimates
of Ig(t), Ir(t—1), Sgr(t+1), o, and p, using methods
similar to those in [25]. Then, base stations calculate the value
of E™*[[]. Then, base stations calculate the value of ATg(t)
for all links in its cell, subject to the constraint imposed by
E™*[Ig] (line 5).

Algorithm 1 Compute optimal control Alg(t)

Update Ig(t), Ir(t — 1), Sr(t+1) and or;
Calculate E™*[I] based on (3);
Calculate AIR(t) using (5);
if IR(t) + AIR(t) > Emar [IR] then
AIR(t) = Emaw[IR] — IR(t),
end if

AN A

From Algr(t) to Kr g, ,(t + 1). After the re-
ceiver R computes the control input Alg(t) at time in-
stant ¢ according to Algorithm 1, R needs to compute
K7 R~ n(t+1) so that, when the GRK model parameter is
min{ K7 g yr 5 (t), K7,R~r z(t + 1)}, the expected interfer-
ence introduced to R by the nodes in either ER7 g .. . (t) or
ER7 R4s (t + 1) but not in both is as close to |AIg(t)| as



possible. To this end, we define, for each node C' which may
fall within the exclusion region of R, the expected interference
to Ras E[I¢c r(t)] = Elac(t)]E[Pc(t)]Ge,r, where E[ac(t)]
is the expected probability for C' to transmit data packets
at time t, E[Po(t)] is the expected transmission power at
C, and G¢,r is the average channel gain between C' and
R. Suppose that there are Nyctiyve(t) number of transmitters
active at time slot ¢ with the total number of nodes NV, then
we have Elac(t)] = ]E[N“C]t\}'“(t)] = E[)‘i(t)], where A is the
node density, E[A*(¢)] is the expected value of the active node
intensity of the network.

Deriving the closed-form expression of E[AX(¢)] falls into
the domain of thinning process in stochastic geometry, which
refers to a procedure where events or items are selectively
removed or retained based on certain criteria.! In our case,
the transmitters C' inside the exclusive region cannot transmit
concurrently with the transmitter 7' as shown in Figure 1,
therefore, transmitters C' have to be removed at time slot ¢,
while transmitters 7' should be retained at time slot ¢. Then,
we derive the intensity of the thinning process associated with
GRK-based scheduling, and the calculation of E[X*(¢)] is as
follows:

Theorem 1. The density A, of the thinning process of con-
current transmitters computes as follows:

. 1-— — HA
E\] = exf((t j(f)Jr = 7
where c(t + 1) = WE[dIER]2 + (nl? + 2xE[digll) *

124 L/2 4 2E[d o] (t+1)* L/
2LIE[d]’5R](t+1)+L/>

l 2 arccos

o dL', 1 is the expected link
length A s the density of the spatial Poisson process repre-
senting the cellular network under consideration, E|dyy] is the
expected value of the radius of ER1 g ~, . at the equilibrium
point.

Proof. Proof can be found in the technical report [27]. O

GRK model adaptation. Considering the discrete nature of
node distribution in space and the requirement on satisfying
the minimum SINR threshold v r, we propose the following
rule for computing K7 g, ,(t + 1):

e When AIR(t) =0, let KT,R,’yT,R(t'i' 1) = KT,R,VT,R(t)'
e When Alg(t) < 0, interference is not well bounded (i.e.,
need to expand the exclusion region), let ER7 g . .. (t+
1) = ER7 g+, ,(t), then keep adding nodes not already
in ER7 R ~p n (t+1), in the non-increasing order of their
wireless channel gain to R, into ER7 g .. . (t 4+ 1) until
the node B such that adding B into ER7 g ., ,(t + 1)

makes ZCe]E]RT,RqT,R(t+1)\ERTYRWT’R w EL(C, R, t)] >
|AIR(t)| for the first time. Then let K1 gy ,(t+ 1) =

Gr.Rr
GB,R’

o When AIR(t) > 0, we further differentiate the following
situations:

'Even though the topology of a given network is fixed, the spatial
distribution of concurrent transmitters is stochastic over time.

