
Interpreting Latent Student Knowledge Representations in
Programming Assignments

Nigel Fernandez, Andrew Lan
University of Massachusetts Amherst

{nigel,andrewlan}@cs.umass.edu

ABSTRACT
Recent advances in artificial intelligence for education lever-
age generative large language models, including using them
to predict open-ended student responses rather than their
correctness only. However, the black-box nature of these
models limits the interpretability of the learned student knowl-
edge representations. In this paper, we conduct a first explo-
ration into interpreting latent student knowledge represen-
tations by presenting InfoOIRT, an Information regularized
Open-ended Item Response Theory model, which encour-
ages the latent student knowledge states to be interpretable
while being able to generate student-written code for open-
ended programming questions. InfoOIRT maximizes the
mutual information between a fixed subset of latent knowl-
edge states enforced with simple prior distributions and gen-
erated student code, which encourages the model to learn
disentangled representations of salient syntactic and seman-
tic code features including syntactic styles, mastery of pro-
gramming skills, and code structures. Through experiments
on a real-world programming education dataset, we show
that InfoOIRT can both accurately generate student code
and lead to interpretable student knowledge representations.

Keywords
Programming Education, Language Models, Interpretability

1. INTRODUCTION
Open-ended problems, which require students to produce
free-form responses, either as short answers or essays [3]
or even code [41], serve as a highly meaningful form of
assessment and complements closed-form problems such as
multiple-choice questions [29]. These questions often require
students to detail their reasoning process and offer educa-
tors a deeper look into their knowledge states. Past work
has shown that students’ open-ended responses to such ques-
tions contain useful information on their knowledge states,
e.g., having misconceptions [5, 11, 45] or generally lacking
sufficient knowledge [2]. Until recently, however, research

has mostly focused on the automated scoring of open-ended
responses, either via classification methods [12, 47, 51] or
clustering [16] and providing corresponding feedback [14,
15, 18, 26, 37, 40]. However, relatively little has been done
towards developing student response models that estimate
their knowledge from open-ended responses; existing mod-
els such as item response theory (IRT) [48], knowledge trac-
ing [9], and factor analysis [31] primarily analyze close-ended
responses or graded ones, which are either binary-valued or
nominal/ordinal. These models are fundamentally limited
for open-ended problems since they cannot fully extract de-
tailed information on student knowledge contained in their
free-form responses. See Section 2 for a detailed discussion
on related work.

Recent advances in pre-trained generative large language
models (LLMs) [6] provide an opportunity to gain deeper
insights into student knowledge by analyzing their free-form
responses. Most existing works use text embedding mod-
els to summarize open-ended responses only as input into
knowledge tracing models [46], not fully utilizing the gener-
ative capabilities of LLMs. The only recent work that com-
bines generative LLMs with an underlying student response
model is open-ended knowledge tracing (OKT) [23], which
uses a knowledge tracing model to track the change in stu-
dent knowledge state over time, and then injects that knowl-
edge state together with the textual problem statement as
input to a generative LLM to predict a student’s open-ended
response as output. Applied to student-written code to pro-
gramming problems, OKT shows that learned underlying
latent student knowledge states have some correlation with
student-written code. Despite some early promise, a key
limitation of OKT is the interpretability of the latent stu-
dent knowledge space; there is no clear way to isolate certain
elements in these vectors that capture key aspects of student
code: ones that reflect their knowledge of key programming
knowledge concepts, ones that reflect certain bugs/miscon-
ceptions, or even ones that capture distinct coding styles.
Since there is no prior enforced on the structure of the la-
tent knowledge space, the black-box nature of LLMs would
likely lead to entangled representations that are highly pre-
dictive of student responses but hard to interpret.

1.1 Contributions
In this paper, we present a first attempt at interpreting la-
tent student knowledge states in models of open-ended re-
sponses, specifically on code that students write for open-
ended programming questions. Our contributions are:

N. Fernandez and A. Lan. Interpreting latent student knowledge rep-
resentations in programming assignments. In B. Paaßen and C. D.
Epp, editors, Proceedings of the 17th International Conference on
Educational Data Mining, pages 933–940, Atlanta, Georgia, USA,
July 2024. International Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.12730003

https://doi.org/10.5281/zenodo.12730003

1. We develop InfoOIRT 1, an Information-regularized
Open-ended IRTmodel, which predicts student-written
code for open-ended programming questions with a fo-
cus on learning interpretable student knowledge repre-
sentations. Inspired by InfoGAN [7], InfoOIRT max-
imizes mutual information between a fixed subset of
latent knowledge states enforced with simple prior dis-
tributions and generated student code to encourage the
latent factors to learn disentangled representations of
salient code features. Although our idea can poten-
tially be applied to other subjects with open-ended
questions, we ground our analysis in Computer Sci-
ence (CS) education.

2. We conduct quantitative experiments on a real-world
student code dataset to show that information regu-
larization does not impact the ability of InfoOIRT to
accurately predict student code compared to baselines.

