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Abstract. We prove that 0 is a characterizing slope for infinitely many knots, namely the genus-1
knots whose knot Floer homology is 2-dimensional in the top Alexander grading, which we classified
in recent work and which include all (�3, 3, 2n+ 1) pretzel knots. This was previously only known
for 52 and its mirror, as a corollary of that classification, and for the unknot, trefoils, and the figure
eight by work of Gabai from 1987.

1. Introduction

A rational number r 2 Q is said to be a characterizing slope for a knot K ⇢ S
3 if the orientation-

preserving homeomorphism type of the manifold obtained via Dehn surgery onK of slope r uniquely
determines K; that is,

if S3
r (J) ⇠= S

3
r (K) then J = K.

It seems very hard to prove for most knots that any given integral slope is characterizing. This is
especially true for slope 0: in his celebrated 1987 work [Gab87], Gabai proved that S3

0(K) detects the
genus of K and whether or not K is fibered, which immediately implies that 0-surgery characterizes
the unknot (resolving the Property R Conjecture), trefoils, and figure eight. To our knowledge, the
only other knots known to be characterized by their 0-surgeries are 52 and its mirror, which we
proved in our recent work [BS22a]. The main result of this paper is that infinitely many knots are
characterized by their 0-surgeries:

Theorem 1.1. Let K be any of the knots

15n43522, Wh�(T2,3, 2), Wh+(T2,3, 2), P (�3, 3, 2n+ 1) (n 2 Z),

or their mirrors. Then 0 is a characterizing slope for K.

Here, Wh±(T2,3, 2) is the 2-twisted Whitehead double of the right-handed trefoil, with a positive
or a negative clasp, respectively, and the P (�3, 3, 2n+ 1) are pretzel knots. See Figure 1.

By contrast, there are many knots that are not characterized by their 0-surgeries. Brakes [Bra80]
gave the first pairs of examples, and later Osoinach [Oso06] used annulus twisting to construct infi-
nite families of examples. In fact, there can be infinitely many knotsKn with pairwise di↵eomorphic
0-traces X0(Kn), the result of attaching a 0-framed 2-handle to B

4 along Kn [AJOT13]. Knots

15n43522 Wh�(T2,3, 2) Wh+(T2,3, 2)

2n+1

P (�3, 3, 2n+1)

Figure 1. The knots that Theorem 1.1 says are characterized by their 0-surgeries.
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which are not smoothly concordant, or which have di↵erent slice genera, can nonetheless have dif-
feomorphic 0-surgeries [Yas15] or even 0-traces [MP18, Pic19]. Indeed, Piccirillo [Pic20] famously
proved that the Conway knot is not slice by exhibiting a non-slice knot with the same 0-trace.
Recently, Manolescu and Piccirillo [MP21] have given a systematic construction of pairs of knots
with the same 0-surgeries, and used it as a source of potentially exotic 4-spheres.

In general, a major di�culty in Floer-theoretic approaches to proving that some integral slope
characterizes a knot K is that one must first identify all knots with the same knot Floer homology
as K, and this was out of reach until recently for all but a handful of knots. However, Theorem 1.1
is made possible by our recent classification [BS22b] of all genus-1 nearly fibered knots:

Theorem 1.2 ([BS22b, Theorem 1.2]). Let K ⇢ S
3
be a genus-1 knot with dimQ [HFK (K, 1) = 2.

Then up to mirroring K must be one of

(1.1) 52, 15n43522, Wh�(T2,3, 2)

or

(1.2) Wh+(T2,3, 2), P (�3, 3, 2n+ 1) (n 2 Z),

where the knots in (1.1) have Alexander polynomial �K(t) = 2t � 3 + 2t�1
and determinant

|�K(�1)| = 7, and those in (1.2) have Alexander polynomial �K(t) = �2t + 5 � 2t�1
and de-

terminant |�K(�1)| = 9.

For example, we were able to use this classification to prove in [BS22a] that all rational slopes
besides the positive integers (i.e., not just 0) are characterizing for 52:

Theorem 1.3 ([BS22a, Theorem 1.1]). Every r 2 Q \ Z>0 is a characterizing slope for 52.

We do not expect anything as strong as Theorem 1.3 to hold for the knots in Theorem 1.1.
Indeed, Baker and Motegi [BM18, Example 4.1] proved that P (�3, 3, 5) is not characterized by any
non-zero integer surgeries. On the other hand, Theorem 1.1 gives an a�rmative answer to [BM18,
Question 4.4], which asked whether 0 might be a characterizing slope for P (�3, 3, 5).

