Generating Feedback-Ladders for Logical Errors in
Programming using Large Language Models

Hasnain Heickal
University of Massachusetts Amherst
Ambherst, MA, USA
hheickal@cs.umass.edu

ABSTRACT

In feedback generation for logical errors in programming as-
signments, large language model (LLM)-based methods have
shown great promise. These methods ask the LLM to gen-
erate feedback given the problem statement and a student’s
(buggy) submission and have several issues. First, the gen-
erated feedback is often too direct in revealing the error in
the submission and thus diminishes valuable learning oppor-
tunities for the students. Second, they do not consider the
student’s learning context, i.e., their previous submissions,
current knowledge, etc. Third, they are not layered since
existing methods use a single, shared prompt for all student
submissions. In this paper, we explore using LLMs to gener-
ate a “feedback-ladder”, i.e., multiple levels of feedback for
the same problem-submission pair. We evaluate the qual-
ity of the generated feedback-ladder via a user study with
students, educators, and researchers. We have observed di-
minishing effectiveness for higher-level feedback and higher-
scoring submissions overall in the study. In practice, our
method enables teachers to select an appropriate level of
feedback to show to a student based on their personal learn-
ing context, or in a progressive manner to go more detailed
if a higher-level feedback fails to correct the student’s error.®

Keywords
Feedback, Large Language Models, Programming Assign-
ments

1. INTRODUCTION

One of the primary ways humans learn is through feedback.
In a class, where a teacher has to interact with numerous
students, manually providing appropriate feedback for each
student can be time-consuming. However, the effect of im-
mediate, just-in-time [3] and personalized[4] feedback on stu-
dent learning is hugely positive. The current practice of hu-

'Full paper: https://arxiv.org/abs/2405.00302. The au-
thors thank the NSF for partially supporting this work under
grant DUE-2215193.

H. Heickal and A. Lan. Generating feedback-ladders for logical errors
in programming using large language models. In B. Paaflen and C. D.
Epp, editors, Proceedings of the 17th International Conference on
Educational Data Mining, pages 947-951, Atlanta, Georgia, USA,
July 2024. International Educational Data Mining Society.

© 2024 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo. 12730007

Andrew Lan
University of Massachusetts Amherst
Ambherst, MA, USA
andrewlan@cs.umass.edu

man feedback through teachers and teaching assistants can
often be one-size-fits-all and not-on-time for students. In-
telligent tutoring systems and online learning platforms can
enable automatic feedback and scale up teachers’ efforts, es-
pecially in the setting of learning programming. Due to the
highly structured nature of programming languages, there
exists a body of work on feedback generation for students in
programming tasks that has some significant success.

Automated feedback methods in programming scenarios are
categorized into edit-based feedback, which focuses on code
edits to fix bugs, and natural language-based feedback, pro-
viding explanations, or suggestions conversationally. Edit-
based approaches primarily target syntax errors or provide
suggestions for fixing buggy code [11, 16]. Recent advance-
ments in large language models (LLMs) allow for the gener-
ation of fluent utterances around feedback, leveraging gen-
erative capabilities and knowledge of code. Approaches for
automated feedback generation also consider the type of stu-
dent errors, distinguishing between syntaz and logical errors.
While syntax errors have been extensively studied, logical
errors remain a challenge [19, 20, 13, 7].

Automated feedback for logical errors in programming edu-
cation has also been studied. [6, 5] generates test cases and
Socratic questions based on the student submission. [14]
systematically compares the performance of ChatGPT and
GPT-4 to that of human tutors for a variety of scenarios
in programming education including feedback generation.
Their method produces a concise, single-sentence hint for
the bug in the program, which is evaluated using human
annotators. Similarly, [15] investigates the role of LLMs in
providing human tutor-style programming hints to students.
It uses a similar prompting strategy to the one in [14] to
generate hints augmented with the failing test case and the
fixed program, and then validated by GPT3.5. [12] conducts
an experimental study using GPT3.5 to generate real-time
feedback for the students and measure the effect of the feed-
back. All of these methods lack personalization of feedback,
only generate feedback of one type, and fall short in quality
evaluation experiments for the generated feedback.