- ASINR(t) < 0: interference is well-bounded; the
exclusion region remains the same, and the trans-
mission power is controlled to further reduce SINR
towards the target.

— ASINR(t) > 0 and Algr(t) > ASINR(t):
interference is over-bounded (.e., need
to shrink  the  exclusion  region); let
ERT7R7’YT,R (t + 1) = ERT7R77T,R (t) , then

keep removing nodes out of ERr g .. .(t + 1),
in the non-decreasing order of their wireless
channel gain to R, until the node B such that
removing any more node after removing B makes
2CeERr R v, ONERT, Ry (£+1) E[I(C, R, 1)) >
AlIg(t) — ASINR(t) for the first time. Then let
KTR,VTR(t—i_l) GTR'

- ASINR(t) > 0 and Alr(t) < ASINR(t): inter-
ference is well-bounded, and power control alone is
enough to guarantee the SINR requirements.

V. PKTR IMPLEMENTATION

5G-compliant implementation. The PktR framework can
be integrated within the existing 5G standards of the 3GPP
cellular architecture. Here we present our strategy for im-
plementing PktR in the standard-compliant, open-source 5G
software platform OpenAirlnterface [29]. The system architec-
ture of PktR is depicted in Figure 3. For network information
maintenance, the gNB collects data from nearby gNBs at a
relatively low frequency and from UEs in the cell for every
slot. The sharing of network information is achieved through
protocol signaling using a real-time dedicated UDP socket.
Additionally, we define a custom message “PktR-Signal” to
convey the necessary information among gNBs. To incorporate
the PktR framework into OpenAirlnterface, we make targeted
modifications to the MAC and PHY components of the plat-
form without changing the current 5G standard. The current
OAI MAC scheduling framework is composed of the downlink
scheduling nr_frl_dlsch_preprocessor and the up-
link scheduling nr_frl_ulsch_preprocessor, which
are executed in the gNB, and called every slot. We extend
the MAC scheduler pre-processor with PktR functions. For
every period 7', the gNB calculates the optimal control variable
AlIR(t), and then utilizes the K-Adaptation mechanism to
compute the GRK model parameter K for each UE within its
respective cell
based on the
Alg(t) calculated
in the current
period. After
calculating K,
gNBs share the
parameter K for

Network statistics(e.g., M)
average transmission Optimal control ——
power, path loss)

Determine GRK
model parameter K

OAIMAC
scheduler

Statistic value of l

each UE with

nearby gNBs vt Pfé%ﬁii?%%?}i‘;ﬁii"f

through protocol T

signaling. ~ Once

the interference Fig. 3. PktR implementation architecture



relation is generated, PktR calls the standard-compliant
uplink and downlink scheduler pf_ul and pf_dl, which
implement the ONAMA scheduling algorithm [30] to make
scheduling decisions. The whole computation of scheduling
is based on pipelined precomputation. This means that at time
instant ¢, all nodes calculate the status of time instant ¢t + M.
Therefore, when time reaches slot ¢ + M, a node simply
looks up the precomputed status and decides to transmit or
not. In the PHY layer, the transmitters apply instantaneous
power control in the function nr_generate_pdsch
of OAI gNB and nr_ue_ulsch_procedures of OAI
UE, using receiver measurements and control channels
to determine appropriate transmission power levels. More
detailed information about the PktR implementation can be
found in the technical report [27]. The source code of PktR
can be found at [31].

