ZERO-SURGERY CHARACTERIZES INFINITELY MANY KNOTS
JOHN A. BALDWIN AND STEVEN SIVEK

ABSTRACT. We prove that 0 is a characterizing slope for infinitely many knots, namely the genus-1
knots whose knot Floer homology is 2-dimensional in the top Alexander grading, which we classified
in recent work and which include all (—3,3,2n + 1) pretzel knots. This was previously only known
for 52 and its mirror, as a corollary of that classification, and for the unknot, trefoils, and the figure
eight by work of Gabai from 1987.

1. INTRODUCTION

A rational number r € Q is said to be a characterizing slope for a knot K C S if the orientation-
preserving homeomorphism type of the manifold obtained via Dehn surgery on K of slope r uniquely
determines K; that is,

if S3(J) = S2(K) then J = K.

It seems very hard to prove for most knots that any given integral slope is characterizing. This is
especially true for slope 0: in his celebrated 1987 work [Gab87], Gabai proved that S3(K) detects the
genus of K and whether or not K is fibered, which immediately implies that 0-surgery characterizes
the unknot (resolving the Property R Conjecture), trefoils, and figure eight. To our knowledge, the
only other knots known to be characterized by their 0-surgeries are 52 and its mirror, which we
proved in our recent work [BS22a]. The main result of this paper is that infinitely many knots are
characterized by their O-surgeries:

Theorem 1.1. Let K be any of the knots
15043522, Wh™ (T23,2), Wh' (T3,2), P(-3,3,2n+1) (n € Z),
or their mirrors. Then 0 is a characterizing slope for K.

Here, Wh* (T2,3,2) is the 2-twisted Whitehead double of the right-handed trefoil, with a positive
or a negative clasp, respectively, and the P(—3,3,2n + 1) are pretzel knots. See Figure

By contrast, there are many knots that are not characterized by their 0-surgeries. Brakes [Bra80]
gave the first pairs of examples, and later Osoinach [Os006] used annulus twisting to construct infi-
nite families of examples. In fact, there can be infinitely many knots K, with pairwise diffeomorphic
0-traces Xo(K,), the result of attaching a O-framed 2-handle to B* along K,, [AJOT13]. Knots
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FIGURE 1. The knots that Theorem says are characterized by their 0-surgeries.
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which are not smoothly concordant, or which have different slice genera, can nonetheless have dif-
feomorphic 0-surgeries [Yasl5] or even O-traces [MP18, [Pic19]. Indeed, Piccirillo [Pic20] famously
proved that the Conway knot is not slice by exhibiting a non-slice knot with the same O-trace.
Recently, Manolescu and Piccirillo [MP21] have given a systematic construction of pairs of knots
with the same 0-surgeries, and used it as a source of potentially exotic 4-spheres.

In general, a major difficulty in Floer-theoretic approaches to proving that some integral slope
characterizes a knot K is that one must first identify all knots with the same knot Floer homology
as K, and this was out of reach until recently for all but a handful of knots. However, Theorem [1.1
is made possible by our recent classification [BS22b| of all genus-1 nearly fibered knots:

Theorem 1.2 ([BS22h, Theorem 1.2]). Let K C S® be a genus-1 knot with dimg @((K, 1) =2.
Then up to mirroring K must be one of

(1.1) 52, 15143522, Wh™ (T%3,2)
or
(1.2) Wht(Ty3,2), P(=3,3,2n+1) (n € Z),

where the knots in (1.1) have Alezander polynomial Ak (t) = 2t — 3 + 2t~! and determinant
|Ak(—=1)| = 7, and those in (1.2) have Alexander polynomial Ak (t) = —2t +5 — 2t~ and de-
terminant |[Ag(—1)] = 9.

For example, we were able to use this classification to prove in [BS22a] that all rational slopes
besides the positive integers (i.e., not just 0) are characterizing for 5o:

Theorem 1.3 ([BS22a, Theorem 1.1]). Every r € Q \ Zs¢ is a characterizing slope for 5a.