In this paper, we explore the capability of GPT-4 in gen-
erating “feedback-ladder”, a multilevel feedback cascade for
a single student-written buggy program. Different students
need different types of help when solving problems [18, 9]
and also at various stages of learning, students’ help-seeking
behavior changes [2]. From these findings, we expect that

https://doi.org/10.5281/zenodo.12730007

generating feedback at multiple levels, forming a ladder, will
be helpful to students. Feedback at a lower, coarse-grained
level supports students conceptually and without giving away
the solution — suitable for students with higher abilities.
Feedback at a higher, fine-grained level supports students
more specifically and directly points out their mistakes —
suitable for students with lower abilities and prevents them
from getting stuck. Therefore, teachers can use the feedback-
ladder for personalized feedback by showing different levels
to students with different needs, possibly by starting at a
lower level and moving up if the student still struggles. Our
key research question is: Can we automatically generate rel-
evant and effective feedback-ladders to address students’ log-
ical errors in introductory programming assignments?

1.1 Contributions

In this paper, we detail a method for automatically gen-
erating feedback-ladders for logical errors in programming
assignments using GPT-4. First, we propose an LLM-based
method that automatically generates feedback-ladders to
address logical errors in programming assignments. Second,
we conduct a user study that consists of annotators who are
students, instructors, or researchers in programming educa-
tion to evaluate the quality of the generated feedback-ladder.
We observe that each level has a similar effectiveness score
across different questions, though higher levels have lower
scores than the lower levels. We also observe that it is harder
to generate effective feedback-ladder for higher-scoring sub-
missions than lower-scoring submissions.

2. METHODOLOGY

2.1 Feedback-ladder

We define feedback-ladder as a set of varying levels of feed-
back for a student-submitted, incorrect (including partially
correct) program instance, Ps. Each level in the ladder cor-
responds to how much information is contained in the hint
shown to the student. With increasing levels of feedback in
the ladder, the learning gain of the student diminishes [10].
The feedback levels are defined as:

Level 0 (Yes/No): The feedback only indicates whether P; is
correct or not. If a student can utilize this level of feedback,
then they are going to learn the most.

Level 1 (Test Case): The feedback generates a test case Cyq1,
that when given to P, will give the wrong answer. It consists
of the input for Cyqi, the expected correct answer according
to the problem, and what P gives as the output. Utilizing
this level teaches students debugging skills, which are hard
to learn as beginners, and very conducive to their learning.
Level 2 (Hint): The feedback generates a high-level descrip-
tion of the logical error in the code that is responsible for
the failure. This level of feedback should focus on the con-
ceptual error that a student might have and must avoid any
suggestion regarding editing the code. Feedback on this level
has the best balance for a student to correct the mistake, as
well as achieve learning gains.

Level 3 (Location): This level points out the lines at which
the mistake occurred in the program. The feedback should
refrain from explicitly mentioning the actual mistake or any
edit suggestions. A student with sufficient programming
knowledge should be able to correct the mistake with feed-
back on this level.

Level 4 (Edit): At this level, the feedback generates edits

Table 1: Prompt for feedback-ladder generation in GPT-4.

There can be different levels of feedback for a student who
is trying to solve a programming assignment. Below we de-
scribe each level.

Level 0: Just the correct or incorrect verdict for the code.
Level 1: Giving a test case where the code fails. The test case
contains just input, expected output and the code output.
No explanations.

Level 2: A high-level explanation of why the code failed in
the test case. No mention of how to modify the code.

Level 3: A high-level suggestion about the location in the
code where you should make the changes.

Level 4: Suggestion in actual programming language how
to change the code to get the correct solution. Just the
statements where change is necessary are mentioned. The
full solution code is never given.

For the given problem and code, generate feedback for each
of these levels. When generating test cases make sure the
generated test case falls inside the valid range.

Problem: Write a function in Java that implements the fol-
lowing logic: Given 2 ints, a and b, return their sum. How-
ever, sums in the range 10..19 inclusive, are forbidden, so in
that case just return 20.