Light-weight control signaling. Control messages are used
for two main purposes. The first is for BS-UE coordina-
tion. This involves real-time feedback of the receiver-side
interference and the standard deviation of per-packet SINR,
which are essential for determining the power control policy.
It takes 4 bytes to transmit these two parameters for each
transmission. The second is for inter-BS coordination. These
messages contain network statistics such as the average trans-
mission power, path loss, and exclusion region (ER) size. The
control messages for updating the aforementioned statistics are
exchanged at relatively low frequencies as compared with the
frequency of data packet exchange, thus the incurred overhead
is not high. For instance, the control message for exchanging
the GRK parameter K takes 2 bytes, including the UE’s ID
and its corresponding parameter K. This exchange occurs only
when K-adaptation happens every 30 ms. BSes also exchange
information on link scheduling status required by the PktR
ONAMA scheduling algorithm. At each time slot, it takes 2
bytes to exchange the scheduling status for each UE, including
the UE’s ID, transmission time, and transmission status. In
our setting, we pre-compute 4 slots’ transmission statuses.
Therefore, the per-UE control message overhead for inter-BS
coordination at each time slot is 8 + O(t) bytes, where the
term O(t) denotes the type of control message overhead that
is incurred at rather low frequency.

Computational and energy overhead. The computational
and energy overhead primarily arises from the calculations
of transmission power (Equation 2), Alg (Equation 5), and
spatial density of concurrent transmitters (Equation 7). The
calculations of transmission power and Alg (i.e., Equations 2
and 5 respectively) are based on closed-form solutions, thus
the per-link computational overhead tends to be low and the
computational overhead at each BS is proportional to the
number of nodes in the associated cell. For Equation 7, we can
employ numerical integration techniques, such as the Trape-
zoidal Rule, to simplify the computation, effectively breaking
it down into multiple closed-form solutions. Consequently,
the computational overhead remains low and proportional to
the number of nodes in a cell. The lightweight computation

also makes the computational energy overhead low. Energy
overhead is also introduced by control messages. Given the
light-weight control signaling discussed earlier in the section,
such control message energy overhead tends to be low too.

VI. MEASUREMENT EVALUATION

We have implemented PktR in the open-source 5G software
platform OpenAirInterface. Here we use the software-defined
radios of the ARA sandbox [7] to validate the design and
implementation of PktR with real-world systems platforms.

A. Network settings in ARA sandbox

To wvalidate the feasibility and effectiveness of the
PktR framework, we implement PktR in the 5G-compliant,
2022.w51 version of OpenAirlnterface (OAI5SG) and evaluate
its behavior in the ARA sandbox using the USRP B210
software-defined radios (SDRs). The network consists of 28
SDRs deployed in an indoor office area of 6m x 6.6m.
As shown in Figure 4, we uniform-randomly distribute UEs
across 5 cells, with each cell containing 4 to 6 UEs. The
transmission is in the time-division-duplex (TDD) mode, and
we use numerology 1 with 106 physical resource blocks and
12 symbols, corresponding to a channel bandwidth of 30 MHz.
The modulation schedme supported by OAISG is QPSK; we
consider three SINR thresholds of 11 dB, 14 dB, 17 dB,
and 20 dB, which correspond to block error rates (BLER)
of approximately 0.1, 0.05, 0.02, and 0.01 respectively. The
SINR guarantee success probability threshold considered in
the experiments is 0.9. Data traffic is generated using iPerf
UDP packets, each 208 bytes in size. The overall network
settings are shown in Table I.

o
Fig. 5. ARA sandbox, with gNBs

and UEs marked in orange and blue
colors respectively

Fig. 4. ARA sandbox

B. Methodology

Towards understanding the benefits of PktR in joint schedul-
ing and power control for predictable per-packet communica-
tion reliability guarantee, we comparatively study PktR with
CCSAA [15], [16], PRKS [25], and a variant of PktR. More
specifically, we implement in OAISG the following distributed
scheduling protocols and comparatively study their behavior
with PktR:

e CCSAA: The cardinality-constrained subchannel assign-
ment algorithm (CCSAA) [15], [16] addresses the chal-
lenge of assigning up to K number of links per subchan-
nel within a multi-cell environment. It employs the SINR



