Forum of Mathematics, Pi (2024), xx:xx 1-65
doi:10.1017/fmp.2024.X CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Floer homology and non-fibered knot detection

John A. Baldwin!@® and Steven Sivek?

1Department of Mathematics, Boston College, Maloney Hall, Fifth Floor, Chestnut Hill, MA, 02467-3806, USA;
E-mail: john.baldwin@bc.edu.

2Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom;
E-mail: s.sivek @imperial.ac.uk.

Received: 13 June 2023; Revised: 12 September 2024; Accepted: 22 October 2024
Keywords: Floer homology, Khovanov homology, HOMFLY homology, Dehn surgery
MSC Codes: Primary — 57K18; Secondary — 57K10, 57R58

Abstract

‘We prove for the first time that knot Floer homology and Khovanov homology can detect non-fibered knots, and
that HOMFLY homology detects infinitely many knots; these theories were previously known to detect a mere six
knots, all fibered. These results rely on our main technical theorem, which gives a complete classification of genus-
1 knots in the 3-sphere whose knot Floer homology in the top Alexander grading is 2-dimensional. We discuss
applications of this classification to problems in Dehn surgery which are carried out in two sequels. These include
a proof that O-surgery characterizes infinitely many knots, generalizing results of Gabai from his 1987 resolution
of the Property R Conjecture.
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Figure 1. All of the genus-1 nearly fibered knots in S°, up to taking mirrors; the labeled box on the
right indicates the number of signed half-twists.
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1. Introduction

A fundamental question for any knot invariant asks which knots it detects, if any. The most famous open
version of this question asks whether the Jones polynomial detects the unknot. In this paper, we study
the closely related detection question for knot Floer homology and Khovanov homology, as well as for
Khovanov-Rozansky’s HOMFLY homology.

Considerable attention has been paid to this question over the last twenty years, and yet we have only
managed to prove that these homology theories detect six knots: the unknot [47, 38], the two trefoils
and the figure eight [18, 4, 1], and the two cinquefoils [14, 2]. Each of these detection results required
substantial new ideas, which have in several cases reverberated far beyond knot detection, but one thing
they have in common is that each (save for that of the unknot) relied crucially on the knot in question
being fibered. This paper expands the knot detection landscape dramatically. In particular, we prove for
the first time that knot Floer homology and Khovanov homology can detect non-fibered knots, and that
HOMFLY homology detects infinitely many knots.

Our detection results are summarized in the list below. See Figure 1 for diagrams of the knots in
this list, which are each non-fibered of Seifert genus one. In particular, Wh* (T».3,2) is the 2-twisted
Whitehead double of the right-handed trefoil with a positive or a negative clasp, respectively, and the
P(-3,3,2n + 1) are pretzel knots. We prove that:

¢ Knot Floer homology detects 5, and Wh* (75 3, 2).
* Knot Floer homology detects membership in each of the sets

{15n43520, Wh™ (T2.3,2)} and {P(-3,3,2n+1) | n € Z}.

» Khovanov homology detects 5,.

* Khovanov homology together with the degree of the Alexander polynomial detects P(—3,3,2n + 1)
for each n € Z.

HOMFLY homology detects P(-3,3,2n + 1) for each n € Z.

These new detection results rely on our surprising main result, Theorem 1.2, which gives a complete
classification of what we call nearly fibered genus-1 knots in S3. We motivate and explain Theorem 1.2
below, and then state precise versions of the detection results above. We next outline the proof of
Theorem 1.2, which combines in novel ways arguments involving sutured manifolds [16], involutions,
the cyclic surgery theorem [12], and foundational work of Birman and Menasco on braids [8, 7]. Finally,
we discuss applications of this theorem to problems in Dehn surgery, which are carried out in our
papers [0, 5]. Perhaps the most striking of these is our proof in [5] that O-surgery characterizes infinitely
many knots, where this was previously only known for the unknot, trefoils, and figure eight by Gabai’s
celebrated 1987 work on the Property R Conjecture [17].
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1.1. Our results

Recall that knot Floer homology assigns to a knot K ¢ S* a bigraded vector space over Q,

HFK(K; Q) = (P HFK (K, a; Q),

where m and a are the Maslov and Alexander gradings, respectively. Letting

HFK(K,a;Q) = @D HFK (K, a; Q),

knot Floer homology detects the Seifert genus of K by the formula
¢(K) = max{a | HFK(K, a;Q) # 0} (1.1
[47]. Moreover, K is fibered if and only if
dim HFK (K. ¢(K): Q) = 1

[18, 44]. The knot Floer homology detection results for the unknot, trefoils, and figure eight follow
readily from these properties, as the first is the only knot of genus zero and the others are the only
fibered knots of genus one. Detection for the cinquefoils is substantially more involved [14], but also
hinges on the fact that the cinquefoils are fibered.

We focus in this paper on what we call nearly fibered knots. These are non-fibered knots which are
as close as possible, from the knot Floer homology perspective, to being fibered:

Definition 1.1. A knot K c S° is nearly fibered if dimﬁﬁ((K, g(K);Q) =2.
Our main result is the complete classification of genus-1 nearly fibered knots:

Theorem 1.2. IfK C S° is a genus-1 nearly fibered knot, then K is one of the knots
52, 15n43502, Wh™(T3,3,2), Wh*(T23,2), P(=3,3,2n+1) (n € Z)

shown in Figure 1, or the mirror of one of these knots.

The knot Floer homologies of these knots are displayed for reference in Table 1, with the computations
explained in Appendix A. Together with Theorem 1.2 and the symmetry

HFK,,(K,a;Q) = HFK_,,(K, —a;Q)

under taking mirrors, these computations immediately imply the promised detection results for knot
Floer homology, stated as Theorems 1.3, 1.4, and 1.5 below. The first of these makes precise our claim
that knot Floer homology detects the knots 5, and Wh* (73 3, 2):

Theorem 1.3. Let K C S® be a knot, and let J € {5,, Wh*(T>3,2)}. If
HFK(K;Q) = HFK(J;Q)

as bigraded vector spaces, then K = J.

The next two theorems make precise our claim that knot Floer homology detects membership in each
of the sets

{15n43522,Wh_(T2,3,2)} and {P(—3,3,2n + 1) | ne Z}

Note from Table | that knot Floer homology cannot distinguish the knots in either set.
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K HFK(K,1;Q)  HFK(K,0,Q)  HFK(K,-1;Q)
2 3 2
h)) ) Q(l) (0)
2 4 2
15n43522 ©) 1 ®Q -2)
- 2 4 2
Wh (T2,3, 2) Q(O) Q(,]) ® Q(O) Q(,z)
_ 2 5 2
P( 3’ 33 2}’l+ 1) Q(]) Q(O) Q(,l)
2 4 2
Wh+(T2,3’ 2) Q(—l) Q(_z) @ Q(O) Q(_3)

Table 1. Knot Floer homologies of genus-1 nearly fibered knots, grouped by whether det(K) is 7 or 9.
The subscripts denote Maslov gradings.

Theorem 1.4. Let K C S3 be a knot, and let J € {15n43500, Wh™ (T5.3,2)}. If
HFK(K;Q) = HFK(J; Q)

as bigraded vector spaces, then K € {15n43500, Wh™ (T2,3,2) }.
Theorem 1.5. Let K C S be a knot, and let J € {P(=3,3,2n+1) | n € Z}. If

HFK(K;Q) = HFK(J;Q)

as bigraded vector spaces, then K € {P(-3,3,2n+1) | n € Z}.

As alluded to above, Theorem 1.3 is the first result which shows that knot Floer homology can detect
non-fibered knots. We note that it is also the first knot Floer detection result for knots whose Floer
homology is not thin (i.e., not supported in a single 6 = m — a grading).

We now turn to our detection results for Khovanov homology. Recall that reduced Khovanov
homology also assigns to a knot K ¢ S° a bigraded vector space over Q,

Kh(k:Q) = D &R (K: Q).
h.q

where i and g are the homological and quantum gradings, respectively. We use Theorem 1.2 together
with Dowlin’s spectral sequence from Khovanov homology to knot Floer homology [13] to prove that
reduced Khovanov homology detects 5;:

Theorem 1.6. Let K C S° be a knot, and suppose that
Kh(K;Q) = Kh(52; Q)

as bigraded vector spaces. Then K = 5,.

As mentioned previously, Theorem 1.6 is the first result showing that Khovanov homology can detect
non-fibered knots. Using the same strategy, we can also nearly show for the first time that Khovanov
homology detects infinitely many knots:

Theorem 1.7. Let K C S° be a knot, and suppose for some n € Z that
Kh(K;Q) = Kh(P(=3,3,2n +1);Q)

as bigraded vector spaces. If in addition the Alexander polynomial Ak (t) has degree 1, then K =
P(-3,3,2n+1).



Forum of Mathematics, Pi 5

We expect that E(K ; Q) alone should detect each of these pretzel knots. Indeed, their reduced
Khovanov homologies are all 9-dimensional but (unlike their knot Floer homologies) are distinguished
by their bigradings. The only remaining obstacle is to show that there are no fibered knots of genus at
least two with the same reduced Khovanov homology as one of these pretzels. We are currently unable
to show this, which is the reason for the additional Alexander polynomial hypothesis in Theorem 1.7.

On the other hand, we can achieve the desired detection result using the reduced version of Khovanov—
Rozansky’s HOMFLY homology [35]. This theory assigns to aknot K  S3 a triply-graded vector space
over Q,

A(K;:Q) = P A *(K; Q),

i,k

which determines the HOMFLY polynomial of K. We use the fact that the HOMFLY polynomial
encodes the Alexander polynomial, together with recent results of Wang [64], to bypass the obstacle
described above and prove for the first time that HOMFLY homology detects infinitely many knots:

Theorem 1.8. Let K C S* be a knot, and suppose for some n € Z that
H(K;Q) = H(P(-3,3,2n+1);Q)

as triply-graded vector spaces. Then K = P(-3,3,2n+ 1).

Remark 1.9. Some of the knots in Theorem 1.2 may be more familiar under other names. For instance, 6,
is the pretzel knot P(-3, 3, 1). The knot 15n435 is one of the simplest hyperbolic knots, as tabulated in
the census [10], where it is labeled k815. The twisted Whitehead doubles Wh* (75 3, 2) and Wh™ (T 3, 2)
appear in the tabulation [28] as the knots 1571115646 and 16mn696530, respectively.

We outline our proof of Theorem 1.2 in some detail below. For the reader interested in fewer details,
the key new idea is that if K is a genus-1 nearly fibered knot, then the fact that

dimHFK(K,1;Q) =2
is small allows us to determine the complement of a genus-1 Seifert surface F for K. This complement
is not simply a product F x [—1, 1] since K is not fibered, but work of Juhdsz [32] provides us with
product annuli that we can use to cut the complement into simpler pieces and identify it anyway. In
each case, the complement of F admits an involution which extends over the complement of K, and by

taking quotients we can reduce the classification problem in Theorem 1.2 to a difficult but ultimately
solvable question about 3-braids.

1.2. Proof outline
Let K c S3 be a genus-1 nearly fibered knot, so that
dimHFK(K, 1;Q) = 2.

Let F be a genus-1 Seifert surface for K. Let us identify a closed tubular neighborhood of F with the
product F X [—1, 1], and consider the sutured Seifert surface complement

S(F) = (M,y) = (8 \ int(F x [-1,1]),0F x [-1,1]).
Then S? is recovered by gluing this neighborhood back in,

$3=S3(F)uU (F x [-1,1]),
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and K is the image of the suture

s(y) = 9F x {0}

in this glued manifold. Our strategy is to first identify the complement S*(F) abstractly, in a way which
does not remember its embedding into 3, and then classify the gluings that recover S from this abstract
point of view, so as to ultimately determine the knot K.

It will be helpful to consider the following slightly different perspective. Let

Mg = S*(F)u (D?x [-1,1]),

in which we identify each circle

AF x {t} c dS*(F)

with the corresponding dD? x {t}. Then M has two toroidal boundary components, and can be viewed
as the 3-manifold obtained from SS(K ) by removing a neighborhood of the capped off Seifert surface.
This manifold contains a distinguished arc

a:={0} x[-1,1] c D*x [-1,1] € Mp,

whose complement recovers S3(F), where the suture s() is identified with a meridian of a.
Work of Juhasz [30] tells us that the sutured Floer homology of S*(F) has dimension

dim SFH(S?(F); Q) = dim HFK(K, 1;Q) = 2.

This dimension is sufficiently small that another theorem of Juhdsz [32] guarantees the existence of
an essential product annulus A inside of S3(F). Because F has genus 1 we can guarantee that the
components of A are homologically essential in their respective copies of F, or equivalently in the
tori of 0 M, so by Dehn filling along curves dual to A we can identify Mp as the complement of a
2-component cable link, in which A is the cabling annulus.

A similar argument shows that the manifold obtained by decomposing S3(F) along A also contains
an essential product annulus B, since such decompositions preserve the dimension of sutured Floer
homology. We prove that B separates S>(F) \ A into two pieces, and argue based on the dimensions of
the sutured Floer homologies of these pieces that the component containing y must be a product sutured
manifold. We then use this to show that the arc @ in M can be isotoped into the cabling annulus A.

It follows that the manifold obtained by cutting M open along the cabling annulus A can alternatively
be obtained by first removing a neighborhood of @ to form S (F), and then decomposing S3(F) along
a product disk to remove the rest of the annulus A. Since S*(F) is a subset of S>, this cut-open
manifold with torus boundary must then be the complement of a knot C ¢ S, with sutures isotopic
to 0 A. Moreover, its sutured Floer homology is also 2-dimensional, since product disk decomposition
preserves dimension. Using this, we argue that C is an unknot or a trefoil, and conclude the following:

Theorem 5.1. Up to orientation reversal, Mg must be the complement of the (2,4)-cable of either the
unknot or the right-handed trefoil, and « is an arc in the cabling annulus.

This then gives us two possibilities (up to orientation reversal) for > (F), which we recall is obtained
from MFr by removing a neighborhood of «. The next important observation is that in both cases, there
is an involution

L S3(F) - S*(F)

which fixes y setwise and restricts to a hyperelliptic involution on the once-punctured tori R, (y) and
R_(y), as shown in Figures 7 and 18. The quotient of S3(F) by this involution is a sutured 3-ball with
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connected suture. It is natural to identify this quotient 3-ball with the complement of a thickened disk
in S3,
S3(F)/u= $3(D?) = (8 \ int(D? x [-1,1]),0D* x [-1,1]),

and the quotient map realizes S*(F) as the branched double cover of this ball along a tangle T ¢ S3(D?),
as shown in Figures 7 and 19.

As discussed at the beginning, 3 is recovered by gluing F x [—1,1] to S*(F) by a map which in
particular identifies dF X [—1, 1] with . For any such gluing map ¢, the facts that the once-punctured
torus admits a unique hyperelliptic involution up to isotopy, and that this commutes with ¢ up to isotopy

— note that these facts require our assumption that g(F) = 1 — imply that ¢ extends to an involution ¢ of
the glued manifold

Y, = S*(F) Uy, (F x [-1,1]),
whose restriction to the piece F X [—1, 1] is a hyperelliptic involution on each F X {¢}. The quotient map
Y, =Y,/
therefore restricts on this piece to a branched double covering
Fx[-1,1] » D*x [-1,1]

along some 3-braid

BcD*x[-1,1].
It follows that Y, is the branched double cover of
S} (DHu(D?x[-1,1]) = §*
along the link 7 U 8. Moreover, K is the lift of the braid axis
k=0D*x {0} = s(y)/t

in this double cover, as shown in Figures 7 and 8 in the case that M is the complement of the (2, 4)-cable
of the unknot. In particular, Y,, = §3 if and only if 7 U § is an unknot.
This leads to our strategy for identifying K:

1. Identify all 3-braids $ such that 7 U g is an unknot.
2. For each such g, lift « to the branched double cover

(S, TUB) = 5(S3,U) = 83,

and this lift £ is the corresponding knot K.