Code:

public int sortaSum(int a, int b){
if (a + b <= 10 &% a + b >= 20)
return 20;
else return a + b;

that turn the student-submitted buggy program, Ps, into a
correct program. The feedback should modify the existing
structure of Ps and produce something as close as possible
while showing only the edits instead of the whole corrected
program. The learning gain for this level is minimal, though
it can be helpful for students who are absolute beginners.

2.2 Generating Feedback-Ladder

We use the definitions of different levels in feedback-ladder
in the prompts for GPT-4 to generate feedback in each level
for a student-submitted buggy program. The prompt in-
cludes these definitions plus both the problem statement (Q)
and the buggy program P; itself. We use the openAl API
to prompt GPT-4. Table 1 shows an example prompt to
generate the feedback-ladder. Table 2 shows the generated
feedback-ladder for the prompt in Table 1 by GPT-4.

3. EXPERIMENTS

3.1 Dataset

We use the dataset from the 2nd CSEDM Data Challenge,
hereafter referred to as the CSEDM dataset [17]. It is a
college-level, publicly-available dataset with students’ ac-
tual code submissions. It contains 246 college students’
46,825 full submissions on each of the 50 programming ques-
tions over an entire semester with rich textual information
on problem statements and student code submissions and
other relevant metadata such as the programming concepts
involved in each question and all error messages returned
by the compiler. From the full dataset, we only take sub-
missions that do not have syntax errors, since our work

Table 2: Corresponding response for the prompt in Table 1

Level 0: Incorrect

Level 1:

The program fails in the following case.

Input: a=5,b =26

Expected Output: 20

Your Output: 11

Level 2: The code fails because it wrongly handles the con-
dition for the sum of a and b. The condition should be if
the sum is greater than or equal to 10 and less than or equal
to 19, then return 20.

Level 3: The code fails because it mistakenly checks if the
sum of a and b is less than or equal to 10 and greater than or
equal to 20. This condition will never be true as a number
cannot be both less than or equal to 10 and greater than or
equal to 20 at the same time.

Level 4: Change the if condition from if (a + b <= 10 &&
a+b>=20)toif (a +b >= 10 && a + b < 20).

focuses on generating feedback for programs that have no
syntax errors but contain logical errors in solving the given
problem. Therefore, we only curate such submissions from
the dataset with less-than-perfect scores. To keep the scale
of the user study manageable, we handpicked 5 problems.
These 5 problems require students to use arrays, strings,
loops, and conditions in their programs. Therefore, these
problems test a comprehensive set of programming knowl-
edge for the students. These problems are also complex
enough to have room for nuanced mistakes from the stu-
dents. For each of these five problems, we select three dif-
ferent student-submitted programs (submissions), one each
from the following three categories:

Low-scoring submissions: Submissions scoring less than 20%
in the test cases. These submissions have numerous errors
and require significant edits to fix.

Mid-scoring submissions: Submissions scoring between 40%
and 60% in the test cases. These submissions have fewer
mistakes than the low-scoring submissions.

High-scoring submissions: Submissions scoring more than
80% in the test cases. These are almost correct and often
require a few edits to get the full score. However, finding
the errors in these submissions is difficult since they often
miss only a few corner test cases.

3.2 Experiment Design

We conduct a user study to evaluate the quality of the gen-
erated feedback-ladder. The annotators for the user study
are recruited from several universities, with different knowl-
edge levels of programming: students, CS instructors, and
Al researchers. There are a total of 10 annotators. The user
study consists of several different phases, detailed below.

Eligibility determination phase: The purpose is to determine
that the annotators have sufficient programming skills re-
quired by the study. First, the annotators are shown a sim-
ple program in Java. Second, they are given a set of inputs
for the given program. Third, they are asked to determine
the output of the program on the given set of inputs. Failing
this disqualifies them from participating in the study.