TABLE I
NETWORK SETTINGS
Network size 6m x 6.6m
Number of cells 5
Number of UEs in a cell 4-6
Transmission mode TDD
Numerology 1
Bandwidth 30MHz
Number of resource blocks 106
Number of symbols 12
Packet size iPerf packets of 208 bytes each
MCS value and Modulation 0-9 and QPSK
SINR threshold ~ 11dB, 14dB, 17dB, 20dB
SINR success probability 0.9

interference model [24] in resource management, trying
to ensure reliable communications while improving chan-
nel spatial reuse. However, CCSAA does not adaptively
adjust the number of concurrent transmissions, making
it difficult to ensure per-packet communication reliability
in unpredictable network and environmental conditions.

e PRKS: PRKS [25] employs a control-theoretic approach
to instantiating the PRK interference model in dynamic,
uncertain network settings, and it can enable predictably
high mean-link-reliability (e.g., 95%) by controlling co-
channel interference in link transmission scheduling.
However, PRKS does not consider joint scheduling and
power control towards ensuring per-packet communica-
tion reliability.

o GRKS with channel inversion power control (GRKS-CI):
Same as PktR, the GRK interference model and PktR
scheduling framework are used in transmission schedul-
ing. However, power control is through the channel-
inversion method, a technique employed in the 4G and 5G
standards [32] where the transmit power is controlled to
be inversely proportional to the channel gain. When the
channel gain is low, the transmit power is increased to
compensate for the weaker signal. Conversely, when the
channel gain is high, the transmit power is decreased to
conserve power and reduce interference to other users.
GRKS-CI is used to evaluate the benefits of the IPC
power control method in PktR.

C. Behavior of PktR

For the SINR requirements of 11, 14, 17, and 20 db,
Figure 6 presents the boxplots illustrating the receiver-side,
per-packet SINR distributions for all the links in the ARA
sandbox. The 10 percentiles for the receiver SINRs are 11.98
dB, 15.03 dB, 17.87 dB, and 20.94 dB respectively. Further-
more, Figure 7 shows the detailed distributions of per-packet
SINRs through the complementary cumulative distribution
functions (C-CDFs). For a success probability requirement
B set as 0.9, it is evident that PktR ensures the required
per-packet SINR through predictable interference control and
transmission power adaptation.

Figures 8 shows the GRK model parameters K for different
SINR requirements. PktR achieves the desired SINR by dy-
namically adjusting the GRK model parameter, which directly

influences the size of the exclusion region (ER) surrounding
each receiver. In particular, the GRK model parameter in-
creases alongside the SINR requirements, effectively limiting
concurrent transmissions and interference from nearby nodes.

Temporal TX power
T T T

—e—17dB
—e—20dB
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Number of transmissions

Fig. 9. Temporal TX power: o« = 17,20

For v = 11dB, there are 6 links whose ERs do not include
all other nodes. For v = 14d B, there are 4 links whose ERs do
not include all other nodes. For v = 17dB and v = 20d B, all
links within the sandbox must include all the other links within
their ERs, thus the parameters K are the same for the cases
of v = 17dB and v = 20dB. Despite this, the performance
of PktR on these two cases differs due to the varying SINR
distributions shown in Figure 6, which are accomplished
by the power control policy shown as Figure 9. We have
validated the use of Equation (7) across various settings. At
~v = 17dB and v = 20d B, the theoretical active node intensity
is 0.0354, compared to the experimental value of 0.043. At

= 14dB, theory predicts 0.0378 versus an observed 0.045,
and at v = 11dB, the theoretical and experimental values
are 0.041 and 0.046, respectively. The discrepancies between
theoretical predictions and experimental results stem primarily
from the model’s reliance on random stochastic geometry
without considering the boundary constraints, while the testbed
is a fixed topology within a limited space.