The first step is generally difficult, and takes up a lot of room in this paper. Our approach is to find a
crossing of 7 whose various resolutions are all relatively simple, and then understand surgeries between
the branched double covers of these resolutions, making heavy use of the cyclic surgery theorem [12]
throughout. We eventually conclude the following:

Theorem 6.1. If Mg is the complement of the (2,4)-cable of the unknot, then K must be 5;, 15n43s72,
or a pretzel knot P(=3,3,2n + 1), up to mirroring.

Theorem 7.1. If Mg is the complement of the (2,4)-cable of the right-handed trefoil, then K must be
a twisted Whitehead double Wh* (T 3, 2).
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Given that taking the mirror of K corresponds to reversing the orientation of M, this completes the
proof of Theorem 1.2.

Remark 1.10. One of the main inspirations for this work and for our approach was a paper by Cantwell
and Conlon [9], who showed (among other things) that if K is either 5, or P(-3,3,2n + 1), then MF is
the complement of the (2, 4)-torus link.

1.3. Other applications

One of the strengths of knot Floer homology is its relationship to the Heegaard Floer homology of
Dehn surgeries on knots. Indeed, the fact that knot Floer homology detects the unknot can be used to
give another proof that the unknot is uniquely characterized by each of its nontrivial Dehn surgeries
(this was first proved via different but similar means by Kronheimer—Mrowka—Ozsvath—Szab6 in [37]).
Likewise, Ozsvath—Szabé used the fact that knot Floer homology detects the trefoils and figure eight to
prove that these knots are also characterized by each of their nontrivial surgeries [53].

In [6], we use Theorem 1.2 to prove that Dehn surgeries of nearly all rational slopes uniquely
characterize the knot 5,:

Theorem 1.11 ([6]). Let K C S° be a knot, and suppose that r is a rational number for which there is
an orientation-preserving homeomorphism

S} (K) = S}(52).

If r is not a positive integer, then K = 5,.

This is the strongest result to date concerning characterizing slopes for any hyperbolic knot other
than the figure eight. Note that we cannot hope to extend Theorem 1.11 to all positive integers, since,
for example, 55(5,) = §7(P(-3,3,8)), as shown in [6].

Using Theorem 1.11, we can then determine all of the ways in which the Brieskorn sphere (2, 3, 11)
can arise from Dehn surgery on a knot in $3:

Theorem 1.12 ([6]). Given a knot K c S* and a rational number r, there exists an orientation-
preserving homeomorphism

S3(K) = 2(2,3,11)

if and only if (K, r) is either (T_» 3, —%) or (5;,—1).

We note that similar results were achieved for (2, 3,5) by Ghiggini in [18], and for £(2,3,7) by
Ozsvath—Szabd in [53].

Similarly, the only knots for which 0-surgery was previously known to be characterizing are the
unknot, trefoils, and figure eight, by a 1987 theorem of Gabai [17]. (This is an immediate corollary of
Gabai’s proof that SS (K) determines the Seifert genus of K as well as whether or not K is fibered.)
Combining the case r = 0 of Theorem 1.11 with the main result of [5] lets us add the infinitely many
knots of Theorem 1.2 to this list.

Theorem 1.13 ([6, 5]). Let K C S> be a genus-1 nearly fibered knot. If for some knot J C S° there is
an orientation-preserving homeomorphism

Sa(K) = S3(J),

then J = K.
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1.4. Coefficients

Every Floer theory and link homology theory in this paper will be considered with coefficients in Q
unless specified otherwise (as in Appendix A). For this reason, we will typically omit the coefficients
from our notation for these theories going forward.

1.5. Organization

In §2, we review necessary background on sutured Floer homology. In §3-§5, we classify the possible
pairs (MF, @), eventually proving Theorem 5.1. In §6, we determine the knots K arising when Mp
is the complement of a cabled unknot, proving Theorem 6.1. In §7, we do the same when M is the
complement of a cabled trefoil, proving Theorem 7.1. This proves Theorem 1.2, and the knot Floer
homology detection results in Theorems 1.3, 1.4, and 1.5 follow immediately. In §8, we use Dowlin’s
spectral sequence to prove the Khovanov homology detection results in Theorems 1.6 and 1.7. We then
apply Theorem 1.7 in §9 to prove the HOMFLY homology detection result in Theorem 1.8. We finish
with Appendix A, detailing the computations which appear in Table 1.

2. Sutured Floer homology background

In this section, we briefly review some facts about sutured Floer homology which will be of use in this
paper, and establish some notation. See [16, 29, 30] for more background.

Following Gabai [16], a sutured manifold is a pair (M, y), where M is a compact, oriented 3-manifold
and y € dM is a union of annuli A(y) and tori T'(y), all of which are pairwise disjoint. We identify
an oriented simple closed curve inside each annulus that is isotopic to the core of that annulus, and
take the sutures s(7y) to be their union. We orient the components of R(y) = dM — int(y) so that their
boundary orientations agree with the orientations of s(y), and then let R,(y) and R_(7y) consist of
those components of R(y) whose orientations agree or disagree with the boundary orientation of dM,
respectively.

Juhdsz [29, Definition 2.2] calls (M, y) a balanced sutured manifold if M has no closed components,
the subsurfaces R, (y) and R_(y) have the same Euler characteristic, and every component of dM
contains an annulus of A(7y). In this case the set of tori 7'(y) must be empty.

Sutured Floer homology, as defined by Juhdsz in [29], assigns to a balanced sutured manifold (M, y)
a vector space over Q,

SFH(M,y) = @ SFH(M, v, s),

seSpin© (M ,y)

generalizing the hat version of Heegaard Floer homology. For example, given a knot K C Y we consider
the sutured knot complement

Y(K) := (Y \ N(K), ¥p)s

whose sutures s(7,) are the union of two oppositely oriented meridians of K. Moreover, given a Seifert
surface F for K, we identify a closed tubular neighborhood of F with the product F X [—1, 1], and define
the sutured Seifert surface complement by

Y(F) = (M,y) = (Y \ int(F x [~1,1]), dF x [-1, 1]),

with suture
s(y) =0F x {0}

and
R.i(y) = F x {£1}.
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Then sutured Floer homology recovers the knot Floer homology of K, as well as its summand in the top
Alexander grading with respect to F, by

SFH(Y(K)) = HFK(Y,K), 2.1)
SFH(Y(F)) = HFK(Y, K, [F], g(F)), (2.2)

as shown in [29, Proposition 9.2] and [30, Theorem 1.5], respectively.

Juhész also proved [29, 30] that sutured Floer homology detects whether a balanced sutured manifold
is taut and whether it is a product, as stated in Theorem 2.1 below. Recall for this theorem that a sutured
manifold (M, y) is taut if it is irreducible and if R(7y) is incompressible and Thurston norm-minimizing
in

Hy(M, ).
It is a product sutured manifold if it is of the form
(Msy) = (Z X [_19 1]’82X [_1’ 1])

with s(y) = X x {0}, where X is a compact, oriented surface with no closed components.
Theorem 2.1. Let (M, y) be a balanced sutured manifold.

o [f (M, ) is irreducible and not taut, then SFH(M,y) = 0.
o [f(M,vy) is taut, then dim SFH(M,y) > 1.
o If (M, ) is taut and not a product, then dim SFH(M,y) > 2.

Proof. These claims are [29, Proposition 9.18] (whose proof is attributed to Yi Ni), [30, Theorem 1.4],
and [30, Theorem 9.7], respectively. O

Remark 2.2. If K c §3 is a knot and F is a genus-minimizing Seifert surface for K, then the sutured
Seifert surface complement S3(F) is taut.

Sutured Floer homology behaves well with respect to sutured manifold decompositions
S 4 ’
(M,y) ~ (M",y')

for certain surfaces S ¢ (M,y), as stated precisely in [30, Theorem 1.3]. In this paper, we will be
concerned with decompositions along:

* product disks, which are properly embedded disks
Sc(M,y)

such that S meets the sutures s(7y) in two points; and
* product annuli, which are properly embedded annuli

Sc(M,y)

such that 4§ has one component in R, (y) and the other component in R_(7y).

The two theorems below state that sutured Floer homology is preserved under product disk
decomposition, and under product annulus decomposition with mild additional hypotheses.

Theorem 2.3 ([29, Lemma 9.13]). Let (M,y) be a balanced sutured manifold. If (M’,vy’) is obtained
by decomposing (M, y) along a product disk, then

SFH(M,y) = SFH(M',y").
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Theorem 2.4 ([30, Lemma 8.9]). Let (M, y) be a balanced sutured manifold such that Hy(M) = 0. Let
Sc(M,y)

be a product annulus where at least one component of S is nonzero in Hi(R(y)). If (M',y") is obtained
by decomposing (M, y) along S, then

SFH(M',y") = SFH(M, 7).
Remark 2.5. These two theorems are closely related to the fact that decompositions along product
disks and along product annuli preserve tautness [16, Lemma 3.12].

We say that a product annulus S C (M, y) is essential if it is incompressible and if it is not isotopic
to any component of y by an isotopy which keeps dS in R(7y) at all times. As discussed in §1.2, our
proof of Theorem 1.2 relies on finding essential product annuli in the sutured complement of a genus-1
Seifert surface for a nearly fibered knot. Our main source of such annuli will be the following result:

Theorem 2.6. Let (M,vy) be a taut balanced sutured manifold with Hy(M) = 0, and suppose that
(M, ) is not a product (£ X [—1, 1], dZ x [—1, 1]) in which X is either an annulus or a pair of pants. If
dimSFH(M,y) < 4

and

dim SFH(M,y) < 3b1(0M),

then (M, ) contains an essential product annulus S.

Proof. Since (M, ) is tautand dim SFH(M,y) < 4,[31, Corollary 2.2] says that (M, y) is horizontally
prime (see [31, Definition 1.7]). If (M, y) is also reduced, meaning that it does not contain an essential
product annulus, and if it is not one of the forbidden products, then [32, Theorem 3] says that

dim SFH(M,y) > $b1(OM) + 1.

By hypothesis, this is not the case, so since (M, ) is not such a product, it is not reduced. (The products

were not excluded in the statement of [32, Theorem 3], but the proof assumes that there are no essential

product disks in (M, y), which by [32, Lemma 2.13] holds if and only if (M, y) is not one of these

products. See [19, Remark 5.10].) m|
Lastly, we record the following for eventual use in our proof of Theorem 5.1.

Proposition 2.7. Let K C S 3 be a nontrivial knot, and let

(S* \ N(K), 7o)

denote the balanced sutured manifold whose sutures s(yo) are a union of two oppositely oriented Seifert
longitudes. Then

dim SFH(S* \ N(K), o) > 4.

Proof. For any balanced sutured manifold (M,7y), a choice of homology orientation for the pair
(M, R_(y)) gives rise to an absolute lift of the relative Z/27Z-grading on SFH(M,y), and therefore
to a well-defined Euler characteristic

x(SFH(M,vy,s)) € Z
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for each s € Spin©(M, y), as described in [15]. Fixing an H(M)-affine isomorphism
¢t : Spin©(M,y) — H{ (M),

these Euler characteristics can be packaged as an element

My)= > x(SFH(M,y,s)) - 1(s)
seSpin® (M ,y)

of the group ring Z[H{(M)].
Let us write Ex = S3 \ N(K) for convenience. Then

7(Eg,y0) =0
as shown in [15, Example 8.1], which means that
x(SFH(Ek,v0,%)) =0

for each s € Spin®(Ek, yo). In particular, dim SFH(Eg , vy, ) is always even.
Since K is nontrivial, its complement Ek is irreducible. Thus, if we let

S = {s € Spin“(Ek, y0) | SFH(EK, Y0, 5) % 0},
then [15, Theorem 1.4] tells us that for all @ € H(Eg,dEk;R), we have

gltag(s —-t,a) =x°(a)

where x* is the sutured Thurston norm on (Ek, o). If « is the class of a Seifert surface for K, with
genus g = g(K) > 1, then we compute by [15, Lemma 7.3] that

(@) =x(a) =2g -1,

and since this is nonzero there must be two different Spin structures s on (Ek, o), each pairing
differently with a, for which SFH(Ek, vy, $) is nonzero. But then SFH(Ek , yo) has dimension at least
two in each of these two Spin® structures, so we conclude that

dimSFH(Ek,yp) = 4

as desired. O

3. Nearly fibered knots and essential annuli

Let K c S be a nearly fibered knot of genus g, as in Definition 1.1. Then
dim HFK (K, g) = 2.

Since this dimension is less than 4, [31, Theorem 2.3] says that K has a unique genus-g Seifert surface
F, up to isotopy. In this section, we will use Theorem 2.6 to study essential product annuli in the sutured
Seifert surface complement

S3(F) = (S8 \int(F x [-1,1]),0F x [-1,1]).

The lemma below guarantees the existence of such annuli with nice boundary properties.
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Lemma3.1. Let K C S° be anearly fibered knot, and let F be a Seifert surface for K of genus g = g(K).
Then there is an essential product annulus A in the sutured manifold

(M,y) = S*(F)

whose boundary components
AL =0ANRL(y)

are not both boundary-parallel in their respective surfaces R.(y).

Proof. Let us check that the hypotheses of Theorem 2.6 are met. First, note that §3(F) is not one of the
excluded products, since R, (y) = F X {1} is not an annulus or pair of pants. Next, we have that

H>(S*(F)) = H(F) = 0 (3.1

by Alexander duality. We also know that S*(F) is irreducible (in fact, this sutured manifold is taut, per
Remark 2.2), and that

dim SFH(S*(F)) = dimHFK (K, g) =2
by (2.2). Note that g > 1 since the unknot is not nearly fibered. Therefore,
dim SFH(M,y) =2 < 2g = 1b1(0M),

and so Theorem 2.6 provides an essential product annulus A c (M,y) = S3(F).
Let us suppose for a contradiction that both boundary components

AL C Ri(y)
of A are boundary-parallel in their respective surfaces. We recover the knot complement
Eg =S’ \ N(K)

from M by gluing R, (y) to R_(7y) by some homeomorphism, and we can assume that this gluing map
sends A, to A_ since these curves are boundary-parallel in R.(y), respectively. Then A becomes a torus
T c Ex which meets F in a boundary-parallel circle.

We first claim that T is incompressible in Ex . Indeed, its fundamental group is spanned by a longitude
A of K and the image c of a curve

{pty x [-1,1] c S' x [-1,1] = A,

which is homologically essential in Ex since it is dual to F. If some product A’c/ is nullhomotopic in
Ek then its homology class satisfies

0=[Ac/]-F=j,

s0 it is a power A’ of the longitude of K, but then i = 0 since K is a nontrivial knot in S3. Therefore,
A'c/ is nullhomotopic in T as well.

We next claim that T is not boundary-parallel. Indeed, if it were, then T and 0 Ex would cobound
a thickened torus intersecting F in a properly embedded annulus, in which case cutting Ex back open
along F would give a thickened annulus in (M, y) which is the trace of an isotopy between A and y
that keeps dA in R(y) at all times. But A is essential, which by definition implies that no such isotopy
exists, a contradiction.

We have shown that under these circumstances K must be a satellite knot, and the torus 7" splits
its exterior into two pieces: the exterior E¢ of the companion C, and the exterior Ep of the pattern
Pc S'xD? ButthenT splits the Seifert surface F into two pieces as well, one of which is an annulus
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in Ep cobounded by the image of A. and the boundary d F. This annulus gives an isotopy of the pattern
P into T, where it is identified with a longitude of C, so P must be a cable pattern with winding number
one. But this means that P is isotopic to the core of §' x D?, so T is boundary-parallel and we have a
contradiction. We conclude that A, cannot both be boundary-parallel, as desired. O

3.1. The manifold M

While Lemma 3.1 applies to nearly fibered knots of any genus, we are especially interested in the
genus-1 case. In this setting we introduce the following construction, as in §1.2, which we will refer to
repeatedly throughout the paper.