In this paper we assume some background in Heegaard Floer homology, but the Floer-theoretic
techniques we use were all present in [BS22a]; the casual reader may be relieved to know that
unlike in [BS22a], we make no use of the “mapping cone” formula for the Heegaard Floer homology
of surgeries on a knot. On the other hand, Floer theoretic invariants cannot distinguish the 0-
surgeries on any of the pretzel knots P (�3, 3, 2n+1), so we will eventually need to introduce some
perturbative invariants defined by Ohtsuki [Oht10] which can tell them apart.

Organization. Theorem 1.1 is proved in several steps. In Section 2 we prove some general facts
about 0-surgery on knots of genus one, and then we use these in Section 3 to prove Theorem 3.1,
stating that 0-surgery characterizes 15n43522 and Wh�(T2,3, 2) as well as their mirrors. In Section 4,
we use JSJ decompositions to deal with Wh+(T2,3, 2) and its mirror in Theorem 4.3. Then in
Section 5 we use Ohtsuki’s invariants to prove in Theorem 5.4 that 0 is a characterizing slope for
each of the pretzel knots P (�3, 3, 2n + 1). We prove as a bonus in Proposition 5.5 that r-surgery
distinguishes these pretzel knots for any r 2 Q.

Acknowledgments. We thank Tam Cheetham-West and Alan Reid for some interesting conver-
sations which inspired this work, and in particular for sharing a draft of Tam’s article [CW23]. We
also thank the referee for helpful feedback on the initial version of this paper. JAB was supported
by NSF FRG Grant DMS-1952707.
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2. Zero-surgery on genus-one knots

We begin by introducing some general results that will let us reduce Theorem 1.1 to the case
where J is one of the knots listed in Theorem 1.2.

Proposition 2.1. Let K ⇢ S
3
be a knot with Seifert genus 1, and suppose for some other knot

J ⇢ S
3
that there is an orientation-preserving homeomorphism

S
3
0(K) ⇠= S

3
0(J).

Then J has genus 1 and the same Alexander polynomial as K, and moreover

dimF [HFK (K, 1) = dimF [HFK (J, 1)

over any field F.

Proof. The manifold S
3
0(J) determines the Alexander polynomial of J , because the infinite cyclic

covers of both S
3
0(J) and the knot exterior S

3 \ N(J) have the same first homology as Z[t±1]-
modules, so �K(t) = �J(t). Gabai [Gab87] proved that it also determines the Seifert genus g(J),
so g(J) = g(K) = 1.

We now study the Heegaard Floer homology of various surgeries on K, which for the remainder
of this proof we will always take with coe�cients in a fixed field F. We recall that there is a smooth
concordance invariant V0(K) 2 Z, defined by Rasmussen [Ras03], which can be extracted from the
knot Floer complex CFK

1(K). Its precise definition does not matter here, except to note that it
appears in computing the Heegaard Floer correction terms of surgeries on K, by a formula of Ni
and Wu [NW15, Proposition 1.6] which implies

(2.1) d(S3
1(K)) = �2V0(K)

as a special case.

The correction terms of the zero-surgery on K satisfy

d1/2(S
3
0(K)) = 1

2 � 2V0(K)

d�1/2(S
3
0(K)) = �1

2 + 2V0(K),

by [OS03, Proposition 4.12] and (2.1). The same is true for J , and these correction terms for S3
0(K)

and S
3
0(J) must agree since S

3
0(K) ⇠= S

3
0(J), so we have

(2.2) V0(K) = V0(J).

Now since g(K) = 1 we can apply [BS22a, Lemma 2.8] to see that HF
+
red(S

3
1(K)) is an F[U ]-

module with trivial U -action, and that

dimHF
+
red(S

3
1(K)) = dim [HFK (K, 1)� V0(K).

This means that

HF
+(S3

1(K)) ⇠=
F[U,U�1]

U · F[U ]
� Fdim\HFK (K,1)�V0(K)

as ungraded F[U ]-modules, so from the exact triangle

· · · ! dHF (S3
1(K)) ! HF

+(S3
1(K))

U�! HF
+(S3

1(K)) ! · · ·
we deduce that

dimdHF (S3
1(K)) = 2

⇣
dim [HFK (K, 1)� V0(K)

⌘
+ 1.