3. We conduct qualitative analyses to interpret the learned
student knowledge representations. Using a combi-
nation of both continuous and discrete latent student
knowledge state factors, we present examples of gen-
erated student code highlighting the salient syntactic
and semantic features captured by these states.

2. RELATED WORK
2.1 Interpretable Representation Learning
There exists prior work in learning interpretable represen-
tations for the underlying processes of image [10, 33] and
text [27] generation. A seminal method in unsupervised
representation learning, InfoGAN [7] aims to learn disen-
tangled representations, one which explicitly represents the
salient features of the data as easily interpretable factors
(e.g., number, orientation, and stroke thickness in hand-
written digits), using an information-based regularization in
the training objective. InfoOIRT extends this idea to learn
interpretable representations in LLMs for code generation,
specifically student responses to programming problems.

2.2 Student Modeling
There exist many models of student knowledge, depending
on how they characterize both latent knowledge states and
observed responses. For latent knowledge states, the highly
interpretable Bayesian knowledge tracing model treats them
as binary-valued, i.e., whether a student masters a skill or
not. Factor analysis-based methods [8, 31] use a set of hand-
crafted features to summarize past student activities and
represent student knowledge, before relying on IRT models
to predict student responses from these features. On the
contrary, deep learning-based KT methods [24, 30, 32, 43,
50] treat student knowledge as latent vectors in deep neural
networks, resulting in models that excel at future perfor-
mance prediction but have limited interpretability.

For observed responses, despite most existing models treat-
ing them as binary-valued, i.e., correct/incorrect, there exist
some models that analyze the exact student response includ-
ing multiple-choice options [13] and partial credits [49]. In
general, one can use polytomous IRT models [28] as the
response prediction component in KT methods to predict

1Code: https://github.com/umass-ml4ed/InfoOIRT

categorical-valued (such as options in multiple-choice ques-
tions) and ordinal-valued (such as partial credit) responses [20].
In the programming domain, [25, 52] use code embedding
techniques to convert student-written code into vectors to
help student models track their progress. However, they do
not use generative LLMs to predict student code.

2.3 Program Synthesis and CS Education
There exist many works applying program synthesis tech-
niques for computer science education to generate (possi-
bly buggy) student code [23, 44], generate new problems [1]
with code explanations [38], generate student-code guided
test cases [19], provide real-time hints [36], and suggest bug
fixes [17]. However, the black-box nature of these models
provides limited interpretability.

3. INTERPRETABLE OPEN-ENDED IRT
3.1 Problem Formulation and OIRT
Item response theory (IRT) [4] involves diagnosing a stu-
dent’s mastery of knowledge components/skills/concepts from
their responses to problems, where we assume a student’s
knowledge state is static, i.e., it does not change as they
respond to problems. For open-ended item response theory
(OIRT), we need two essential components. First, a knowl-
edge estimation (KE) component that estimates a student
j’s knowledge state from the set of student code submis-
sions cij to problems pi denoted by {(pi, cij)}, i.e., hj =
KE({(pi, cij)}). Second and more importantly, a response
generation (RG) component that predicts student j’s open-
ended code submission to a target problem pk using a gener-
ative model, i.e., ckj = RG(pk, hj). This generation model
is the key difference between OIRT and traditional IRT: our
goal is to predict the code a student would write for an open-
ended programming problem via a generative model, rather
than simply predicting its correctness.

We denote the student’s latent knowledge as a d-dimensional
vector hj for every student j. This setup is similar to learn-
ing a multidimensional student ability parameter in IRT.
OIRT leverages generative language models and employs a
text-to-code finetuned GPT-2 [34] model. A problem pk is
tokenized by GPT-2 into a sequence of M tokens where each
token has a 768-dimensional embedding, i.e., p̄m ∈ R768

for m = 1, . . . ,M (here, we drop the problem index k).
We inject student j’s knowledge state hj by replacing the
raw problem token embeddings with knowledge-guided em-
beddings using a linear alignment function f , i.e., pm =
f(p̄m, hj), similar to [23]. The predicted student code is gen-
erated autoregressively using GPT-2 given the knowledge-
guided problem embeddings as input. OIRT jointly learns
the student knowledge states and the fine-tuned GPT-2 pa-
rameters together with the linear alignment function. The
objective for one student code submission ckj by student
j with knowledge state hj to problem pk, consisting of N

tokens, is: LOIRT =
∑N

n=1 − logPθ(c
n
kj |pk, hj , {cn

′
kj}n−1

n′=1),
where θ denotes the learnable parameters of the KE and
RG components. The final objective is the sum of this loss
LOIRT over code submissions by all students to all problems.

3.2 InfoOIRT: Information-regularized OIRT
One key limitation of OIRT is that the learned student
knowledge states are hard to interpret and associate with

https://github.com/umass-ml4ed/InfoOIRT

GPT-2
Alignment

Q

Problem Token Embeddings

Student Knowledge State

Generated
Student Code

 Knowledge Factors
Distribution Parameters

Figure 1: InfoOIRT Model Architecture

different programming skills. We present a simple modifica-
tion of OIRT, inspired by InfoGAN [7], to learn interpretable
and meaningful latent student knowledge states. The idea
is to maximize the mutual information between a fixed sub-
set of the student knowledge state dimensions enforced with
simple prior distributions and the generated student code.
These dimensions help us discover semantic and meaningful
hidden representations of student code.