We do not expect anything as strong as Theorem to hold for the knots in Theorem
Indeed, Baker and Motegi [BM18, Example 4.1] proved that P(—3,3,5) is not characterized by any
non-zero integer surgeries. On the other hand, Theorem gives an affirmative answer to [BM18|
Question 4.4], which asked whether 0 might be a characterizing slope for P(—3,3,5).

In this paper we assume some background in Heegaard Floer homology, but the Floer-theoretic
techniques we use were all present in [BS22a); the casual reader may be relieved to know that
unlike in [BS22a], we make no use of the “mapping cone” formula for the Heegaard Floer homology
of surgeries on a knot. On the other hand, Floer theoretic invariants cannot distinguish the 0-
surgeries on any of the pretzel knots P(—3,3,2n+ 1), so we will eventually need to introduce some
perturbative invariants defined by Ohtsuki [Oht10] which can tell them apart.

Organization. Theorem is proved in several steps. In Section [2 we prove some general facts
about O-surgery on knots of genus one, and then we use these in Section [3| to prove Theorem
stating that O-surgery characterizes 15n43522 and Wh™ (75 3,2) as well as their mirrors. In Sectio
we use JSJ decompositions to deal with Wh' (7, 3,2) and its mirror in Theorem Then in
Section [5| we use Ohtsuki’s invariants to prove in Theorem that 0 is a characterizing slope for
each of the pretzel knots P(—3,3,2n + 1). We prove as a bonus in Proposition that r-surgery
distinguishes these pretzel knots for any r € Q.

Acknowledgments. We thank Tam Cheetham-West and Alan Reid for some interesting conver-
sations which inspired this work, and in particular for sharing a draft of Tam’s article [CW23]. We
also thank the referee for helpful feedback on the initial version of this paper. JAB was supported
by NSF FRG Grant DMS-1952707.
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2. ZERO-SURGERY ON GENUS-ONE KNOTS

We begin by introducing some general results that will let us reduce Theorem to the case
where J is one of the knots listed in Theorem [1.2]

Proposition 2.1. Let K C S3 be a knot with Seifert genus 1, and suppose for some other knot
J C S3 that there is an orientation-preserving homeomorphism

SG(K) 2 SG(J).-
Then J has genus 1 and the same Alexander polynomial as K, and moreover
dimp HFK (K, 1) = dimg HFK (J, 1)
over any field F.
Proof. The manifold S3(J) determines the Alexander polynomial of J, because the infinite cyclic
covers of both S3(J) and the knot exterior S\ N(J) have the same first homology as Z[t*!]-

modules, so Ax(t) = As(t). Gabai [Gab87] proved that it also determines the Seifert genus g(.J),
so g(J) =g(K) = 1.

We now study the Heegaard Floer homology of various surgeries on K, which for the remainder
of this proof we will always take with coeflicients in a fixed field F. We recall that there is a smooth
concordance invariant Vp(K') € Z, defined by Rasmussen [Ras03], which can be extracted from the
knot Floer complex CFK*(K). Its precise definition does not matter here, except to note that it

appears in computing the Heegaard Floer correction terms of surgeries on K, by a formula of Ni
and Wu [NW15, Proposition 1.6] which implies

(2.1) d(S7(K)) = —2Vo(K)
as a special case.
The correction terms of the zero-surgery on K satisfy
dyja(S3(K)) = 5 —2Vo(K)
d_12(S3(K)) = —5 + 2Vo(K),

by [0S03, Proposition 4.12] and (2.1)). The same is true for J, and these correction terms for S§(K)
and S3(J) must agree since S3(K) = S3(.J), so we have

(2.2) VoK) = Vo(J).
Now since g(K) = 1 we can apply [BS22a, Lemma 2.8] to see that HF ! (S3(K)) is an F[U]-
module with trivial U-action, and that
dim HF(S3(K)) = dim HFK (K, 1) — Vo(K).
This means that

FIU, Ut im HFK _
HF‘*‘(S%(K)) [ [BIE‘[U]] @Fd HFE (K,1)-Vo(K)

as ungraded F[U]-modules, so from the exact triangle
- HF(S}(K)) — HF T (S}(K)) & HF*(S3(K)) — -

we deduce that
dim HF (S(K)) = 2 (dim HFEK (K, 1) = Vo(K) ) + 1.