Now we apply the surgery exact triangle

· · · ! dHF (S3) ! dHF (S3
0(K)) ! dHF (S3

1(K)) ! · · ·
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to see that

(2.3) dimdHF (S3
0(K)) = 2

⇣
dim [HFK (K, 1)� V0(K)

⌘
+ 1± 1.

The same is true for J since g(J) = 1 as well, namely

(2.4) dimdHF (S3
0(J)) = 2

⇣
dim [HFK (J, 1)� V0(J)

⌘
+ 1± 1.

But dHF (S3
0(K)) ⇠= dHF (S3

0(J)) since the two manifolds are the same, so we combine (2.3) and (2.4)
together with (2.2) to get

(2.5) 2
⇣
dim [HFK (K, 1)� dim [HFK (J, 1)

⌘
2 {�2, 0, 2}.

Now we recall that [HFK (K) carries a Z-valued Maslov grading, and that each [HFK (K, i) has
Euler characteristic equal to the t

i-coe�cient of �K(t). Since �K(t) = �J(t), this means that

�([HFK (K, 1)) = �([HFK (J, 1)),

and in particular this implies that

dim [HFK (K, 1) ⌘ dim [HFK (J, 1) (mod 2).

But then the left side of (2.5) is a multiple of 4, so it must be zero, and thus dim [HFK (K, 1) =

dim [HFK (J, 1) as claimed. ⇤
Remark 2.2. The analogue of the [HFK claim in Proposition 2.1 for g � 2 is that if S3

0(K) ⇠= S
3
0(J)

then [HFK (K, g) ⇠= [HFK (J, g). This has long been known because in that case [OS04, Corollary 4.5]

identifies [HFK (K, g) with HF
+(S3

0(K), sg�1) for a certain Spinc structure sg�1.

3. The determinant-7 case

Proposition 2.1 allows us to take care of the knots in Theorem 1.2 with Alexander polynomial
2t� 3 + 2t�1, using only classical invariants from now on.

Theorem 3.1. Let K be one of 15n43522, Wh�(T2,3, 2), or their mirrors. If S
3
0(K) ⇠= S

3
0(J) for

some knot J , then J is isotopic to K.

Proof. In each case we have �K(t) = 2t�3+2t�1 and dimQ [HFK (K, 1) = 2. Thus Proposition 2.1
says that the same is true of J , and then by Theorem 1.2 we know that J must be one of the
knots listed in (1.1) up to mirroring. In fact, it cannot be 52 or its mirror, because we know from
Theorem 1.3 that 0 is a characterizing slope for each of these.

Next, we claim that J cannot be isotopic to the mirror K. Indeed, if this is the case then

S
3
0(K) ⇠= S

3
0(K) ⇠= �S

3
0(K),

so if � : H1(S3
0(K)) ⇠= Z ! Z/2Z is the unique surjection then the Casson–Gordon invariant

�1(S3
0(K),�) (see [CG78]) must be zero. This invariant is equal to minus the signature of K

[CG78, Lemma 3.1], so it follows that �(K) = 0. However, this is impossible because �K(t) has a
conjugate pair of simple roots on the unit circle, at

t = 1
4(3± i

p
7),

and these are its only roots. Thus the Tristram–Levine signature �K(�1) = �(K) must be ±2,
giving a contradiction.

It now remains to be shown that if K is 15n43522 or its mirror, then J cannot be Wh�(T2,3, 2)
or its mirror, and vice versa. In other words, we need to show that

±S
3
0(15n43522) 6⇠= ±S

3
0(Wh�(T2,3, 2)),
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and we do this by checking that they have di↵erent fundamental groups. This can be done in
SnapPy [CDGW] by counting 6-fold covers of each:

In[1]: M = Manifold('15n43522(0,1)')

In[2]: N = Manifold('16n696530(0,1)')

In[3]: len(M.covers(6))

Out[3]: 3

In[4]: len(N.covers(6))

Out[4]: 21

In particular, the fundamental groups of each have di↵erent numbers of index-6 subgroups, so they
cannot be homeomorphic. ⇤
Remark 3.2. Even with Proposition 2.1, we will need more than just classical invariants to address
the knots in Theorem 1.2 with Alexander polynomial �2t + 5 � 2t�1. For example, if P is one of
the pretzel knots P (�3, 3, 2n + 1), then P is slice and so �(P ) = 0, meaning that the arguments
used in Theorem 3.1 cannot even distinguish the 0-surgery on P from the 0-surgery on its mirror.