We now detail our InfoOIRT model visualized in Figure 1.
Following InfoGAN [7], we decompose a latent student knowl-
edge state h into two parts: 1) h̄, which represents the in-

compressible student knowledge state, and 2) ĥ, which con-

sists of simple and interpretable latent factors ĥ1, . . . , ĥK , to
represent the salient structured semantic features of student
written code. However, GPT-2 could ignore these additional
latent factors ĥ and simply generate student code c with
a probability distribution satisfying P (c|ĥ) = P (c). We,
therefore, impose an information-theoretic regularization to
encourage high mutual information between latent factors ĥ
and the GPT-2 generator distribution G(h̄, ĥ, p) which gen-
erates student code c corresponding to a student with knowl-
edge state h. This regularization encourages the latent fac-
tors to explicitly contain information that dictates the varia-
tion in student code, disentangling the interpretable dimen-
sions from incompressible noise. Specifically, mutual infor-
mation is defined as I(ĥ, G(h̄, ĥ, p)) = H(ĥ)−H(ĥ|G(h̄, ĥ, p)).
Intuitively, mutual information is maximized when the un-
certainty, i.e., entropy, in ĥ given c is minimized, meaning
that the information in the simple latent knowledge factors
ĥ should not be lost in the generation of the student code c,
thereby reducing the likelihood of GPT-2 ignoring the la-
tent factors during student code generation. However, max-
imizing the mutual information directly is hard since it re-
quires access to the posterior P (ĥ|c). Therefore, we use a
variational lower bound of mutual information following [7]:

I(ĥ, G(h̄, ĥ, p)) ≥ LI(G,Q) = Eĥ∼P (ĥ),c∼G(h̄,ĥ,p)[logQ(ĥ|c)]+
H(ĥ). We treat H(ĥ) as constant for simplicity and arrive
at the regularized InfoOIRT loss for a single student code:
LinfoOIRT = LOIRT − λLI(G,Q). The final objective is the
sum of LinfoOIRT over code submissions by all students to all
problems. We refer readers to [7] for details.

Similar to OIRT, InfoOIRT also uses a static knowledge
state vector h̄ ∈ Rdbar for every student to represent in-
compressible noise. We chose to model the interpretable
latent factors ĥi as having dcont dimensions, each having a
simple Gaussian distribution, ĥi

cont ∼ N(µi, σi), and ddisc
discrete dimensions, each having a simple categorical distri-
bution with k classes, ĥi

disc ∼ Cat(K = k, p = [pi1, . . . , p
i
k]).

We learn the student-specific distribution parameters of each
of the latent factors ĥi, namely the mean and standard devi-
ation (µi, σi) for continuous dimensions, and the categorical
distribution parameters (pi1, . . . , p

i
k) for discrete dimensions.

0 20 40 60 80 100 120 140 160 180 200
Training steps ×100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
gQ

(h
di

sc
|c

)

Without information-regularization
With information-regularization

Figure 2: Mutual Information Maximization

To estimate a student’s knowledge state, we sample each
latent factor ĥi using the current learned student-specific
distribution parameters. We then concatenate the current
learned student-specific h̄ vector with this sampled ĥ vector
to get the student’s final knowledge state h. We parameter-
ize the auxiliary distribution Q as a fully connected neural
network, which takes as input a representation of the gen-
erated student code c and outputs the parameters of the
distribution Q(ĥ|c). We use the mean of the hidden states
of the last layer of GPT-2 as a proxy representation r(c) of
the generated student code c. The learnable parameters in
InfoOIRT include the Q model, the student-specific incom-
pressible knowledge state h̄ and the student-specific distri-
bution parameters for each dimension of the latent factors
ĥ, in addition to those in OIRT.

4. EXPERIMENTS AND RESULTS
4.1 Dataset, Metrics, Implementation Details
We ground our analysis on the CSEDM dataset2, a real-
world programming education dataset containing 46, 825 stu-
dent code submissions from 246 college students on 50 open-
ended Java programming problems collected over a semester.
Following OKT [23], we quantitatively evaluate generated
student code using the popular CodeBLEU [35] metric, which
measures syntactic and semantic similarity between gener-
ated and actual student codes. We report the average test
loss of GPT-2 across generated code tokens. To test whether
InfoOIRT simply memorizes the training data, we measure
diversity in the generated student codes using the dist-N
metric [22], which computes the ratio of unique N -grams in
the generated codes over all N-grams, with N = 1, 2, 3. For
OIRT training, we follow the setup in [23]. For InfoOIRT,
we chose to model the latent factors in student knowledge
states ĥ, with 1 continuous dimension and 10 discrete di-
mensions, each having two classes and thereby encouraged
to act as binary switches of programming knowledge mas-
tery states/syntactic styles. We learn a student-specific 2-
dimensional static knowledge state h̄. For a fair comparison
with OIRT, we learn a student-specific 23-dimensional h̄ in
OIRT and use the same hyperparameters in both models
(see Appendix A).