Definition 3.2. Let F be a genus-1 Seifert surface for a nontrivial knot K ¢ S°. We define
Mrp = S*(F)U (D* x [-1,1])
to be the manifold obtained by gluing D* x [-1, 1] to S*(F) by a diffeomorphism
AD*>x [-1,1] = 0F x [-1,1]
which preserves the interval coordinate. The boundary d M is a disjoint union of two tori,
T, = (F x {x1}) U (D?* x {z1}).
Let a be the properly embedded arc in Mf given by
a={0}x[-1,1] c D*x [-1,1].
Then (M, y) = S3(F) is clearly recovered by removing the neighborhood
N(a) = D*x [-1,1]
of @ from MF, with suture s(y) given by the meridian
Ue = OD?* x {0}

of the arc a.

As noted in §1.2, Mg can also be described as the manifold obtained from the O-surgery SS(K ) by

removing a tubular neighborhood of the torus F' formed by capping off the Seifert surface F with a disk
in the solid surgery torus. This perspective shows the following:

Lemma 3.3. Let F be a genus-1 Seifert surface for a nontrivial knot K C S. Then the manifold M is
irreducible, and the tori T, and T- are incompressible.

Proof. [17, Corollary 8.2] says that SS(K ) admits a taut foliation with F' a compact leaf. Cutting open
along this leaf then gives a taut foliation on M for which 7. are compact leaves, from which the lemma
follows. m]

We end this section with the following lemma:

Lemma 3.4. Let F be a genus-1 Seifert surface for a nearly fibered knot K C S°, and let

ACMF
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be the image of the annulus provided by Lemma 3.1 under the inclusion of S>(F) into Mr. Then the
boundary components

A, =0ANT,

are each homologically essential in their respective tori T..

Proof. Lemma 3.1 says that at least one of the boundary components of A, which we can take to be A,
without loss of generality, is not boundary-parallel in R, (y), where

(M,y) = S*(F).

Since R, () is a once-punctured torus in the case at hand, and the torus 7 is obtained by capping off
R, (y) with a disk, it follows that A, is homologically essential in 7.

It remains to show that A_ is homologically essential in 7_. If not, then this means that A_ must be
boundary-parallel when viewed as a curve in the once-punctured torus R_(vy). In this case, A_ bounds
the disk D c T- which caps off R_(y) to form 7-. Then the union

AUuD

is a disk bounded by 7. Pushing this disk slightly into the interior of M gives a compressing disk
for 7. But this contradicts the fact that T, is incompressible, per Lemma 3.3. It follows that A_ is
homologically essential in 7_, completing the proof of the lemma. O

This lemma is notable in part for the following consequence, as mentioned in §1.2:

Remark 3.5. It follows from Lemma 3.4 that if F is a genus-1 Seifert surface for a nearly fibered knot,
then MF is the complement of a 2-component cable link in some 3-manifold, with

ACMF

being the cabling annulus. Indeed, since the curves A. are homologically essential in 7., there are
curves ¢, C Ty which are homologically dual to A.. Then MF is the complement

Mp =Y\ N(L),

where Y is the closed 3-manifold obtained by Dehn filling the tori 7. along the curves c., and L is the
2-component link given by the union of the cores of the solid tori in this filling. Recall that our eventual
goal is to prove that M is the complement of 2-component cables of the unknot or trefoils, per Theorem
5.1.

Remark 3.6. As indicated in Lemma 3.4, we will henceforth view the annulus A of Lemma 3.1 as
living in §3(F) or Mf interchangeably.

4. On the manifold My and the arc o

LetK Cc S°bea nearly fibered knot, with a Seifert surface F of genus 1. Let
a C Mg

be the arc in Definition 3.2 whose complement recovers S*(F). Per Remark 3.5, M is the complement
of a 2-component cable link, with cabling annulus

ACMF
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Figure 2. Decomposing (Mg, yr) along the annulus A to form (Ma,y4), and then removing the arc
a to obtain the sutured manifold (M, yq). The thick curves in the middle and right pictures indicate
the sutures for these manifolds; there are no sutures on the left because A(yp) is empty.

as provided in Lemma 3.4. By construction, « is disjoint from A. Our goal in this section is to prove
that it can be isotoped to lie in this cabling annulus, however. This is a key step towards our eventual
classification of Mg and thus S (F) in the next section.

Proposition 4.1. Let F be a genus-1 Seifert surface for a nearly fibered knot K C S3. Let
AC Mg

be the annulus provided by Lemma 3.4. Then the arc a admits an isotopy, keeping da in OMF at all
times, which carries « to a properly embedded arc in A.

Proposition 4.1 will follow from a combination of several lemmas in this section. To start, note that
we can view M as a (non-balanced) sutured manifold (Mg, yr), where yr = A(yr) UT (yF) is empty
and the two boundary tori 7 are oriented so that

Ri(yr) =Ts, R_(yr) =T-.

Choose an orientation for A and consider the sutured manifold decomposition

A
(MFp,yF) ~ (Ma,va)

along A, illustrated in Figure 2. In particular,

(Ma,va)

is a balanced sutured manifold with torus boundary, whose sutures s(7y 4) are the union of two oppositely
oriented curves of the same slope as the boundary components of A.

Since « is disjoint from A in Mg, we can also view « as a properly embedded arc in M 4. From this
perspective, we then define the sutured arc complement

(M(l9 ')/(t) = (MA \ N(a')’ vAa U N(,ua))
pictured on the right side in Figure 2, where
N(ta) = N(@) N OM,

is a neighborhood in M, of the meridian u, of a.
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Note that (M,,Y,) can alternatively be obtained from (M,y) = S*(F) via sutured manifold
decomposition

S(F) S (Marya) @1

along the product annulus A (to be precise, the annulus whose image in Mr is A), and the image of y
under this decomposition is N(u4). It follows from Lemma 3.4 that at least one (in fact, both) of the
boundary components of

AcC S} (F)
is homologically essential in R(y). Moreover, we have by Alexander duality as in (3.1) that
Hy(S*(F)) = 0.
The product annulus decomposition in (4.1) therefore preserves sutured Floer homology,
SFH(Mg,ye) = SFH(S?(F)) = Q?, 4.2)

by Theorem 2.4. Since S3(F) is taut, it follows that (M, ) is taut as well (Remark 2.5).
Lemma 4.2. We have Hy(My; R) = 0 and Hy(M4; R) = 0 for any commutative ring R.

Proof. Forgetting about the sutures, note that the Seifert surface complement
S3(F) = $3 \int(F x [-1,1])

can be recovered from M, by gluing a thickened annulus N(A’) along y4 by a map which identifies
0A’ with s(y4). The Mayer—Vietoris sequence associated to the decomposition

S3(F) = My Uy, N(A')
with coefficients in R (which we momentarily suppress for convenience) reads in part:

Hy(ya) = Ha(My) ® Hy(N(A')) — Hy(S?(F)) — Hi(ya) = Hi(My) ® Hi(N(A)).

———— [ — |
=0 E{] =0
We have that

H>(S*(F);R) = H(F;R) = 0,

by Alexander duality, so the leftmost portion of the sequence tells us that Hy(M; R) = 0, proving the
first claim.
Moreover, the map H(y4; R) — H{(N(A’); R) sends the class [s(y4)] to

[0A'] =0€ H(N(A');R).
Since the rightmost map in the sequence is injective, and
r-[s(ya)] #0 € Hi(ya; R) forallr € R\ {0},

it follows that
r-[s(ya)l #0€ H(My;R) forallr € R\ {0}.
Note that the meridian u, of @ and the sutures s(y4) cobound the pair of pants R,(y,) C dM,. It
follows that
[Hal = £[s(ya)] € HI(Ma; R),
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and therefore that
r-[ue] #0€ H(My;R) forall r € R\ {0}. 4.3)

To prove the second claim, note that M4 is recovered from M, by gluing back the neighborhood
N(a) along the annular neighborhood N (i) of ue,

My =My Un(u,) N(a@). 4.4
Let us consider the Mayer—Vietoris sequence corresponding to this decomposition. Since
H>(Mo;R) = Hx(N(@);R) = Hi(N(a);R) =0,
the portion of the sequence beginning at Hy(My; R) @ H>(N(a@); R) has the form

0 — Hy(Ma;R) — Hi(N(pa); R) > Hi(Mq; R),
—————
=R

with H{ (N (uq); R) generated by the class [p]. Then it follows from (4.3) that the rightmost map is
injective, and we conclude by exactness that Hy(M4; R) = 0, as desired. m]

The next lemma provides the product annulus B mentioned in §1.2:
Lemma 4.3. There exists an essential product annulus B C (Mg, 7Y o).

Proof. We know that (M, y) is a taut balanced sutured manifold, with Hy(M;Z) = 0 by Lemma 4.2,
and its boundary 9 M, is a connected genus-2 surface. Then

dimSFH(My,vq) =2

by (4.2), so Theorem 2.6 provides the desired annulus. O

Given the product annulus B from Lemma 4.3, let us denote its boundary circles by
B:=0BNR:(yq).

Neither B, nor B_ bounds a disk in R(y, ), since B is essential and hence incompressible. It follows that
B, and B_ are each boundary-parallel curves in the pairs of pants R.(y,) and R_(y,), respectively. In
particular, B, are each isotopic in M, either to a component of s(y4) or to the meridian u,, of a. We
rule out the latter possibility below:

Lemma 4.4. Neither B, nor B_ is isotopic in 0M, to the meridian u 4 of «.

Proof. Suppose that B, is isotopic in dM, to u, but B_ is not. From the discussion above, B_ must
then be isotopic in M, to a component of s(7y 4). Recall that M 4 is obtained from M, by gluing back a
thickened disk (namely, the neighborhood N («)) along a neighborhood of the meridian y, as in (4.4).
It follows that under the inclusion

My — Ma,

the boundary component B, of the annulus B gets capped off with a disk D, so that
BUD Cc My

is a disk bounded by the curve B_ € dM 4. This disk then gives rise under the inclusion

MACHMF
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to a disk in Mr bounded by the image
B_cT_-coMp.

But B_ is isotopic in 7- to the boundary component A_ of the annulus A, which by Lemma 3.4 is
homologically essential. The fact that this curve bounds a disk in M then contradicts the fact that the
torus 7_ is incompressible, as shown in Lemma 3.3.

Swapping the roles of B, and B_ leads to the same contradiction, so let us now assume that the curves

B. are both are isotopic in M, to i, In this case, reversing the decompositions S°(K) 5 S3(F) 4
(My,va), we can glue B, to B_ to turn the annulus B into a closed, embedded surface £p in S3(K)
that meets F' transversely in a single boundary-parallel curve. Then Xp must be a torus, since if it were
a Klein bottle it could not embed in S3(K) c S3; as a torus in S, it must bound a solid torus Vz on one
side or the other.

If Vg c §3 were contained in the knot complement S3(K), then

VeNF CVg

would be a properly embedded, punctured torus (consisting of F minus a collar neighborhood of its
boundary) in the solid torus Vz; but then it must compress inside Vg and hence in S°(K), contradicting
the incompressibility of F. Thus V3 must not lie entirely in S>(K), and this means that it must contain
6(53 (K)) = ON(K) as well as the knot K. We now argue exactly as in the proof of Lemma 3.1: the
torus dVp = Xp must be incompressible in S3 (K), realizing K as a satellite knot, but then the annulus
F NVp provides an isotopy from K to its companion knot, so the satellite pattern must have been trivial.
This means that Xz = 9V is boundary-parallel in S*(K). Decomposing again along F and then A, we
conclude that our original annulus B must have been parallel to an annular neighborhood of y, in 0M,,.
But this contradicts the claim from Lemma 4.3 that B is essential, so we are done. O

The proof of Lemma 4.4 in the case where both of B, are isotopic to y, was substantially longer in
the original version of this paper; we thank one of the referees for providing the much simpler argument
used here.

Lemma 4.5. The annulus B separates M s, and its oriented boundary meets the torus M 4 in a pair of
parallel but oppositely oriented essential curves.

Proof. Let us orient B as well as its boundary curves B, and B_ so that
0B=B,U-B_.

Recall from Lemma 4.2 that Hy(M4) = 0. Therefore, the long exact sequence of the pair (M4, dM4)
reads in part:

0 — Hy(Ma, OM4) 25 Hy(0M4) — Hy (M),

If B is nonseparating in M4 then it is nonzero in Hy(M 4, M ). It then follows from the exact sequence
above that the class [0 B] is nonzero in H;(0M4), and hence that

[B+] # [B-] € Hi(0M4). 4.5

Let us suppose for a contradiction that this is the case.

As discussed before Lemma 4.4, B, and B_ are each isotopic in M, either to components of the
sutures s(y4) or to a meridian of the arc «, as unoriented curves. We ruled out the latter possibility in
Lemma 4.4. Therefore, when viewed as curves in M4, B. are each isotopic to components of s(y4)
(and are thus core circles of R.(y4)). In particular, B, and B_ are isotopic to one another as unoriented
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(Ma,ya) (M’ y") (M3,7y2) (M3, y3) (M3,72)

Figure 3. We decompose (Ma,ya) along B to obtain (My,y;) U (M’,y’). Removing a and adding
a meridional suture produces (M3, y,) U (M3, y3), which is also the result of decomposing (My,Va)
along B.

curves in M 4. Given (4.5), it must therefore be the case that B, and B_ are parallel, oppositely oriented
curves in OM 4.

Forgetting their orientation, these curves cobound an annulus in dM 4, whose union with B is then a
Klein bottle

ZCMA.

Since M4 is orientable, the Klein bottle £ must be one-sided and in particular nonseparating. This
implies that the mod-2 intersection pairing

H, (MA,aMA;Z/ZZ) X Hz(MA;Z/ZZ) e Z/ZZ

is nonzero. But this contradicts the fact that Hy(M4;Z/2Z) = 0, by Lemma 4.2. Therefore, [B,] = [B-],
and then B has the desired properties. O

Lemma 4.6. The arc @« C M4 can be isotoped rel endpoints so that it lies in 0 M 4 and meets the sutures
s(ya) transversely in a single point.

Proof. Lemma 4.5 implies that decomposing (Mg, y.) along the product annulus B produces a
disconnected balanced sutured manifold

B
(Mu,va) ~ (Ma,y2) U (M3,73),

where we have labeled the components so that (M, y;) has two sutures and (M3, y3) has three, as
depicted in Figure 3. Indeed, in M4 the components of dB are core circles of the annuli R,(y4) and
R_(7va), so decomposing (M4, y4) along the separating B produces a disjoint union of two sutured
manifolds, with two sutures each,

B ’ !’
(Ma,ya) ~ (Ma,y2) U (M, y").

One of these components is disjoint from the arc @, so we label it (M3, y;). We then remove a tubular
neighborhood of a from the other component (M’,y’) and add a meridional suture p, to get (M3, y3).
Since the components of 9B are homologically essential in R(y4), we have that

SFH(M(I”YII) = SFH((MZ,')’Z) u (M37 73))
= SFH(M,y>) ® SFH(M3, v3),

by Theorem 2.4. Since the left side is 2-dimensional, per (4.2), it follows that

dimSFH(Mi, ‘yi) =1
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Figure 4. Left, the product sutured manifold (M’,vy’), together with the arc a.. Right, the same manifold
with « isotoped into OM’.

for some i € {2,3}. Then Theorem 2.1 tells us that the corresponding (M;,y;) is a product sutured
manifold (note that (M;, y;) is taut since (Mg, v, ) is taut, per Remark 2.5).

Suppose first that (M;,y;) is a product sutured manifold. Since dM; is a torus and the sutures
s(7y2) consist of two parallel essential curves on this torus, R,(y;) is an annulus and so there is a
homeomorphism

(Ma,y2) = ((S' x I) x [-1,1],(S" x 8I) x [-1,1]).

But if this is the case, then B could have been isotoped onto the component of y, which became a
component of y,, by an isotopy keeping dB in R(y,) at all times. This contradicts the fact that B is
essential.