Calibration phase: The purpose is to calibrate the evalua-
tion objective among annotators to align with our expec-

Table 3: Inter-rater agreement between annotators mea-

sured in Pearson correlation coefficient (PCC) values.
Annotator | A B C D E F G H I J Avg

A 1.00 | 0.65 | 0.11 | 0.04 | 0.21 | 0.59 | 0.65 | 0.18 | 0.48 | 0.18 | 0.41
B 0.65 | 1.00 | 0.20 | 0.13 | 0.07 | 0.53 | 0.48 | 0.14 | 0.40 | 0.27 | 0.39
C 0.11 | 0.20 | 1.00 | -0.05 | -0.09 | 0.03 | 0.12 | 0.37 | 0.00 | 0.48 | 0.22
D 0.04 | 0.13 | -0.05 | 1.00 | 0.11 | -0.10 | 0.14 | -0.06 | -0.06 | 0.09 | 0.12
E 0.21 | 0.07 | -0.09 | 0.11 | 1.00 | 0.17 | 0.09 | 0.06 | 0.03 | 0.10 | 0.18
F 0.59 | 0.53 | 0.03 | -0.10 | 0.17 | 1.00 | 0.39 | 0.23 | 0.43 | 0.19 | 0.35
G 0.65 | 0.48 | 0.12 | 0.14 | 0.09 | 0.39 | 1.00 | 0.01 | 0.37 | 0.28 | 0.36
H 0.18 | 0.14 | 0.37 | -0.06 | 0.06 | 0.23 | 0.01 | 1.00 | 0.14 | 0.25 | 0.23
I 0.48 | 0.40 | 0.00 | -0.06 | 0.03 | 0.43 | 0.37 | 0.14 | 1.00 | 0.05 | 0.29
J 0.18 | 0.27 | 048 | 0.09 | 0.10 | 0.19 | 0.28 | 0.25 | 0.05 | 1.00 | 0.29
Avg 041|039 | 022 | 0.12] 0.18 | 0.35] 0.36 | 0.23 | 0.29 | 0.29 | 0.28

tations. First, the annotators are shown examples of dif-
ferent feedback-ladder. Each example contains a problem
statement, a submitted program, and a generated feedback-
ladder. Second, they are asked various questions about the
shown examples. The questions are related to identifying the
proper level of a feedback text, evaluating qualitative mea-
sures, etc. If the annotator got any of the answers wrong,
we show which questions are wrong but do not reveal the
answer. They try again and choose different answers for the
same questions. This phase ends when the annotators an-
swer all the questions correctly.

Evaluation phase: The purpose is to evaluate the quality of
the generated feedback-ladder for 15 total programs, i.e., 5
chosen problems with 3 different submissions each. First,
the annotator is shown a problem description. Then they
are shown a low-scoring student-submitted program and the
generated feedback-ladder for it. Second, they are asked to
rate two different metrics of each of the feedback on a 5-
point Likert scale, which we detail below. This repeats two
more times for the mid and high-scoring submissions. The
whole thing repeats for four more problems.

Evaluation Metrics: We ask study annotators to rate the
feedback of each level on the feedback-ladder on Relevance
and Effectiveness. The relevance of feedback for a particular
level is based on how well the feedback matches its level def-
inition. 5 corresponds to a perfect match and 1 corresponds
to no match. The effectiveness of a generated feedback for
a particular level is how effectively it can help a student,
according to the annotator’s judgment. 5 corresponds to
highly effective feedback that should help the student fix
their bug and 1 corresponds to feedback that does not help
the student or may confuse them.

4. RESULTS AND DISCUSSION

4.1 Inter-Rater Agreement

Table 3 measures the inter-rater agreement between pairs of
annotators in our study using Pearson correlation coefficient
(PCC) [1], with average PCC values reported at the end of
the row and column for the corresponding annotators. The
overall average of all the pairwise PCC values is 0.28, which
indicates moderate agreement across annotators.

4.2 Trends Found in the User Study

Figure 1 shows the trend for how annotators’ relevance and
effectiveness ratings change across questions. There are five
sets of bars, each for one question in our study. Each set
contains the average score for each of the levels represented
using a single bar, together with standard deviations. The
scores are averaged over all scores from all the annotators
and all three submissions for each question. Figure 2 shows
the trend on the same evaluation metrics across different

