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Adams spectral sequence
Stable homotopy group

1. Introduction

The topological modular forms spectrum tmf plays an essential role in the study of 

the stable homotopy groups of spheres [2] [3] [12] [16] [19] [20] [21] [32]. The unit map 

S → tmf from the sphere spectrum to tmf detects much of the structure of the stable 

homotopy groups of S, including the elements η (1-stem), ν (3-stem), ε (8-stem), κ (14-

stem), κ (20-stem), and many additional elements. The unit map is far from injective 

(for example, Ã (7-stem) maps to zero in tmf ), so it does not detect all of the stable 

homotopy groups of spheres. Moreover, it is also not surjective. The computation of 

the tmf -Hurewicz image is a difficult problem that leads to the identification of infinite 

v2-periodic families in the stable homotopy groups of spheres [4].

The spectrum tmf serves as an approximation to the sphere spectrum. This ap-

proximation is highly suitable for testing theories and for developing computational 

techniques. The structure of tmf is complicated enough to exhibit the complex phenom-

ena related to the computation of stable homotopy groups, but it is also simple enough 

to be computed exhaustively. We have found that the study of tmf is an indispensable 

step along the way to understanding the sphere spectrum.

By comparison, the spectrum ko is arguably too simple to serve as a test case for com-

putational theories. For example, its Adams spectral sequence collapses, so its homotopy 

reduces to an entirely algebraic problem. Neither the Adams nor the Adams-Novikov 

spectral sequence collapses for tmf . However, the analysis of tmf does not involve cross-

ing differentials or crossing extensions in the sense of [26, Section 2.1]. This means that 

the homotopy of tmf does not share the most delicate parts of the homotopy groups of 

spheres.

Bruner and Rognes [9] have recently exhaustively studied the Adams spectral sequence 

for tmf . They completely determine the additive and (primary) multiplicative structure 

of the stable homotopy groups of tmf , with one exception.

The goal of this manuscript is to carry out the Adams-Novikov spectral sequence 

for tmf . In fact, we will work in the more general C-motivic context and compute the 

motivic Adams-Novikov spectral sequence for the C-motivic modular forms spectrum 

mmf . The classical computation is easily recovered from the motivic computation by an 

algebraic localization.

More specifically, there is a certain motivic element Ä . Inverting Ä has the effect of 

collapsing C-motivic computations to classical computations. In particular, Ä -torsion 

phenomena disappear in the classical context. Henceforth, we will work in the C-motivic 

context. The interested reader can easily recover classical computations from our work 

by inverting Ä .
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From another perspective, we also compute the C-motivic effective slice spectral se-

quence for mmf , since it agrees with the Adams-Novikov spectral sequence over C. This 

identification of spectral sequences does not appear to be cleanly stated in the literature, 

but it is a computational consequence of the weight 0 result of [27, Theorem 1].

Our goal is not merely to record the details of the Adams-Novikov spectral sequence, 

which have previously appeared in [2]. More specifically, we have attempted to give proofs 

that are as algebraic as possible. Such algebraic proofs are less likely to contain subtle 

mistakes, and they are more easily verifiable by machine. The motivic context provides 

us with additional algebraic tools that are not accessible in the strictly classical context. 

We also correct a few oversights and minor mistakes in the analysis of [2].

1.1. Algebraic philosophy

We do not use any information from the sphere spectrum as input for our computa-

tions. We do, however, assume full knowledge of the algebraic structure of the motivic 

Adams and motivic Adams-Novikov E2-pages for mmf , including the full structure of 

the algebraic Novikov spectral sequence that converges to the Adams-Novikov E2-page 

[1]. In later sections, the reader will most likely need to inspect motivic Adams E2-pages; 

see [23] or [24].

This is consistent with our goal of using algebraic techniques whenever possible. It 

is also consistent with our philosophy that the role of tmf is to inform us about the 

sphere spectrum. By comparison, in [9] it is necessary to import the relation η2κ = 0 to 

tmf from previous knowledge of the sphere spectrum. Fortunately for us, we have the 

relation h2
1d = 0 in the Adams-Novikov E2-page for mmf . Because there are no elements 

in higher filtration, the relation η2κ = 0 therefore has an entirely algebraic proof.

A computation involving the Adams or Adams-Novikov spectral sequence breaks into 

two main stages. The first stage is entirely algebraic and involves the computation of 

the E2-page. In the modern era, this first stage is typically conducted by machine. The 

computation of the E2-pages for tmf is not elementary, but it can be done manually 

with enough patience [1] [2, Section 7] [9] [32, Section 18].

The second stage of the process involves the computation of differentials and hid-

den extensions. This stage typically requires input from topology, so it cannot be fully 

automated because it is not entirely algebraic.

Our contribution is to recognize that much of this topological second stage actually 

can be carried out using only algebraic information. The key idea is to use the additional 

structure of the motivic context in order to pass back and forth between the Adams 

and Adams-Novikov spectral sequences. Each E2-page tells us some things about the 

homotopy groups of tmf . The information contained in these E2-pages does overlap, but 

not perfectly. The union of the information in both E2-pages is strictly greater than the 

information in either one of the E2-pages.

We give several concrete examples of information available in only one of the two 

E2-pages.
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(1) In the classical Adams E2-page for tmf , we have the relation h4
1 = 0. This implies 

the relation η4 = 0 in homotopy. However, in the classical Adams-Novikov E2-page, 

the element h4
1 is non-zero and is hit by an Adams-Novikov d3 differential. Thus, 

the relation η4 = 0 has an entirely algebraic proof, but only in the Adams spectral 

sequence.

(2) In fact, the relation h4
1 = 0 is a consequence of the Massey product h2

1 = 〈h0, h1, h0〉

in the Adams E2-page. In the classical Adams-Novikov E2-page, the corresponding 

Massey product 〈2, h1, 2〉 is zero. Consequently, the Toda bracket η2 = 〈2, η, 2〉 has 

an entirely algebraic proof, but only in the Adams spectral sequence.

(3) In the classical Adams-Novikov E2-page for tmf , we have the relation h3
2 = h1c. 

This implies the relation ν3 = ηε. However, in the classical Adams E2-page, we have 

h3
2 = 0. In fact, there is a hidden ν extension from h2

2 to h1c in the Adams spectral 

sequence. Thus, the relation ν3 = ηε has an entirely algebraic proof, but only in the 

Adams-Novikov spectral sequence.

(4) In fact, the relation h3
2 = h1c is a consequence of the Massey product c = 〈h2, h1, h2〉

in the Adams-Novikov E2-page. In the classical Adams E2-page, the corresponding 

Massey product is zero. Consequently, the Toda bracket ε = 〈ν, η, ν〉 has an entirely 

algebraic proof, but only in the Adams-Novikov spectral sequence. See Lemma 2.20

for more detail on this example.

In order to obtain one key Adams-Novikov differential, we use Bruner’s theorem on 

the interaction between algebraic Steenrod operations [30] and Adams differentials in the 

context of the Adams spectral sequence. We refer to [8, Theorem 2.2] for a precise read-

able statement; see also [10] and [28]. The practical implementation of Bruner’s theorem 

requires only algebraic information in the form of algebraic Steenrod operations on Ext

groups. These operations can be computed by machine, although not as effectively as 

the additive and multiplicative structure of the Ext groups. The algebraic Steenrod op-

erations are additional structure on top of what topologists usually think of as “standard 

homological algebra”.

In the context of the Adams-Novikov spectral sequence, we also rely on the Leibniz rule 

in the form dr(xk) = kxk−1dr(x). Philosophically, this formula is connected to Bruner’s 

theorem, although we do not know how to make a precise connection. As in the case 

of Bruner’s theorem, it feels like slightly more information than is usually considered in 

standard homological algebra.

We also draw attention to Proposition 4.5, in which we establish a hidden 2 extension 

in the 110-stem. Here we use some information about the homotopy groups of mmf /Ä2. 

One might argue that this information is not entirely of an algebraic nature. By com-

parison, the corresponding 2 extension in the Adams spectral sequence is hidden, but 

not particularly difficult [9, Theorem 9.8(110)].
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1.2. Techniques

Section 2.10 describes a particularly powerful method for studying the C-motivic 

Adams-Novikov spectral sequence in a way that has no classical analogue. The reader 

may need to refer to Table 1, Table 2, and Table 3, as well as the charts at the end of 

the manuscript, in order to make sense of the specific elements that we mention.

There is a map q : mmf /Ä → Σ1,−1mmf that can be viewed as projection to the top 

cell of the 2-cell mmf -module mmf /Ä . (To interpret the symbol Σ1,−1, see Section 1.7 for 

a discussion of our grading conventions.) The homotopy of mmf /Ä is entirely understood 

in an algebraic sense since it is isomorphic to the classical Adams-Novikov E2-page for 

tmf . Moreover, the map q maps onto the homotopy of mmf that is annihilated by Ä . Thus 

q can be used to detect structure in mmf that is related to classes that are annihilated 

by Ä .

In practice, many specific questions about hidden extensions do not directly involve 

elements that are annihilated by Ä . Frequently, if we multiply these elements by a power 

of Ä and a power of g, then we end up with elements that are annihilated by Ä . We 

can use q to understand these latter elements, and finally deduce information about the 

original elements. Table 5 lists numerous specific examples of this process. The majority 

of hidden extensions can be handled very easily in this way, although a few extensions 

require more complicated arguments.

We avoid the use of Toda brackets whenever possible, but occasionally they are in-

evitable. In those cases where we must compute a Toda bracket, we once again rely 

exclusively on algebraic techniques. Namely, our Toda brackets arise from corresponding 

Massey products in either the Adams or Adams-Novikov E2-page. The Moss Convergence 

Theorem [31] says that such algebraic Massey products detect Toda brackets in “well-

behaved” situations. In practice, all of the situations that we study are well-behaved.

1.3. The differentials on ∆k

Having carried out the entire analysis of the motivic Adams-Novikov spectral sequence 

for mmf , we can see in hindsight that there are a few key steps from which all of the other 

miscellaneous computations follow. Our experience shows that the key steps involve the 

differentials on elements of the form 2j∆k. This is not particularly surprising; we expect 

the element ∆ to play a dominant role since it represents v2-periodicity.

First, we establish d5(∆) = Ä2h2g in Proposition 3.9. This follows immediately by 

comparison to the Adams spectral sequence, in which Ä2h2g is already zero in the E2-

page. Thus, we have an algebraic proof for d5(∆). Then the Leibniz rule implies that 

d5(∆2) = 2Ä2∆h2g.

The Leibniz rule also implies that d5(∆4) = 4Ä2∆3h2g. However, 4Ä2∆3h2g is zero 

in the Adams-Novikov E2-page. Because of the hidden 2 extension from 2Ä2h2 to Ä3h3
1, 

the element Ä3∆3h3
1g ought to play the role of 4Ä2∆3h2g. This strongly suggests that 
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there should be a differential d7(∆4) = Ä3∆3h3
1g. In fact, this formula is correct (see 

Proposition 3.15), but it requires some work to give a precise proof.

Our solution, once again, is to play the Adams and Adams-Novikov spectral sequences 

against each other. We used the Adams E2-page to obtain the Adams-Novikov differen-

tial d5(∆). Then we used the Leibniz rule in the Adams-Novikov spectral sequence to 

obtain d5(∆2). In turn, this last Adams-Novikov differential implies an Adams differ-

ential d2(∆2), or d2(w2) in the notation of [9]. Next, we obtain an Adams differential 

d3(∆4), or d3(w2
2) in the notation of [9], by applying Bruner’s theorem on the interac-

tion between squaring operations and Adams differentials [10] [8]. Finally, the Adams 

differential d3(∆4) implies that there is an Adams-Novikov differential d7(∆4). For more 

details, see Sections 3.3 and 3.4. Curiously, precise statements about the Adams-Novikov 

differential d7(∆4) are missing from [2] [21] [32].

1.4. Main results

Our main results are expressed in the charts in Section 7. For completeness, we express 

this in the form of a main theorem.

Theorem 1.1. The charts in Section 7 represent the C-motivic Adams-Novikov spectral 

sequence for the motivic modular forms spectrum mmf , including complete descriptions 

of

• the E2-page.

• all differentials.

• the E∞-page.

• all hidden extensions by 2, η, and ν.

The proof of Theorem 1.1 consists of the sum of a long list of miscellaneous compu-

tations, which are carried out throughout the manuscript. See especially the tables in 

Section 6. These tables summarize the main computational facts, and they give cross-

references to more detailed proofs of each fact.

Our work is not as complete as [9] because we have not completely analyzed the 

multiplicative structure. In principle, this could be done using the same techniques. We 

do study one family of multiplicative relations in more detail. Bruner and Rognes identify 

a family νk of elements in the homotopy of tmf . They mostly determine the products 

among these elements. In one case, they determine only that a product takes one of two 

possible values. Our techniques settle this last detail about the 2-primary multiplicative 

structure of the homotopy of tmf .

The elements νk are of interest for at least one other reason. They exhibit exceptional 

behavior with respect to the image of the tmf -Hurewicz map [4, Theorem 1.2(3)]. We 

know of no direct connection between this Hurewicz map perspective and the multiplica-

tive relations that we study.
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Theorem 1.2. In the context of [9], ν4ν6 = νν2M .

Theorem 1.2 is proved later as Corollary 5.12. In fact, it is a consequence of the more 

general Theorem 5.10, which offers a graceful simultaneous analysis of products νjνk. 

Bruner and Rognes empirically observed the formula

νiνj = (i + 1)ννi+j .

Our proof shows that the coefficients (i + 1) arise naturally from the Leibniz rule

d5(∆i+1) = (i + 1)∆id5(∆).

1.5. Future directions

Our work raises some questions that deserve further study.

Problem 1.1. Compute the κ-periodic C-motivic spectrum mmf [κ−1].