Now we apply the surgery exact triangle

o — HF(S?) = HF(S}(K)) — HF (S3(K)) — - --
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to see that
(2.3) dim HF (S3(K)) = 2 (dim HFEK (K, 1) = Vo(K) ) + 1 £ 1.

(
The same is true for J since g(J) = 1 as well, namely

( 1

(2.4) dim HF(S3(J)) = 2 (dimﬁﬁ(u, 1) — VO(J)) Y1+
But ﬁ(SS’(K ) = ﬁ(SS’(J )) since the two manifolds are the same, so we combine (2.3) and ([2.4))
together with (2.2)) to get
(2.5) 2 (dim HFK (K, 1) — dim HFK (J, 1)) € {-2,0,2).

Now we recall that HFK (K) carries a Z-valued Maslov grading, and that each HFK (K,i) has
Euler characteristic equal to the t'-coefficient of Ag(t). Since Ag(t) = As(t), this means that

X(HFE (K, 1)) = x(HFK (J, 1),
and in particular this implies that
dim HFK (K,1) = dim HFK(J,1) (mod 2).

But then the left side of (2.5) is a multiple of 4, so it must be zero, and thus dim HFK (K, 1)
dim HFK (J,1) as claimed.

O

Remark 2.2. The analogue of the HFK claim in Proposition for g > 2 is that if S3(K) = S3(J)
then HFK (K, g) = HFK (J, g). This has long been known because in that case [OS04, Corollary 4.5
identifies HFK (K, g) with HF " (S3(K),s4-1) for a certain Spin® structure s,_;.

3. THE DETERMINANT-7 CASE

Proposition allows us to take care of the knots in Theorem with Alexander polynomial
2t — 3 + 2t~!, using only classical invariants from now on.

Theorem 3.1. Let K be one of 15n43502, Wh™ (1o 3,2), or their mirrors. If Sg(K) = S3(J) for
some knot J, then J is isotopic to K.

Proof. In each case we have A (t) = 2t —3+2¢t~! and dimg @((K, 1) = 2. Thus Proposition
says that the same is true of J, and then by Theorem we know that J must be one of the
knots listed in up to mirroring. In fact, it cannot be 59 or its mirror, because we know from
Theorem that 0 is a characterizing slope for each of these.

Next, we claim that J cannot be isotopic to the mirror K. Indeed, if this is the case then
So(K) = S5(K) = —S5(K),

so if x : H1(S3(K)) & Z — 7Z/2Z is the unique surjection then the Casson-Gordon invariant
01(S3(K),x) (see [CGT8]) must be zero. This invariant is equal to minus the signature of K
[CGT8, Lemma 3.1], so it follows that o(K) = 0. However, this is impossible because Ak (t) has a
conjugate pair of simple roots on the unit circle, at

t=1(3+£iV7),
and these are its only roots. Thus the Tristram—Levine signature ox(—1) = o(K) must be +2,
giving a contradiction.

It now remains to be shown that if K is 15n43522 or its mirror, then J cannot be Wh™ (753, 2)
or its mirror, and vice versa. In other words, we need to show that

£S5 (15n43502) % £S5 (Wh™ (Th3,2)),
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and we do this by checking that they have different fundamental groups. This can be done in
SnapPy [CDGW] by counting 6-fold covers of each:

In[1]: M = Manifold('15n43522(0,1)"')
In[2]: N = Manifold('16n696530(0,1)"')
In[3]: len(M.covers(6))

Out[3]: 3
In[4]: len(N.covers(6))
Out[4]: 21

In particular, the fundamental groups of each have different numbers of index-6 subgroups, so they
cannot be homeomorphic. O

Remark 3.2. Even with Proposition [2.1] we will need more than just classical invariants to address
the knots in Theorem with Alexander polynomial —2¢ + 5 — 2¢t~1. For example, if P is one of
the pretzel knots P(—3,3,2n + 1), then P is slice and so o(P) = 0, meaning that the arguments
used in Theorem cannot even distinguish the O-surgery on P from the 0-surgery on its mirror.