= Level 0 - Yes/No mmm Level 2 - Hint mm Level 4 - Edit

mum Level 1-TestCase mmm Level 3 - Location

o

«

IS

-

°

1 2 3 4 5
Questions

Average Relevance Across Submissions and Annotators
w

(a) Relevance

mmm Level 0 - Yes/No mmm Level 2 - Hint mmm Level 4 - Edit

mmm level 1-TestCase WM Level 3 - Location

1 2 3 4 5
Questions

Average Effectiveness Across Submissions and Annotators

(b) Effectiveness
Figure 1: Relevance and Effectiveness score for each ques-
tion, reported for each level - averaged over all three submis-
sions and all annotators. Error margin is standard deviation.

feedback levels. Two key observations from these results:
Quality of feedback for each level is consistent across ques-
tions. We see that the quality of feedback for lower levels is
better than for higher levels in 4 out of 5 questions. In terms
of relevance, our method can generate highly relevant lower-
level feedback. However, for higher-level feedback, the rele-
vance diminishes. Upon manual inspection, we observe that
as the level increases, the feedback diverges from the level
definition more and more. For example, level 4 feedback of-
ten has the whole program listed or contains a brand new
program in the generated feedback-ladder, which violates
the definition of level 4 feedback. On the other hand, the
generated feedback is almost perfectly relevant at level 0 and
level 1 since these levels require highly structured feedback.
Overall, the method struggles to maintain relevance for lev-
els 2, 3, and 4 a little bit more than levels 0 or 1. In terms
of effectiveness, we see a similar trend as the one for rele-
vance, except that the effectiveness at higher levels is much
lower. In the annotators’ opinion, listing whole programs
or replacing them with a new program has a more negative
impact on effectiveness compared to relevance. An excep-
tion can be found between levels 1 and 2, where even though
level 1 has low effectiveness, level 2 has higher effectiveness
for questions 2, 3, and 4. This means that LLM-generated
hints have higher quality than generated test cases.

Quality of feedback is higher for low-scoring submissions than
high-scoring submissions. Among submissions with differ-

mmm Low-Scoring (< 20%) Submission
s Mid-Scoring (40% - 60%) Submission

mmm High-Scoring (> 80%) Submission

w o

I

Average Relevance Across Questions
- w

°

0 - Yes/No 1 - Test Case 2 - Hint 3 - Location 4 - Edit
Feedback Levels

(a) Relevance

mmm Low-Scoring (< 20%) Submission
mm Mid-Scoring (40% - 60%) Submission

mmm High-Scoring (> 80%) Submission

Average Effectiveness Across Questions
w

0 - Yes/No 1 - Test Case 2 - Hint 3 - Location 4 - Edit
Feedback Levels

(b) Effectiveness
Figure 2: Relevance and Effectiveness score for each level,
reported for all three submissions - averaged over all prob-
lems and annotators. Error margin is standard deviation.

ent scores (low-scoring: < 20%, mid-scoring: 40% — 60%,
high-scoring: > 80%), we observe a clear trend that GPT-4
struggles to generate good feedback for higher-scoring sub-
missions. This result is likely because finding a mistake
in low-scoring submissions is much easier than doing so for
higher-scoring submissions; high-scoring submissions are al-
most correct and often contain tiny mistakes that fail one or
two corner test cases. Even human experts struggle to find
these mistakes. We also find evidence of these situations
upon manual inspection of the annotator ratings: The high-
scoring submissions for Q1 and Q5 were so close to being
correct that two of our annotators mistakenly believed they
were correct. Therefore, they rated the generated feedback-
ladder as irrelevant and ineffective at all levels.

S. CONCLUSION AND FUTURE WORKS

In our paper, GPT-4’s ability to generate feedback-ladders
for programming assignments is examined. While promis-
ing, our user study revealed limitations in providing highly
effective feedback, especially at advanced levels. However,
the method remains valuable for teachers to tailor feedback
to student proficiency levels, reducing workload by address-
ing mistakes in low-scoring submissions. Future research
could include large-scale classroom studies for real-time in-
terventions, personalized feedback models, making feedback
personalized to each student’s knowledge [8] and dedicated
LLM training for feedback generation to mitigate time and
cost concerns associated with GPT-4.