Frequently, we detect elements and relations by first computing their products with 

various powers of g or κ. In other words, much of the structure of mmf is reflected in the 

κ-periodic spectrum mmf [κ−1]. This motivic spectrum is non-trivial, but its homotopy 

is entirely annihilated by Ä11. Consequently, its Betti realization is trivial, and it rep-

resents purely “exotic” motivic phenomena. We mention that [5] also studies g-periodic 

phenomena in tmf , although not in a way that is particularly close to our perspective.

Problem 1.2. Develop better technology to deduce the differential d7(∆4) = Ä3∆3h3
1g

directly from the differential d5(∆) = Ä2h2g.

It is conceivable that d7(∆4) could be deduced directly from d5(∆) using a variant of 

Bruner’s theorem that would apply in the Adams-Novikov spectral sequence, but we have 

not even formulated a precise statement of such a variant. There is a connection between 

Bruner’s theorem and the Leibniz rule dr(x2) = 2xdr(x), but the precise relationship is 

not clear to us.

Another possible approach to Problem 1.2 might involve an enriched E2-page in which 

the 2 extension from 2Ä2h2 to Ä3h3
1 is not hidden.

Problem 1.3. Construct a spectral sequence whose E2-page reflects the algebraic struc-

ture of both the Adams and Adams-Novikov E2-pages.

We frequently pass back and forth between the Adams and Adams-Novikov spectral 

sequences. In order to facilitate these transitions, Section 2.5 introduces a notion of 

correspondence between elements of the Adams spectral sequence and elements of the 

Adams-Novikov spectral sequence.
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This setup feels like a preliminary attempt to describe a richer connection between 

the two spectral sequences. It would be much more convenient and effective to compute 

in just a single spectral sequence that reflects the algebraic structure of both the Adams 

and Adams-Novikov spectral sequences. There are some preliminary indications that 

“bimotivic homotopy theory” (also known as HF2-synthetic BP -synthetic homotopy 

theory) provides a context for this.

1.6. Outline

We begin in Section 2 with a discussion of tools that we will use to carry out our 

explicit computations. We describe both the motivic Adams and motivic Adams-Novikov 

spectral sequences for mmf , and we establish notation for elements in these spectral 

sequences. We also establish notation for certain homotopy elements that we will use 

later. We draw particular attention to Sections 2.9 and 2.10, which establish a powerful 

tool for detecting hidden extensions. The basic idea is to use the motivic spectrum 

mmf /Ä , whose homotopy is entirely algebraic.

Our explicit computations begin in Section 3, where we establish all of the Adams-

Novikov differentials. The propositions in this section are mostly in order of increasing 

length of differentials. However, we make some exceptions to this general rule to preserve 

the logical order, so each result only depends on previously proved results.

Once the Adams-Novikov differentials are computed, we proceed to compute all hidden 

extensions by 2, η, and ν in Section 4. Most of these extensions follow immediately by 

comparison to the homotopy of mmf /Ä , but there are several cases with more difficult 

proofs.

Finally, in Section 5, we consider an explicit family of products that are particularly 

interesting. Our results on these products fill a gap in the product structure of π∗tmf , 

as described in [9].

1.7. Conventions

We work exclusively at the prime 2. There are interesting aspects to the computation 

of tmf at the prime 3 ([2, Chapter 5], [12], [9, Chapter 13]), but we do not address that 

topic. We use the motivic Adams-Novikov spectral sequence to compute the homotopy 

groups of the 2-localization of mmf . We also use the E2-page of the motivic Adams 

spectral sequence, which actually converges to the homotopy groups of the 2-completion 

of mmf . The distinction between localization and completion is not essential since only 

finitely generated abelian groups appear in our work. For expository simplicity, these 

localizations or completions do not appear in our notation. For example, the symbol Z

refers to the integers localized at 2, or to the 2-adic integers. Similarly, π∗,∗mmf refers 

to the motivic stable homotopy groups of the 2-localization (or 2-completion) of mmf .

The adjective “motivic” always refers exclusively to the C-motivic context. We con-

sider no base fields other than C. There is more than one convention for bigrading in the 
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motivic context. We use the grading (stem, weight), in which the sphere Ss,w is defined 

to be the smash product (S1,0)∧s−w ∧ (S1,1)∧w; and S1,0 and S1,1 are the simplicial cir-

cle ∆1/∂∆1 and the punctured affine line A1 − 0 respectively. In particular, the formal 

suspension is Σ1,0. This same convention is also used in [26].

Many of our explicit results are labelled with the degrees in which they occur. These 

degrees may help the reader navigate the overall computation, especially in finding the 

relevant elements on Adams-Novikov charts.

1.8. Acknowledgments

We thank Tilman Bauer, Robert Bruner, and John Rognes for various discussions 

related to the production of this manuscript. We also appreciate stimulating discussions 

with the participants of the Winter 2023 eCHT reading seminar on the Adams spectral 

sequence for tmf.

2. Background

In this section, we discuss the techniques that we will use later to carry out our 

computations.

2.1. The C-motivic modular forms spectrum mmf

There is a C-motivic E∞-ring spectrum mmf that can be viewed as the analogue of 

the classical topological modular forms spectrum tmf [15]. The Betti realization of mmf

is the classical spectrum tmf . Moreover, the cohomology of mmf is A / / A(2), where A

denotes the C-motivic Steenrod algebra and A(2) is the subalgebra generated by Sq1, 

Sq2, and Sq4.

2.2. The C-motivic Adams spectral sequence for mmf

We abbreviate the motivic Adams spectral sequence for mmf by mAss. The cohomol-

ogy of C-motivic A(2) is the E2-page of the mAss. The manuscript [23] computes the 

cohomology of C-motivic A(2) using the motivic May spectral sequence, and it gives 

a complete description of its ring structure. The mAss E2-page consists entirely of al-

gebraic information, which we take as given. We grade the mAss E2-page in the form 

(s, f, w), where s is the topological stem, f is the Adams filtration, and w is the motivic 

weight.

The motivic Adams differentials are recorded in [24]. However, this manuscript does 

not depend on previous knowledge of any Adams differentials, neither classical nor mo-

tivic. For completeness, we provide self-contained proofs for two Adams differentials in 

Proposition 3.20.
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Table 1

Generators of the motivic 
Adams E2-page for mmf .

(s, f, w) [23] [9]

(0, 0, −1) τ 1
(0, 1, 0) h0 h0

(1, 1, 1) h1 h1

(3, 1, 2) h2 h2

(8, 3, 5) c c0

(8, 4, 4) P w1

(11, 3, 7) u
(12, 3, 6) a or α α
(14, 4, 8) d d0

(15, 3, 8) n or ν ³
(17, 4, 10) e e0

(20, 4, 12) g g
(25, 5, 13) ∆h1 ´
(32, 7, 17) ∆c µ
(35, 7, 19) ∆u
(48, 8, 24) ∆2 w2

We adopt the notation of [23] and [24] for the mAss. For the reader’s convenience, 

Table 1 provides a concordance between our notation and the notation of [9]. Beware 

that the motivic generators u and ∆u have no classical counterparts because they are 

annhilated by Ä .

2.3. The C-motivic Adams-Novikov spectral sequence for mmf

The E2-page of the classical Adams-Novikov spectral sequence for tmf is given by 

Ext∗∗
BP ∗BP (BP ∗, BP ∗tmf ), where BP denotes the Brown-Peterson spectrum. Analo-

gously to the classical Adams-Novikov spectral sequence, one can construct a motivic 

Adams-Novikov spectral sequence by resolving with respect to the motivic Brown-

Peterson spectrum. We abbreviate the motivic Adams-Novikov spectral sequence by 

mANss. Note that the mANss is the same as the Ä -Bockstein spectral sequence. We 

grade the mANss E2-page in the form (s, f, w), where s is the topological stem, f is the 

Adams-Novikov filtration, and w is the motivic weight.

The mANss is easy to describe in classical terms. The motivic E2-page can be obtained 

from its classical analogue by first assigning a third degree, called the weight, to be half of 

the total degree for each class, then adjoining a polynomial generator Ä of degree (0, 0, −1)

(see, e.g. [22][25]). More explicitly, a classical element x in degree (s, f) corresponds to a 

family of elements {Änx|n ≥ 0} in the mANss, where the motivic element x has degree 
(

s, f, s+f
2

)

.

The E2-page of the mANss consists entirely of algebraic information, which we take 

as given. For our purposes, the best way to compute this E2-page is by the algebraic 

Novikov spectral sequence, which is worked out in detail in [1].

Remark 2.1. The E2-page of the classical Adams-Novikov spectral sequence for tmf is 

the cohomology of a version of the elliptic curve Hopf algebroid ([32][2]). By the change-
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Table 2

Generators of the motivic 
Adams-Novikov E2-page 
for mmf .

(s, f, w) generator

(0, 0, −1) τ
(1, 1, 1) h1

(3, 1, 2) h2

(5, 1, 3) h1v2

1

(8, 0, 4) P
(8, 2, 5) c
(12, 0, 6) 4a
(14, 2, 8) d
(20, 4, 12) g
(24, 0, 12) ∆

of-rings theorem [32, Theorem 15.3], this is the same as the cohomology of the Hopf 

algebroid (BP∗tmf, BP∗BP ⊗BP∗
BP∗tmf). See [32, Proposition 15.7 and Section 20]

for more details. We do not rely on this perspective.

2.4. Notation for the motivic Adams-Novikov spectral sequence

Table 2 lists the multiplicative generators for the mANss E2-page for mmf . These 

generators are the starting point of our computation.

One must be slightly careful with the definitions of some of these elements because 

they belong to cyclic groups of order greater than 2. In these cases, there is more than 

one possible generator. Specifically, this issue arises for the elements h2, P , 4a, g, and 

∆. For P , 4a, and g, we simply choose arbitrary generators.

Remark 2.2. (3, 1, 2) The choice of h2 makes little practical difference to us, as long as 

it is a generator of the mANss E2-page in degree (3, 1, 2). For definiteness, we take h2

to represent the homotopy element ν, assuming an a priori definition of ν. One possible 

definition of ν is the Hopf construction [18] on the quaternionic multiplication map 

S3 ×S3 → S3. See also [13] for an explicitly motivic discussion of the Hopf construction.

The choice of ∆ also makes little practical difference. We choose ∆ in such a way to 

make our formulas easier to write. See Remark 3.10 and Remark 5.8 for more details. 

Note that the choice of ∆ depends on a previous choice of h2.

Remark 2.3. (12, 0, 6) The notation 4a does not appear to be natural and deserves some 

explanation. There are two closely related reasons why we find this notation to be con-

venient. First, the element 4a is detected in the algebraic Novikov spectral sequence [1]

by an element h2
0a. Second, the element 2 · 4a turns out to be a permanent cycle that 

detects an element in π12,6mmf . This same homotopy element is detected by h3
0a in the 

Adams spectral sequence for mmf .
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The element g is a permanent cycle and therefore represents a homotopy class κ. 

Multiplication by g provides regular structure to the mANss for mmf . We typically sort 

elements into families that are related by g multiplication. In other words, when we 

consider a particular element x, we also typically consider the elements xgk for all k ≥ 0

at the same time.

Taken together, Figs. 1 and 3 depict the E2-page of the mANss for mmf graphically. 

The careful reader should superimpose these figures in order to obtain a full picture of 

the mANss. Fig. 1 depicts a regular v1-periodic pattern in the E2-page, to be discussed 

in detail in Section 2.7. Fig. 3 depicts the remaining classes.

2.5. Comparison between the mANss and the mAss

The motivic Thom reduction map BP → HF2 induces a map from the mANss for 

mmf to the mAss for mmf . Unfortunately, this map does not detect as much as we would 

like, so we need a more sophisticated way to compare elements between the mANss and 

the mAss.

Definition 2.4. Let a be a permanent cycle in the mANss for mmf , and let b be a per-

manent cycle in the mAss for mmf . The elements a and b correspond if there exists a 

non-zero element in π∗,∗mmf that is detected by a in the mANss for mmf and is detected 

by b in the mAss for mmf .

Remark 2.5. Beware that a permanent cycle may detect more than one element in 

π∗,∗mmf , depending on the presence of permanent cycles in higher filtration. We ask 

only that the cosets detected by a and b intersect; they need not coincide. We give an 

explicit example.

The element P of the mANss E∞-page detects two elements of π8,4mmf because of 

the presence of Äc in higher filtration. On the other hand, the element P of the mAss 

E∞-page detects infinitely many elements (which differ only by a 2-adic unit factor) 

because of the presence of Phk
0 in higher filtration for k ≥ 1. This is an example of a 

corresponding pair of elements that do not detect precisely the same coset of homotopy 

elements.

Remark 2.6. It is possible that a single element of the mANss corresponds to two different 

elements of the mAss. For example, the element P of the mANss detects two elements 

of π8,4mmf because of the presence of Äc in higher filtration. These two homotopy ele-

ments are detected by Äc and by P in the mAss. Consequently, the mANss element P

corresponds to the mAss element P , and it also corresponds to the mAss element Äc. 

Fortunately, this kind of complication never arises in any of our specific computational 

results. For example, none of the correspondences listed in Table 4 exhibit this type of 

behavior.
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Remark 2.7. The element 2 of the mANss E∞-page detects a single element in homotopy 

since there are no elements in higher filtration. On the other hand, the element h0 of 

the mAss E∞-page detects infinitely many elements in homotopy, all of which differ by 

a 2-adic unit factor, because of the presence of hk
0 in higher filtration. Consequently, 

while 2 and h0 are a corresponding pair, they do not detect the same sets of homotopy 

elements. Rather, the homotopy elements detected by 2 form a subset of the homotopy 

elements detected by h0.

Among the corresponding pairs listed in Table 4, the same phenomenon occurs for h2, 

g, ∆h1, and 4∆2. In all of these cases, the homotopy elements detected by the mANss 

E∞-page element form a subset of the homotopy elements detected by the mAss E∞-page 

element.