4.2 Quantitative Results
We show the performance of both OIRT and InfoOIRT on
all metrics on the CSEDM test set in Table 1. We see
that InfoOIRT exhibits competitive performance to OIRT.
Therefore, the addition of mutual information-based regu-
larization in the objective provides interpretability through

2https://sites.google.com/ncsu.edu/csedm-dc-2021

https://sites.google.com/ncsu.edu/csedm-dc-2021

Table 1: Experimental results on the CSEDM test set. Our InfoOIRT model is competitive with the baseline OIRT model.

Model
Knowledge State Code Quality Code Diversity

|h̄| |ĥcont| |ĥdisc| CodeBLEU ↑ Test Loss ↓ Dist-1 ↑ Dist-2 ↑ Dist-3 ↑
Main Models

OIRT 23 - - 0.597 0.200 0.396 0.712 0.825
InfoOIRT 2 1 10 0.601 0.205 0.394 0.712 0.827

Ablation: Increasing Uninterpretable Knowledge Dimensions |h̄|
OIRT 64 - - 0.609 0.202 0.399 0.717 0.830
OIRT 256 - - 0.607 0.204 0.404 0.719 0.829
InfoOIRT 64 1 10 0.611 0.199 0.402 0.721 0.832
InfoOIRT 256 1 10 0.613 0.200 0.400 0.718 0.829

Ablation: Increasing Interpretable Knowledge Factors |ĥ|
InfoOIRT 2 64 64 0.507 0.213 0.383 0.695 0.812
InfoOIRT 2 256 256 0.510 0.214 0.398 0.710 0.824

Ablation: InfoOIRT with Continuous Knowledge Factors |ĥcont| or Discrete Knowledge Factors |ĥdisc| Only
InfoOIRT 2 1 0 0.606 0.201 0.397 0.717 0.831
InfoOIRT 2 0 10 0.539 0.212 0.393 0.706 0.822

simple latent factors ĥ without sacrificing code prediction
accuracy. We also show various model ablations in Table 1.
We observe diminishing performance returns when increas-
ing the number of dimensions in h̄. We therefore use a small
number of dimensions in h̄ in our models to prioritize inter-
pretability without sacrificing performance. We also see per-
formance degradation with a high number of interpretable
knowledge factors ĥ, especially discrete knowledge factors
ĥdisc. Although ĥdisc provides interpretability, these factors
possibly also oversimplify the model by imposing additional
constraints, thereby reducing the flexibility of the model.
Therefore, our choice of the number of interpretable knowl-
edge factors reflects a balance between performance and in-
terpretability. To test whether mutual information is maxi-
mized, in Figure 2, we show the negative log-likelihood of our
Q model which is quickly minimized with an information-
regularized objective indicating high mutual information be-
tween latent factors ĥ and generated student code c. How-
ever, an equivalent InfoOIRT model without this regulariza-
tion objective exhibits low mutual information.

4.3 Qualitative Results
4.3.1 Discrete Latent Knowledge Factors
We manipulate the learned discrete latent factors ĥdisc, each
from a binary categorical distribution. For each of the ten
factors, we vary the binary class of that factor, keeping the
remaining factors constant and set to their learned class,
and analyze the resulting variation in generated code. For
some discrete factors, these changes reflect different styles
(indentation, spacing between function arguments), mastery
of programming skills (correct or incorrect codes with differ-
ent bugs), or code structure (for loops to while loops, if-else
with nesting to without nesting). For example, as shown

in Table 2, for one student, switching ĥ9
disc from class 0 to

1, resulted in change from code using if-else with nesting to
code using if-else without nesting, while for another student,
switching ĥ6

disc from class 0 to 1 resulted in change in inden-
tation style. We note that such changes are not found in all
students and all problems: problems in the CSEDM dataset
cover a wide range of programming skills and many of these
changes apply to few problems. For easier problems with
shorter student codes, we observe minimal variation since
InfoOIRT is often able to predict the exact student code
written (which is correct). In these cases, InfoOIRT prior-
itizes the LOIRT loss for generation performance and possi-
bly ignores the information regularization for these student-
problem pairs. Compared to InfoGAN [7] showing consis-

tent variations in an unsupervised hand-written digit gen-
eration setting, we hypothesize that capturing variations in
generated code across multiple problems on different topics
is harder. Since different students attempt different prob-
lems, InfoOIRT learns a student-specific ĥdisc distribution
where the effect of each dimension changes depending on
the attempted problems.