It follows that (M3, y3) is a product sutured manifold. Since R, (7y3) is a pair of pants P, we have that

(M3,y3) = (Px[-1,1],0P x [-1,1]).

One component of the sutures s(7y3) is a meridian p, of @, and (M’,y’) is recovered by gluing back a
thickened disk D? x I along an annular neighborhood of this meridian. The meridian u,, corresponds
to a certain boundary component of P. Letting

$'x[0,1] = PuU D?
be the annulus formed by capping off this boundary component with a disk, we then have the identification
(M, y") = ((8" % [0,1]) x [=1, 1], (8" x {0, 1}) x [-1,1]),

where the arc @ C M’ is given by
a={pttx[-1,1]c M’

for some point
pte D? c (S' x [0,1]),
as depicted in Figure 4.

The portion of 9 M’ which came from the annulus B (i.e., which was in the interior of M) is contained
in a tubular neighborhood N c dM’ of one of the two components of y’, let us say the component

(S' x {0}) x [-1,1].

Since « is disjoint from B, we can isotope this arc into M’ \ N while keeping its endpoints fixed, so
that it meets the other component

(S' > {1}) x [-1,1]
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Figure 5. Viewing My as a submanifold of Mg, the arc @« C M4 lies in a push-off of the annulus A.
On the right we see the region swept out by the isotopy of « into A.

of v’ in an arc {pt} X [—1, 1], as indicated in Figure 4. Gluing (M’,y’) and (M>, y,) back together to
form (M4, ya), this gives an isotopy in M4 which fixes the endpoints of @ while carrying « to an arc
in 0 M 4 which meets the sutures s(7y4) in one point. O

With Lemma 4.6 in hand, we may now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. Viewing « as an arc in M4, Lemma 4.6 says that we can isotope it rel its
endpoints to lie in My, so that it meets the sutures s(y4) transversely in a single point, as shown on
the left side of Figure 5. Recall that M4 was formed from Mg by removing the interior of a tubular
neighborhood A X [—1, 1], where the original cabling annulus A is identified as A X {0}. We can arrange
the interval coordinate so that @ C A x {1}, and then the desired isotopy is simply ¢, (x) = (x, 1 —1t) for
X € . [m|

5. Identifying the manifolds My and S>(F)

Let K c S3 be nearly fibered, with a genus-1 Seifert surface F. According to Proposition 4.1, we can
assume that the arc

a C Mg
in Definition 3.2, whose complement recovers S3(F), lies in the annulus
AC Mg

of Lemma 3.4; moreover, Remark 3.5 says that A is a cabling annulus. In this section, we use these facts
to identify the manifold M and hence the sutured Seifert surface complement S3(F). Specifically, we
prove the following:

Theorem 5.1. Let K C S be a nearly fibered knot, with genus-1 Seifert surface F. Then, up to possibly
replacing K with its mirror, the manifold M is the complement of either:

1. the (2,4)-cable of the unknot in 3, or
2. the (2,4)-cable of the right-handed trefoil in S°>.

In each case the arc « is a properly embedded arc in the cabling annulus.
Proof. As defined in §4, the manifold (My4,y4) is obtained from (Mg, yr) by decomposing along the

cabling annulus A provided in Lemma 3.4,

A
(MFp,yF) ~ (Ma,y4).
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Figure 6. A schematic picture which shows that decomposing (Mg, yr) along the cabling annulus A
is the same as first removing a neighborhood of @« C A and then decomposing along the product disk D.

Recall from Definition 3.2 that
(M,y) = S*(F)

can be recovered from Mr by removing a neighborhood N(«) of the arc @, where the suture s(y) is
identified with a meridian u,, of @. By Proposition 4.1, we can assume that @ C A. Therefore, when we
remove a neighborhood of @ from M- to form S (F), what remains of the cabling annulus A is a product
disk D c S3(F). Thus, (M4, y4) can alternatively be obtained via the product disk decomposition

S3(F) 5> (M, ya),

as indicated in Figure 6.
This shows in particular that M is a subset of S°, as

My c S*(F) c §°.

Since M4 has torus boundary, it follows that M4 can be identified with the complement of a knot
C c S3, and moreover that we have an identification of sutured manifolds,

(Ma,ya) = (S \ N(C), y,),

where the sutures s(7y,) are a union of two parallel oppositely oriented curves of slope r, with respect
to the Seifert framing of C. Furthermore, we have

SFH(S>\ N(C),y,) = SFH(S*(F)) = Q?, (5.1

by Theorem 2.3. It remains to determine the slope » and the knot C.
Suppose first that » = 0. Then C is the unknot, because otherwise we would have

dim SFH(S \ N(C), o) > 4,

by Proposition 2.7, contradicting (5.1). But then M is the complement of the (2, 0)-cable of the unknot
in S3, which contradicts the fact in Lemma 3.3 that M is irreducible.

The above argument shows that » # 0. Note that we can identify (S \ N(C),7,) as the sutured
complement of the core C’ ¢ S2(C) of r-surgery on C, whose sutures are a union of two oppositely
oriented meridians of C’. With this in mind, equation (2.1) becomes

HFK(S3(C),C’) = SFH(S3(C)(C"))
= SFH(S? \ N(C).y,) = Q.



24 John A. Baldwin and Steven Sivek

Since r # 0, the core C” is rationally nullhomologous in S? (C). It follows that there is a spectral sequence
Q* = HFK(S}(C).C") = HF(5}(C))
leading to the chain of inequalities
1 < |H\(S}(C):2)| < dim HF(S}(C))
< dimHFK(S3(C),C’) = 2.

‘We conclude that
dim HF (S3(C)) = 2, (5.2)

as this dimension has the same parity as
dim HFK (S3(C),C’) = 2.

It also has the same parity as
X (HF(S}(C))) = |H1(S}(C): Z),

which then implies that
|H\(S7(C);2)| = 2. (5.3)

Combining (5.2) and (5.3), we have shown that S3(C) is an L-space. Moreover, if 7 = p/q with ¢ > 0
and ged(p, ¢) = 1 then |p| = 2.

We now recall from [54, Proposition 9.6] (see [27, §2] for details) that if C C $3 is a nontrivial knot,
then r-surgery on C can only be an L-space if

|r| >2g(C) - 1.

Moreover, if we also have that » > 0, then C must additionally be fibered [18, 44] and strongly
quasipositive [24]. Note that when C is knotted, we have that

0<|rl<1<2g(C)-1

for slopes r = +2/q unless g = 1, so there are three cases to consider:

1. C is an unknot and r = 2/q for some odd ¢g € Z.

2. C is knotted and r = 2. Then S%(C) is an L-space, so g(C) = 1. Then C must be the right-handed
trefoil since this is the only genus-1, fibered, strongly quasipositive knot in the 3-sphere.

3. C is knotted and r = —2. Then Siz(C) is an L-space, so again g(C) < 1. But now C must be the

left-handed trefoil, since its mirror C admits a positive L-space surgery and is therefore the
right-handed trefoil, as discussed above.

In case (1) it follows that

(Ma,7a) = (S \ N(U), 72),

since any two choices of v,/ are related by a homeomorphism of the solid torus § 3\ N(U). We conclude
that

Mp = $*\ N(C24(U)) = 5\ N(T»4).
Similarly, in case (2) we have that

(Ma,v4) = (S \ N(T23),72).
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and therefore conclude that
Mp = >\ N(C2,4(T2,3)).
This leaves only case (3), in which
(Ma,va) = (S \ N(T23), y-2).
Then we have

Mp = §*\ N(Ca,-4(T-23))
- (53 \ N(C2,4(T2,3))) :

IR

But in this case we can replace K with its mirror K, and doing so replaces My with —Mp, so again
case (2) applies here and we are done. O

6. The (2,4)-cable of the unknot

In this lengthy section, we determine all knots K C S3 which arise from the first case of Theorem 5.1,
in which M is the complement of the (2, 4)-cable of the unknot. Our goal is to prove the following:

Theorem 6.1. Let K C S be a nearly fibered knot with genus-1 Seifert surface F, and suppose that
Mp = S3\ N(Tr4).
Then K is one of the knots
52, 15n43502, or P(=3,3,2n+1) (n € Z)

or their mirrors.

The key observation is that under the hypotheses of Theorem 6.1, Mr admits an involution which
is rotation by 180° about an axis of symmetry containing the arc « C M. This then gives rise to an
involution ¢ of the sutured Seifert surface complement

(M,y) = S*(F)

obtained by removing a neighborhood of @ from Mp, where s(y) is identified with a meridian y, of a.
This involution is depicted on the left side of Figure 7, while the right side illustrates the quotient

S (F)/,

which is a sutured 3-ball with connected suture. As suggested by the figure, it is natural to identify this
quotient 3-ball with the complement of a thickened disk in S3,

S3(F)/u= $3(D?) = (8 \ int(D? x [-1,1]),0D* x [-1,1]),

and the quotient map realizes S (F) as the branched double cover of this ball along a tangle 7 ¢ §*(D?),
as shown in Figure 7.
Now, under the identification

y=0F x [-1,1],
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Figure 7. Taking the quotient of S*(F) = Mg \ N(«) by an involution 1 in the case where My =
S3\ N(T».4). On the left, S*(F) is the complement in S* of the white region, the involution is rotation
by 180° about the horizontal axis (in blue), and the meridian of « (in red) is isotopic in S>(F) to a
pushoff of K. The quotient (right) is a 3-ball, viewed as the complement in S° of the white region; when
we isotope this white region to become a standard D? x [—1, 1], the branch locus is carried along to
become the tangle T.

we can assume that ¢ restricts on each dF X {¢t} C vy to arotation of d F which is independent of 7. Recall
that 3 is recovered by gluing F x [~1, 1] back into

S3(F) =83 \int(F x [-1,1])
by a map which in particular identifies
OF x[-1,1] =y
via the identity. Any such gluing map
0 (Fx[-1,1]) — dS*(F)
is then determined by its restrictions to the once-punctured tori

@+ F X {+1} = Ri(y),
p_: Fx{=1} > R_(y).
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Note that ¢ restricts to a hyperelliptic involution on each of the once-punctured tori
R:(y) c 95 (F).
Pulling back the involution ¢ via the maps ¢.. then induces hyperelliptic involutions
ty : FX{£l} > Fx {1}

which agree on the boundary under the canonical identification of these two surfaces. Since once-
punctured tori admit unique hyperelliptic involutions up to isotopy, we can extend ¢.. to all of Fx [—1, 1]
by a map restricting to a hyperelliptic involution on each F x {z}.

In summary, we have shown that ¢ extends to an involution  of the glued manifold

Y, =S (F) Uy, (F x [-1,1]),
whose restriction to the piece F X [—1, 1] is a hyperelliptic involution on each F X {t}. The quotient map
Y, =Y/t
therefore restricts on this piece to a branched double covering
Fx[-1,1] » D*x [-1,1]

along some 3-braid
BcD?x[-1,1].

It follows that Y, is the branched double cover of
S} (DHu(D?x[-1,1]) = §°
along the link 7 U 5. Moreover, K is the lift £ of the braid axis
k=0D*x {0} = s(y)/t
of 8 in this double cover. Since Y, = §3 if and only if 7 U 8 is an unknot, we conclude the following:
Lemma 6.2. Suppose that K C S° is a nearly fibered knot with genus-1 Seifert surface F, and that
Mp = S3\ N(T14).
Then there is a 3-braid 8 € B3 such that T U 8 is an unknot in S3, and such that the lift
RcE(tup) =s8°

of k is isotopic to K.

Figure 8 shows an isotopy of the unknot U = 7 U § into a simpler form, which we will use in the
subsections below.

In the sequel we will often write K = Kg when K arises from a given braid § € B3 in the sense of
Lemma 6.2. We write each 3-braid as a word in

Pu —
- XX -
by and y PG

where x and y denote positive crossings between the top two strands and the bottom two strands,
respectively. The following observations will help simplify our analysis in the following subsections.
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Figure 8. An isotopy of the unknot U = T U B in the complement of k.

L mp ( m(p) -

1
B >
\
Figure 9. An isotopy takes the tangle T U (m(B)y) to the mirror of the tangle T U S.

(~C

=
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Lemma 6.3. Let r : B3 — B3 be the map which reverses a braid word, defined recursively by
r(1)=1 and r(gw) =r(w)g

for any g € {x*',y*'Y. If B is a 3-braid for which T U B is unknotted, then T U r(B) is also unknotted

and Kﬁ = Kr(ﬁ).

Proof. We can rotate the diagram of the unknot U = 7 U 8 on the right side of Figure 8 about a vertical
axis, and this preserves the tangle 7 and the linked curve x while replacing the braid g with its reverse
r(B). It follows that T U r() is also unknotted, since it is isotopic to the unknot U. This isotopy also
carries « to itself, so up to isotopy « must lift to both Kz and K (g) in the branched double cover of U,
hence Kz = K, (3. |

Lemma 6.4. Let m : B3 — B3 be the map which mirrors a braid word, defined recursively by

m(1) =1 and m(gw) = g"'m(w)
forany g € {x*', y*'}. If B is a 3-braid for which T U 8 is unknotted, then T U (m(B)y) is also unknotted,
and K, (g)y is the mirror of Kg.

Proof. In Figure 9 we perform an isotopy of U = 7 U (m(f)y) in the complement of «, and we quickly
find ourselves with a mirror image (reflecting across the plane of the page) of the diagram used to
recover Kg. Thus if 7 U 3 is unknotted then so is 7 U (m(f)y), and the unknot « for 7 U (m(3)y) lifts to
the mirror of the lift Kg of the corresponding knot in the 7 U 8 diagram. m|

We remark that the mirror of 8 is equal to the reverse of 87!, i.e., m(B8) = r(871).

Lemma 6.5. If 8 € B3 produces an unknot U = TU B, then so does y* By~ for any a € Z, and moreover
Kyapy-a = Kp.

Proof. Tt is straightforward to see that 7 U (yBy~!) is isotopic to 7 U 8 in the complement of «, so the
lemma follows by induction on a. O

We now outline the proof of Theorem 6.1.
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Proof of Theorem 6.1. By Lemma 6.2, it suffices to classify the braids g € Bz such that U = 7 U S is
unknotted, and to determine K = Kz for each of them.

Supposing that U is an unknot, in Subsection 6.1 we will identify an arc (see Figure 10) that lifts to
a knot y in the branched double cover X, (U) = S3. We will argue via the cyclic surgery theorem [12]
that y must be an unknot or a torus knot, and study various surgeries on y which must be lens spaces or
connected sums of lens spaces. In Subsections 6.2 and 6.3, we will study the casesy = Uandy =T}, ,
separately, proving in Propositions 6.12 and 6.13 that 8 must be one of

x7!, xy, orx*y 'xy (n € 2)

or

x3y_1x2y or x_3yx_2

respectively, up to reversal and conjugation by powers of y. Lemmas 6.3 and 6.5 tell us that it is enough
to consider these particular braids.
After classifying these braids, we devote Subsection 6.4 to determining the knot Kg for each of

B=x"", x"y lxy, or x>y x?y.

These cases occupy Propositions 6.21, 6.22, and 6.23, respectively, and they recover the knots 5,,
P(-3,3,2n+ 1), and 15n4357>. The only remaining braids are

B=xy=m@x")y
and
B=xTyx2 =m(x*y ' xy)y,

but then Lemma 6.4 says that the corresponding K are the mirrors of knots which we already found,
so the proof is complete. O

The remainder of this lengthy section is devoted to proving the results cited in the proof of
Theorem 6.1.

6.1. Resolutions and the 3-braid 3

In Figure 10 we take a fixed crossing (indicated by a dashed arc) of the unknot diagram from Figure 8
and modify it in several ways, changing the crossing to produce a new knot L# and also resolving the
crossing in two different ways to produce the links Lg and Lf . It is clear from the diagrams that L” is a

two-bridge knot, and that 1F= E and L® = By~! are both closures of 3-braids.