Despite the distributed nature of PktR, the individual con-
trollers converge to a state where the desired SINR is satisfied.
To illustrate this behavior, Figure 10 shows the temporal
evolution of the uplink SINR for a typical link when the SINR
requirement is 11 dB. Initially, the link’s SINR is stable around
10 dB. As other links began transmitting data, this link’s SINR
quickly drops to approximately 7 dB. In response, instan-
taneous power control increase the TX power to boost the
SINR. After about 30 transmissions, K-adaptation completes,
stabilizing the interference levels. Despite this stabilization,
significant fluctuations in SINR during this period require con-
tinued high transmission power, maintaining elevated temporal
TX power and SINR levels until around the 60th transmission.
Thereafter, the transmission power gradually declines until it
stabilizes around the 70th transmission, at which point the
SINR also stabilizes. In our configuration, the GRK model
parameter is adjusted once every three frames, or every 30
ms. This particular link transmits in every 0.5 ms uplink
slot, and with each 10 ms frame containing 6 uplink slots,
approximately 5 frames are required to stabilize interference.
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In general, link SINRs converge quickly in PktR, as shown
in Table II, where the settling time is defined as the time

TABLE II
SETTLING TIME OF LINK SINR

SINR threshold Mean(msec) 95% CI

v =11 97.24 (94.23, 100.25)
v=14 102.48 (98.00, 106.96)
v=17 107.58 (103.23, 111.93)
v =20 104.26 (100.87, 107.64)

required for a link to reach its steady state where SINR
requirement is met. For v = 11d B, the mean settling time is
97.24 ms with a confidence interval (CI) of (94.23,100.25).
A slightly longer convergence time is observed for v = 14d B,
with a mean of 102.48 ms and a CI of (98.00,106.96),
and v = 17dB, with a mean of 107.58 ms and a CI of
(103.23,111.93). This increase is attributed to the fact that,
for v = 14dB and y = 17dB, there are more links interfering
with one another than the case of v = 11dB, necessitating
a longer duration to adjust the parameter K, which in turn
extends the convergence time. Therefore, the increased ER size
requires more time to achieve convergence. For v = 20d B, the
mean settling time is 104.26 ms with a CI of (100.87,107.64).
Despite maintaining the similar X value as in the case of
v = 17, the larger -y reduces the value of Alg. According to
the K-adaptation rule, a smaller Al results in more nodes
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Fig. 8. GRK model parameter K

being added to the exclusion region at the same time, thereby
reducing the time required for K-adaptation.

D. Comparative study

Figure 11 illustrates, for different protocols, the ratios of
transmissions in which the per-packet SINR meets or exceeds
the required threshold. PktR consistently achieves high satis-
faction ratios for all the links in a predictable manner. They
are followed by GRKS-CI, PRKS, and CCSAA. For instance,
when the SINR requirement is 20dB, PktR’s SINR satisfac-
tion ratio is 96.34%, while CCSAA only achieve 31.01%.
Additionally, the figure includes 95% confidence intervals for
all protocols, demonstrating the stable performance of PktR
across repeated experiments. In contrast, protocols such as
PRKS and CCSAA fail to ensure the required per-packet
SINR. This decrease in satisfaction ratio is due to the escalat-
ing levels of co-channel interference, which are not effectively
managed by the PRKS and CCSAA interference models.
Specifically, CCSAA schedules a fixed number of K links per
subchannel during each slot and schedules concurrent links
while attempting to control interference based on estimated
interference. Consequently, if CCSAA schedules K links that
are located far apart and cause negligible interference, their
per-packet SINR is likely to be satisfied. However, when
CCSAA schedules K links that result in non-negligible mu-
tual interference, their per-packet SINR cannot be adequately
fulfilled. In terms of PRKS, it only needs to satisfy the
average communication reliability, resulting in a smaller ER
size and increased concurrent transmissions. More specifically,
Figure 12 shows the mean ER size in PRKS and PktR. PRKS
has a smaller ER size, which can be attributed to the fact
that PRKS only needs to guarantee the mean per-link SINR.
As a result, PRKS has less stringent requirements compared to
PktR, allowing for a smaller ER size. However, PktR considers
Cantelli’s inequality and accounts for the impact of the tail
distribution when calculating the value of Al (¢). While some
nodes may not significantly affect the mean SINR, they can
impact the per-packet SINR and reduce the SINR success
probability. PktR can include such nodes in the ER, ensuring
the success probability is fulfilled.