6.
1]

[10]

REFERENCES

Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty,
J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation
coefficient. Noise reduction in speech processing

pp. 1-4 (2009)

Gao, Z., Erickson, B., Xu, Y., Lynch, C., Heckman, S.,
Barnes, T.: You asked, now what? modeling students’
help-seeking and coding actions from request to
resolution. Journal of Educational Data Mining 14(3),
109-131 (2022)

Johnston, K.: The effects of immediate correctness
feedback on student learning, understanding, and
achievement (2015), https:
//api.semanticscholar.org/CorpusID: 188952447
Kochmar, E., Vu, D.D., Belfer, R., Gupta, V., Serban,
I., Pineau, J.: Automated personalized feedback
improves learning gains in an intelligent tutoring
system. Artificial Intelligence in Education 12164, 140
— 146 (2020), https:
//api.semanticscholar.org/CorpusID:218516674
Kumar, N.A., Lan, A.: Improving socratic question
generation using data augmentation and preference
optimization (2024)

Kumar, N.A., Lan, A.: Using large language models
for student-code guided test case generation in
computer science education (2024)

Leinonen, J., Hellas, A., Sarsa, S., Reeves, B., Denny,
P., Prather, J., Becker, B.A.: Using large language
models to enhance programming error messages. In:
Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1. pp. 563-569
(2023)

Liu, N., Wang, Z., Baraniuk, R., Lan, A.: Open-ended
knowledge tracing for computer science education. In:
EMNLP (2022)

Marwan, S., Jay Williams, J., Price, T.: An evaluation
of the impact of automated programming hints on
performance and learning. In: Proceedings of the 2019
ACM Conference on International Computing
Education Research. pp. 61-70 (2019)

Miwa, K., Terai, H., Kanzaki, N., Nakaike, R.: Stoic
behavior in hint seeking when learning using an
intelligent tutoring system. In: Proceedings of the
Annual Meeting of the Cognitive Science Society.

vol. 35 (2013)

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

Paaflen, B., Hammer, B., Price, T.W., Barnes, T,
Gross, S., Pinkwart, N.: The continuous hint
factory-providing hints in vast and sparsely populated
edit distance spaces. arXiv preprint arXiv:1708.06564
(2017)

Pankiewicz, M., Baker, R.S.: Large language models
(gpt) for automating feedback on programming
assignments. arXiv preprint arXiv:2307.00150 (2023)
Phung, T., Cambronero, J., Gulwani, S., Kohn, T.,
Majumdar, R., Singla, A., Soares, G.: Generating
high-precision feedback for programming syntax errors
using large language models. arXiv preprint
arXiv:2302.04662 (2023)

Phung, T., Padurean, V.A., Cambronero, J., Gulwani,
S., Kohn, T., Majumdar, R., Singla, A., Soares, G.:
Generative ai for programming education:
Benchmarking chatgpt, gpt-4, and human tutors.
International Journal of Management 21(2), 100790
(2023)

Phung, T., Padurean, V.A., Singh, A., Brooks, C.,
Cambronero, J., Gulwani, S., Singla, A., Soares, G.:
Automating human tutor-style programming feedback:
Leveraging gpt-4 tutor model for hint generation and
gpt-3.5 student model for hint validation. arXiv
preprint arXiv:2310.03780 (2023)

Piech, C., Huang, J., Nguyen, A., Phulsuksombati,
M., Sahami, M., Guibas, L.: Learning program
embeddings to propagate feedback on student code.
In: International conference on machine Learning. pp.
1093-1102. PMLR (2015)

Price, T., Shi, Y.: Codeworkout data spring 2019. 2nd
CSEDM Data Challenge (2021), https:
//sites.google.com/ncsu.edu/csedm-dc-2021/
Sheese, B., Liffiton, M., Savelka, J., Denny, P.:
Patterns of student help-seeking when using a large
language model-powered programming assistant.
arXiv preprint arXiv:2310.16984 (2023)

Yasunaga, M., Liang, P.: Graph-based, self-supervised
program repair from diagnostic feedback. In:
International Conference on Machine Learning. pp.
10799-10808. PMLR (2020)

Yasunaga, M., Liang, P.: Break-it-fix-it: Unsupervised
learning for program repair. In: International
Conference on Machine Learning. pp. 11941-11952.
PMLR (2021)