The dashed arc on the left side of Figure 10 lifts to a simple closed curve y in the branched double
cover £,(U) = §3. Then the Montesinos trick [40] says that %, (L?) can be realized as a half-integral
surgery on y:

% (LA) = S?2n+1)/2(7) for some n € Z. 6.1)

(Indeed, the branch loci U and LA agree outside a neighborhood of the indicated arc, so ZZ(L'B ) and
>, (U) agree outside the branched double cover of that neighborhood, which in either case is a solid
torus. This says that X, () comes from some surgery on y in X(U) = S3, and then it must be half-
integral because the peripheral curves in S \ N(y) whose fillings produce X,(U) and Z,(L?) have
distance two in dN(y).) Similarly, the O- and 1-resolutions of that crossing correspond to consecutive
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Figure 10. Resolving the topmost crossing in the clasp of U = T U 8 in several different ways.
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integral surgeries on y, which are each distance-1 from the 2”2+1 -surgery corresponding to the crossing

change: that is,

S (LE) = S3(y), (P =83, (y). (6.2)

n

To see that X, (LOB ) and X, (Lf ) are homeomorphic to S fl (y)and $3 41 (7) respectively, and not vice versa,

we note that the ordered triple (2, (LA), Ez(Lf ), Zz(Lg )) forms a surgery triad [52, Proposition 2.1],
meaning that these three manifolds are all Dehn fillings of S \ N(y) along oriented curves @, a1, @y C
ON((vy) such that

a-a=a-q=a-a=-1. (6.3)

(Note that following [52, Figure 1], their “Ly” and “L,” are our L? and Lg .) Up to reversing the
orientation of all three curves simultaneously we can assume that @ = (2n + 1)u + 24, where y and A
are a meridian and longitude of v and N (7y) is oriented so that i - 1 = —1, and then there is no way to
choose signs for @) = +(nu + ) and @g = £((n + 1) + A) so that (6.3) is satisfied. On the other hand,

(a1, 20) = (2n+ Du+24,—(n+ D) — A, —np — A)

does satisfy (6.3), so Zz(Lg ) and ZZ(LIIS ) must correspond to n- and (n + 1)-surgeries in that order as
claimed.
From this discussion we immediately deduce the following.

Lemma 6.6. The knoty C 2,(U) = S is either an unknot or a nontrivial torus knot.

Proof. Since L is a 2-bridge knot, we know that X, (L?) is a lens space. But the cyclic surgery theorem
[12] says that a non-integral surgery on y C S3 can only produce a lens space if y is an unknot or a
nontrivial torus knot T}, . o

We will handle each of the two possible outcomes of Lemma 6.6 separately in the following subsec-
tions. The remainder of this subsection is devoted to some computations that will prove useful in that
work.

To set the stage, we cut the given 2-bridge diagram of L? along a pair of vertical lines passing just by 3
on either side. Taking the double cover branched over each piece of LA in turn gives a genus-1 Heegaard
splitting of X, (L#), illustrated in Figure 11. The solid tori S' x D? on either side of this splitting would
be glued together to form S! x S? if the braid 8 were trivial. But in general, the effect of gluing the
middle 72 x I to either S' x D? is to reparametrize its boundary: the braid generators x and y act as
positive Dehn twists along essential curves in S' x §', which we have labeled ¢, and ¢y and oriented in
Figure 12. Gluing after this reparametrization produces the desired Heegaard splitting of %, (L5).
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o (LF) = S'xD* u T*xI U S'xD?

Figure 11. A genus-1 Heegaard splitting of X, (LF).

Figure 12. Lifting arcs a, and ay, in a 3-ball to closed curves cx and cy in a solid torus, viewed as its
branched double cover over a pair of properly embedded arcs.

The braid generators x and y act on the homology of the leftmost S' x D? by

[Cx] X = [Tcx (Cx)] = [Cx]’ [Cx] Yy = [TCy (Cx)] = [Cx] + [Cy]v
[Cy] X = [Tcx (Cy)] = [Cy] — [ex], [Cy] Yy = [Tcy (Cy)] = [Cy]~

Equivalently, we can view them as fixing that S! x D?, but acting on the rightmost S' x D? by the inverse
of the above action:

x - [ex] = [re, (ex)] = [ex], y-lex] = [7e, (ex)] = [ex] = [ey],
x-[ey] = [1e, (ey)] = [ex] + [y ], y - ley] = [7e, (ey)] = [ey].

Thus if we fix the ordered basis ([cx], [cy]), then the (left) action of B3 on the rightmost H; (9 (S I'x
D?)) = 77 is given by a homomorphism

0 By — SLy(Z)
defined by
11 10
o= (o 1)- o= (4 7). (64)
One can verify that this is well-defined, since p(xyx) = p(yxy) = ( % }); and that p(A?) = —I, where

A% = (xyx)? = (xy)? is the full twist which generates the center of B3.

Lemma 6.7. The kernel of p is generated by A*.
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Proof. If w € B3 satisfies p(w) = I, then the same is true for every conjugate of w, and Murasugi [42]
showed that w is conjugate to one of

1. A¥xy=%ixy=@ ...xy~% where all a; are nonnegative and at least one is positive;
2. A*y™ for some m € Z; or
3. A%xmy~! where m = -1, -2, -3.

In the second and third cases we compute that

p(atymy = -0 0, F) ana patteny =t ("),

= A?24y0 For the first case we have

-a —a ar+11 ap+11
p(xy ...xy "): c e ,

so the only such braids in the kernel are A*¢

aj 1 an 1

and a straightforward induction on n > 1 shows that its entries are nonnegative integers, and that the
top right entry is strictly positive. In particular it cannot be +/ since it is not diagonal, so

p(A* xy™ @ xy™n) = (=1)p(xy™ - xy ™)

is not the identity either. We conclude that p(w) = I if and only if w is conjugate to some power of A*,
and then it must actually be that power of A* since A? is central. O

Lemma 6.8. If the representation (6.4) satisfies

p(B) =

—_——

ab
cd|’
then we have X, (LP) = Sz/d(U)-

Proof. The curve c,, bounds a disk in the rightmost S'x D? of Figure 11, so then - [cy] = blex]+d[cy]
bounds a disk in the rightmost (72 x I) U (S§' x D?). Thus we can obtain the branched double cover
of LA by Dehn filling the leftmost S! x D? along b[c] + d[cy]. Thinking of the left S! x D? as the
complement of an unknot in §3, the oriented curves ¢, and ¢y correspond to a meridian and longitude
of that unknot, respectively, so this amounts to a Dehn filling of slope %. m]

Lemma 6.9. We havetrp(B) =2 + |H1(22(L€); Z)|, where we define |H\| = 0 if H| is infinite.

Proof. Inspecting the diagram for P = ,E in Figure 10, we see that its branched double cover admits an
open book decomposition whose binding is the lift of the braid axis; the pages are punctured tori (i.e.,
the double cover of a disk with three branch points), and the monodromy acts on the homology of the
pages by p(B). It follows that

Hy(%2(LF);Z) = coker(p(B) — 1 : Z* — Z7).

Thus if this order is finite then it equals |det(o(B) — I)|, and otherwise det(p(B) — I) = 0. Writing
p(B) = (45) with ad — be = 1, we compute this order up to sign as

det(p(ﬁ)—]):det(a;1 d’il)
=(a-1)(d-1)—bc=(ad-bc)-(a+d)+1,

which is equal to 2 — tr(p(B)), so tr(p(B)) =2 + |H; (Zz(L'g))| as claimed. O
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According to (6.1) and (6.2), we have some n € Z such that
S2(LF) = 83, 0(y) and  Za(L5) = S (y),
so |H; (Zg(Lg ))| = |n| and we can write the conclusion of Lemma 6.9 more simply as

trp(B) =2 +n.
Lemma 6.10. Let 8 be a 3-braid such that the link LP of Figure 10 satisfies
¥ (LA) = p/q(U) 0<gq<p.

Let G be any integer with q - ¢ =1 (mod p), and write

qg-g=rp+1
for some r € Z. Then either
o =0 1 1) (2] (1 §) = ez (7)o ©5)
or
o =0 ¢ 1) (2] (1 §) = ez (4 7)o (©6)

where d € Z and e € {0, 1}.

Proof. Suppose that we have
ab
p(B) = ( c d)

Then by Lemma 6.8 and the classification of lens spaces up to orientation-preserving homeomorphism,

we must have
b\ _ p p
(d) 'i(wkp) . i(é+kp)

for some k € Z. In this case, since det p(8) = 1, we know that p(8) must have the form

(B) = qg+<ip P o q+<Lp P
p r+kq+€(q+kp)q+kp r+kq+€(q+kp)q+kp

for some integers k and £. These matrices factor exactly as in (6.5) and (6.6), completing the proof. O
In either case of Lemma 6.10, we have
trp(B) = (=D(qg+ g+ (k+)p), (6.7)
which by Lemma 6.9 is equal to 2 + |H; (ZZ(Lg ); Z)|. In other words, we must have
(-D(g+g+(k+€)p)=2=+n, (6.8)

which will be useful in the following subsections.
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6.2. The casey =U

For now we suppose that the curve y € X,(U) = §3 from Subsection 6.1 is unknotted. We recall from
(6.1) that 3, (LP) = S?2n+1)/2(U) for some integer n. Thus in Lemma 6.10 we can take

(p.q,.G,r)=2n+1,2,n+1,1) or 2n+1,n+1,2,1).

This gives

p(B) = p(atd2ey ) (M1 2"”) )

— p(A4d+26y7k) (1 ) ( ) ( )p(yf) (69)

=p(A4d+Zey—kx y xy )

in the first case, and

p(B) = p(a*+2¢y ) (f o f) ()
= p(Atd2e —k)( )(1 0) (0 1) (y70) (6.10)
:p(A4d+2ey— xy_ xny—f)

in the second.
In each of (6.9) and (6.10), the braid S is uniquely determined up to the value of d € Z, since

Lemma 6.7 says that A* generates ker(p). In fact, we can disregard the braids arising from (6.10),

because up to conjugation by powers of y, they are all obtained by reversing the braids from (6.9): we

have

) = pAbdR2e =l sl ok

k-t ( Add+2e

r(A4d+Zey—kxny—1xy

—y y—kxy—lxny—f) . y—(k—t’).

It follows by Lemmas 6.3 and 6.5 that every knot K with My = §3\ N(T»4) and y unknotted has the
form K = Kg, where
B = Add+2eykyny =y =t

is one of the braids in (6.9). Recalling that A% generates the center of B3, we can now rewrite them as

ykBy=k = pdd+2eny =1y = (k) (6.11)

with Lemma 6.5 in mind.

Lemma 6.11. Suppose that B is a 3-braid of the form (6.11), and that its closure Lg = 3 has branched
double cover Si(U ). Then the following must be true:

o [fn# +lthen6(2d+e)=(k+¢{) £ 1.
o [fn==x1then6(2d+e)+n—-(k+¢) e {-2,0,2}.

Proof. Since S3(U) is a lens space, Hodgson and Rubinstein [26] proved that it is the branched double
cover of exactly one link in S 3 which we know to be the (2, n) torus link. Thus 8 = T; ,,, and so Birman
and Menasco [8] proved that up to conjugacy, we have

x"y*® n# =+l
Xy, xy‘l, orx‘ly‘l, n==l.
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Now we can read from (6.11) that 8 has exponent sum
e(B)=62d+e)+n—(k+70),
where & : B3 — Z is the homomorphism defined by &£(x) = £(y) = 1. This exponent sum is invariant

under conjugation, so () must also be equal to n + 1 if n # +1 and one of 2,0, -2 otherwise. The
lemma follows immediately. o

Proposition 6.12. Let 8 € B3 be a braid for which U = TUp is unknotted and the curve y C X (U) = 3
is also unknotted. Up to reversal, there is some integer a € Z such that y* By~ is one of the 3-braids

x7Y xy, orx"ylxy (n € Z).

Proof. As discussed above, it suffices to consider 8 as in (6.9). We fix n € Z so that X, (LF), Zz(Lg),

and Zg(L? ) are all surgeries on 7y of slopes 2"2+ L n, and n + 1 respectively, as guaranteed by (6.1) and

(6.2). Then in particular Zz(Lg) = §3 (U), with first homology of order |n|, so Lemma 6.9 now says that
2+|nl=tr(p(B)) = (=) +3+(k+£)(2n+1))

for B as in (6.9). After multiplying through by (—1)¢, we have four cases, where in each case we can
determine the value of e € {0, 1} from the sign of the constant term (—1)€ - 2. These cases are:

Case l:n+3+(k+€)(2n+1)=n+2,s0e =0.
This simplifies to (k+€)(2n+1) = —1, so (k+¢, n) is either (1, —1) or (=1, 0). Then (6.11) becomes

YR By* = ATyl 2 A2
or yEBy~* = A%y xy,

respectively, where we have simplified the first braid using the relation x 'y~'x = yx~'y~!. Lemma 6.11
says that d = 0 in each case, so now (6.11) becomes

yBy ¢ =x"'yorx (6.12)

for some a € Z.

Case2:n+3+(k+€0)(2n+1)=-n+2,s0e =0.
After rearranging we get

(k+€+1)2n+1) =0,

and 2n + 1 is nonzero so we must have k£ + £ = —1. Now we apply Lemma 6.11 to see that if n # +1
then 12d = —1 £ 1, while if n = +1 then 12d + (1) — (=1) € {-2,0,2}. Thus in either case d = 0, and
so (6.11) becomes

yeByF =x"y xy. (6.13)

Case3:n+3+(k+{)(2n+1)=n—-2,s0e = 1.
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This simplifies to (k + £)(2n+ 1) = =5, so (k + ¢, n) is one of (5,-1), (=5,0), (1,-3), or (-1,2).
In each of these cases, equation (6.11) and Lemma 6.11 give us

yEByTF = ARy lpy ™S = A2y 16 6(2d+1)—1-5¢{-2,0,2}
yEBy K = Ay xyd, 6(2d+1)=-5+1
ykﬂy_k — A4d+2x_3y_1xy_l, 6(2d+ 1) —1+1

or y* gy~ = AtF2x?ylxy, 6(2d+1)=—1+1,

respectively. The third and fourth braids are ruled out by Lemma 6.11 because there is no such d € Z,
whereas the first and second braids must have d = 0 and d = —1 respectively. Thus in the first case we
have
YBy = A%y y 0 =y yxywyx a1y
=y xyx-y =y yayy7
=3 xy oy,
while we can rearrange the second case to get

Y By = Geyxyxy) Tyt =y o) Ty Tyt

=y yxy) 7ty
=y 212,

Thus up to conjugation by powers of y, the possible braids in this case are
yBy “=xytorxl. (6.14)

Case4d:n+3+(k+0)2n+1)=-n-2,s0e = 1.
This condition is equivalent to

(k+f+1)2n+1) = -4,

and 2n + 1 is odd so it must be =1, hence (k + ¢, n) is either (-5, 0) or (3, —1). The first of these already
appeared in case 3, leading to

yhH gy= (k) — =2, =1.2
In the second case, equation (6.11) becomes
Yk By k= AA2 T Tl =3 Ryl
while Lemma 6.11 says that 6(2d + 1) + (-1) — 3 € {-2,0,2}, hence d = 0. Thus

YR gyl=k = A2x 1373 =y 1y
=y-xyx-yl=yoyxy-y
=y xy -y
Thus in this case the possible braids all have the form

yBy~% =x"orxy. (6.15)
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= &

Figure 13. The knot T U 8 is a right-handed trefoil when 8 is xy~" or x'y~.

We now combine the lists of braids enumerated in (6.12), (6.13), (6.14), and (6.15) to see that for
some a € Z, the braid y*By~¢ must be one of

x, x L oxy, xy7h 7y orxylxy (n € 2).