Multiplicative structure respects corresponding pairs. The following proposition es-

tablishes this principle precisely.

Proposition 2.8. Let a and a′ be elements of the mANss E∞-page, and let b and b′ be 

elements of the mAss E∞-page. If a corresponds to a′, b corresponds to b′, and ab and 

a′b′ are non-zero; then ab corresponds to a′b′.

Proof. Let a and a′ detect a homotopy element ³, and let b and b′ detect a homotopy 

element ´. Then ab and a′b′ detect the product ³´. �

Remark 2.9. The motivic Thom reduction map BP → HF2 induces a map from the 

mANss for mmf to the mAss for mmf . This map detects some corresponding pairs but 

not all of them. Namely, it detects the pairs involving h1, h2, and g. These are the 

elements for which there is no filtration shift between the mANss and the mAss.

2.6. Homotopy elements

Table 3 lists some notation that we use for elements in the homotopy of mmf . We use 

the same symbols as in [9] for our motivic versions. Beware that some of our homotopy 

elements may not be exactly compatible under Betti realization with the ones in [9]. We 

discuss the details of these ambiguities in the following paragraphs.

We define elements in homotopy by specifying the elements in the mANss E∞-page 

that detect them. In some cases, it is already easy to see that these detecting elements 

survive to the E∞-page. For example, there are no possible targets for differentials on 

h1 and h2; nor can they be hit by differentials. Beware that we do not yet know that 

some of these detecting elements actually survive to the E∞-page. This will only become 

apparent after our analysis of Adams-Novikov differentials.

In some cases, there are E∞-page elements in higher filtration. When this occurs, 

the specified element in the E∞-page detects more than one element in homotopy. For 

example, the element Äh3
1 lies in filtration higher than the filtration of h2. Therefore, h2
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Table 3

Some elememts of π∗,∗mmf .

(s, w) name detected by

(1, 1) η h1

(3, 2) ν h2

(8, 5) ε c
(14, 8) κ d
(20, 12) κ̄ g
(25, 13) η1 ∆h1

(27, 14) ν1 2∆h2

(51, 26) ν2 ∆2h2

(96, 48) D4 2∆4

(99, 50) ν4 ∆4h2

(110, 56) κ4 ∆4d
(123, 62) ν5 2∆5h2

(147, 74) ν6 ∆6h2

(192, 96) M ∆8

detects two distinct elements in homotopy. In Table 3, this ambiguity occurs only for ν, 

κ4, and the elements of the form νk.

The choice of ν is of little practical signficance to us. For definiteness, we may use an 

a priori definition of ν, as discussed in Remark 2.2. The choices of νk will be discussed 

later in Definition 5.4. The choice of κ4 is immaterial for our purposes, so it can be an 

arbitrary generator of π110,56.

Remark 2.10. (20, 4, 12) Bruner and Rognes choose κ by reference to the unit map S →

tmf , together with a prior choice of κ in π20S. For our purposes, we only need that κ is 

detected by g in the mANss E∞-page, so we may choose κ to be compatible with the 

one in [9].

There is a slight complication with κ. In [25] and [26], the symbol κ is used for an 

element of π20,11S0,0 that is detected by Äg in the motivic Adams spectral sequence. The 

point is that g does not survive the May spectral sequence, so it does not exist in the 

motivic Adams spectral sequence.

Here, we use κ for an element of π20,12mmf . This element is detected by g in the 

Adams spectral sequence for mmf . The unit map S0,0 → mmf takes κ to Äκ.

Remark 2.11. Bruner and Rognes refer to the “edge homomorphism” in order to specify 

certain elements in π∗tmf . From the perspective of the Adams-Novikov spectral se-

quence, this edge homomorphism takes a particularly convenient form that can be easily 

described as a surjection followed by an injection. The surjection takes π∗tmf onto its 

quotient by elements that are detected in strictly positive Adams-Novikov filtration. In 

other words, the surjection maps π∗tmf onto the Adams-Novikov E∞-page in filtration 

0. Then the injection is the inclusion of the Adams-Novikov E∞-page into the Adams-

Novikov E2-page in filtration 0. In other words, the edge homomorphism detects the 

homotopy elements that are detected in Adams-Novikov filtration 0. This description of 

the edge homomorphism applies equally well in the setting of π∗,∗mmf and the motivic 

Adams-Novikov spectral sequence.
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The edge homomorphism depends on the choice of ∆ (see Remark 3.10). Beware that 

our choice of ∆ does not guarantee that our edge homomorphism is identical to the 

one discussed in [9]. Consequently, our definitions of the homotopy elements D4 and M

in Table 3 may not be the same as [9, Definition 9.22]. All possible choices of ∆ differ 

by multiples of 2. Therefore, ∆4 and ∆8 are well-defined up to multiples of 16 and 32

respectively. As a consequence, our choices of D4 and M agree with the Bruner-Rognes 

definitions up to multiples of 16 and 32 respectively.

2.7. v1-periodicity

Part of the mANss for mmf reflects v1-periodic homotopy. The pattern of differentials 

in this part is similar to the Adams-Novikov differentials for ko (see [2, page 31]). We 

consider this part separately and omit them from computations of higher differentials. 

Beware that we are not employing an intrinsic definition of v1-periodic homotopy. Rather, 

we are simply observing some specific structure in the mANss for mmf .

In the mANss E2-page, consider elements of the form Äahb
1P m(4a)ε∆n, where ε equals 

0 or 1 and m + ε > 0. We refer to these elements as the v1-periodic classes.

Note that 1 and ∆n (as well as their Ä multiples and h1 multiples) are excluded from 

this family of elements. The knowledgeable reader may observe that these powers of ∆

satisfy an intrinsic definition of v1-periodicity. Our family is constructed for its practical 

convenience, not for its intrinsic properties. Our detailed analysis of the Adams-Novikov 

spectral sequence reveals that the v1-periodic elements, as we have defined them, only 

interact with each other through the Adams-Novikov differentials. However, the powers of 

∆ support Adams-Novikov differentials that take values outside of the v1-periodic family. 

Consequently, we consider them in conjunction with the non-v1-periodic elements.

Figs. 1 and 2 display the v1-periodic portions of the mANss E2-pages and E∞-pages 

respectively. Our other charts exclude the v1-periodic family.

2.8. The spectrum mmf /Ä

Consider the cofiber sequence

Σ0,−1mmf
τ
−→ mmf

i
−→ mmf /Ä

q
−→ Σ1,−1mmf (2.12)

of mmf -modules. The spectrum mmf /Ä is a 2-cell mmf -module, in the sense that it is 

built from two copies of mmf . We refer to i as inclusion of the bottom cell, and we refer 

to q as projection to the top cell.

The mANss for mmf /Ä has a particularly simple algebraic form. The E2-page is iso-

morphic to the E2-page of the classical Adams-Novikov spectral sequence for tmf , except 

that it has a third degree. However, this additional degree carries no extra information 

since it equals half of the total degree, i.e., the sum of the stem and the Adams-Novikov 

filtration.
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Moreover, the mANss for mmf /Ä collapses. There are no differentials, so the E∞-

page equals the E2-page. Even better, there are no possible hidden extensions for degree 

reasons. Consequently, the homotopy of mmf /Ä is isomorphic to the classical Adams-

Novikov E2-page for tmf . Therefore, we take the homotopy of mmf /Ä as given since it is 

entirely algebraic information. The results discussed in this paragraph are tmf versions 

of the results in [25, Section 6.2], which are stated for the sphere spectrum.

We use the notation of Table 2 in order to describe homotopy elements in π∗,∗mmf /Ä . 

On the other hand, we need to be more careful about notation for elements in π∗,∗mmf . 

We can specify elements in π∗,∗mmf by giving detecting elements in the mANss E∞-

page, but this only specifies homotopy elements up to higher filtration. See Section 2.6

for more discussion of choices of elements in π∗,∗mmf .

The mAss for mmf /Ä is isomorphic to the algebraic Novikov spectral sequence, for 

which we have complete information [1]. This is a tmf version of the results in [14], which 

are stated for the sphere spectrum.

2.9. Inclusion and projection

We discuss the inclusion i and the projection q from Equation (2.12) in more detail. 

Many of these ideas first appeared in [25, Chapter 5] in more primitive forms.

We already observed that both i and q are mmf -module maps. The spectrum 

mmf /Ä = mmf ∧ S/Ä is a smash product of two rings [15] [7], so it is a ring. Note 

that the inclusion i is a ring map. However, the projection q is not a ring map.

Both i and q induce maps of motivic Adams-Novikov spectral sequences. These spec-

tral sequence maps are in fact module maps over the mANss for mmf . Similarly, the 

induced maps of homotopy groups are π∗,∗mmf -module maps.

We describe the inclusion i : mmf → mmf /Ä of the bottom cell in computational 

terms. If ³ is a homotopy element that is not a multiple of Ä , then i(³) is an element of 

the mANss E2-page that detects ³. On the other hand, if ³ is a multiple of Ä , then i(³)

is zero. This fact is closely related to the observation that the motivic Adams-Novikov 

spectral sequence is the same as the Ä -Bockstein spectral sequence.

Table 3 gives a number of values of i. For example, we have i(η) = h1. Elements in 

homotopy are typically defined in terms of the E∞-page elements that represent them, 

so the table can be interpreted as definitions of the named homotopy elements (up to 

some ambiguity in some cases).

For later use, we describe the computational implication that q : mmf /Ä → Σ1,−1mmf

is an mmf -module map. Let ³ be an element of π∗,∗mmf , and let x be an element of 

π∗,∗mmf /Ä . The object mmf /Ä is a right mmf -module, and

x · ³ = x · i(³),

where the dot on the left side represents the module action and the dot on the right side 

represents the multiplication of the ring spectrum mmf /Ä . Then we have that
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q(x) · ³ = q(x · ³) = q(x · i(³)), (2.13)

where the dot on the left represents multiplication in mmf ; the dot in the center 

represents the mmf -module action on mmf /Ä ; and the dot on the right represents mul-

tiplication in mmf /Ä .

We need a precise statement about the values of q. Our desired statement has essen-

tially the same content as [11, Theorem 9.19(1c)], which we reformulate into a form that 

is more convenient for us.

Proposition 2.14. Let x be an element of the mANss E2-page that is not divisible by Ä , 

and suppose that there is a non-zero motivic Adams-Novikov differential d2r+1(x) = Ä ry. 

If we consider x as an element of π∗,∗mmf /Ä , then the element q(x) of π∗,∗mmf is 

detected by −Ä r−1y in the mANss E∞-page.

Proof. The proof is a chase of the right side of the diagram

mmf /Ä
τr

mmf /Ä r+1 mmf /Ä r
³

mmf /Ä

mmf

i

τr−1

τr

mmf

=

mmf /Ä r

=

mmf

i

τr−1

mmf
τ

mmf
i

mmf /Ä
q

mmf ,

in which the rows are cofiber sequences; beware that we have suppressed the suspensions 

for clarity. We start with the element x in π∗,∗mmf /Ä in the bottom row. This element 

lifts to mmf /Ä r in the middle row by [11, Theorem 9.19] because x survives to the E2r+1-

page. The map ´ is the “Bockstein” mentioned in [11, Theorem 9.19], so we have that 

´(x) equals −y in the upper right corner of the diagram. Then −y lifts to an element of 

π∗,∗mmf in the middle row that is detected by −y. Finally, multiply by Ä r−1 to obtain 

q(x). �

Remark 2.15. Proposition 2.14 requires that x supports a non-zero Adams-Novikov dif-

ferential. On the other hand, suppose that x is a permanent cycle. Then x is in the image 

of i, and q(x) = 0 since the composition qi is zero.

2.10. Hidden extensions

We briefly review the notion of hidden extensions in spectral sequences. We adopt the 

following definition of hidden extensions.
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Definition 2.16. [25, Definition 4.1.2] Let ³ be an element in the target of a multiplicative 

spectral sequence, and suppose that ³ is detected by an element a in the E∞-page of the 

spectral sequence. A hidden extension by ³ is a pair of elements b and c of the E∞-page 

such that:

(1) the product a · b equals zero in the E∞-page.

(2) the element b detects an element ´ in the target such that c detects the product 

³ · ´.

(3) if there exists an element ´′ of the target that is detected by b′ such that ³ · ´′ is 

detected by c, then the filtration of b′ is less than or equal to the filtration of b.

If these conditions are met, then we say that there is a hidden ³-extension from b to c.

We will use projection q to simplify our analysis of hidden extensions. We shall show 

that two different products in π∗,∗mmf are the image of the same element in π∗,∗mmf /Ä . 

Therefore, they are equal.

Method 2.17. Suppose that ³ is not divisible by Ä , so i(³) = a, where a is an element 

of the mANss that detects ³. Consider a possible hidden ³ extension from b to c in 

the mANss for mmf . If b and c detect classes ´ and µ that are annihilated by Ä , then 

´ and µ are in the image of projection q to the top cell. Let b and c be their pre-

images in π∗,∗(mmf /Ä). Since this latter object is algebraic and completely known, we 

can determine whether b and c are related by an extension by mere inspection.

Equation (2.13) shows that

q(b · a) = q(b · i(³)) = q(b) · ³ = ´ · ³,

where the first two dots represent multiplication in mmf /Ä , while the last two dots 

represent multiplication in mmf . If b · a equals c, then ´ · ³ equals q(c) = µ, and there 

is a hidden ³ extension from b to c.

On the other hand, if b ·a equals zero, then ´ ·³ equals zero, and there is not a hidden 

³ extension from b to c.

In practice, Method 2.17 is very effective for determining hidden extensions. The 

main restriction is that it only applies to extensions between classes that are annihilated 

by Ä .