4. THE DETERMINANT-9 CASE, PART 1

We now turn to the knots in Theorem with Alexander polynomial —2¢ 4+ 5 — 2¢~!. In order
to do this, we will first discuss the JSJ decompositions of their 0-surgeries.

Lemma 4.1. Let Y be the result of 0-surgery on P(—3,3,2n + 1) for some n € Z. Then'Y is a
graph manifold: it has a single, non-separating JSJ torus, whose complement is Seifert fibered over
the annulus.

Proof. We know that Y is toroidal, because if ¥ is a genus-1 Seifert surface for P = P(—3,3,2n+1)
then it extends to a non-separating torus ¥ after performing 0-surgery on P, and 3 is incompressible
by [Gab87, Corollary 8.2]. Since P is a Montesinos knot other than a trefoil, Ichihara and Jong
[LJ10] proved that S§(P) cannot be toroidal and Seifert fibered, so Y is not Seifert fibered. On the
other hand, if we cut Y open along the torus ¥ then Cantwell and Conlon [CC93, Theorem 1.5]
proved that the resulting manifold is the complement of the (2,4)-torus link Tb4 C S, which is
Seifert fibered over the annulus. O

Lemma 4.2. Let Y be the result of 0-surgery on Wh+(T2’3, 2). Then'Y is a graph manifold, and its
JSJ decomposition consists of two pieces: one piece is the exterior of To 3, and the other is Seifert
fibered over a pair of pants.

Proof. Let W = Wh+(T273,2). We observe that W is a satellite, with companion C' = T533; its
pattern P has winding number 0, hence is not a 0- or 1-bridge braid in the solid torus V = S* x D?.
This means that O-surgery on the pattern P C V produces a manifold with incompressible torus
boundary, by [Gab89, Theorem 1.1]. Thus the companion torus 7' = dN(C) in the exterior of
W remains incompressible in Y = S3(W). In particular 7T is one of the JSJ tori of S3(W), and
moreover it separates Sg(W) into the union of S3\ N (T 3) (which is Seifert fibered) and Vy(P).

We claim that Vy(P) is not Seifert fibered. Indeed, if it were then all but at most one Dehn
filling of its boundary would also be Seifert fibered. But for any n we can realize one of these Dehn
fillings by doing (0, %)—surgery on the Whitehead link, and these are homeomorphic to 0-surgeries
on infinitely many different twist knots. The only twist knots with a toroidal, Seifert fibered surgery
are the trefoils [LJ10], however, so Vp(P) cannot be Seifert fibered after all.

On the other hand, that the pattern P has a genus-1 Seifert surface 3 which lies entirely inside
V, and which extends to a non-separating, incompressible torus > in Vo(P) C S3(W). According
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to [BS22b, Theorem 7.1], if we cut S3(W) open along 3 then we are left with the complement of
the (2, 4)-cable of T3 3, where the companion torus is the same torus 7" discussed above. It follows
that cutting Vo(P) along 3 produces the complement of a (2,4)-torus link in the solid torus, and
this is Seifert fibered over a pair of pants. We conclude that 7' and ¥ are the JSJ tori of S3(W),
and that S3(W) has the claimed JSJ decomposition. O

Lemmas and make it easy to distinguish O-surgery on Wh' (7% 3,2) from the O-surgeries
on the P(—3,3,2n + 1) pretzel knots.

Theorem 4.3. Let K be either Wh't(Ty3,2) or its mirror. If S3(J) = S3(K) for some knot
J C 83, then J is isotopic to K.