But we can eliminate xy~! and x~'y~! from this list, because filling the tangle 7 in with either of
these produces a right-handed trefoil, as shown in Figure 13. The braid x is also redundant, because if
y4By~® = x then

ya—lﬁy—(a—l) — y—lxy — xOy—lxy

belongs to the family x”y~!xy. Thus we can remove it, and we are now left with exactly the list of braids
promised in this proposition. O

6.3. The case where vy is a torus knot
In this subsection we will suppose that y = T}, , for some p and g. Our goal is to prove the following.

Proposition 6.13. Suppose that B € B? is a 3-braid for which U = T U B is unknotted, and the curve
v c 83 is a nontrivial knot. Then for some a € Z we have

yaﬁy—a — x3y—1x2y or x—3yx—2
up to braid reversal.

We recall from Subsection 6.1 that L? is a 2-bridge link, so that
S:Z2n+1)/2(7) = ZZ(L'B)

is a lens space. The only half-integral lens space surgeries on y = T}, , are those of slopes pq + % [41],
so we must have n + % € {pq - %,pq + %}, hence exactly one of

n=pg-1:  Si»=s8 . .0, Sa(y) =8, (U#S), (U)  (6.16)
n=pq: Sa() =8 (WSS, (U),  So () =S, 0, ) (6.17)

occurs. These surgeries were determined by Moser [4 1, Proposition 3.2], though we follow the notational
conventions of Gordon [20, Corollary 7.4].
We now observe that whether n = pg — 1 or n = pg, we have found a 3-braid 8’ € {8, By~'} whose
closure has branched double cover
arn ~ ¢3 3
Zz(ﬂ ) = Sp/q(U)#Sq/p(U),

which is not prime. A theorem of Kim and Tollefson [36] says that the link E’ is therefore a nontrivial
connected sum

B’ = Li#Ls,
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where X5 (L) = S;/q(U) and ¥, (L,) = Sz/p(U). Now since L1#L, has braid index at most 3 and the
summands L; are nontrivial, the “braid index theorem” of Birman and Menasco [7] shows that L; and
L, are each closures of 2-braids. Thus we can write

L, = Ta,2’ L, = Tb,Z, (a,b * i],O)

where a and b cannot be +1 or 0 because the branched double covers are nontrivial rational homology
spheres, hence are neither S3 nor S! x 2. Then we have

S a>0 s (U b>0
Spia(U) %{ o) $3,,(U) g{ o)
Sial/(ial-n () @ <0, S (U) b <0.

In particular, this is only possible if |p| = |a| and |g| = |b|, and if moreover

lgl = £1 (mod |p]), lpl = +£1 (mod |g]).
Lemma 6.14. Let P, Q > 2 be coprime positive integers satisfying
P=+«1 (mod Q) and Q=<«1 (mod P).

Then P =Q + 1.

Proof. Write P = kQ + 1, where P, Q > 2 implies that k > 1. If k > 2 then we have P > 20 — 1, so
either P = 3 and then Q = 2 (hence P = Q + 1), or P > 3 and then we have

+1

P
1<Q0< <P-1.

(The last two inequalities are equivalent to P > 2Q — 1 and P > 3 respectively.) Butif 1 < Q < P -1
then we cannot possibly have Q = +1 (mod P), so there are no other solutions with £ > 2 and thus we
must have P = Q + 1. O

Lemma 6.14 says that for y = T}, ,, if we write P = |p| and Q = |q| then P = Q + 1, and (6.16) and
(6.17) tell us that either

s3 ,(U) or S

(pg-1)/q 2(U)

3
(pg+1)/q

is the branched double cover of a 3-braid, depending on whether n = pg — 1 or n = pq respectively.
Reversing orientation if exactly one of p and ¢ is negative replaces that 3-braid with its mirror, which
is still a 3-braid, and the surgered manifold is then

3 ) )
_S(pqtl)/qZ(U) = S(—pqﬂ)/qZ(U) = S(PQ?I)/QZ(U)’

so in any case we see that one of

3 3
Stpo-12 U)o Sipo00(U)

is the branched double cover of a 3-braid. This gives us strong restrictions on P and Q by the following
result of Murasugi.

Proposition 6.15 ([43, Proposition 7.2]). Let L, ;s be the 2-bridge link with branched double cover
L(r,s) = Sf/S(U), where 0 < s < r and s is odd. Then L, s has braid index 2 if and only if s = 1, and
it has braid index 3 if and only if either

1. there are integers c,d > 0 such that (r,s) = (2cd + 3¢ +3d +4,2c + 3), or
2. there are ¢,d > 0 such that (r,s) = 2cd+c+d+1,2¢c +1).
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Y

H T3 T3 ‘ T34 T 34 ‘ Ty s T 45
n | 56 -6-7] 12 -13 | 19 20

Table 2. Possible torus knots y and the associated values of n for which ,(LP) is 2"2+1 -surgery onvy,
as tabulated in Lemma 6.17.

Remark 6.16. We note that in the first and second cases of Proposition 6.15 we have

2d+3)s -1 2d+1)s+1
r=—-"—— and r= ———,
2 2
respectively, so if L,/ has braid index 3 then s divides either 27 + 1 or 2r — 1. In particular, if the braid
index is at most 3 then we can draw the same conclusion, since braid index 2 implies s = 1.

Putting all of this together, we can now show the following.

Lemma 6.17. Suppose that the link T U B8 is unknotted, and that vy is not an unknot. Then vy or its mirror
must be one of the torus knots T, 3, T3 4, or T 5, and (y, n) must be one of the pairs indicated in Table 2.

Proof. Lemma 6.6 says that y = T}, , for some p and ¢, and we have argued that if P = |p| and Q = |q]
then P = Q + 1; without loss of generality, we write P = Q + 1 > 3. We consider each parity of P
separately, and determine in each case which lens space S° (U) must arise as the branched

(PO=1)/Q?
double cover of a 3-braid. Up to orientation, we know that the corresponding S?p ,(U) is either

q£l)/q
n-surgery (i.e., ZQ(Lg )) or (n + 1)-surgery (i.e., Zz(Lf )) on 7y, so the value of n follows immediately
and then the precise lens spaces are determined by the relations

3 ~ Q3 3 _ 3 3
Spqil(Tpvq) = S(pqi])/qZ(U)’ Spq(TPv‘I) - Sp/q(U)#Sq/P(U)
and the relations Si/S(U) = Sf/(ﬁkr) (U) and SE/S(U) = —Sir/S(U) forall r, s, k.

Case 1: P is odd. Then Q is even, so if € = +1 then
L(PO+€,0%) =L(0*°+0+€,0%) = -L(Q*+Q+¢€,0 +¢)
and Q + € is odd. According to Murasugi’s result, and in particular Remark 6.16, it follows that
s=Q+e€

divides one of
2r£1=2(0>+0+¢€) 1,

hence it also divides
Q2r+1-25)-25(0—€)=(20*°+1)-2(Q*-1)=2=1.

Thus s must be either 1 or 3. Then 2 < Q = s — € says that (P, Q) is either (3, 2) or (5,4). We determine
the following possibilities:

e If s =1 then (P,Q) = (3,2) and € = —1, so the lens space in question is L(5,4).
e If s =3 and € = +1 then (P, Q) = (3,2) and the lens space is L(7,4).
e If s =3 and € = —1 then (P, Q) = (5, 4) and the lens space is L(19, 16).
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trp(B)
(=1)¢(15+ 11(k +¢€))

y n (P p q
7
4 (=D(T+11(k+0))
5
8
7

s 5  L(1,8) 11
T,z -6  L(11,3) 11

Ty 6  L(13,8) 13
Tos -7  L(13,5) 13

(=1)¢(13 + 13(k + 0))
(=1)¢(13 +13(k +0))

W oo W oo |

T3s 12 L(25,18) 25 18 (=1)¢(25 +25(k + £))
Tas —13 L2257 25 7 18 (=1)°(25+25(k+¢0))

Tus 19  L(39,32) 39 32 11 (-1)¢(43+39(k +0))
Tas -20 L(39,7) 39 7 28 (=1)°(35+39(k+¢0))

Table 3. Possible values of tr p(B) for each torus knot y and integer n.

Case 2: P is even. Then Q is odd, so if € = +1 then
L(PQ +€,Q%) = L(Q* +Q +€,0%)
(with Q2 odd) arises as the branched double cover of a 3-braid closure if
s=0° divides 2r+1=2(Q*+Q+¢) + 1.

This is equivalent to Q2 dividing 2Q + (2€ + 1) < 2Q + 3, but given that Q is odd and Q > 2, we have
0% > 20+3unless Q = 3.So (P, Q) = (4,3) and € = 1, and the lens space in question must be L(13,9).

This completes the identification of the lens spaces in question when y = T, , and p, g are both
positive. If one of p and ¢ is negative, then we can apply the same argument to the mirror of y to
determine the value of —n and the proposition follows. O

In fact, we can rule out most of the pairs (7y, n) appearing in Lemma 6.17 as well.

Lemma 6.18. Ify is a nontrivial torus knot, then (y,n, k + €, e) is either
(T2,3’ 55 _2’ 1) or (T*2,3’ _6’ _1, 0)
Proof. In Table 3 we tabulate the possible pairs (y, n) from Lemma 6.17, together with
* the corresponding lens spaces
ZZ(L'B) = S?2n+])/2(7) =L(p.q) = S;/q(U)

for some integers p and g;

* the integers p and g, as well as ¢ such that ¢ - g = 1 (mod p); and

* the resulting trace of p(f3), as determined by (6.7), given that Lemma 6.10 says that p(/8) must have
one of the two forms (6.5) or (6.6).

The lens spaces X, (LA) in Table 3 are determined by the formulas

3 ~ 3
S(eril)/2(T”S) = S(eril)/(Zrz)(U)’

which again follow from [41] or [20].
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Lemma 6.9 tells us that tr p(8) = 2 +n, so we inspect Table 3 to see whether this is possible. We have

(y,n) = (T»3,6) : trp(B) =0 (mod 13), 2+n=8,9 (mod 13)
(y,n) = (T3.4,12) : tro(B) =0 (mod 25), 2+n=14,15 (mod 25)
(y,n) = (Tus,19) : trp(B) =4,35 (mod 39), 2+n=21,22 (mod 39)

and the computations for (7_3 3, —7), (T-3.4, —13), and (T_4 5, —20) are identical, so there is no solution
in any of these cases. This leaves only

(y,n) = (T23,5) : (-D¢(5+11(k+¢€) =25
with solution (k + ¢, ¢) = (-2, 1), and
(y.n) = (I2,3,-6) : (=D(T+11(k+0)) =2+ (-6)
with solution (k + ¢, e) = (—1,0). o
Proposition 6.19. Ify = T_; 3, then up to reversal, there is some integer a such that
yBy = xy Iy

Proof. In this case we have (n,k + £, ¢) = (=6,-1,0) and 2,(LA) = L(11,3) by Lemma 6.18, so we
can write

o045 = (o) o o (7 ) o0

by (6.5) and (6.6). We compute that
411\ (13
13) 101
311 (12
14) 101
and since ker(p) is generated by A% it follows that
YRRy K = A% 3y 132y op A% 27103y
for some d € Z. These two families of braids are reverses of each other, since
B = Aty ky2y L3 gkl gy = AR kL (3312 (kD)

so we need only consider the first family, namely

B = At y~k 3yl 2 ket
In order to determine d, we recall that the link L[f from Figure 10 is the closure of By~', and by (6.2)
we have

Sy (Lf) = 83, () = S(T23) = §%5,,(U) = L(5.1).

As a lens space, this must be the branched double cover of a unique knot [26], so we have By~ = T; 5.
Then Birman and Menasco’s classification theorem from [8] says that 8y~! must be conjugate to x> y*!
so that 8 has exponent sum

ePB)=eBy H+1=6=+1.
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On the other hand, we can read off the explicit form for 8 above that £(8) = 12d + 5, so we must have
d=0. mi

Proposition 6.20. Ify =T 3, then up to reversal, there is some integer a such that
Yy =x Ty

Proof. In this case we have (n, k + ¢, ¢) = (5,-2,1) and Z,(L#) = L(11,8) by Lemma 6.18, so we can
write

711 11
P04 =) (1) o0 or o (§ ) o007
by (6.5) and (6.6). We compute that

%) =00 )6 2)o3) )1
[ 7)=o 6] e

so now since A* generates ker(p) we have
xy 20y~ xy? or AM* 2yl 2y

) = p(xy~2xy~'x)

11
01
11
01

- o = O
S = O =
— =

DO = =

) = p(xy~'xy2x),

Yk Byk = A%

for some d € Z.
In order to determine d, we note that the braid closure 8 = Lg satisfies

To(Lf) = S3(Ta3) = §2,(U) = (T a5),

SO L’g = T_, 5 since every lens space is the branched double cover of a unique knot [26]. Then 8 must

be conjugate to either x>y or xy~! [8], so its exponent sum is £(8) = —5 + 1. But in either of the
above families we have £(8) = 12d + 8, so in fact d = —1. Moreover, if we reverse the second family
above then we get

B=A2y Ky iy 2y = () = YA 2y 2y )y (KD

so up to reversal it suffices to consider only the family of braids
YBy ™ = Ay ey Ty
We can simplify this somewhat by writing

yk,By_k — y—lx—ly—lx—ly—lx—l .xy—2xy—lxy2

e LT L I P g
~———
—yx-3y-1
=yl 22
=y x 7y oy Ty Py
~—_———

=x—2y-lx-1

2

=y 7y
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yax—lya yaxny—lxyl—a yax3y—1x2y1—a

|
K,B .‘ 52 P(_?’, 3,2n+ 1) 151435020

Table 4. Some braids 8 such that T U 8 is unknotted, and the resulting knots K = Kg.

and so
yk+1’8y—(k+l) _ x’3yx’2

as claimed. O
We can now complete the main result of this subsection.

Proof of Proposition 6.13. Lemmas 6.17 and 6.18 tell us that if vy is knotted then it must be a trefoil. If
it is a left-handed trefoil then Proposition 6.19 says that up to reversal, 3 is conjugate to x>y~ 'x?y by
some power of y. Otherwise it is a right-handed trefoil, so by Proposition 6.20, either 8 or its reverse is
conjugate to x 3 yx~2 by some power of y. O

6.4. Some knots arising from specific braids

In this subsection we consider several families of 3-braids § that arise in Propositions 6.12 and 6.13,
producing unknots when inserted into the tangle v of Figure 8. We will determine the corresponding
nearly fibered knots K = Kz which arise as lifts of x to Z,(U) = $3. The results are summarized in
Table 4; the proofs in each case occupy Propositions 6.21, 6.22, and 6.23, respectively.

Proposition 6.21. The family of braids 8 = y*x~'y~¢ produces Kpg = 5,.

Proof. By Lemma 6.5 it suffices to take a = 0, so 8 = x~'. We insert this into the tangle 7 from Figure 8,
apply an isotopy so that U = 7 U 8 bounds a planar disk and « winds around it, and then cut x open
along that disk and glue two copies together to construct the lift Kg = &. This process is illustrated in
Figure 14, where we isotope U U « into a convenient position and then take the branched double cover
with respect to U at the last step; the resulting diagram of £ is isotopic to 5, as claimed. O

Proposition 6.22. The braids 8 = y“x"y~'xy'~* produce Kg = P(-3,3,2n+1).

Proof. Again by Lemma 6.5 we need only consider 8 = yxy~'x. In Figure 15 we insert this braid into
T U « and perform an isotopy so that the unknot U = 7 U 8 clearly bounds a disk, and then in Figure 16
we use this to lift « to the knot Kz = & in the branched double cover X, (U) = S3. In the end we are left
with a diagram of P (3, -3, 2n + 1), which is isotopic to P(-3,3,2n + 1). O

Proposition 6.23. The braids 8 = y*x3y~'x>y'=¢ produce Kp = 15n43520, possibly up to mirroring.

Proof. In this case, Lemma 6.5 says that we need only consider 8 = x3y~!x?y, as shown in Figure 17.
We can repeat the same procedure as in Propositions 6.21 and 6.22 to find Kg, but this is not very
enlightening because we find it hard to identify 15-crossing knots from their diagrams.