Example 2.18. (54, 2, 28) We illustrate Method 2.17 with a concrete example of the hid-

den 2 extension from ∆2h2
2 to Ä4dg2 in the 54-stem. In this example, we assume some 

knowledge of the relevant Adams-Novikov differentials (see Section 3). Consequently, 

one should view this example as a deduction of a hidden extension from previously 

determined differentials.
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First, multiply by Äg. If we establish a hidden 2 extension from Ä∆2h2
2g to Ä5dg3 in the 

74-stem, then we can immediately conclude the desired extension in the 54-stem. This 

step already requires motivic technology, since both ∆2h2
2g and dg3 are hit by classical 

Adams-Novikov differentials.

The key point is that the two elements under consideration in the 74-stem are non-zero 

but annihilated by Ä . They are annihilated by Ä because of the differentials d5(∆3h2) =

Ä2∆2h2
2g and d13(2∆3h2) = Ä6dg3, to be proved later in Propositions 3.9 and 3.17.

The elements Ä∆2h2
2g and Ä5dg3 represent classes in π74,39mmf that are annihilated 

by Ä . Therefore, these elements lie in the image of q : π75,38mmf /Ä → π74,39mmf .

By Proposition 2.14, the preimages in π75,38mmf /Ä are ∆3h2 and 2∆3h2 respectively. 

These two elements are connected by a 2 extension. Therefore, their images under q are 

also connected by a 2 extension.

2.11. Toda brackets

For background on Massey products and Toda brackets, including statements of the 

May convergence theorem and the Moss convergence theorem, we refer readers to [33], 

[29], [31] and also [25], [6].

Massey products in the E2-page of an Adams or Adams-Novikov spectral sequence 

are algebraic information since they are part of the structure of Ext groups. Some Toda 

brackets in homotopy can be deduced directly from these Massey products using the Moss 

convergence theorem. In order to apply this theorem, one must establish the absence of 

crossing differentials. Whenever we apply the Moss convergence theorem, there will be 

no possible crossing differentials. In other words, the crossing differentials condition is 

satisfied for algebraic reasons. Thus, the Toda brackets that we use are algebraic in the 

sense that they can be deduced directly from the algebraic structure of Ext.

Remark 2.19. In general, Massey products and Toda brackets are defined as sets, not 

elements. An equality of the form 〈³, ́ , µ〉 = ¶ means that

(1) ¶ is contained in the bracket;

(2) the bracket has zero indeterminacy.

The following lemma gives an explicit example of an algebraic deduction of a Toda 

bracket. See Table 3 for an explanation of the notation.

Lemma 2.20. (8, 3, 5) The Toda bracket 〈ν, η, ν〉 in π8,5mmf is detected by c and has no 

indeterminacy.

Proof. The proof follows several steps:

(1) Establish the Massey product c = 〈h2, h1, h2〉 in the E2-page of the mANss.
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(2) Check that there are no crossing differentials.

(3) Check that the Toda bracket 〈ν, η, ν〉 is well-defined and that it has no indeterminacy.

(4) Apply the Moss convergence theorem to the Massey product and deduce the desired 

Toda bracket.

For step (1), we check the following statements:

(a) The Massey product is well-defined because of the relation h1h2 = 0 in the E2-page 

of the mANss for mmf (see Fig. 3).

(b) The element c is contained in the Massey product [2, Equation (7.3)] [1].

(c) The indeterminacy is trivial by inspection. In more detail, the indeterminacy equals 

h2 · E5,1,3
2 . The only non-zero element of E5,1,3

2 is h1v2
1 , and h2 · h1v2

1 = 0. This 

last relation holds already in the E2-page of the motivic algebraic Novikov spectral 

sequence [1].

For step (2), we need to check for crossing differentials for the relation h1h2 in degree 

(4, 2, 3). We are looking for non-zero Adams-Novikov differentials in degrees (5, f, 3), 

where f < 1. There are no possible sources for such differentials (see Fig. 3).

For step (3), we check that the Toda bracket is well-defined because ην is zero in 

π4,3mmf for degree reasons. The indeterminacy equals ν · π5,3mmf , which is zero for 

degree reasons.

For step (4), we apply the Moss convergence theorem. The theorem implies that there 

exists an element in 〈h2, h1, h2〉 that is a permanent cycle and that detects an element in 

〈ν, η, ν〉. Since there are no indeterminacies for both the Massey product and the Toda 

bracket, the permanent cycle must be c. �

3. Differentials

In this section, we compute all differentials in the mANss for mmf , proving hidden 

extensions and Toda brackets only as needed along the way. Our results are presented 

in logical order, so each proof only depends on earlier results. We return to a more 

exhaustive study of hidden extensions later in Section 4.

Theorem 3.1. Table 6 lists all of the non-zero differentials on all of the indecomposable 

elements of each mANss Er-page.

Proof. The differentials are proved in the various propositions later in this section. The 

last column of Table 6 indicates the specific proposition that proves each differential.

Some indecomposables do not support differentials. In most cases, this follows for 

degree reasons, i.e., because there are no possible targets. Proposition 3.31 handles two 

slightly more difficult cases. �
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All differentials follow from straightforward applications of the Leibniz rule to the 

ones listed in Table 6.

3.1. d3 differentials

Proposition 3.2. (5, 1, 3) d3(h1v2
1) = Äh4

1.

Proof. In the mAss E2-page, h4
1 is a non-zero element that is annihilated by Ä . By 

inspection, h4
1 corresponds to the element of the same name in the mANss. Therefore, 

Äh4
1 must be hit by an Adams-Novikov differential, and there is only one possibility. �

Proposition 3.3. (12, 0, 6) d3(4a) = ÄPh3
1.

Proof. For degree reasons, d3(P ) = 0. Thus Proposition 3.2 implies that d3(P · h1v2
1) =

ÄPh4
1. We have the relation P · h1v2

1 = h1 · 4a in the Adams-Novikov E2-page. Note that 

this relation arises from a hidden h1 extension from h2
0a to Ph4

1 in the algebraic Novikov 

spectral sequence [1]. Therefore, 4a must also support a d3 differential, and there is only 

one possibility. �

The Leibniz rule, combined with Proposition 3.2 and Proposition 3.3, implies some 

additional d3 differentials. By inspection, the other multiplicative generators do not 

support d3 differentials.

Remark 3.4. All of the d3 differentials are h1-periodic, in the sense that they can be 

computed in the localization of the mANss E2-page in which h1 is inverted. This localized 

spectral sequence computes the homotopy of the η-periodic spectrum mmf [η−1]. See [17, 

Section 6.1] for a related discussion.

3.2. Corresponding pairs

Earlier in Section 2.5, we discussed the notion of elements from the mANss and from 

the mAss that correspond. Having computed the d3 differentials, we are now in a position 

to establish a number of corresponding pairs that will be used in later arguments.

Theorem 3.5. Table 4 lists some pairs of elements that correspond.

Proof. We discuss the correspondence between 2∆h2 and an in detail. Most of the other 

corresponding pairs are established with essentially the same argument. Some slightly 

more difficult cases are established later in Lemmas 3.11 and 3.35.

For degree reasons, the element 2∆h2 of the mANss for mmf cannot support an 

Adams-Novikov differential, nor can it be hit by an Adams-Novikov differential. (Be-

ware that ∆h2 does support a differential.) Therefore, 2∆h2 detects some element ³ in 

π27,14mmf .
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Table 4

Some corresponding elements in the motivic Adams and motivic 
Adams-Novikov spectral sequences.

mANss degree mANss element mAss element mAss degree

(0, 0, 0) 2 h0 (0, 1, 0)
(1, 1, 1) h1 h1 (1, 1, 1)
(3, 1, 2) h2 h2 (3, 1, 2)
(14, 2, 8) d d (14, 4, 8)
(20, 4, 12) g g (20, 4, 12)
(25, 1, 13) ∆h1 ∆h1 (25, 5, 13)
(27, 1, 14) 2∆h2 an (27, 6, 14)
(48, 0, 24) 4∆2 ∆2h2

0
(48, 10, 24)

(110, 2, 56) ∆4d ∆4d (110, 20, 56)

The inclusion i : mmf → mmf /Ä (see Section 2.9) induces a map

E2(mmf ) E2(mmf /Ä)

π∗,∗mmf π∗,∗mmf /Ä

(3.6)

of motivic Adams spectral sequences. The top horizontal map and the spectral sequence 

on the right are entirely algebraic. Consequently, they are completely known from our 

perspective, as described in Section 1.1. The spectral sequence on the right is identified 

with the algebraic Novikov spectral sequence that converges to the classical Adams-

Novikov E2-page for tmf [14].

The element ³ in the lower left corner maps to 2∆h2 in the lower right corner. This 

latter element is detected by an in filtration 6 in the upper right corner [1]. Therefore, 

³ is detected in the upper left corner in filtration at most 6. The only possible value is 

an. �

Remark 3.7. The algebraic Novikov spectral sequence is essential in the proof of Theo-

rem 3.5. We expect that this spectral sequence would play a central role in a solution to 

Problem 1.3.

Remark 3.8. Previous knowledge of the d3 differentials is required in order to conclude 

that 2∆h2 (and other elements as well) does not support an Adams-Novikov differential. 

For example, it is conceivable that d25(2∆h2) = Ä12h26
1 . However, we already know that 

Ä12h26
1 is hit by the differential d3(Ä11h22

1 · h1v2
1).

3.3. d5 differentials

Having determined all d3 differentials, one can mechanically compute the E4-page. 

Through the 22-stem, no additional differentials are possible for degree reasons, so the 

E4-page equals the E∞-page in that range.
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Proposition 3.9. (24, 0, 12) There exists a generator ∆ of the mANss E2-page in degree 

(24, 0, 12) such that d5(∆) = Ä2h2g.

Proof. The mAss element h2g is annihilated by Ä2 in the E2-page. Moreover, Äh2g does 

not support a hidden Ä extension in the mAss because of the presence of Äh2g in the 

homotopy of mmf /Ä . More precisely, projection to the top cell takes Äh2g to Äh2g, so 

Äh2g must detect homotopy elements that are annihilated by Ä .

The mANss element h2g corresponds to the mAss element h2g because of Table 4 and 

Proposition 2.8. Therefore, Ä2h2g must be hit by an Adams-Novikov differential. The 

only possibility is a d5 differential whose source is in degree (24, 0, 12). Since Ä2h2g is 

not a multiple of 2, the source of the differential must be a generator. �

Remark 3.10. (24, 0, 12) Proposition 3.9 does not uniquely specify ∆. Since 4Ä2h2g is zero 

in the mANss E2-page, ∆ is only well-defined up to multiples of 4. Later in Remark 5.8

we will make a further refinement in the definition of ∆. Also note that the choice of ∆

depends on a previous choice of h2, as in Remark 2.2.

The Leibniz rule, together with Proposition 3.9, implies additional d5 differentials. 

The other multiplicative generators of the E5-page do not support differentials.

Of particular note is the differential

d5(∆2) = 2∆d5(∆) = 2Ä2∆h2g.

This easy computation is an Adams-Novikov version of Bruner’s theorem on the inter-

action between Adams differentials and algebraic squaring operations [10] [8]. However, 

its corresponding Adams differential d2(∆2) = Ä2ang is not as easy to obtain by direct 

analysis of the Adams spectral sequence [9]. The difficulty is that ∆2 is not the value of 

an algebraic squaring operation since ∆ is not present in the Adams E2-page. By “post-

poning” the differential that hits Ä2h2g from algebra to topology, we obtain an easier 

argument for the differential on ∆2.

Lemma 3.11. (48, 0, 24) The element 4∆2 of the mANss for mmf corresponds to ∆2h2
0

in the mAss for mmf .

Proof. Having established that d5(∆2) = 2Ä2∆h2g as a consequence of the Leibniz 

rule and Proposition 3.9, we conclude that 4∆2 does not support an Adams-Novikov 

differential for degree reasons. (Beware that 2∆2 does support a differential, but we do 

not need to know that already.) Note that 4∆2 is detected in the algebraic Novikov 

spectral sequence by ∆2h2
0, which has filtration 10. Using the argument in the proof of 

Theorem 3.5, we conclude that 4∆2 corresponds to an element in the mAss with filtration 

at most 10. However, there are three possibilities: ∆2, ∆2h0, and ∆2h2
0.
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The top horizontal map of Diagram (3.6) takes ∆2 and ∆2h0 to elements of the same 

name. These elements detect ∆2 and 2∆2 in the Adams-Novikov E2-page. This means 

that 4∆2 cannot correspond to ∆2 or ∆2h0. �

3.4. d7 differentials

The main goal of this section is to establish some d7 differentials in Proposition 3.15

and Proposition 3.22. In order to obtain these differentials, we will need some hidden 

extensions and some later differentials. We establish these other results first, in order to 

preserve strict logical order.

Lemma 3.12. (3, 1, 2) There is a hidden 2 extension from 2h2 to Äh3
1.

Proof. According to Table 4 and Proposition 2.8, the mANss element 2h2 corresponds 

to the mAss element h0h2. The element h0h2 supports an h0 extension in the mAss 

E2-page that survives to the E∞-page, so 2h2 must support a 2 extension in the mANss. 

There is only one possible target for this extension. �

Remark 3.13. The hidden extension of Lemma 3.12 is the first in an infinite family of 

similar hidden extensions from the elements 2h2gk to the elements Äh3
1gk. For k ≥ 1, 

these extensions are “exotic” in the sense that they do not occur classically, since both 

2h2gk and h3
1gk are the targets of classical Adams-Novikov differentials.

Lemma 3.14. (27, 1, 14) There is a hidden 2 extension from 2∆h2 to Ä∆h3
1.

Proof. We already observed in Table 4 that 2∆h2 and ∆h1 ·h2
1 correspond to an and ∆h3

1

in the mAss. In the mAss E2-page, we have the relation h0 ·an = Ä∆h3
1. Therefore, there 

must be a hidden 2 extension between the corresponding Adams-Novikov elements. �

Proposition 3.15.