Proof. By Proposition we see that J has genus 1 and top knot Floer homology
HFK (J,1;Q) = HFK (K, 1;Q) = @,

and its Alexander polynomial is —2¢+5 — 2t~1. According to Theorem we therefore know that
J is either K, its mirror K, or some pretzel knot P(—3,3,2n + 1). (We note here that the mirror
of P(-3,3,2n+1)is P(-3,3,—2n —1).)

In order to show that J cannot be K, we consider the JSJ decompositions of
S3(K) and S3(K)=~-S3(K).

One of these two manifolds is S§(Wh™ (T3,2)), and by Lemma [4.2|its JSJ decomposition consists
of two pieces, one of which is the exterior of 75 3 and the other of which is not a knot complement.
But then the other manifold decomposes into the exterior of 7" 53 and another piece, which is
again not a knot complement. By the uniqueness of the JSJ decomposition, any orientation-

preserving homeomorphism Sg(K) =N —S3(K) would have to restrict to an orientation-preserving
homeomorphism

S*\ N(Ty3) = S\ N(T-33),
and this is impossible.

Now if J = P(—3,3,2n + 1) then Lemma {.1{says that the JSJ decomposition of S3(J) consists
of a single Seifert fibered piece. This does not match the decomposition of S3(K), so again we must
have S3(K) % S3(J). We have now shown that J cannot be either K or any of the pretzel knots
P(-3,3,2n + 1), so J must be isotopic to K after all. ]

5. THE DETERMINANT-9 CASE, PART 2

In this section we prove that 0 is a characterizing slope for each pretzel knot P(—3,3,2n + 1).
We begin with the following.

Lemma 5.1. If S3(J) = S3(P(—3,3,2n + 1)) for some n € Z, then J is isotopic to the pretzel
knot P(—3,3,2m + 1) for some m € Z.

Proof. Just as in the proof of Theorem we apply Proposition and Theorem [1.2] to see that
if we write W = Wh' (T 3,2) then J must be one of

W, W, or P(—3,3,2m + 1) (m € Z).
On the other hand, Theorem tells us that
S3(W) 2 S3(P(-3,3,2n+1)) and S3(W) % S3(P(—3,3,2n + 1)),
so J cannot be W or W, hence it must be some P(—3,3,2m + 1). O
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In order to distinguish the 3-manifolds S3(P(—3,3,2n + 1)) for different values of n, we use
Ohtsuki’s perturbative invariants of 3-manifolds M with b1 (M) = 1 [Oht10], which take the form
of a power series

o0
T(M;e) =Y M(M;e)(g—1)" € Cllg — 1]]
=0
that can be evaluated at ¢ = 0 or at any root ¢ of the Alexander polynomial Aps(t). Each A\¢(M;c)
is itself an invariant of M, and Ag(M;c) is determined by the Alexander polynomial of M [Oht10,
Proposition 5.3], so we will compute Ay (S5 (P(—3,3,2n + 1)),0).

According to the discussion in [Oht10, §1], we have
1 1+c¢ (1 —t=H2P(¢)
3 P A Al S
)\K(SO(K)aC) - 2 1_¢ (It{:ecs AK(t)Qngl )
where the Laurent polynomials P(t) are the coefficients of the loop expansion

o Pl Y
Jn(K7 Q) - % AK(Q")%H (q 1)

of the colored Jones polynomial. We have Py(t) = 1 regardless of K, and then Ohtsuki [Oht04,
Proposition 6.1] computed that

(5.1) Pi(t) = —(t12 =712 Ok (1),
where the last factor Ok (1)

A o K\l —1

Ok (t) = (EC=TaE) € Q[t,t™]
is a specialization of a polynomial called the “2-loop polynomial” O (t1,t2) arising from the Kont-
sevich integral of K. (We note that the polynomial J,(K’;¢) in [Oht10] is the same as the one
denoted V,,(K; ¢) in [Oht04] — both are normalized to take the value 1 when K is the unknot — and
also that (5.1) may differ from the value in [Oht10] by a sign, but this only changes the invariants
A1 (S3(K);c) that we will compute by an overall sign.)