Instead, we ask SnapPy [11] to do the hard work for us: we give it the link U U « on the left side
of Figure 17, do a (2,0)-Dehn filling of U (i.e., an orbifold Dehn filling of U with meridional slope,
so that U has cone angle ), and then look at the double covers of the result that are not themselves
orbifolds. SnapPy can produce triangulations of these, and it identifies one of them as the complement
of 15n43522, so this must be K. O

Remark 6.24. SnapPy looks for isometries between a given pair of hyperbolic manifolds by first
attempting to produce a canonical triangulation of each, and then comparing the resulting triangulations
combinatorially. Thus when it succeeds, as in the proof of Proposition 6.23, the result is certifiably true:
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Figure 14. Recovering Kg = 5; in the case § = x~L. In the last step we indicate the axis of symmetry
(i.e., the preimage of U) for reference.

—)
=) g

L/IK

Figure 15. Recovering Kg = P(=3,3,2n+ 1) in the case B = yx"y~!x, part 1: isotoping U U k so that
U bounds a disk in the plane. Here each box labeled “n” contains n signed crossings.
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(ED)

Figure 16. Recovering Kg = P(=3,3,2n+ 1) in the case 8 = yx"y~1x, part 2: taking branched covers
to construct the claimed pretzel knots.

K

=

Figure 17. The braid B = x3y_lx2y leads to Kg = 15n4352;.

it has found identical triangulations of each, and it does not need any numerical approximation to verify
that the triangulations agree.

As explained at the beginning of this section, this completes the proof of Theorem 6.1.

7. The (2,4)-cable of the trefoil

In this section, we determine all knots K C S which arise from the second case of Theorem 5.1, in which
MyF is the complement of the (2, 4)-cable of the right-handed trefoil. Our goal is to prove the following:

Theorem 7.1. Let K C S° be a nearly fibered knot with genus-1 Seifert surface F, and suppose that
Mg = 87\ N(Cp4(T2)).
Then K is one of the twisted Whitehead doubles

Wh+(T2,3, 2) or Wh™ (T2’3, 2).
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Figure 18. The involution 1 of S*(F) = Mp \ N(a) in the case where M = S> \ N(C24(T»3)), given
by 180° rotation about the horizontal axis (in blue). The meridian of « (in red) is isotopic in S*(F) to a
pushoff of K.

Figure 19. Tuaking the quotient of S*(F) by the involution « from Figure 18, followed by an isotopy. The
quotient has branch locus T (blue), and a curve k (red) which lifts to K.

Just as in Section 6, we observe that under the hypotheses of Theorem 7.1, the sutured Seifert surface
complement S*(F) admits an involution ¢, illustrated in Figure 18, realizing this complement as the
branched double cover of a sutured 3-ball along a tangle 7, as shown in Figure 19. The exact same
reasoning as in the previous section then implies the following analogue of Lemma 6.2:
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Figure 20. An isotopy of the tangle T U 8 in the complement of k.

Lemma 7.2. Suppose that K C S is a nearly fibered knot with genus-1 Seifert surface F, and that
Mp = S*\ N(C24(T13)).

Then there is a tangle T and a 3-braid 3 € B, depicted in Figure 20, such that T U B8 is an unknot in S,

and such that the lift

Rc(tup) =s8°

of the pictured curve « is isotopic to K.

With Lemma 7.2 at hand, we are left to determine which braids 8 cause 7 U 8 to be unknotted.
Supposing that it is indeed an unknot U, we choose a crossing in Figure 21, indicated by a red dashed
arc, and produce two link diagrams L? and Lg by changing that crossing and by taking its O-resolution,
respectively. We can see in Figure 21 that

[P = T_2’3#(T_1/4 Uﬁ), Lg = (T—l/7 Uﬁ)

where 7_1/4 and 7_/7 are tangle diagrams differing only in the circled rational sub-tangles, having —4
and —7 half-twists respectively.

Lemma 7.3. If T U 8 is an unknot, then so are t_1;4 U B and 7_1;7 U B.
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IR

I3

Figure 21. A crossing change and O-resolution of T U B at the indicated crossing.

1R

Proof. Just as in Section 6, the Montesinos trick tells us that there is a curve y € £,(U) = §3 and an

integer n € Z such that
2(LP) = St 2 (V) TH(Lg) = S (y).

Since X, (LP) arises as non-integral surgery on a knot y C S3, it must be irreducible [21]. But we also
know that

2o (LP) = L(3,2)#25(1_1/4 U B),

and if this is irreducible then the second summand must be S3, so then 7_ /4 U B must be unknotted [63].
Now that we have X, (LP) = L(3,2) = Sg' /2(U ) arising from a non-integral surgery on v, of slope

2"2—”, we know that y must be an unknot or a torus knot [12]. In fact it cannot be a nontrivial torus knot,

since otherwise no surgery would produce a lens space of order 3 [41]. So vy is an unknot, and then we

must have % = %, or n = 1. But in this case we have
(L) = Si(y) = S;(U) = §%,
so again by [63] we can conclude that 7_; 7 U B = Lg is an unknot. m|

Lemma 7.4. If T U B is an unknot, then the link 71,9 U 8 depicted in Figure 22 is an unknot, and the
3-braid closure B is a 2-component unlink.

Proof. We take the tangles 7_4 and 7_;;7 in Figure 21 and replace their circled twist regions with
rational tangles of slopes (l) or (T) to get the tangles 710 and 7,1 depicted in Figure 22, observing that

T0/1 upg EﬁA.
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Figure 22. Two rational tangle replacements produce the links T, U B and 19/ U B = B.
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Lemma 7.3 says that 7_1,4 U 8 and 7_1 /7 U 8 are both unknotted, so their branched double covers satisfy

o (1o1/a UB) = So(1oy7UB) = S°.

In particular, if we remove the circled rational subtangles from either unknot, then the branched double
cover of what remains is a knot complement S® \ N (L), and it has two different Dehn fillings (corre-
sponding to the rational tangles of slopes —}T and —%) which both produce S3. Then L must be an unknot
[22, Theorem 2], and the fillings that produce X,(7_1/4 U 8) and X»(7_;/7 U ) must have slopes % and
ﬁ for some n € Z.

It follows that if we replace these rational tangles with one of slope é, then this corresponds to a
Dehn filling of $3 \ N(L) of slope —, and then

n+4’
Zo(t1j0 UB) = 87y (L) = S°

since L is unknotted. We apply Waldhausen’s result [63] once again to see that 71,9 U S is an unknot.

Similarly, if we instead use the rational tangle that produces 7y;; U 8, then the corresponding Dehn
filling of 3 \ N(L) is at distance one from both the %— and ﬁ-ﬁllings, so it must have slope (—1). In other
words, we have shown that

%2(B) = Zo(1o1 UB) = S3(L) = S x S2.

But the only link in 3 with branched double cover S! x S? is the two-component unlink [62], so this
determines £ up to isotopy. )

We can now apply methods from Section 6 to determine all of the possible braids g to which
Lemma 7.2 might apply.

Proposition 7.5. If T U B is unknotted, where T is the tangle shown in Figure 20, then
ﬁ — yaxily*a
for some a € Z.

Proof. Lemma 7.4 tells us that the knot 71,9 U 5 on the left side of Figure 22 is an unknot, with branched
double cover S3. Using the representation p : By — SLy(Z) from (6.4), which was defined by

p(x) = ((1) }) p() = (_11 ?)

we apply Lemma 6.10 with (p, ¢, g,r) = (1,1, 1,0) to see that

o =0 1) [o1) (2 1) ot
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for some integers e € {0, 1} and d, k, €. (Note that the knot labeled LA in Lemma 6.10, as depicted in
Figure 10, is our 71,9 U §, and that the two cases (6.5) and (6.6) of Lemma 6.10 coincide since g = g.)
In fact, we recall from Lemma 6.7 that ker(p) is generated by A*, so we must have

B = A2kt

Now we use the other conclusion of Lemma 7.4, namely that the 3-braid closure 3 is a 2-component
unlink. Viewing this as the (2, 0)-torus link, Birman and Menasco [8] proved that 8 must be conjugate
to either y or y™!, so that its exponent sum is +1 and

trp(B) =trp(y*') =2.

But we can also compute that

11 1 0
_ kpuy—ky _ (_1\e
= (-1 +£+2).
Thus (k + ¢, e) is either (0,0) or (-4, 1).
Suppose first that (k+¢, e) = (0,0). Then 8 = A*y¢xy~¢ for some integer d. In this case its exponent
sum is 12d + 1, and since this is equal to +1 we must have d = 0.

In the remaining case we have (k + £,e) = (=4,1), so B = A**2y¢ . y4x . y=C for some d. The
exponent sum is 12d + 11 = =1, so then d = —1 and we have

y By = A2y
‘We now use the braid relation xyx = yxy to see that

YAy =y (v xyx - y)y P = 2 (P Y)y T = v,

and since A? is central it follows that
y—fﬂyf _ A’2y4x _ yzx*]y*Z

or
,3 — y€+2x—1y—(f+2) )

This completes the proof. O

We now determine the knots Kz that arise in Lemma 7.2.

Lemma 7.6. Suppose that K satisfies the hypotheses of Lemma 7.2, and write K = Kg where K arises
as the lift of the curve « in the branched double cover of the unknot U = T U B. Then K is isotopic to
either Ky or K 1.

Proof. By Proposition 7.5 we know that 8 = y*x€y™%, where a € Z and € = +1. These are illustrated
in Figure 23, where we have started with a slight isotopy of the unknot U = 7 U 8 from Figure 21. The
bottom of Figure 23 makes it clear that up to isotopy the knot Kg only depends on e and the parity of
a, because the tangle relation
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Figure 24. Simplifying the case a = 0, where 8 = x*', by an isotopy.

lets us identify the links U U « for 8 = y@*2x€y~(@*2) and for 8 = y*x€y~? up to isotopy. Thus we need
only consider the casesa =0 and a = 1.

Starting from the bottom of Figure 23, we simplify part of the corresponding diagrams by an isotopy
in Figures 24 and 25, corresponding to a = 0 and a = 1 respectively. In Figure 26 we further isotope
the diagrams for each U U «, starting from the simplifications in Figures 24 and 25, and we see that the
corresponding links for 8 = x and 8 = yxy~! are isotopic to each other in a way which carries U to U
and « to , as are the links for 8 = x~! and 8 = yxy~!. It follows that

K, = yaxy=a and KX—I = Kyax—ly—a

forall a € Z, since it is true for a = 1 and since for fixed € the knot Kya ye -« depends only on the parity
of a. Thus every Kg must be isotopic to either K or K,-1 as claimed. O

Proposition 7.7. We have K, = Wh* (T 3,2).
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Figure 27. A proofthat K., = Wh* (T3 3, 2), beginning with the link U U k from the top row of Figure 26
and ending with the lift K, = & of k to X, (U) = S3.

Proof. We take the link with components U = 7 U § (where § = x) and « from the top row of Figure 26,
and isotope it into a convenient position in the first half of Figure 27. Having done so, in the remainder
of Figure 27 we then take the branched double cover with respect to the unknot U, lifting « to the knot
g = K as we do so, and then isotope it further until it is recognizable as the 2-twisted, positively clasped
Whitehead double of 75 3. ]

Proposition 7.8. We have K,-1 = Wh™ (123, 2).

Proof. Just as in Proposition 7.7, we take the link with components U = 7 U 8 and «, this time with
B =x"!, as pictured in the third row of Figure 26. In Figure 28 we carry out an isotopy, take the branched
double cover with respect to the unknot U, and then lift « to the knot £ = K,-1, which we recognize
after further isotopy as the 2-twisted, negatively clasped Whitehead double of 75 3. O

‘We can now finish the proof of Theorem 7.1, and then conclude Theorem 1.2.
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Figure 28. A proof that K .1 = Wh™(T».3,2), beginning with the link U U k from the third row of
Figure 26 and ending with the lift K .« = & of « to Z,(U) = S°.

Proof of Theorem 7.1. We apply Lemma 7.2, according to which K is the lift of « in the branched
double cover of the unknot U = 7 U . Although there are infinitely many such g (see Proposition 7.5),
Lemma 7.6 says that in fact K must arise from this construction for either 8 = x or 8 = x~!. In the case
B = x, Proposition 7.7 says that K = Wh* (T 3, 2), and if instead we have 8 = x~! then K = Wh™ (T 3, 2)
by Proposition 7.8. This completes the proof. O

Proof of Theorem 1.2. Letting F be a genus-1 Seifert surface for K, we proved in Theorem 5.1 that up
to replacing K with its mirror, the manifold Mr must be the complement of the (2, 4)-cable of either
the unknot or the right-handed trefoil. In the unknot case, Theorem 6.1 says that K is one of

5o, 15n435002, or P(=3,3,2n+ 1)
for some n € Z. Likewise, in the trefoil case, Theorem 7.1 tells us that K is either
Wh+(T2’3, 2) or Wh_(T2’3, 2)

Thus either K or its mirror must be one of the knots listed above. O
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8. Detection results for Khovanov homology

Our goal in this section is to prove the detection results for reduced Khovanov homology stated in
Theorems 1.6 and 1.7. We will do so after establishing some preliminary results. We continue to work
with coefficients in Q throughout this section.

Recall that both reduced Khovanov homology and knot Floer homology admit bigradings, which can
be collapsed to a single §-grading, defined for these two theories by

grs = %grq —gry,
8ls = 8L, — 81y

respectively. We say that either invariant is thin if it is supported in a unique J-grading. Given a knot
K c §3, Dowlin’s spectral sequence [13]

Kh(K) = HFK(K)

from reduced Khovanov homology to knot Floer homology respects the §-gradings on either side, up
to an overall shift. This implies the following:

Lemma 8.1. Let K C S3 be a knot for which Kh(K) is thin. Then HFK (K) is thin and
dim HFK (K) = dim Kh(K) = det(K).

Proof. Suppose that Kh(K) is thin. Then the fact that Dowlin’s spectral sequence respects the 5-grading
up to an overall shift, together with the symmetry [48]

HFK,,(K,a) = HFK_,,(K, —a),

implies that HFK(K) is also thin. Recall that the graded Euler characteristics of reduced Khovanov
homology and knot Floer homology recover the Jones and Alexander polynomials, respectively [33, 48]:

Vi(n)= Y (=112 dimKh" (K). 8.1)
h,q
A () = Z(—l)’”t“ dim HFK (K, a). (8.2)

Supposing that Kh(K) and HFK (K) are supported in 6-gradings &1 and &,, respectively, it follows that

Vi (-1) = (=1)°" dim Kh(K),
Ak (=1) = (=1)% dim HFK (K),

and thus
dim HFK (K) = |Ag (-1)| = det(K) = [Vk (~1)| = dim Kh(K),
as claimed. o

The next result pertains to the geography of knot Floer homology. For this result, recall that for any
knot K  S3, there are two differentials on knot Floer homology,

E= 444

w=w ++
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where &' and o' are, respectively, sums of maps of the form

& HFK,,(K,a) — HFK,,_|(K,a — i) (8.3)
&' : HFK,,(K,a) — HFK,,_|(K,a +1i). (8.4)

Indeed, given a doubly-pointed Heegaard diagram for the knot K  §3,
(2 a,B,z,w),
the differential 0 in the Heegaard Floer complex
CF(S®) = CF(Z, a, B, w)
isasum d = dy+dj, where dy counts those disks that avoid the basepoint z, and d; counts the rest. Then
HFK(K) = H.(CF(Z, . B.w), dy),

and ¢ is the differential on this homology induced by d;. The map w is defined in the same way but with
the roles of z and w swapped. It follows from the definition that the homology with respect to either
differential recovers the Heegaard Floer homology of S3,

H,(HFK(K), &) = H,(HFK(K), w) = Q. (8.5)

Furthermore, the components &' and w' anticommute. (This follows from Ozsvith-Szabd’s original
construction of CFK® (K) in [48]; it is also stated explicitly in [3, Equation (3.7)] where our &' and !
correspond to their W7 and QP .)