4.3.2 Continuous Latent Knowledge Factors
We manipulate the learned continuous latent factor ĥcont

(with a range between −3.5 to 3.5) for different ranges and
investigate the resulting change in generated code. We do
not observe any change for small variations (−2 to 2), show-
ing the robustness of the InfoOIRT, balancing generation
accuracy and interpretability. For larger variations (−5 to
5), we see new codes generated with variation in either style,
correctness, bug type, or structure, for some students in
some problems. For bugs, these changes in the continuous
latent variable overlap with flipping certain binary classes
among the discrete factors. This observation reflects the
nature of code being more discrete rather than continuous.
For extreme variations (−10 to 10) that extrapolate ĥcont

beyond learned values, we observe that InfoOIRT still gen-
erates coherent student code but interestingly, to a different
problem. We see that student code for easier problems with
conditionals changes to code for harder problems with loop-
ing, and vice versa, as shown in Table 2. This observation
suggests that ĥcont could be discretizing the student’s knowl-
edge space of unique code constructs across problem types.

4.4 Potential Use Cases in CS Education
Predicting free-form student responses to open-ended prob-
lems provides educators a deeper insight into a student’s rea-
soning process [2, 5, 11, 45] through their knowledge states.
Doing so can potentially shed light on the typical errors
among students before even assigning them, which enables
educators to anticipate and prepare corresponding feedback.
With informative and interpretable latent states, it can be
easier for intelligent tutoring systems to support educators
by summarizing common bugs and coding styles among stu-
dents. Information on latent factors that indicate student
bugs can potentially be used to quantize the effectiveness of
additional instruction on different topics on helping students
correct errors, which may help educators plan their activi-
ties. Moreover, for latent codes that we uncover to associate
with specific student bugs, we can explore using them to
provide progressive edit suggestions, by gradually changing

Table 2: Variation in generated code for variation in ĥdisc and ĥcont.

Switching ĥ9
disc from 0 to 1 results in change in if-else nesting on a subset of problems attempted by one student.

ĥ9
disc = 0 Generates Code With If-Else Nesting ĥ9

disc = 1 Generates Code Without If-Else Nesting

p u b l i c i n t caughtSpeeding (i n t speed , b o o l e a n i sB i r thday)
{

i f (i sB i r thday)
i f (speed <= 65)

r e t u r n 0 ;
e l s e i f (speed >= 66 && speed <= 85)

r e t u r n 1 ;
e l s e

r e t u r n 2 ;
e l s e

i f (speed <= 60)
r e t u r n 0 ;

e l s e i f (speed >= 61 && speed <= 80)
r e t u r n 1 ;

e l s e
r e t u r n 2 ;

}

p u b l i c i n t caughtSpeeding (i n t speed , b o o l e a n i sB i r thday)
{

i f (i sB i r thday)
speed −= 5 ;

i f (speed <= 60)
r e t u r n 0 ;

e l s e i f (speed <= 80)
r e t u r n 1 ;

e l s e
r e t u r n 2 ;

}

p u b l i c b o o l e a n c igarParty (i n t c i ga r s , b o o l e a n isWeekend)
{

i f (isWeekend)
i f (c i g a r s >= 40)

r e t u r n t r u e ;
e l s e

r e t u r n f a l s e ;
e l s e

i f (c i g a r s >= 40 && c i g a r s <= 60)
r e t u r n t r u e ;

e l s e
r e t u r n f a l s e ;

}

p u b l i c b o o l e a n c igarParty (i n t c i ga r s , b o o l e a n isWeekend)
{

i f (isWeekend)
r e t u r n (c i g a r s >= 40) ;

r e t u r n (c i g a r s >= 40 && c i g a r s <= 60) ;
}

Switching ĥ6
disc from 0 to 1 results in change in indentation style on a subset of problems attempted by one student.

ĥ6
disc = 0 Generates Code with “K&R” Indentation Style ĥ6

disc = 1 Generates Code with “Allman” Indentation Style

p u b l i c b o o l e a n i sEverywhere (i n t [] nums , i n t va l)
{

f o r (i n t i = 0 ; i < nums . l ength ; i++) {
i f (nums [i] != va l && nums [i +1]!= va l) {

r e t u r n f a l s e ;
}

}
r e t u r n t r u e ;

}

p u b l i c b o o l e a n i sEverywhere (i n t [] nums , i n t va l)
{

f o r (i n t i = 0 ; i < nums . l ength ; i++)
{

i f (nums [i] != va l && nums [i +1]!= va l)
{

r e t u r n f a l s e ;
}

}
r e t u r n t r u e ;

}
p u b l i c i n t makeChocolate (i n t small , i n t big , i n t goa l)
{

i n t maxBig = goa l /5 ;
i f (maxBig <= big) {

goa l −= maxBig ∗5 ;
}
e l s e {

goa l −= big ∗5 ;
}
i f (goa l <= smal l) {

r e t u r n goa l ;
}
r e t u r n −1;

}

p u b l i c i n t makeChocolate (i n t small , i n t big , i n t goa l)
{

i n t maxBig = goa l /5 ;
i f (maxBig <= big)
{

goa l −= maxBig ∗5 ;
}
e l s e
{

goa l −= big ∗5 ;
}
i f (goa l <= smal l)
{

r e t u r n goa l ;
}
r e t u r n −1;

}

Extreme variation in ĥcont results in code with conditionals for easier problems shifting to code with loops for harder problems, and vice versa.