4. The determinant-9 case, part 1

We now turn to the knots in Theorem 1.2 with Alexander polynomial �2t+ 5� 2t�1. In order
to do this, we will first discuss the JSJ decompositions of their 0-surgeries.

Lemma 4.1. Let Y be the result of 0-surgery on P (�3, 3, 2n + 1) for some n 2 Z. Then Y is a

graph manifold: it has a single, non-separating JSJ torus, whose complement is Seifert fibered over

the annulus.

Proof. We know that Y is toroidal, because if ⌃ is a genus-1 Seifert surface for P = P (�3, 3, 2n+1)
then it extends to a non-separating torus ⌃̂ after performing 0-surgery on P , and ⌃̂ is incompressible
by [Gab87, Corollary 8.2]. Since P is a Montesinos knot other than a trefoil, Ichihara and Jong
[IJ10] proved that S3

0(P ) cannot be toroidal and Seifert fibered, so Y is not Seifert fibered. On the
other hand, if we cut Y open along the torus ⌃̂ then Cantwell and Conlon [CC93, Theorem 1.5]
proved that the resulting manifold is the complement of the (2, 4)-torus link T2,4 ⇢ S

3, which is
Seifert fibered over the annulus. ⇤
Lemma 4.2. Let Y be the result of 0-surgery on Wh+(T2,3, 2). Then Y is a graph manifold, and its

JSJ decomposition consists of two pieces: one piece is the exterior of T2,3, and the other is Seifert

fibered over a pair of pants.

Proof. Let W = Wh+(T2,3, 2). We observe that W is a satellite, with companion C = T2,3; its
pattern P has winding number 0, hence is not a 0- or 1-bridge braid in the solid torus V = S

1⇥D
2.

This means that 0-surgery on the pattern P ⇢ V produces a manifold with incompressible torus
boundary, by [Gab89, Theorem 1.1]. Thus the companion torus T = @N(C) in the exterior of
W remains incompressible in Y = S

3
0(W ). In particular T is one of the JSJ tori of S3

0(W ), and
moreover it separates S3

0(W ) into the union of S3 \N(T2,3) (which is Seifert fibered) and V0(P ).

We claim that V0(P ) is not Seifert fibered. Indeed, if it were then all but at most one Dehn
filling of its boundary would also be Seifert fibered. But for any n we can realize one of these Dehn
fillings by doing (0, 1

n)-surgery on the Whitehead link, and these are homeomorphic to 0-surgeries
on infinitely many di↵erent twist knots. The only twist knots with a toroidal, Seifert fibered surgery
are the trefoils [IJ10], however, so V0(P ) cannot be Seifert fibered after all.

On the other hand, that the pattern P has a genus-1 Seifert surface ⌃ which lies entirely inside
V , and which extends to a non-separating, incompressible torus ⌃̂ in V0(P ) ⇢ S

3
0(W ). According
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to [BS22b, Theorem 7.1], if we cut S3
0(W ) open along ⌃̂ then we are left with the complement of

the (2, 4)-cable of T2,3, where the companion torus is the same torus T discussed above. It follows

that cutting V0(P ) along ⌃̂ produces the complement of a (2, 4)-torus link in the solid torus, and
this is Seifert fibered over a pair of pants. We conclude that T and ⌃̂ are the JSJ tori of S3

0(W ),
and that S3

0(W ) has the claimed JSJ decomposition. ⇤

Lemmas 4.1 and 4.2 make it easy to distinguish 0-surgery on Wh+(T2,3, 2) from the 0-surgeries
on the P (�3, 3, 2n+ 1) pretzel knots.

Theorem 4.3. Let K be either Wh+(T2,3, 2) or its mirror. If S
3
0(J)

⇠= S
3
0(K) for some knot

J ⇢ S
3
, then J is isotopic to K.

Proof. By Proposition 2.1, we see that J has genus 1 and top knot Floer homology

[HFK (J, 1;Q) ⇠= [HFK (K, 1;Q) ⇠= Q2
,

and its Alexander polynomial is �2t+5�2t�1. According to Theorem 1.2, we therefore know that
J is either K, its mirror K, or some pretzel knot P (�3, 3, 2n+ 1). (We note here that the mirror
of P (�3, 3, 2n+ 1) is P (�3, 3,�2n� 1).)