When HFK (K) is thin, we have that £ = ¢! and w = w! according to the grading shifts in (8.3) and
(8.4). In particular,

Ew = —wé.

Moreover, in this case, the two homology groups in (8.5) are supported in Alexander gradings 7(K)
and —7(K), respectively, where 7(K) is the Ozsvith—Szab6 tau invariant [46]. With this background in
place, we may now prove the following:

Lemma 8.2. Let K C S be a knot of genus g > 1 for which HFK (K) is thin. Then
dim HFK (K, g) < dimHFK (K, g — 1).

If in addition K is fibered with |T(K)| < g, then this is a strict inequality.
Proof. Suppose that g > 1 and HFK(K) is thin. Then ¢ = ¢! and w = w! and éw = —wé. If

dim HFK(K, g) > diim HFK(K, g — 1),

then we have also that
dim HFK(K,—-g) > dimHFK(K,1 - g),

by conjugation symmetry. The complex (HFK(K), &), given by
F— 'fg F— ‘fgfl §27g —_— fl—g P —
HFK(K,g) — HFK(K,g - 1) — ... —5 HFK(K,1 - g) —> HFK(K,-g),
then has nontrivial homology in both of the Alexander gradings g and —g, meaning that

dim H, (HFK (K), &) > 2,
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a contradiction. This proves the first claim.
Now suppose that K is also fibered, and assume for a contradiction that |7(K)| < g but

dim HFK (K, g) = dimHFK(K,g — 1) = 1.

The fact that 7(K) # +g implies that the complexes (HFK(K),¢) and (HFK(K), w) both have trivial
homology in Alexander grading g. This implies that the components

—— o — O
HFK(K, g) =% HFK(K, g — 1) —5 HFK(K, g)
of ¢ and w are both nontrivial, and hence so is their composition, since
HFK(K,g) = HFK(K,g - 1) = Q.

Letting x be a generator of HFK (K, g), this shows that w(&£(x)) # 0. On the other hand, &(w(x)) =
£(0) = 0, which contradicts the fact that fw = —wé. O

We now prove Theorem 1.6, which states that reduced Khovanov homology detects 5.

Proof of Theorem 1.6. Suppose that
Kh(K) = Kh(5,)

as bigraded vector spaces. Note that E(Sz) is thin since 5, is alternating [39]. It then follows from
Lemma 8.1 that the knot Floer homology of K is thin, and that

dim HFK(K) = det(5;) = 7.
Let g > 1 be the genus of K, and let us first suppose that K is not fibered. Then
dim HFK (K, +g) > 2.
Together with the fact from Lemma 8.2 that
dimHFK(K,g) < dimHFK(K,g - 1),
and the fact that the total dimension is 7, this implies that g = 1 and the sequence
(dimHFK(K,a) | -1 <a <1)=(2,3,2).
In particular, K is a nearly fibered knot of genus 1, and it follows from Theorem 1.2 and Table 1 that
K is either 5; or 5,. But reduced Khovanov homology distinguishes 5, from its mirror, so we have that
K =5,, as desired.
Finally, let us suppose for a contradiction that K is fibered. First, note that

lT(K)| < g. (8.6)
Indeed, if |7(K)| = g instead, then either K or its mirror is strongly quasipositive [24, Theorem 1.2].
In this case, [56, Proposition 4] implies that Rasmussen’s invariant [58] satisfies s(K) = +2g. Since

Kh(K) is thin, it is supported in the 6-grading

%S(K) =g,
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as argued at the end of [1, Proof of Theorem 1]. Since Kh(5,) is supported in §-grading 1, it follows
that g = 1. Then K is a fibered knot of genus 1, and hence a trefoil or the figure eight, but this violates
our assumption that

Kh(K) = Kh(55).

The strict inequality in (8.6) therefore holds.
It then follows from Lemma 8.2 that

1 =dimHFK(K,g) < dimHFK(K, g - 1).

The fact that dim HFK(K) = 7 then implies that either g = 1, which cannot happen (since K is not a
trefoil or the figure eight, as discussed above), or else g > 1 and

Q ifa==zxg
— Q* ifa=+(g-1)
HFK(K,a) = Q ifa=0

0 otherwise.

Let us assume the latter holds. Note in this case that if g > 2 then the complex (HFK(K), ¢) must have
nontrivial homology in both Alexander gradings g — 1 and 1 — g, meaning that

dim H, (HFK (K), &) > 2,
a contradiction. Therefore, g = 2 and
(dimHFK(K,a) | -2 <a <2)=(1,2,1,2,1).
The complexes (F/Iﬁ( (K), &) and (H’ﬁ( (K), w) therefore take the forms

& & & &
Q > Qf > Q= Q* — Q-

and

wi 2 Wo w-| 2 W2
Q = Q — Qo «— Q% «—Q-,

respectively, where the subscripts indicate the Alexander grading. The fact that
T(K) # +g = +2

implies that the homologies of these complexes are trivial in Alexander gradings +2. This implies that
the components &>, -1, w_», and w; are all nontrivial. Moreover, &; and &y cannot both be nontrivial,
as this would imply that their composition is nontrivial, which would violate £2 = 0. Let us assume
without loss of generality that

&1 #0 and & =0.
Let x be an element of HFK (K, —1) for which &_1(x) # 0. Then
w(é(x)) = w2(é-1(x)) #0,

while
é(w(x)) = é(w-1(x)) =0,

contradicting the fact that wé = —éw. We have therefore ruled out the possibility that K is fibered,
completing the proof of Theorem 1.6. O



Forum of Mathematics, Pi 59

Remark 8.3. One can use a similar argument to prove the slightly stronger result that if Kh(K) is 7-
dimensional and supported in a unique 6-grading d then, up to taking mirrors, either K = 5,, or else
d =3 and

HFK (K) = HFK(T».7)

as bigraded vector spaces. Though relatively straightforward, proving this takes quite a bit of room, so
we do not pursue it here.

Finally, we prove Theorem 1.7, which states that reduced Khovanov homology together with the
degree of the Alexander polynomial detects each pretzel knot P(-3,3,2n + 1).

Proof of Theorem 1.7. Suppose that

Kh(K) = Kh(P(-3,3,2n + 1))
as bigraded vector spaces, and that Ak (7) has degree one. Then K is not fibered. Starkston proved [60,
Theorem 4.1] that the reduced Khovanov homology of this pretzel is thin. It then follows from Lemma
8.1 that the knot Floer homology of K is thin, and that

dim HFK (K) = det(P(=3,3,2n+1)) = 9.

Since HFK(K) is thin and Ak (¢) has degree one, we conclude from (8.2) and the genus detection (1.1)
that g(K) = 1. Since K is not fibered, we have that

dim HFK (K, 1) > 2.
Together with the fact from Lemma 8.2 that
dim HFK (K, 1) < dim HFK (K, 0),
and the fact that the total dimension is 9, this implies that the sequence
(dimHFK(K,a) | -1 <a < 1)=(2,5,2) or (3,3,3).
But in the latter case, we would have
Ak (t) = (3t =3+ 317,
which would imply that Ag (1) = +3, but Ak (1) = 1 for any knot K ¢ §3. Therefore,
dim HFK (K, 1) = 2,
and hence K is nearly fibered of genus 1. The fact that HFK (K) is thin and 9-dimensional then means,
by Theorem 1.2 and Table 1, that K must be a pretzel knot P(-3, 3, 2m + 1) for some m € Z (the mirror
of any such pretzel is another such pretzel). But
Kh(P(=3,3,2m + 1)) 2 Kh(P(-3,3,2n + 1))

for m # n, by [60, Theorem 4.1] or the more general [25, Theorem 3.2]. We conclude that K =
P(-3,3,2n+ 1), as desired. ]
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9. Detection results for HOMFLY homology

As mentioned in §1.1, reduced HOMFLY homology, defined by Khovanov—Rozansky in [35], assigns
to a knot K ¢ §3 a triply-graded vector space over Q,

A(K) = D A (K),
i,j.k
which determines the HOMFLY polynomial of K by the relation
Pk(a,q) = Y (~)*2al g dim A™*(K).

i)k
Our goal in this section is to prove Theorem 1.8, which says that reduced HOMFLY homology detects
each pretzel knot P(-3, 3, 2n + 1). We begin with the following computation:
Lemma 9.1. We have dim H(P(-3,3,2n+ 1)) =9 foralln € Z.

In order to prove this lemma, let us first recall that Khovanov—Rozansky also defined for each integer
N > 1 areduced sl homology theory [34], which assign to a knot K < §3 a bigraded vector space
over Q,

Ay (K) = P aY (K).
i.J
Khovanov homology is related to the sl, theory by the following change in gradings,

Kn"(K) = AT (K). ©.1)

Rasmussen proved in [59, Theorem 2] that there is a spectral sequence which starts at A(K) and
converges to Hy (K), for each N > 1. Moreover, when this spectral sequence collapses at the first page,
as it does for N sufficiently large, the reduced HOMFLY homology determines the sly theory [59,
Theorem 1] by

Ay &= @ Ak 9.2)

i+N j=I
(k=j)/2=J

In particular, dim H(K) = dim Hy (K) for N > 0.
Proof of Lemma 9.1. Let us write

K, =P(-3,3,2n+1)

for convenience. First, note that Ky is the 2-bridge knot 6;. It therefore follows from [57, Theorem 1]
that K¢ is N-thin for all N > 4, which implies by [57, Corollary 4.3] that

dim Hy (Kp) = det(Kg) =9 forall N > 4.

Next, observe that K can be obtained via band surgery on the 2-stranded pretzel link P(-3, 3), which
is a split link (in fact, a 2-component unlink), as shown in Figure 29. Each K, can then be obtained
from Ky by adding n full twists to that band, so a theorem of Wang [64, Proposition 1.7] says that for
any N > 2, the dimension

is independent of n. Thus, for any n € Z, the above computation for K tells us that

dim Ay (K,) =9 forall N > 4,
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Figure 29. Building P(-3,3, 1) by attaching a band to a 2-component unlink.
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and hence that dim H(K,,) = 9, as desired. O
With this computation in hand, we may now prove Theorem 1.8.
Proof of Theorem 1.8. Suppose that
H(K) = H(P(-3,3,2n+ 1))

as triply-graded vector spaces. Then K has the same HOMFLY polynomial as P(-3,3,2n + 1). Since
the HOMFLY polynomial specializes to the Alexander polynomial, we have that

Ak (1) = Ap(=332ns1) (1) = =20 +5 = 217"
In particular,
dim H,(K) = dimKh(K) > det(K) = |Ax (=1)| = 9.
Since we also know from the computation in Lemma 9.1 that
dim H(K) = dim H(P(-3,3,2n+1)) =9,

it follows that the spectral sequence from H(K) to H,(K) must collapse at the first page. Therefore,
H(K) determines H(K) as in (9.2). In particular, it follows that

Hy(K) = Hy(P(-3,3,2n+1))
as bigraded vector spaces. Then we have by (9.1) that
Kh(K) = Kh(P(-3,3,2n+ 1))

as bigraded vector spaces. Since K has the same Alexander polynomial and reduced Khovanov homology
as P(-3,3,2n+ 1), Theorem 1.7 says that K = P(-3,3,2n + 1). O

A. Computations of knot Floer homology

In this appendix, we explain the knot Floer homology calculations recorded in Table 1. The computation
for 5, follows from the fact that it is alternating [45, Theorem 1.3]. For the pretzel knots P(-3, 3, 2n+1),
we apply [51, Theorem 1.3] (but see also [25, Theorem 1]). For the twisted Whitehead doubles, Hedden
[23, Theorem 1.2] computed their knot Floer homology over Z/27Z, but his results work over arbitrary
fields. This leaves only the knot 15n43522, which will occupy the remainder of this appendix.
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Proposition A.1. We have that

0] a=1
HFK (15n43522,a;Q) = Q‘(‘—l) GBQ(0) a=0
2
a = _19

(-2)
where the subscripts denote Maslov gradings.

To start, we can carry out the same computation with coefficients in a finite field using a program by
Zoltan Szabé [61], and over F = Z/2Z we find that

Fly) a=1
HFK (15n43500, a;F) = Ftn@ﬂm a=0
F2 a=-1.

(-2)

Proposition A.1 will then follow from the universal coeflicient theorem if we can show that
HFK (15n43522; Z) has no 2-torsion.

Suppose, for a contradiction, that there is 2-torsion in some Alexander grading a. Then by the universal
coefficient theorem, it must contribute F summands to consecutive homological (i.e., Maslov) gradings of
I-Tﬁ(( 15n43522, a; F). By inspection, it can only possibly contribute F(_) ®F g to Iﬁ’?(( 15n43522, 0; F),
and therefore

2 _
Q(O) a=1
HFK(15n43520,a;Q) = ?—1) a=0
2 —_
-y a=-L

That is,
HFK (151435205 Q) = HFK(52;Q)

as bigraded vector spaces. Since this knot Floer homology is thin, we have that
CFK™(15n43522: Q) = CFK*(5,: Q)

up to filtered chain homotopy equivalence [55, Lemma 5]. Since the complex CFK* (K) determines
[48] the Heegaard Floer homology of n-surgery on a knot K c §° for integers

n>2g(K)-1=1,
it follows that
dim HF (S (15n43522): Q) = dim HF (5} (52); Q)
= dim HF(-£(2,3,11); Q) = 3.
We will use this together with the following lemma to get a contradiction.
Lemma A.2. IfK c S3 is a knot of genus at least 2, then dim Iﬁ(Sil (K); Q) = 5.
Proof. By the surgery exact triangles

- — HF(5%Q) — HF(S3(K); Q) — HF(S3(K);Q) — ...,

and
- — HF($%Q) — HF(S* (K); Q) — HF(S3(K);Q) — ...,
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it suffices to show that dim I-/IFT(SS(K); Q) > 6.
Let s; € Spin° (S} (K)) be the Spin structure with

(c1(si), [E]) = 2i,

where £ ¢ SS(K ) is a capped-off Seifert surface for K. Then according to [48, Corollary 4.5] and the
way in which knot Floer homology detects the genus g = g(K), which is at least 2, we have

HF*(S3(K), 5¢-1;Q) = HFK(K, g;Q) 0.

Likewise,
HF™(S3(K), $1-¢;Q) 20,

by the conjugation symmetry of Heegaard Floer homology. Furthermore, HF +(SS(K ), 50;Q) is
nontrivial because sy is torsion (see [50, §10.6]).

We now recall from [49, Proposition 2.1] that HF (Y, s) is nonzero if and only if HF* (Y, s) is nonzero,
so we have shown that

HF(S3(K),s) 20
foreachi = g — 1,0,1 — g. In fact, each of these Spin® summands has Euler characteristic zero [49,

Proposition 5.1] and hence even dimension, so the total dimension of HF (SS(K)) must be at least
2+2+2 =06, as claimed. O

Proof of Proposition A.1. Supposing otherwise, we have already argued that
dim HF (S3(15n43522); Q) = 3.

‘We now observe the following coincidences in SnapPy [11]:

In[1]: M1 = Manifold(’K15n43522(1,1)")
In[2]: N1 = Manifold(’9_42(-1,1)")
In[3]: Ml.is_isometric_to(N1)

Out[3]: True

In[4]: M2 = Manifold(’K15n43522(-1,1)’)
In[5]: N2 = Manifold(’8_20(-1,1)")
In[6]: M2.is_isometric_to(N2)

Out[6]: True

In other words, if K15n43522, 8_20, and 9_42 denote each of 15n43522, 820, and 94, with the fixed
chirality given by SnapPy (which may or may not be mirror to their usual chiralities), then we have

S3(K15n43522) = +5°,(9_42), §3,(K15n43522) = +S§° (8_20).
But 8,9 and 94, both have genus 2, so we can apply Lemma A.2 to conclude that
dim HF (83, (15143522);Q) > 5

and we have a contradiction. O
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