Student Code for Problems with Conditional Constructs Student Code for Problems with Looping Constructs

p u b l i c b o o l e a n s qu i r r e lP l a y (i n t temp , b o o l e a n isSummer)
{

i f (isSummer)
r e t u r n (temp >= 60 && temp <= 100) ;

r e t u r n (temp >= 60 && temp <= 90) ;
}

p u b l i c b o o l e a n xyBalance (St r ing s t r)
{

i n t l en = s t r . l ength () − 1 ;
c h a r ch ;
f o r (i n t i = l en ; i >= 0 ; i−−)
{

ch = s t r . charAt (i) ;
i f (ch == ’x ’)

r e t u r n f a l s e ;
e l s e i f (ch == ’y ’)

r e t u r n t r u e ;
}
r e t u r n t r u e ;

}

the continuous latent variables to generate code between a
student’s original buggy code and correct code, which can
be both informative and relatable to the student.

5. CONCLUSIONS AND FUTURE WORK
We presented a first step towards interpreting latent stu-
dent knowledge states in models of open-ended responses in
programming education. We proposed InfoOIRT, an open-
ended IRT model that accurately predicts student-written
code, validated on the real-world CSEDM dataset, along
with interpretable latent student knowledge states. Through
qualitative analysis, we presented examples of latent student

knowledge states capturing salient syntactic and semantic
features including style, mastery of programming skills, and
code structure, demonstrating the potential of InfoOIRT in
CS education. InfoOIRT should be considered exploratory
with limitations and several avenues for future work. First,
we can explore adapting InfoOIRT to knowledge tracing and
impose constraints on the consistency of these states over
time, using ideas from cognitive modeling [42]. Second, we
can reduce potential biases toward underrepresented stu-
dents by minimizing the mutual information between de-
mographic variables and student-written code. Third, we
can explore applying InfoOIRT to other domains including
language learning [21], and mathematics [39].

6. ACKNOWLEDGEMENTS
We thank Alexander Scarlatos and the anonymous reviewers
for their helpful comments. We thank the NSF for partially
supporting this work under grants DUE-2215193 and IIS-
2237676.

7. REFERENCES
[1] U. Z. Ahmed, M. Christakis, A. Efremov,

N. Fernandez, A. Ghosh, A. Roychoudhury, and
A. Singla. Synthesizing tasks for block-based
programming. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[2] J. R. Anderson and R. Jeffries. Novice lisp errors:
Undetected losses of information from working
memory. Human–Computer Interact., 1(2):107–131,
1985.

[3] Y. Attali and J. Burstein. Automated essay scoring
with e-rater® v. 2. The Journal of Technology,
Learning and Assessment, 4(3), 2006.

[4] F. B. Baker. The Basics of Item Response Theory.
ERIC Clearinghouse on Assessment and Evaluation,
2001.

[5] J. S. Brown and R. R. Burton. Diagnostic models for
procedural bugs in basic mathematical skills. Cogn.
sci., 2(2):155–192, 1978.

[6] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke,
E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li,
S. Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv
preprint arXiv:2303.12712, 2023.

[7] X. Chen, Y. Duan, R. Houthooft, J. Schulman,
I. Sutskever, and P. Abbeel. Infogan: Interpretable
representation learning by information maximizing
generative adversarial nets. In Advances in Neural
Information Processing Systems (NeurIPS), 2016.

[8] B. Choffin, F. Popineau, Y. Bourda, and J.-J. Vie.
DAS3H: Modeling student learning and forgetting for
pptimally scheduling distributed practice of skills. In
International Conference on Educational Data Mining
(EDM), pages 29–38, 2019.

[9] A. Corbett and J. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Model. User-adapted Interact., 4(4):253–278,
Dec. 1994.

[10] G. Desjardins, A. Courville, and Y. Bengio.
Disentangling factors of variation via generative
entangling. arXiv preprint arXiv:1210.5474, 2012.

[11] M. Q. Feldman, J. Y. Cho, M. Ong, S. Gulwani,
Z. Popović, and E. Andersen. Automatic diagnosis of
students’ misconceptions in K-8 mathematics. In Proc.
CHI Conf. Human Factors Comput. Syst., pages 1–12,
2018.

[12] N. Fernandez, A. Ghosh, N. Liu, Z. Wang, B. Choffin,
R. Baraniuk, and A. Lan. Automated scoring for
reading comprehension via in-context bert tuning. In
International Conference on Artificial Intelligence in
Education (AIED), pages 691–697. Springer
International Publishing, 2022.

[13] A. Ghosh, J. Raspat, and A. Lan. Option tracing:
Beyond correctness analysis in knowledge tracing. In
International Conference on Artificial Intelligence in
Education (AIED), pages 137–149. Springer, 2021.

[14] K. Hanawa, R. Nagata, and K. Inui. Exploring
methods for generating feedback comments for writing
learning. In Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
9719–9730, Online and Punta Cana, Dominican
Republic, Nov. 2021. Association for Computational
Linguistics.