The calculation of these polynomials was described in part by Ohtsuki [Oht07], including a
computation of both O (t1,%2) and Ok (t) when K is a 3-stranded pretzel knot:
Lemma 5.2 ([Oht07, Example 3.6]). For the pretzel knot K = P(p,q,r), if we let

pqg+qr+rp+1
4
then the reduced 2-loop polynomial of K is given by

d =

Ox(t) =L ((p+q+7r)(4d+ 1) +pgr) <—2 — 2‘1; 1(75 -2 +t—1)> .

Applying Lemma [5.2) when (p, q,r) = (—=3,3,2n + 1), we have d = —2 and then
(5.2) Op(_33anin(t) =—Q2n+1) (t—4+t7"),
whence for K = P(—3,3,2n + 1) we have Ak (t) = —2t +5—2¢t~! and
Pi(t)=—(t—2+t"") Ok(t)
=C2n+1t-2+t )t -4+t
=@2n+1)(t* —6t+10 -6t +¢72)
= (2n+1) (A1)’ + 3AKx(1) - 7).

The reason for writing it this way is that we can compute A1 (S3(K),0) via the following lemma.

(5.3)
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Lemma 5.3 (JOLt10, Proposition 1.7(2)]). Suppose that the Alezander polynomial of K has degree
1, and write
Ag(t)=by—bi(t—2+t1),
Pl(t) = f(t)AK(t)S + CLQAK(LL)Q + alAK(t) + ag
for some constants by, b1, ag,a1,as € Q and Laurent polynomial f(t). Then
d ag

M(SS(K);0) = —— 4+ —

where d is the constant term of (t — 2+t~ 1) f(t).

Theorem 5.4. Fiz an integer n € Z. If S3(P(—3,3,2n+1)) = S3(K) for some knot K € S3, then
K is isotopic to P(—3,3,2n+ 1).

Proof. Lemma guarantees that K is P(—3,3,2m + 1) for some m € Z. We use Lemma for
P(-3,3,2n + 1): we have (bo,b1) = (1,2), and (5.3) tells us that

4 72 7 4
The constant term of (t —2+¢~1)f(t) =0 is d = 0, so we end up with

a9 2n+1
M(S§(P(=3,3,2n+1));0) = -~ =
1( 0( ( 39, 21 + ))v ) 2b, 16
But then an identical calculation says that
2 1
M (S3(P(=3,3,2m + 1));0) = =2
and since these two invariants agree, we must have m = n. O

In fact, we can distinguish surgeries of any slope on these pretzel knots.

Proposition 5.5. If r € Q is non-zero and m and n are distinct integers, then
S3(P(—3,3,2m 4 1)) ¢ S3(P(-3,3,2n + 1)).
Proof. This uses an LMO invariant obstruction due to Ito [Ito20], just as in [BS22a, §7]: both knots
have the same Conway polynomial Vg (z) = 1 — 222, with the same z*-coefficient
as(P(—=3,3,2m+ 1)) = a4(P(-3,3,2n + 1)) = 0.

Thus if their r-surgeries are homeomorphic, then by [[to20, Corollary 1.3(iv)] these knots must
have the same finite type invariants

v3(P(=3,3,2m + 1)) = v3(P(-3,3,2n + 1)).
But Ohtsuki [Oht07, Proposition 1.1] proved that v3(K) = %(:)K(l), and so says that
v3(P(-3,3,2n+1)) =2n+1,
hence these pretzel knots have different vs invariants unless m = n. (We note that Ohtsuki’s

normalization of vz differs from Ito’s by a scalar, but this does not affect the argument.) O

We remark that Ito’s obstruction cannot be used to prove Theorem however, because it
only applies to non-zero surgeries. Moreover, Proposition does not prove that non-zero slopes
are characterizing for these pretzel knots, because for example the Heegaard Floer homology of

S3(K) = S3(P(—3,3,2n + 1)) may not suffice to determine }Tﬁ((K) when r # 0.
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