Next, we analyze the performance of the IPC policy. We
observed that the per-packet SINR satisfaction ratio of PktR is
higher than that of GRKS-CI. Both policies were implemented
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using the PktR framework for scheduling. Specifically, we
compare the transmission power of IPC with that of Channel
Inversion Power Control (CI) for the same receiver, as shown
in Figure 14. We see that the variance of IPC is greater than
that of CI. This is because the output power of IPC takes
into account the feedback of instantaneous interference in
addition to channel gain. As the interference varies, the output
power of IPC adapts to these changes. On the other hand, CI
solely considers the varying channel gain and does not take
interference feedback into account. Furthermore, the overall
transmission power of IPC is higher than that of CI. This can
be attributed to the utilization of Cantelli’s inequality in IPC
(see technicical report [27]), which controls the quantile value
of the transmission power. Considering that the value of o for
this time interval is approximately 0.73 and /3 is set at 90%, the

% in Formula (2) evaluates to 2.19. Consequently,
the overall transmission power of IPC surpasses that of CI, as
IPC aims to achieve a higher SINR satisfaction ratio. Based on
the above observations, it is evident that CI does not control
the quantiles of the transmission power and does not adjust it
based on interference. As a result, the system fails to achieve

a high SINR satisfaction ratio, as reflected in Figure 11.

term o

For network throughput, Figure 13 shows the mean value
of the aggregate communication throughput across all the
links in different protocols. We see that PktR, GRKS-CI,
and PRKS achieve similar throughput, followed by CCSAA.
For instance, when the SINR requirement is 20 dB, PktR’s
throughput is 4.82 Mbits per second, while CCSAA only
achieves 3.02 Mbits per second. Although PktR, GRKS-
CI, and PRKS achieve similar throughput, their performance
varies with different SINR requirements. GRKS-CI applies the
same GRK interference model as PktR, resulting in similar

SINR requirement (dB)

Fig. 12. Mean ER size in different protocols
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number of concurrent transmission links to PktR. However,
since CI power control cannot achieve as high SINR as
PktR, the throughput is slightly lower than PktR in each
scenario. PRKS achieves a much higher number of concurrent
transmissions than PktR when the SINR requirement is 11 dB
and 14 dB, due to its smaller ER size as shown in Figure 12.
This results in a higher overall throughput, in part due to
the inherent tradeoff between reliability and throughput in
wireless networks [24]. As the SINR requirement increases,
the overall throughput of PktR improves and surpasses other
solutions for two main reasons. First, the ER size for PRKS
becomes comparable to that of PktR, resulting in the same
number of concurrent transmission links and transmission
opportunities. Second, a higher per-packet SINR ensures a
significantly stronger data signal relative to interference and
noise, which leads to increased per-packet reliability and is
the primary driver of throughput improvement. Since other
solutions cannot achieve the same high SINR as PktR, their
throughput remains lower as the SINR threshold continues to
rise. The impact of high SINR on throughput is even more
pronounced when advanced modulation schemes are applied,
where PktR can significantly outperform other solutions. High
SINR, communication reliability, and throughput help reduce
communication latency, as shown by Meng et al. [22].

VII. CONCLUDING REMARKS

We have introduced the field-deployable framework PktR
for ensuring predictable communication reliability in cellular
networks on a per-packet basis. To maximize communication
throughput while maintaining per-packet communication reli-
ability, PktR incorporates Gain-Ratio-K (GRK) interference
modeling, optimization, and transmit power control mech-
anisms. This comprehensive approach allows for efficient
utilization of network resources. We have implemented PktR
using the open-source 5G platform OpenAirlnterface, and we
have validated the design and implementation of PktR through
extensive measurement studies using real-world hardware and
the sandbox of the ARA wireless living lab. The measure-
ment results demonstrate that PktR ensures predictably high
per-packet communication reliability while achieving a high
network throughput. To the best of our knowledge, this is the
first work demonstrating the feasibility of ensuring predictable
per-packet communication reliability in multi-cell wireless
networks of real-world hardware and software systems.
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