[15] H. Heickal and A. Lan. Generating feedback-ladders
for logical errors in programming using large language
models. International Conference on Educational Data
Mining (EDM), 2024.

[16] J. Kolb, S. Farrar, and Z. A. Pardos. Generalizing
expert misconception diagnoses through common
wrong answer embedding. Int. Educ. Data Mining
Soc., 2019.

[17] C. Koutcheme, S. Sarsa, J. Leinonen, A. Hellas, and
P. Denny. Automated program repair using generative
models for code infilling. In International Conference
on Artificial Intelligence in Education (AIED), 2023.

[18] N. A. Kumar and A. Lan. Improving socratic question
generation using data augmentation and preference
optimization. Proceedings of the 19th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA), 2024.

[19] N. A. Kumar and A. Lan. Using large language
models for student-code guided test case generation in
computer science education. AI4ED workshop at
AAAI Conference on Artificial Intelligence, 2024.

[20] A. S. Lan, C. Studer, A. E. Waters, and R. G.
Baraniuk. Tag-aware ordinal sparse factor analysis for
learning and content analytics. In International
Conference on Educational Data Mining (EDM), 2013.

[21] J. Lee and A. Lan. Smartphone: Exploring keyword
mnemonic with auto-generated verbal and visual cues.
In International Conference on Artificial Intelligence
in Education (AIED), pages 16–27. Springer Nature
Switzerland, 2023.

[22] J. Li, M. Galley, C. Brockett, J. Gao, and W. B.
Dolan. A diversity-promoting objective function for
neural conversation models. In Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (NAACL), pages 110–119, 2016.

[23] N. Liu, Z. Wang, R. Baraniuk, and A. Lan.
Open-ended knowledge tracing for computer science
education. In Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2022.

[24] T. Long, Y. Liu, J. Shen, W. Zhang, and Y. Yu.
Tracing knowledge state with individual cognition and
acquisition estimation. In ACM SIGIR Conference on
Research and Development in Information Retrieval,
2021.

[25] Y. Mao, Y. Shi, S. Marwan, T. W. Price, T. Barnes,
and M. Chi. Knowing when and where:
Temporal-astnn for student learning progression in
novice programming tasks. Int. Educ. Data Mining
Soc., 2021.

[26] H. McNichols, M. Zhang, and A. Lan. Algebra error
classification with large language models. In
International Conference on Artificial Intelligence in
Education (AIED), pages 365–376. Springer Nature
Switzerland, 2023.

[27] G. Mercatali and A. Freitas. Disentangling generative
factors in natural language with discrete variational
autoencoders. In Findings of the Association for
Computational Linguistics: EMNLP 2021, 2021.

[28] R. Ostini and M. L. Nering. Polytomous item response
theory models. Sage, 2006.

[29] Y. Ozuru, S. Briner, C. A. Kurby, and D. S.
McNamara. Comparing comprehension measured by
multiple-choice and open-ended questions. Canadian
Journal of Experimental Psychology, 67(3):215, 2013.

[30] S. Pandey and J. Srivastava. Rkt: relation-aware
self-attention for knowledge tracing. In Proceedings of
the 29th ACM International Conference on
Information & Knowledge Management (CIKM),
pages 1205–1214, 2020.

[31] P. Pavlik Jr, H. Cen, and K. Koedinger. Performance
factors analysis–A new alternative to knowledge
tracing. In International Conference on Artificial
Intelligence in Education (AIED), 2009.

[32] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In Advances in Neural Information Processing
Systems (NeurIPS), pages 505–513, 2015.

[33] A. Radford, L. Metz, and S. Chintala. Unsupervised
representation learning with deep convolutional
generative adversarial networks. In International
Conference on Learning Representations (ICLR),
2016.

[34] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

[35] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang,
N. Sundaresan, M. Zhou, A. Blanco, and S. Ma.
Codebleu: a method for automatic evaluation of code
synthesis. arXiv preprint arXiv:2009.10297, 2020.

[36] K. Rivers and K. R. Koedinger. Data-driven hint
generation in vast solution spaces: a self-improving
python programming tutor. International Journal of
Artificial Intelligence in Education (IJAIED), 27(1),
2017.

[37] R. D. Roscoe, L. K. Varner, S. A. Crossley, and D. S.
McNamara. Developing pedagogically-guided
algorithms for intelligent writing feedback.
International Journal of Learning Technology 25,
8(4):362–381, 2013.

[38] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen.
Automatic generation of programming exercises and
code explanations using large language models. In
ACM Conference on International Computing
Education Research (ICER), 2022.

[39] A. Scarlatos and A. Lan. Tree-based representation
and generation of natural and mathematical language.
In 61st Annual Meeting of the Association for
Computational Linguistics (ACL), pages 3714–3730.
Association for Computational Linguistics, July 2023.