In order to show that J cannot be K, we consider the JSJ decompositions of

S
3
0(K) and S

3
0(K) ⇠= �S

3
0(K).

One of these two manifolds is S3
0(Wh+(T2,3, 2)), and by Lemma 4.2 its JSJ decomposition consists

of two pieces, one of which is the exterior of T2,3 and the other of which is not a knot complement.
But then the other manifold decomposes into the exterior of T�2,3 and another piece, which is
again not a knot complement. By the uniqueness of the JSJ decomposition, any orientation-

preserving homeomorphism S
3
0(K)

⇠=�! �S
3
0(K) would have to restrict to an orientation-preserving

homeomorphism

S
3 \N(T2,3) ⇠= S

3 \N(T�2,3),

and this is impossible.

Now if J = P (�3, 3, 2n+ 1) then Lemma 4.1 says that the JSJ decomposition of S3
0(J) consists

of a single Seifert fibered piece. This does not match the decomposition of S3
0(K), so again we must

have S
3
0(K) 6⇠= S

3
0(J). We have now shown that J cannot be either K̄ or any of the pretzel knots

P (�3, 3, 2n+ 1), so J must be isotopic to K after all. ⇤

5. The determinant-9 case, part 2

In this section we prove that 0 is a characterizing slope for each pretzel knot P (�3, 3, 2n + 1).
We begin with the following.

Lemma 5.1. If S
3
0(J)

⇠= S
3
0(P (�3, 3, 2n + 1)) for some n 2 Z, then J is isotopic to the pretzel

knot P (�3, 3, 2m+ 1) for some m 2 Z.

Proof. Just as in the proof of Theorem 4.3, we apply Proposition 2.1 and Theorem 1.2 to see that
if we write W = Wh+(T2,3, 2) then J must be one of

W, W, or P (�3, 3, 2m+ 1) (m 2 Z).

On the other hand, Theorem 4.3 tells us that

S
3
0(W ) 6⇠= S

3
0(P (�3, 3, 2n+ 1)) and S

3
0(W ) 6⇠= S

3
0(P (�3, 3, 2n+ 1)),

so J cannot be W or W , hence it must be some P (�3, 3, 2m+ 1). ⇤
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In order to distinguish the 3-manifolds S
3
0(P (�3, 3, 2n + 1)) for di↵erent values of n, we use

Ohtsuki’s perturbative invariants of 3-manifolds M with b1(M) = 1 [Oht10], which take the form
of a power series

⌧(M ; c) =
1X

`=0

�`(M ; c)(q � 1)` 2 C[[q � 1]]

that can be evaluated at c = 0 or at any root c of the Alexander polynomial �M (t). Each �`(M ; c)
is itself an invariant of M , and �0(M ; c) is determined by the Alexander polynomial of M [Oht10,
Proposition 5.3], so we will compute �1(S3

0(P (�3, 3, 2n+ 1)), 0).

According to the discussion in [Oht10, §1], we have

�`(S
3
0(K); c) = �1

2
· 1 + c

1� c

✓
Res
t=c

(1� t
�1)2P`(t)

�K(t)2`+1

◆
,

where the Laurent polynomials P`(t) are the coe�cients of the loop expansion

Jn(K; q) =
1X

`=0

P`(qn)

�K(qn)2`+1
(q � 1)`

of the colored Jones polynomial. We have P0(t) = 1 regardless of K, and then Ohtsuki [Oht04,
Proposition 6.1] computed that

(5.1) P1(t) = �(t1/2 � t
�1/2)2 · ⇥̂K(t),

where the last factor

⇥̂K(t) =
⇥K(t, 1)

(t1/2 � t�1/2)2
2 Q[t, t�1]

is a specialization of a polynomial called the “2-loop polynomial” ⇥K(t1, t2) arising from the Kont-
sevich integral of K. (We note that the polynomial Jn(K; q) in [Oht10] is the same as the one
denoted Vn(K; q) in [Oht04] – both are normalized to take the value 1 when K is the unknot – and
also that (5.1) may di↵er from the value in [Oht10] by a sign, but this only changes the invariants
�1(S3

0(K); c) that we will compute by an overall sign.)

The calculation of these polynomials was described in part by Ohtsuki [Oht07], including a
computation of both ⇥K(t1, t2) and ⇥̂K(t) when K is a 3-stranded pretzel knot:

Lemma 5.2 ([Oht07, Example 3.6]). For the pretzel knot K = P (p, q, r), if we let

d =
pq + qr + rp+ 1

4
then the reduced 2-loop polynomial of K is given by

⇥̂K(t) = 1
16

�
(p+ q + r)(4d+ 1) + pqr

�✓
�2� 2d+ 1

3
(t� 2 + t

�1)

◆
.