(1) (24, 0, 12) d7(4∆) = Ä3h3
1g.

(2) (48, 0, 24) d7(2∆2) = Ä3∆h3
1g.

Proof. Proposition 3.9 says that Ä2h2g is hit by an Adams-Novikov differential, so 2Ä2h2g

is also hit by an Adams-Novikov differential. Remark 3.13 says that there is a hidden 2

extension from 2h2g to Äh3
1g. Therefore, Ä3h3

1g is hit by a differential, and there is just 

one possible source for this differential.

The proof for the second differential is essentially the same. We need a hidden 2

extension from 2∆h2g to Ä∆h3
1g, which follows from Lemma 3.14 and multiplication 

by g. �
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Remark 3.16. Proposition 3.9 and Proposition 3.15 show that both 2Äh2gk and Ä2h3
1gk

are annihilated by Ä . In hindsight, we can see that the hidden 2 extensions connecting 

them are examples of Method 2.17. Their pre-images in mmf /Ä are 2∆gk−1 and 4∆gk−1, 

which are related by 2 extensions.

However, beware that we needed the hidden 2 extension from 2h2 to Äh3
1 in order to 

establish the differential d7(4∆). An independent proof of Lemma 3.12 is necessary in 

order to avoid a circular argument.

Before finishing the analysis of the d7 differential in Proposition 3.22, we deduce some 

higher differentials.

Proposition 3.17. (75, 1, 38) d13(2∆3h2) = Ä6dg3.

Proof. We have the relation ang · an = Ä4dg3 in the mAss E2-page because of the 

relations a2n = Äd · ∆h1 and ∆h1 · n = Ä3g2 [23, Theorem 4.13]. According to Table 4

and Proposition 2.8, the mANss elements 2∆h2g, 2∆h2, d, and g correspond to the 

mAss elements ang, an, d, and g. This means that there is a hidden 2∆h2 extension 

from 2∆h2g to Ä4dg3 in the mANss.

Using the Leibniz rule and Proposition 3.9, we already know that 2Ä2∆h2g is hit by 

the differential d5(∆2). Therefore, Ä6dg3 must also be hit by a differential. There are 

two possibilities for this differential: d11(Ä∆3h3
1) and d13(∆3h2). However, Ä∆3h3

1 is a 

product Ä(∆h1)3 of permanent cycles, so it cannot support a differential. �

Remark 3.18. The proof of Proposition 3.17 contains an example of Method 2.17. There 

is a hidden 2∆h2 extension from 2Ä∆h2g to Ä5dg3. Both of these elements are annihilated 

by Ä . Their pre-images under projection to the top cell of mmf /Ä are ∆2 and 2∆3h2

respectively, which are related by a 2∆h2 extension.

Proposition 3.19. (56, 2, 29) d9(∆2c) = Ä4h1dg2.

Proof. Recall from Example 2.18 that there is a hidden 2 extension from ∆2h2
2 to Ä4dg2. 

The argument for this hidden extension uses Proposition 3.9 and Proposition 3.17. There-

fore, Ä4h1dg2 must be hit by a differential because 2h1 = 0. There is only one possible 

differential. �

Proposition 3.20. In the mAss for mmf , we have the Adams differentials:

(1) (48, 8, 24) d2(∆2) = Ä2ang.

(2) (96, 16, 48) d3(∆4) = Ä8ng4.

Proof. We start with the Adams-Novikov differential d5(∆2) = 2Ä2∆h2g. We know from 

Table 4 and Proposition 2.8 that 2∆h2g corresponds to the element ang in the mAss. 
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Therefore, Ä2ang must be hit by some Adams differential, and the only possibility is that 

d2(∆2) equals Ä2ang.

Next, we apply Bruner’s theorem on the interaction between Adams differentials and 

algebraic squaring operations. We refer to [9, Theorem 5.6] for a precise readable state-

ment, although [8], [10] and [28] are preceding references. We apply Bruner’s theorem 

with x = ∆2, r = 2, and i = 8; so s = 8, t = 56, v = v(48) = 1, and a = h0. We obtain 

that

d∗ Sq8(∆2) = Sq9 d2(∆2)�h0 ·∆2 ·d2(∆2) = Sq9(Ä2ang)+h0 ·∆2 ·Ä2ang = Sq9(Ä2ang).

Next, we compute that Sq9(Ä2ang) = Ä4 · Ä∆h1 · n2 · g2, using the Cartan formula for 

algebraic squaring operations, as well as the formulas Sq2(a) = Ä∆h1, Sq3(n) = n2, and 

Sq4(g) = g2 [9, Theorem 1.20]. Finally, apply the relation ∆h1 · n = Ä3g2 [23] to obtain 

the Adams differential d3(∆4) = Ä8ng4. �

Remark 3.21. The careful reader may object to our use of a motivic version of Bruner’s 

theorem in the proof of Proposition 3.20, while only the classical version of the theorem 

has a published proof. In fact, this concern is irrelevant here. One can use the classical 

Bruner’s theorem to establish the classical Adams d3 differential and then deduce the 

motivic version of the differential.

Proposition 3.22. (96, 0, 48) d7(∆4) = Ä3∆3h3
1g.

Proof. Table 4 shows that the mANss element 4∆2 corresponds to the mAss element 

∆2h2
0. Therefore, Proposition 2.8 shows that the mANss element 16∆4 corresponds to 

the mAss element ∆4h4
0.

Proposition 3.20 shows that ∆4 does not survive the mAss. Therefore, ∆4h4
0 does 

not detect homotopy elements that are divisible by 16. Consequently, the corresponding 

element 16∆4 in the mANss does not detect homotopy elements that are divisible by 16. 

This means that ∆4 must support an Adams-Novikov differential.

There are two possible values for this differential: Ä3∆3h3
1g and Ä9h1dg4. How-

ever, Proposition 3.19 shows that the latter element is already hit by the differential 

d9(Ä5∆2cg2) = Ä9h1dg4. �

3.5. d9 differentials

At this point, we have determined all differentials dr for r ≤ 7. It remains to study 

higher differentials, although some higher differentials have already been determined 

in earlier propositions. We continue to proceed roughly in order of increasing values 

of r, although we occasionally need some Toda brackets, hidden extensions, and later 

differentials to preserve strict logical order.

Proposition 3.23. (171, 1, 86) d13(2∆7h2) = Ä6∆4dg3.
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Proof. The argument is nearly identical to the proof of Proposition 3.17. The mAss 

E2-page relation ∆4ang · an = Ä4∆4dg3 implies that there is a hidden 2∆h2 extension 

from 2∆5h2g to Ä4∆4dg3 in the mANss. We already know that 2Ä2∆5h2g is hit by the 

differential d5(∆6). Therefore, Ä6∆4dg3 must also be hit by a differential.

There are two possibilities for this differential: d11(Ä∆7h3
1) and d13(2∆7h2). The for-

mer possibility is ruled out by the decomposition Ä∆6h2
1 · ∆h1 and the observation that 

both ∆6h2
1 and ∆h1 survive past the E11-page for degree reasons. �

Lemma 3.24. (150, 2, 76) There is a hidden 2 extension from ∆6h2
2 to Ä4∆4dg2.

Proof. The proof is similar to the argument in Example 2.18. We already know the 

differentials d5(∆7h2) = Ä2∆6h2
2g and d13(2∆7h2) = Ä6∆4dg3 from Propositions 3.9 and 

3.23. Therefore, projection to the top cell detects a hidden 2 extension from Ä∆6h2
2g to 

Ä5∆4dg3. Finally, use Äg multiplication to deduce the hidden 2 extension on ∆6h2
2. �

Proposition 3.25.

(1) (80, 2, 41) d9(∆3c) = Ä4∆h1dg2.

(2) (176, 2, 89) d9(∆7c) = Ä4∆5h1dg2.

Proof. We saw in Example 2.18 that Ä4dg2 detects a multiple of 2. Therefore, ∆h1 ·Ä4dg2

must detect zero since ∆h1 does not support a 2 extension for degree reasons. Therefore, 

Ä4∆h1dg2 must be hit by a differential, and there is only one possibility.

The argument for the second differential is nearly identical. Lemma 3.24 shows that 

the element Ä4∆4dg2 detects a multiple of 2. Therefore, ∆h1 · Ä4∆4dg2 must detect zero, 

and there is only one differential that can hit it. �

Proposition 3.26. (152, 2, 77) d9(∆6c) = Ä4∆4h1dg2.

Proof. The argument is similar to the proof of Proposition 3.19. Lemma 3.24 shows that 

Ä4∆4dg2 detects a multiple of 2. Therefore, Ä4∆4h1dg2 must be hit by a differential 

because 2h1 = 0. There is only one possible differential. �

Lemma 3.27. (25, 1, 13) The Toda bracket 〈η, ν, Ä2κ̄〉 is detected by ∆h1 and has indeter-

minacy detected by P 3h1.

Proof. By inspection, the Toda bracket is well-defined and has indeterminacy detected 

by P 3h1 (which is a v1-periodic element).

We use the Moss convergence theorem in the mAss for mmf . By [23, Definition 4.4(1)], 

we have the Massey product ∆h1 = 〈h1, h2, Ä2g〉 in the E2-page of the mAss for mmf . 

There are no possible crossing differentials in the mAss for mmf .

Finally, Table 4 implies that the mAss elements h1, h2, and Ä2g detect η, ν, and Ä2κ

respectively (see also Table 3). �
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Lemma 3.28. (25, 1, 13) There is a hidden ν extension from ∆h1 to Ä2cg.

Proof. Lemmas 2.20 and 3.27 show that the Toda brackets 〈ν, η, ν〉 and 〈η, ν, Ä2κ̄〉 are 

detected by c and ∆h1 respectively.

The hidden ν extension follows from the shuffling relation

ν〈η, ν, Ä2κ̄〉 = 〈ν, η, ν〉Ä2κ̄. �

Lemma 3.29. (27, 1, 14) There is a hidden η extension from 2∆h2 to Ä2cg.

Proof. As in the proof of Lemma 3.28, the element Ä2cg detects 〈η, ν, Ä2κ〉ν, which equals 

η〈ν, Ä2κ, ν〉. Therefore, Ä2cg is the target of a hidden η extension. There are two possible 

sources for such an extension: Ä∆h3
1 and 2∆h2. The former possibility is ruled out by 

Lemma 3.14, which shows that Ä∆h3
1 is the target of a hidden 2 extension. �

Proposition 3.30.

(1) (49, 1, 25) d9(∆2h1) = Ä4cg2.

(2) (73, 1, 37) d9(∆3h1) = Ä4∆cg2.

(3) (97, 1, 49) ∆4h1 is a permanent cycle.

(4) (121, 1, 61) d9(∆5h1) = 0.

(5) (145, 1, 73) d9(∆6h1) = Ä4∆4cg2.

(6) (169, 1, 85) d9(∆7h1) = Ä4∆5cg2.

Proof. It follows from Lemma 3.29 that there is a hidden η extension from 2∆h2g to 

Ä2cg2. Proposition 3.9 and the Leibniz rule imply that d5(∆2) = 2Ä2∆h2g. Therefore, 

Ä4cg2 must be hit by some differential, and there is only one possibility.

Having established the first differential, we can compute that

d9(∆3h2
1) = ∆h1 · d9(∆2h1) = Ä4∆h1cg2.

Since ∆3h2
1 = ∆3h1 · h1, it follows that d9(∆3h1) equals Ä4∆cg2.

The possible values for a differential on ∆4h1 are Ä3∆3h4
1g and Ä4∆2cg2. The former 

is already known to be hit by an earlier d3 differential, and the latter is already known 

to support a d9 differential by Proposition 3.19.

The only possible non-zero value for d9(∆5h1) is Ä4∆3cg2, but this is ruled out by the 

observation that Ä4∆3cg2 supports a d9 differential by Proposition 3.25.

Next,

d9(∆7h2
1) = ∆5h1 · d9(∆2h1) = Ä4∆5h1cg2,

from which it follows that d9(∆7h1) equals Ä4∆5cg2.

Finally, note that d9(∆7h2
1) = ∆h1 · d9(∆6h1). The value of d9(∆7h2

1) was computed 

in the previous paragraph. It follows that d9(∆6h1) equals Ä4∆4cg2. �
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Proposition 3.31.

(1) d9(∆4c) = 0.

(2) d9(∆5c) = 0.

Proof. It follows from Proposition 3.30 that Ä4∆4cg2 and Ä4∆5cg2 are targets of d9

differentials, so they cannot support d9 differentials. This implies that ∆4c and ∆5c

cannot support d9 differentials. �

The Leibniz rule, together with the differentials given in Propositions 3.25, 3.26, 3.30, 

and 3.31, determines all d9 differentials.

3.6. d11 differentials

Lemma 3.32. (14, 2, 8) There is a hidden ε extension from d to Äh2
1g.

Proof. We will show that there is a hidden ε extension from h1d to Äh3
1g. The desired 

extension follows immediately.

The relation h1c = h3
2 in the mANss E2-page implies that ηε equals ν3. Also, the 

relation h2
2d = 4g implies that ν2κ = 4κ. Then

ηεκ = ν3κ = 4νκ = Äη3κ.

The last equality uses the hidden 2 extension from 2h2 to Äh3
1, as shown in Lemma 3.12. �

Lemma 3.33. (39, 3, 21) There is a hidden ν extension from ∆h1d to Ä3h2
1g2.

Proof. The element ∆h1d detects the product η1 · κ. Lemma 3.28 implies that ν · η1 · κ

equals Ä2εκκ. Lemma 3.32 implies that this last product equals Ä3η2κ2, which is detected 

by Ä3h2
1g2. �

Proposition 3.34.

(1) (62, 2, 32) d11(∆2d) = Ä5h1g3.