[40] A. Scarlatos, D. Smith, S. Woodhead, and A. Lan.
Improving the validity of automatically generated
feedback via reinforcement learning. International
Conference on Artificial Intelligence in Education
(AIED), 2024.

[41] Y. Shi, M. Chi, T. Barnes, and T. Price. Code-dkt: A
code-based knowledge tracing model for programming

tasks. International Conference on Educational Data
Mining (EDM), 2022.

[42] Y. Shi, R. Schmucker, M. Chi, T. Barnes, and
T. Price. Kc-finder: Automated knowledge component
discovery for programming problems. In International
Conference on Educational Data Mining (EDM), 2023.

[43] D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, and Y. Choi.
Saint+: Integrating temporal features for EdNet
correctness prediction. In International Learning
Analytics and Knowledge Conference (LAK), 2021.

[44] A. Singla and N. Theodoropoulos. From Solution
synthesis to Student Attempt synthesis for block-based
visual programming tasks. In International Conference
on Educational Data Mining (EDM), 2022.

[45] J. P. Smith III, A. A. DiSessa, and J. Roschelle.
Misconceptions reconceived: A constructivist analysis
of knowledge in transition. The journal of the learning
sciences, 3(2):115–163, 1994.

[46] Y. Su, Q. Liu, Q. Liu, Z. Huang, Y. Yin, E. Chen,
C. Ding, S. Wei, and G. Hu. Exercise-enhanced
sequential modeling for student performance
prediction. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), 2018.

[47] K. Taghipour and H. T. Ng. A neural approach to
automated essay scoring. In Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1882–1891, Austin, Texas, Nov. 2016.
Association for Computational Linguistics.

[48] W. J. van der Linden and R. K. Hambleton. Handbook
of Modern Item Response Theory. Springer Science &
Business Media, 2013.

[49] Y. Wang and N. Heffernan. Extending knowledge
tracing to allow partial credit: Using continuous
versus binary nodes. In International Conference on
Artificial Intelligence in Education (AIED), 2013.

[50] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory networks for knowledge tracing. In
International Conference on World Wide Web
(WWW), pages 765–774, Apr. 2017.

[51] M. Zhang, S. Baral, N. Heffernan, and A. Lan.
Automatic short math answer grading via in-context
meta-learning. International Conference on
Educational Data Mining (EDM), 2022.

[52] R. Zhu, D. Zhang, C. Han, M. Gao, X. Lu, W. Qian,
and A. Zhou. Programming knowledge tracing: A
comprehensive dataset and a new model. International
Conference on Data Mining Workshops (ICDMW),
2021.

APPENDIX
A. EXPERIMENTS
A.1 Dataset
We ground our analysis on the real-world programming edu-
cation dataset from the 2nd CSEDM Data Challenge, which
we referred to as the CSEDM dataset.3 This dataset con-
tains 46, 825 student code submissions from 246 college stu-
dents on 50 open-ended Java programming problems col-
lected over an entire semester. We analyze the first submis-
sion to each problem and ignore later attempts since this
setting captures a student’s overall mastery of programming
concepts while later attempts also capture debugging skills
that we do not analyze in this work. We preprocess the
dataset by removing 15% of code submissions that cannot
be converted to an abstract syntax tree (AST) and split it
into train-validation-test with 80%−10%−10% proportion.

A.2 Metrics
Following OKT [23], we quantitatively evaluate generated
student code using the popular metric CodeBLEU [35], which
measures syntactic and semantic similarity between gener-
ated and actual student codes. We also report the aver-
age test loss of GPT-2 across generated code tokens us-
ing the model with the lowest validation loss with a lower
test loss being predictive of better student code generation
performance. To test whether OIRT simply memorizes the
training data, we measure diversity in the generated student
codes using the dist-N metric [22], which computes the ratio
of unique N -grams in the generated codes over all N-grams,
with N = 1, 2, 3.

A.3 Implementation Details
For OIRT training, we follow the setup in [23] and use a
batch size of 8, an AdamW optimizer with a learning rate
of 1 · 10−5 with linear learning rate scheduler with warmup
for GPT-2 model parameters, and the Adam optimizer with
a learning rate of 1 · 10−3 for the alignment function and
student specific h̄ knowledge states. We finetune OIRT for
50 epochs which takes around 4 hours on a single NVIDIA
A100 GPU, and chose the model with the lowest validation
loss.

For InfoOIRT, we chose to model the latent factors in stu-
dent knowledge states ĥ, with 1 continuous dimension and
10 discrete dimensions, each having two classes and thereby
encouraged to act as binary switches of programming knowl-
edge mastery states/syntactic styles. We learn a student-
specific 2-dimensional static knowledge state h̄. For a fair
comparison with OIRT, we learn a student-specific 23 di-
mensional h̄ in OIRT and use the same hyperparameters in
both models. Since our goal is to analyze the change in
code generated with respect to variation in latent factors ĥ
only, to remove randomness during inference, we use greedy
decoding to generate student code in both models.

3https://sites.google.com/ncsu.edu/csedm-dc-2021

https://sites.google.com/ncsu.edu/csedm-dc-2021