Applying Lemma 5.2 when (p, q, r) = (�3, 3, 2n+ 1), we have d = �2 and then

(5.2) ⇥̂P (�3,3,2n+1)(t) = �(2n+ 1)
�
t� 4 + t

�1
�
,

whence for K = P (�3, 3, 2n+ 1) we have �K(t) = �2t+ 5� 2t�1 and

(5.3)

P1(t) = �(t� 2 + t
�1) · ⇥̂K(t)

= (2n+ 1)(t� 2 + t
�1)(t� 4 + t

�1)

= (2n+ 1)(t2 � 6t+ 10� 6t�1 + t
�2)

= (2n+ 1)
�
1
4�K(t)2 + 1

2�K(t)� 3
4

�
.

The reason for writing it this way is that we can compute �1(S3
0(K), 0) via the following lemma.
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Lemma 5.3 ([Oht10, Proposition 1.7(2)]). Suppose that the Alexander polynomial of K has degree

1, and write

�K(t) = b0 � b1(t� 2 + t
�1),

P1(t) = f(t)�K(t)3 + a2�K(t)2 + a1�K(t) + a0

for some constants b0, b1, a0, a1, a2 2 Q and Laurent polynomial f(t). Then

�1(S
3
0(K); 0) = �d

2
+

a2

2b1

where d is the constant term of (t� 2 + t
�1)f(t).

Theorem 5.4. Fix an integer n 2 Z. If S
3
0(P (�3, 3, 2n+1)) ⇠= S

3
0(K) for some knot K 2 S

3
, then

K is isotopic to P (�3, 3, 2n+ 1).

Proof. Lemma 5.1 guarantees that K is P (�3, 3, 2m+ 1) for some m 2 Z. We use Lemma 5.3 for
P (�3, 3, 2n+ 1): we have (b0, b1) = (1, 2), and (5.3) tells us that

(f(t), a2, a1, a0) =

✓
0,

2n+ 1

4
,
2n+ 1

2
,�3(2n+ 1)

4

◆
.

The constant term of (t� 2 + t
�1)f(t) = 0 is d = 0, so we end up with

�1(S
3
0(P (�3, 3, 2n+ 1)); 0) =

a2

2b1
=

2n+ 1

16
.

But then an identical calculation says that

�1(S
3
0(P (�3, 3, 2m+ 1)); 0) =

2m+ 1

16
,

and since these two invariants agree, we must have m = n. ⇤

In fact, we can distinguish surgeries of any slope on these pretzel knots.

Proposition 5.5. If r 2 Q is non-zero and m and n are distinct integers, then

S
3
r (P (�3, 3, 2m+ 1)) 6⇠= S

3
r (P (�3, 3, 2n+ 1)).

Proof. This uses an LMO invariant obstruction due to Ito [Ito20], just as in [BS22a, §7]: both knots
have the same Conway polynomial rK(z) = 1� 2z2, with the same z

4-coe�cient

a4(P (�3, 3, 2m+ 1)) = a4(P (�3, 3, 2n+ 1)) = 0.

Thus if their r-surgeries are homeomorphic, then by [Ito20, Corollary 1.3(iv)] these knots must
have the same finite type invariants

v3(P (�3, 3, 2m+ 1)) = v3(P (�3, 3, 2n+ 1)).

But Ohtsuki [Oht07, Proposition 1.1] proved that v3(K) = 1
2⇥̂K(1), and so (5.2) says that

v3(P (�3, 3, 2n+ 1)) = 2n+ 1,

hence these pretzel knots have di↵erent v3 invariants unless m = n. (We note that Ohtsuki’s
normalization of v3 di↵ers from Ito’s by a scalar, but this does not a↵ect the argument.) ⇤

We remark that Ito’s obstruction cannot be used to prove Theorem 5.4, however, because it
only applies to non-zero surgeries. Moreover, Proposition 5.5 does not prove that non-zero slopes
are characterizing for these pretzel knots, because for example the Heegaard Floer homology of

S
3
r (K) ⇠= S

3
r (P (�3, 3, 2n+ 1)) may not su�ce to determine [HFK (K) when r 6= 0.
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