(2) (158, 2, 80) d11(∆6d) = Ä5∆4h1g3.

Proof. The element Ä5h2
1g3 detects Ä5η2κ3. Lemma 3.33 implies that Ä5η2κ3 equals Ä2νκ·

η1 · κ. Because of Proposition 3.9, we know that Ä2νκ is zero. Therefore, Ä5h2
1g3 is hit 

by some differential. The only possibility is that d11(∆2h1d) = Ä5h2
1g3. It follows that 

d11(∆2d) = Ä5h1g3.

For the second formula, multiply by the permanent cycle ∆4h1 to see that d11(∆6h1d)

equals Ä5∆4h2
1g3. It follows that d11(∆6d) equals Ä5∆4h1g3. �
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3.7. d13 differentials

We have already established some d13 differentials in Propositions 3.17 and 3.23 be-

cause we needed those results in order to compute shorter differentials. We now finish 

the computation of the d13 differentials.

Lemma 3.35. (110, 2, 56) The element ∆4d of the mANss for mmf corresponds to the 

element of the same name in the mAss for mmf .

Proof. We have already analyzed all possible Adams-Novikov differentials of length 11

or less, and there are no other possible values for a differential on ∆4d. Therefore, ∆4d

is a permanent cycle in the mANss for mmf .

Now the argument given in the proof of Theorem 3.5 applies. The mANss element ∆4d

is detected in filtration 20 in the Adams E2-page for mmf /Ä . Therefore, ∆4d corresponds 

to an element of the mAss with Adams filtration at most 20. There is only one possible 

element in the mAss with sufficiently low filtration. �

Lemma 3.36.

(1) (39, 3, 21) There is a hidden η extension from ∆h1d to 2Ä2g2.

(2) (135, 3, 69) There is a hidden η extension from ∆5h1d to 2Ä2∆4g2.

Proof. Table 4 shows that the elements ∆h1 and d in the mANss for mmf correspond to 

elements of the same name in the mAss for mmf . The product ∆h1 ·h1d is non-zero in the 

mAss E2-page and also in the mAss E∞-page because there are no possible differentials 

that could hit it. (Note that this product is non-zero in the motivic context, but the 

corresponding classical product is zero in the E2-page of the Adams spectral sequence 

for tmf .)

Therefore, ∆h1d must support a hidden η extension in the mANss for mmf . There 

are three possible targets for this extension: Ä2g2, 2Ä2g2, and 3Ä2g2. The first and last 

possibilities are ruled out by the relation 2η = 0.

The argument for the second extension is nearly identical. Table 4 and Proposition 2.8

imply that the mANss element ∆5h1d corresponds to the mAss element ∆4 ·∆h1 ·d. The 

product ∆4 ·∆h1 ·h1d is non-zero in the mAss E∞-page, so ∆5h1d must support a hidden 

η extension in the mANss. The only possible target for this extension is 2Ä2∆4g2. �

Proposition 3.37.

(1) (81, 3, 42) d13(∆3h1c) = 2Ä6g4.

(2) (177, 3, 90) d13(∆7h1c) = 2Ä6∆4g4.
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Proof. Lemma 3.36 implies that there is a hidden η extension from ∆h1dg2 to 2Ä2g4. 

Proposition 3.25 shows that Ä4∆h1dg2 is hit by a differential. Therefore, 2Ä6g4 must also 

be hit by a differential. There is only one possible source for this differential.

The proof for the second formula is similar. There is a hidden η extension from 

∆5h1dg2 to 2Ä2∆4g4. Since Ä4∆5h1dg2 is hit by a differential, 2Ä6∆4g4 must also be 

hit by a differential. �

3.8. d23 differentials

Lemma 3.38. (75, 3, 38) There is a hidden η1 extension from Ä∆3h3
1 to Ä9g5.

Proof. According to Table 4, the mANss elements ∆h1 and g correspond to elements of 

the same name in the mAss. In the mAss E2-page, the relations given in [23, Theorem 

4.13] imply that Ä(∆h1)4 = Ä9g5. Therefore, in the mANss, Ä9g5 detects the product 

Äη4
1 . On the other hand, Ä∆3h3

1 detects the product Äη3
1 in the mANss. �

Remark 3.39. (75, 3, 39) Beware that ∆3h3
1 does not support a hidden η1 extension. 

Rather, it supports a non-hidden extension since ∆4h4
1 is non-zero. However, ∆4h4

1 is 

annihilated by Ä , which allows for the hidden extension on Ä∆3h3
1.

One might be tempted by Lemma 3.38 to assume that there is a hidden Ä extension 

from ∆4h4
1 to Ä9g5, but this is not correct. Because of the presence of Ä8g5 in higher 

filtration, the element ∆4h4
1 detects two elements in homotopy. One of those elements is 

η4
1 , and the other is annihilated by Ä . See also Remark 4.3 for a similar phenomenon.

Proposition 3.40. (121, 1, 61) d23(∆5h1) = Ä11g6.

Proof. The hidden extension of Lemma 3.38 implies that there is a hidden η1 extension 

from Ä∆3h3
1g to Ä9g6. We already know that Ä3∆3h3

1g is zero because of the differential 

d7(∆4) from Proposition 3.22. Therefore, Ä11g6 must be the value of some differential, 

and there is only one possibility. �

4. Hidden extensions

In Section 3, we established several hidden extensions in the mANss for mmf as 

steps towards computing differentials. In this section, we finish the analysis of all hidden 

extensions by 2, η, and ν. Our work does not completely determine the ring structure 

of π∗,∗mmf because there exist hidden extensions by other elements. Up to one minor 

uncertainty, the entire ring structure of π∗tmf is determined in [9].

Theorem 4.1. Up to multiples of g and ∆8, Tables 7, 8 and 9 list all hidden extensions 

by 2, η, and ν in the mANss for mmf .
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Table 5

Some hidden extensions deduced from Method 2.17.

(s, f, w) source type target reason

(51, 1, 26) 2∆2h2 2 τ∆2h3

1
d5(2∆3) = 2τ2∆2h2g d7(4∆3) = τ3∆2h3

1
g

(54, 2, 28) ∆2h2

2
2 τ4dg2 d5(∆3h2) = τ2∆2h2

2
g d13(2∆3h2) = τ6dg3

(99, 1, 50) 2∆4h2 2 τ∆4h3

1
d5(2∆5) = 2τ2∆4h2g d7(4∆5) = τ3∆4h3

1
g

(123, 1, 62) 2∆5h2 2 τ∆5h3

1
d5(∆6) = 2τ2∆5h2g d7(2∆6) = τ3∆5h3

1
g

(147, 1, 74) 2∆6h2 2 τ∆6h3

1
d5(2∆7) = 2τ2∆6h2g d7(4∆7) = τ3∆6h3

1
g

(51, 1, 26) ∆2h2 η τ2∆cg d5(∆3) = τ2∆2h2g d9(∆3h1) = τ4∆cg2

(99, 1, 50) ∆4h2 η τ9g5 d5(∆5) = τ2∆4h2g d23(∆5h1) = τ11g6

(123, 1, 62) 2∆5h2 η τ2∆4cg d5(∆6) = 2τ2∆5h2g d9(∆6h1) = τ4∆4cg2

(124, 6, 63) τ2∆4cg η τ9∆h1g5 d9(∆6h1) = τ4∆4cg2 d23(∆6h2

1
) = τ11∆h1g6

(129, 3, 66) ∆5h1c η τ7∆2h2

1
g4 d9(∆7h2

1
)=τ4∆5h1cg2 d23(∆7h3

1
) = τ11∆2h2

1
g6

(147, 1, 74) ∆6h2 η τ2∆5cg d5(∆7) = τ2∆6h2g d9(∆7h1) = τ4∆5cg2

(161, 3, 82) ∆6h2d η τ3∆5h2

1
g2 d5(∆7d) = τ2∆6h2dg d11(∆7h1d)=τ5∆5h2

1
g3

(0, 0, 0) 4 ν τh3

1
d5(∆h2d) = 4τ2g2 d7(4∆g) = τ3h3

1
g2

(48, 0, 24) 4∆2 ν τ∆2h3

1
d5(∆3h2d) = 4τ2∆2g2 d7(4∆3g) = τ3∆2h3

1
g2

(51, 1, 26) 2∆2h2 ν τ4dg2 d5(2∆3) = 2τ2∆2h2g d13(2∆3h2) = τ6dg3

(57, 3, 30) ∆2h3

2
ν 2τ4g3 d5(∆3h2

2
) = τ2∆2h3

2
g d13(∆3h3

2
) = 2τ6g4

(96, 0, 48) 4∆4 ν τ∆4h3

1
d5(∆5h2d) = 4τ2∆4g2 d7(4∆5g) = τ3∆4h3

1
g2

(144, 0, 72) 4∆6 ν τ∆6h3

1
d5(∆7h2d) = 4τ2∆6g2 d7(4∆7g) = τ3∆6h3

1
g2

(147, 1, 74) 2∆6h2 ν τ4∆4dg2 d5(2∆7) = 2τ2∆6h2g d13(2∆7h2) = τ6∆4dg3

(153, 3, 78) ∆6h3

2
ν 2τ4∆4g3 d5(∆7h2

2
) = τ2∆6h3

2
g d13(∆7h3

2
) = 2τ6∆4g4

Proof. Some of the non-zero hidden extensions are established in the previous results 

because we needed them to compute Adams-Novikov differentials. The remaining non-

zero hidden extensions are proved in the following results. The last columns of the tables 

indicate the specific proofs for each extension.

There are some possible hidden extensions that turn out not to occur. Most of these 

possibilities can be ruled out using Method 2.17. For example, consider the possible 

hidden η extension from Ä∆h3
1 to Ä2cg. Because of multiplication by Äg, we may instead 

consider the possible hidden η extension from Ä2∆h3
1g to Ä3cg2. These last two elements 

are annihilated by Ä , so they are in the image of projection to the top cell. By inspection, 

there is no η extension in the homotopy of mmf /Ä in the appropriate degree.

A few miscellaneous cases remain, but their proofs are straightforward. For example,

• (65, 3, 34) there is no hidden 2 extension from ∆2h2d to Ä3∆h1g2 because the latter 

element supports an h1 extension.

• (24, 0, 12) there is no hidden ν extension from 8∆ to Ä∆h3
1 because the first element 

is annihilated by g while the second element is not. �

Proposition 4.2. Table 5 lists some hidden extensions in the mANss for mmf .

Proof. All of these extensions follow from Method 2.17, using the differentials in the last 

two columns of Table 5. To illustrate, we discuss the first extension in the table. In order 

to obtain the extension from 2∆2h2 to Ä∆2h3
1, we can establish a hidden 2 extension 

from 2Ä∆2h2g to Ä2∆2h3
1g. Then the desired extension follows immediately.

The elements 2Ä∆2h2g and Ä2∆2h3
1g are annihilated by Ä in the E∞-page of the 

mANss for mmf . Therefore, they detect elements in π71,37mmf that are in the image of 
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π72,36mmf /Ä under projection to the top cell. By inspection, these preimages are 2∆3

and 4∆3. These latter elements are connected by a 2 extension, so their images are also 

connected by a 2 extension.

The other extensions have essentially the same proof. First multiply by an appropriate 

power of g. Then pull back to π∗,∗mmf /Ä , where the extension is visible by inspection. �

Remark 4.3. (124, 6, 63) The hidden η extension from Ä2∆4cg to Ä9∆h1g5 in Table 5

deserves further discussion. Note that ∆4cg and Ä∆4cg support η extensions that are 

not hidden. However, Ä2∆4h1cg is zero, so Ä2∆4cg can support a hidden η extension. 

This explains why the E∞-page chart in Fig. 5 shows both an h1 extension and a hidden 

η extension on the element ∆4cg in the 124-stem.

The subtleties of this situation are illuminated by consideration of homotopy elements. 

Let ³ be an element of π124,65mmf that is detected by ∆4cg. The element Ä2³ is detected 

by Ä2∆4cg. The hidden η extension implies that Ä2η³ is detected by Ä9∆h1g5.

Now let ´ be an element in π122,64 that is detected by ∆4h2
2g. Note that Ä2´ must 

be zero because Ä2∆2h2
2g is zero and because there are no E∞-page elements in higher 

filtration. Then ν´ is detected by h2 · ∆4h2
2g, which equals ∆4h1cg.

Both η³ and ν´ are detected by the same element of the E∞-page, but they are not 

equal. The first product is not annihilated by Ä2, while the latter product is annihilated by 

Ä2. In fact, the difference between η³ and ν´ is detected by Ä7∆h1g5. This phenomenon 

corresponds to the classical relation ν2ν4 = ηε4 + η1κ4 [9, Proposition 9.17].

Remark 4.4. (65, 3, 34) The chart in [2] shows a hidden η extension from ∆2h2d to ∆h2
1g2

in the 66-stem. According to Definition 2.16, this is not a hidden extension because of 

the presence of ∆h1g2 in higher filtration.

Nevertheless, there is a relevant point here about multiplicative structure. Because of 

the presence of Ä3∆h1g2 in higher filtration, the element ∆2h2d detects two homotopy 

elements. One of these elements is annihilated by η, and one is not. The product ν2κ

is one of the two homotopy elements that are detected by ∆2h2d. In fact, ν2κ is the 

homotopy element that is not annihilated by η. This follows from the hidden η extension 

from ∆2h2 to Ä2∆cg and the hidden κ extension from ∆cg to Ä∆h2
1g2 (see Lemma 3.32).

Proposition 4.5. (110, 2, 56) There is a hidden 2 extension from ∆4d to Ä6∆2h2
1g3.

Proof. The proof is a variation on Method 2.17, in which we use the long exact sequence

π∗,∗mmf π∗,∗mmf /Ä2 π∗−1,∗+2mmf π∗−1,∗mmfτ2

induced by the cofiber sequence

mmf mmf /Ä2 Σ1,−2mmf Σ1,0mmf .τ2

We will show that there is a hidden 2 extension from Ä4∆4dg3 to Ä10∆2h2
1g6. The 

desired 2 extension follows immediately by multiplication by Ä4g3.
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Recall from Proposition 3.23 that there is a differential d13(2∆7h2) = Ä6∆4dg3. Also, 

it follows from Proposition 3.40 that there is a differential d23(∆7h3
1) = Ä11∆2h2

1g6.

Therefore, Ä4∆4dg3 and Ä10∆2h2
1g6 detect elements in π170,88mmf that are annihilated 

by Ä2. Hence they have preimages in π171,86mmf /Ä2 under projection to the top cell. By 

inspection, these preimages are 2∆7h2 and Ä∆7h3
1.

In the mANss for mmf , there is a differential d5(∆7) = Ä2∆6h2g. However, in the 

mANss for mmf /Ä2, the element Ä2∆6h2g is already zero in the E2-page. Therefore, ∆7

is a permanent cycle in the mANss for mmf /Ä2.

Recall the hidden 2 extension from 2h2 to Äh3
1 established in Lemma 3.12. Multiplica-

tion by ∆7 gives a hidden 2 extension in the mANss E∞-page for mmf /Ä2 from 2∆7h2

to Ä∆7h3
1.

Finally, apply projection to the top cell to obtain the hidden 2 extension from Ä4∆4dg3

to Ä10∆2h2
1g6. �

Proposition 4.6. (50, 2, 26) There is a hidden ν extension from ∆2h2
1 to Ä2∆h1cg.

Proof. This follows from ∆h1 multiplication on the hidden extension from ∆h1 to Ä2cg

established in Lemma 3.28. �

The next several lemmas establish some Toda brackets that we will use to deduce 

further hidden extensions. All of these Toda brackets are deduced from algebraic infor-

mation, i.e., from Massey products in the mANss E2-page.

Lemma 4.7. (32, 2, 17) The Toda bracket 〈ν2, 2, η1〉 is detected by ∆c and has no inde-

terminacy.

Proof. We have the Massey product c = 〈h2
2, h0, h1〉 in the motivic algebraic Novikov E2-

page [1]. The May convergence theorem [29] [6, Theorem 4.16] implies that c = 〈h2
2, 2, h1〉

in the mANss E2-page. Multiply by ∆ to obtain

∆c = 〈h2
2, 2, h1〉∆ = 〈h2

2, 2, ∆h1〉.

The second equality holds because there is no indeterminacy by inspection.

There are no crossing differentials, so the Moss convergence theorem [31, Theorem 1.2]

[6, Theorem 4.16] implies that ∆c detects the Toda bracket. By inspection, the bracket 

has no indeterminacy. �

Lemma 4.8. (128, 2, 65) The Toda bracket 
〈

ν2
2 , 2, η1

〉

is detected by ∆5c and has no in-

determinacy.

Proof. As in the proof of Lemma 4.7, we have the Massey product c = 〈h2
2, 2, h1〉 in the 

mANss E2-page. Multiply by ∆5 to obtain

∆5c = ∆4〈h2
2, 2, h1〉∆ = 〈∆4h2

2, 2, ∆h1〉.
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The second equality holds because there is no indeterminacy by inspection.

There are no crossing differentials, so the Moss convergence theorem [31, Theorem 

1.2] [6, Theorem 4.16] implies that ∆5c detects the Toda bracket. By inspection, the 

bracket has no indeterminacy. �

Lemma 4.9. (35, 7, 21) The Toda bracket 〈ν2, 2, εκ̄〉 is detected by h1dg and has no inde-

terminacy.

Proof. We have the Massey product h1dg = 〈h2
2, h0, cg〉 in the motivic algebraic Novikov 

E2-page [1]. The May convergence theorem [29] [6, Theorem 4.16] implies that h1dg =

〈h2
2, 2, cg〉 in the mANss E2-page.

There are no crossing differentials, so the Moss convergence theorem [31, Theorem 

1.2] [6, Theorem 4.16] implies that h1dg detects the Toda bracket. By inspection, the 

bracket has no indeterminacy. �

Lemma 4.10. (131, 7, 69) The Toda bracket 
〈

ν2
2 , 2, εκ̄

〉

is detected by ∆4h1dg and has no 

indeterminacy.

Proof. As in the proof of Lemma 4.9, we have the Massey product h1dg = 〈h2
2, 2, cg〉 in 

the mANss E2-page. Multiply by ∆4 to obtain

∆4h1dg = ∆4〈h2
2, h0, cg〉 = 〈∆4h2

2, h0, cg〉.

The second equality holds because there is no indeterminacy by inspection.

There are no crossing differentials, so the Moss convergence theorem [31, Theorem 

1.2] [6, Theorem 4.16] implies that ∆4h1dg detects the Toda bracket. By inspection, the 

bracket has no indeterminacy. �

Proposition 4.11. There are hidden ν extensions:

(1) (32, 2, 17) from ∆c to Ä2h1dg.

(2) (128, 2, 65) from ∆5c to Ä2∆4h1dg.

Proof. Recall from Lemma 4.7 that the Toda bracket 〈ν2, 2, η1〉 is detected by ∆c. We 

have

〈ν2, 2, η1〉ν = 〈ν2, 2, ν · η1〉 = 〈ν2, 2, Ä2εκ̄〉.

The first equality holds because there is no indeterminacy by inspection. The second 

equality follows from the hidden ν extension of Lemma 3.28. Lemma 4.9 implies that 

Ä2h1dg detects the last Toda bracket.

The proof for the second hidden extension is nearly identical. Consider the equalities

〈ν2
2 , 2, η1〉ν = 〈ν2

2 , 2, ν · η1〉 = 〈ν2
2 , 2, Ä2εκ̄〉,
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and use Lemma 4.8 and Lemma 4.10. �

Proposition 4.12. There are hidden ν extensions:

(1) (97, 1, 49) from ∆4h1 to Ä9g5.

(2) (122, 2, 62) from ∆5h2
1 to Ä9∆h1g5.

(3) (147, 3, 75) from ∆6h3
1 to Ä9∆2h2

1g5.

Proof. We prove the third hidden extension. Then the first two hidden extensions follow 

from multiplication by ∆h1.

Proposition 4.5 and Lemma 3.24 imply that there is a hidden 4ν extension from 

∆6h2 to Ä10∆2h2
1g5. We also have a hidden 2 extension from 2∆6h2 to Ä∆6h3

1, as shown 

in Proposition 4.2. It follows that there must be a hidden ν extension from ∆6h3
1 to 

Ä9∆2h2
1g5. �

Proposition 4.13. (110, 2, 56) There is a hidden ε extension from ∆4d to Ä∆4h2
1g.

Proof. We showed in Lemma 3.32 that there is a hidden ε extension from d to Äh2
1g. 

Multiply by ∆4h1 to obtain a hidden ε extension from ∆4h1d to Ä∆4h2
1g. Finally, use h1

multiplication to obtain the hidden extension on ∆4d. �

Proposition 4.14. (135, 3, 69) There is a hidden ν extension from ∆5h1d to Ä3∆4h2
1g2.

Proof. By Lemma 3.27, the element ∆h1 detects the Toda bracket 〈η, ν, Ä2κ̄〉. Recall 

from Table 3 that κ4 is an element of π110,56mmf that is detected by the permanent 

cycle ∆4d. Then the element ∆5h1d detects 〈η, ν, Ä2κ̄〉κ4. Now shuffle to obtain

ν〈η, ν, Ä2κ〉κ4 = 〈ν, η, ν〉Ä2κ · κ4.

Recall from Lemma 2.20 that ε = 〈ν, η, ν〉. Also recall from Proposition 4.13 that there 

is a hidden ε extension from ∆4d to Ä∆4h2
1g. We conclude that ε · Ä2κ · κ4 is detected by 

Ä3∆4h2
1g2. �

5. The elements νk

The multiplicative structure of classical π∗tmf at the prime 2 has been completely 

computed, with one exception [9, p. 19]. We will use the mANss for mmf in order to 

resolve this last piece of 2-primary multiplicative structure.

As discussed in Remark 2.11, our choices of homotopy elements are not necessarily 

strictly compatible with the choices in [9]. However, our choices do agree up to multi-

ples of certain powers of 2. Our computations below in Proposition 5.9, Theorem 5.10, 

Corollary 5.12, Proposition 5.13, and Proposition 5.15 lie in groups of order at most 8, 

so the possible discrepancies are irrelevant.
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We will frequently multiply by the element Äκ in π20,11mmf in order to detect elements 

and relations. Beware that multiplication by Äκ is not injective in general. However, in all 

degrees that we study, inspection of the Adams-Novikov chart shows that multiplication 

by Äκ is in fact an isomorphism.

Recall the projection q : mmf /Ä → mmf to the top cell that was discussed in detail in 

Section 2.9. We will rely heavily on this map in order to transfer the algebraic information 

in π∗,∗mmf /Ä into homotopical information about π∗,∗mmf .

Lemma 5.1. The element q(∆k+1) of π∗,∗mmf is detected by −(k + 1)Ä∆kh2g in Adams-

Novikov filtration 5.

Proof. If k + 1 is not a multiple of 4, then we have the non-zero differential d5(∆k+1) =

(k + 1)Ä2∆kh2g. Proposition 2.14 implies that q(∆k+1) is detected by −(k + 1)Ä∆kh2g.

If k +1 is congruent to 4 modulo 8, then we have the non-zero differential d7(∆k+1) =

Ä3∆kh3
1g. Proposition 2.14 implies that q(∆k+1) is detected by Ä2∆kh3

1g in filtration 7. 

This implies that q(∆k+1) is detected by zero in filtration 5.

If k + 1 is a multiple of 8, then ∆k+1 is a permanent cycle, so q(∆k+1) equals zero. 

This implies that q(∆k+1) is detected by zero in filtration 5. �

Remark 5.2. For uniformity, we have stated Lemma 5.1 for all values of k. As shown in 

the proof of the lemma, there are in fact three cases, depending on the value of k. If 

k + 1 is not a multiple of 4, then −(k + 1)Ä∆kh2g is a non-zero element in the mANss 

E∞-page.

On the other hand, if k + 1 is a multiple of 4, then −(k + 1)Ä∆kh2g is zero in the E∞-

page since Ä∆kh2g is an element of order 4. In these cases, the lemma says that q(∆k+1)

is detected by zero in filtration 5. In other words, q(∆k+1) is detected in filtration strictly 

greater than 5, if it is non-zero. In fact, q(∆k+1) is detected by Ä2∆kh3
1g in filtration 7

when k + 1 is congruent to 4 modulo 8. Also, q(∆k+1) is zero when k + 1 is a multiple 

of 8 because ∆k+1 is a permanent cycle.

Lemma 5.3. The element q(∆k+1) is a multiple of Äκ.

Proof. Lemma 5.1 shows that q(∆k+1) is detected by −(k + 1)Ä∆kh2g. By inspection, 

all possible values of q(∆k+1) are multiples of Äκ. �

Definition 5.4. Let νk be the element of π24k+3,12k+2mmf such that q(∆k+1) equals 

−Äκ · νk.

Note that νk exists because of Lemma 5.3. By inspection of the Adams-Novikov chart, 

multiplication by Äκ is an isomorphism in the relevant degrees, so νk is specified uniquely. 

We choose a minus sign in the defining formula of Definition 5.4 for later convenience.
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Remark 5.5. Bruner and Rognes consider ν3 and ν7 to be “honorary” members of the 

family of elements νk. They are not multiplicative generators; ν3 is non-zero but decom-

posable, and ν7 equals zero. Definition 5.4 also implies that ν7 is zero. This follows from 

the observation that q(∆8) equals zero since ∆8 is a permanent cycle.

The careful reader will note that the elements νk were already partially defined in 

Table 3 in Section 2.6. The following lemma shows that the two approaches to νk are 

compatible. Table 3 leaves some ambiguity in the definition of νk, and Definition 5.4

resolves that ambiguity.

Lemma 5.6. The element νk is detected by (k + 1)∆kh2 in Adams-Novikov filtration 1.

Proof. Lemma 5.1 determines the mANss E∞-page elements that detect q(∆k+1). Then 

Definition 5.4 means that −Äκ · νk is detected by those same elements. By inspection 

of the Adams-Novikov chart, multiplication by Äg is an isomorphism in the relevant 

degrees, so the detecting elements for νk are then determined. �

Remark 5.7. Similarly to Remark 5.2, Lemma 5.6 includes three cases. If k + 1 is not a 

multiple of 4, then (k + 1)∆kh2 is a non-zero element of the mANss E∞-page. If k + 1

is a multiple of 4, then (k + 1)∆kh2 is zero since ∆kh2 is an element of order 4. This 

means that νk is detected in filtration strictly greater than 1, if it is non-zero. In fact, νk

is detected by Ä∆kh3
1 in filtration 3 if k + 1 is congruent to 4 modulo 8, and νk is zero if 

k + 1 is a multiple of 8.

Remark 5.8. Earlier in Remark 2.2, we chose h2 so that it detects the element ν. 

Lemma 5.6 shows that ν0 is also detected by h2, but that does not guarantee that 

it equals ν because of the presence of Äh3
1 in higher filtration. We can only conclude that 

ν and ν0 are equal up to multiples of 4.

If ν equals 5ν0, then we compute that

q(5∆) = −5Äκ · ν0 = −Äκ · ν.

So we may replace ∆ by 5∆, if necessary, and assume without loss of generality that ν0

equals ν. This replacement is compatible with our previous choice of ∆ in Remark 3.10, 

which specified ∆ only up to multiples of 4.

Proposition 5.9. νk+8 = νk · M .

Proof. Using Equation (2.13), we have

q(∆k+9) = q(∆k+1 · ∆8) = q(∆k+1 · i(M)) = q(∆k+1) · M = −Äκ · νk · M.

Here we are using that i(M) = ∆8, which is equivalent to the definition that M is 

detected by ∆8 (see Table 3).



D.C. Isaksen et al. / Advances in Mathematics 458 (2024) 109966 39

On the other hand, q(∆k+9) equals −Äκ·νk+8 by Definition 5.4. Finally, multiplication 

by −Äκ is an isomorphism in the relevant degrees by inspection of the Adams-Novikov 

chart. �

Proposition 5.9 means that for practical purposes, we only need to consider the ele-

ments νk for 0 ≤ k ≤ 7.

Theorem 5.10.

νjνk = (k + 1)νj+kν0.

Proof. The proof splits into two cases, depending on whether k + 1 is a multiple of 4. 

First, we handle the (more interesting) situation when k + 1 is not a multiple of 4. We 

address the case when k + 1 is a multiple of 4 below in a separate Proposition 5.13. The 

proof techniques for the two cases are similar, but the details are somewhat different.

Multiplication by Äκ is an isomorphism in the relevant degrees by inspection of the 

Adams-Novikov chart, so it suffices to establish our relation after multiplication by Äκ.

Using Equation (2.13), we have

q((k + 1)∆j+k+1h2) = q(∆j+k+1 · (k + 1)h2) = q(∆j+k+1 · i((k + 1)ν0)) =

= q(∆j+k+1) · (k + 1)ν0 = −Äκ · νj+k · (k + 1)ν0.

Here we are using that i((k + 1)ν0) = (k + 1)h2; in other words, (k + 1)ν0 is detected 

by (k + 1)h2. This requires that k + 1 is not a multiple of 4. Otherwise, (k + 1)ν0 is a 

multiple of Ä , and i((k + 1)ν0) is zero.

We will now compute q((k+1)∆j+k+1h2) another way. We have i(νk) = (k+1)∆kh2; in 

other words, νk is detected by the non-zero element (k+1)∆kh2, as shown in Lemma 5.6. 

This requires that k + 1 is not a multiple of 4. Otherwise, νk is a multiple of Ä , and i(νk)

is zero.

Then we have

q((k+1)∆j+k+1h2) = q(∆j+1 ·(k+1)∆kh2) = q(∆j+1 ·i(νk)) = q(∆j+1)·νk = −Äκ·νj ·νk. �

Remark 5.11. The exact form of the equation in Theorem 5.10 is guided by the structure 

of our proof. One could also write

νiνj = (i + 1)ννi+j ,

which more closely aligns with the notation in [9]. All of the elements νk are in odd 

stems, so they pairwise anti-commute.

Corollary 5.12. (246, 2, 124) ν4ν6 = νν2M .
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Proof. Theorem 5.10 implies that ν4ν6 equals 7ν10ν0, which equals −7ν0ν10 by graded 

commutativity. By Remark 5.8 and Proposition 5.9, the latter expression equals 

−7νν2M . Finally, νν2M belongs to a group of order 4, so −7νν2M equals νν2M . �

We now return to the case of Theorem 5.10 in which k + 1 is a multiple of 4.

Proposition 5.13. If k + 1 is a multiple of 4, then νj · νk = (k + 1)νj+kν0.

Proof. First, let k + 1 be a multiple of 8, so νk is zero. The element νj+kν0 belongs to a 

group whose order divides 8, so (k + 1)νj+kν0 is zero. In other words, the equality holds 

because both sides are zero.

Next, let k + 1 be congruent to 4 modulo 8. Let ³ be an element of π∗,∗mmf that is 

detected by ∆kh3
1. The element νk is detected by Ä∆kh3

1, according to Remark 5.7. Since 

there are no elements in higher filtration, we can conclude that νk equals Ä³. We have

q(∆j+k+1h3
1) = q(∆j+1 ·∆kh3

1) = q(∆j+1 · i(³)) = q(∆j+1) ·³ = −Äκ ·νj ·³ = −κ ·νj ·νk.

Now we add the assumption that j + 1 is not congruent to 4 modulo 8. Given the 

assumption that k + 1 is congruent to 4 modulo 8, we get that j + k + 1 is not congruent 

to 7 modulo 8. Then ∆j+k+1h3
1 is a permanent cycle, so q(∆j+k+1h3

1) is zero. Together 

with the computation in the previous paragraph, this implies that νj · νk is zero since 

multiplication by κ is an isomorphism in the relevant degrees by inspection of the Adams-

Novikov chart. Note also that (k + 1)νj+kν0 is zero because it belongs to a group whose 

order divides 4.

Finally, we must consider the case when j + 1 is congruent to 4 modulo 8, i.e., that 

j + k + 1 is congruent to 7 modulo 8. Then q(∆j+k+1h3
1) is detected by Ä10∆j+k−4h2

1g6

because of Proposition 2.14 and the differential d23(∆j+k+1h3
1) = Ä11∆j+k−4h2

1g6. This 

means that −κ · νj · νk is detected by Ä10∆j+k−4h2
1g6. It follows that νj · νk is detected 

by Ä10∆j+k−4h2
1g5. Finally, this latter element also detects (k + 1)νj+kν0 because of the 

hidden 2 extensions in the 150-stem and their multiples under ∆8 multiplication (see 

Table 7). �

Remark 5.14. As shown in the proof, most cases of Proposition 5.13 hold because both 

sides of the equation are zero. Both sides of the equation are non-zero precisely when 

j + 1 and k + 1 are congruent to 4 modulo 8.

Bruner and Rognes establish some relations that reduce the ambiguity in their def-

initions of νk. Finally, we will show that our elements defined in Definition 5.4 satisfy 

those same relations. We have already discussed the choice of ν0 in Remark 5.8. The 

only additional requirements are the relations

ν0D4 = 2ν4

ν1ν5 = 2ν0ν6
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ν2ν4 = 3ν0ν6.

The first formula is proved in Proposition 5.15, while the last two are specific instances 

of Theorem 5.10.

Proposition 5.15. (99, 1, 50) ν0D4 = 2ν4.

Proof. Because of Lemma 5.6, both products are detected by 2∆4h2. However, they 

are not necessarily equal because of the presence of Ä∆4h3
1 in higher filtration. We will 

show that Äκ · νD4 equals Äκ · 2ν4. Our desired relation follows immediately because 

multiplication by Äκ is an isomorphism in the relevant degree by inspection of the Adams-

Novikov chart.

Using Equation (2.13), we have

q(2∆5) = q(∆ · 2∆4) = q(∆ · i(D4)) = q(∆) · D4 = −Äκ · ν · D4.

Here we are using that i(D4) = 2∆4, which is equivalent to the definition that D4 is 

detected by 2∆4 (see Table 3). On the other hand, we also have

q(2∆5) = q(∆5 · 2) = q(∆5 · i(2)) = q(∆5) · 2 = −Äκ · ν4 · 2. �

6. Tables

Table 6

Adams-Novikov differentials.

(s, f, w) x r dr(x) proof

(5, 1, 3) h1v2

1
3 τh4

1
Proposition 3.2

(12, 0, 6) 4a 3 τP h3

1
Proposition 3.3

(24, 0, 12) ∆ 5 τ2h2g Proposition 3.9
(24, 0, 12) 4∆ 7 τ3h3

1
g Proposition 3.15

(48, 0, 24) 2∆2 7 τ3∆h3

1
g Proposition 3.15

(96, 0, 48) ∆4 7 τ3∆3h3

1
g Proposition 3.22

(49, 1, 25) ∆2h1 9 τ4cg2 Proposition 3.30
(56, 2, 29) ∆2c 9 τ4h1dg2 Proposition 3.19
(73, 1, 37) ∆3h1 9 τ4∆cg2 Proposition 3.30
(80, 2, 41) ∆3c 9 τ4∆h1dg2 Proposition 3.25
(145, 1, 73) ∆6h1 9 τ4∆4cg2 Proposition 3.30
(169, 1, 85) ∆7h1 9 τ4∆5cg2 Proposition 3.30
(152, 2, 77) ∆6c 9 τ4∆4h1dg2 Proposition 3.26
(176, 2, 89) ∆7c 9 τ4∆5h1dg2 Proposition 3.25
(62, 2, 32) ∆2d 11 τ5h1g3 Proposition 3.34
(158, 2, 80) ∆6d 11 τ5∆4h1g3 Proposition 3.34
(75, 1, 38) 2∆3h2 13 τ6dg3 Proposition 3.17
(81, 3, 42) ∆3h1c 13 2τ6g4 Proposition 3.37
(171, 1, 86) 2∆7h2 13 τ6∆4dg3 Proposition 3.23
(177, 3, 90) ∆7h1c 13 2τ6∆4g4 Proposition 3.37
(121, 1, 61) ∆5h1 23 τ11g6 Proposition 3.40
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Table 7

Hidden 2 extensions.

(s, f, w) source target proof

(3, 1, 2) 2h2 τh3

1
Lemma 3.12

(27, 1, 14) 2∆h2 τ∆h3

1
Lemma 3.14

(51, 1, 26) 2∆2h2 τ∆2h3

1
Proposition 4.2

(54, 2, 28) ∆2h2

2
τ4dg2 Example 2.18

(99, 1, 50) 2∆4h2 τ∆4h3

1
Proposition 4.2

(110, 2, 56) ∆4d τ6∆2h2

1
g3 Proposition 4.5

(123, 1, 62) 2∆5h2 τ∆5h3

1
Proposition 4.2

(147, 1, 74) 2∆6h2 τ∆6h3

1
Proposition 4.2

(150, 2, 76) ∆6h2

2
τ4∆4dg2 Proposition 4.2

Table 8

Hidden η extensions.

(s, f, w) source target proof

(27, 1, 14) 2∆h2 τ2cg Lemma 3.29
(39, 3, 21) ∆h1d 2τ2g2 Lemma 3.36
(51, 1, 26) ∆2h2 τ2∆cg Proposition 4.2
(99, 1, 50) ∆4h2 τ9g5 Proposition 4.2
(123, 1, 62) 2∆5h2 τ2∆4cg Proposition 4.2
(124, 6, 63) τ2∆4cg τ9∆h1g5 Proposition 4.2
(129, 3, 66) ∆5h1c τ7∆2h2

1
g4 Proposition 4.2

(135, 3, 69) ∆5h1d 2τ2∆4g2 Proposition 4.2
(147, 1, 74) ∆6h2 τ2∆5cg Proposition 4.2
(161, 3, 82) ∆6h2d τ3∆5h2

1
g2 Proposition 4.2

Table 9

Hidden ν extensions.

(s, f, w) source target proof

(0, 0, 0) 4 τh3

1
Proposition 4.2

(25, 1, 13) ∆h1 τ2cg Lemma 3.28
(32, 2, 17) ∆c τ2h1dg Proposition 4.11
(39, 3, 21) ∆h1d τ3h2

1
g2 Lemma 3.33

(48, 0, 24) 4∆2 τ∆2h3

1
Proposition 4.2

(50, 2, 26) ∆2h2

1
τ2∆h1cg Proposition 4.6

(51, 1, 26) 2∆2h2 τ4dg2 Proposition 4.2
(57, 3, 30) ∆2h3

2
2τ4g3 Proposition 4.2

(96, 0, 48) 4∆4 τ∆4h3

1
Proposition 4.2

(97, 1, 49) ∆4h1 τ9g5 Proposition 4.12
(122, 2, 62) ∆5h2

1
τ9∆h1g5 Proposition 4.12

(128, 2, 65) ∆5c τ2∆4h1dg Proposition 4.11
(135, 3, 69) ∆5h1d τ3∆4h2

1
g2 Proposition 4.14

(144, 0, 72) 4∆6 τ∆6h3

1
Proposition 4.2

(147, 1, 74) 2∆6h2 τ4∆4dg2 Proposition 4.2
(147, 3, 75) ∆6h3

1
τ9∆2h2

1
g5 Proposition 4.12

(153, 3, 78) ∆6h3

2
2τ4∆4g3 Proposition 4.2

Table 10

Some Toda brackets.

(s, f, w) Toda bracket detected by indet proof used in

(8, 2, 5) 〈ν, η, ν〉 c 0 Lemma 2.20 3.28, 4.14
(25, 1, 13) 〈η, ν, τ2κ〉 ∆h1 P 3h1 Lemma 3.27 3.28, 3.29, 4.14
(32, 2, 17) 〈ν2, 2, η1〉 ∆c 0 Lemma 4.7 4.11
(128, 2, 65) 〈ν2

2
, 2, η1〉 ∆5c 0 Lemma 4.8 4.11

(35, 7, 21) 〈ν2, 2, εκ〉 h1dg 0 Lemma 4.9 4.11
(131, 7, 69) 〈ν2

2
, 2, εκ〉 ∆4h1dg 0 Lemma 4.10 4.11
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7. Charts

The following charts display the E2-page, E9-page, and E∞-page of the mANss for 

mmf . Each of these pages is free as a module over Z[∆8], where ∆8 is a class in the 

192-stem. For legibility, we display the v1-periodic elements on separate charts. See Sec-

tion 2.7 for discussion of v1-periodicity. To obtain the full E2-page, one must superimpose 

Figs. 1 and 3. To obtain the full E∞-page, one must superimpose Figs. 2 and 5.

We describe each chart in slightly more detail.

• Fig. 1 shows the v1-periodic portion of the mANss E2-page, together with all differ-

entials that are supported by the displayed elements.

• Fig. 2 shows the v1-periodic portion of the mANss E∞-page.

• Fig. 3 shows the non-v1-periodic portion of the mANss E2-page, together with all 

d3, d5, and d7 differentials that are supported by the displayed elements.

• Fig. 4 shows the non-v1-periodic portion of the mANss E9-page, together with all 

differentials that are supported by the displayed elements.

• Fig. 5 shows the non-v1-periodic portion of the mANss E∞-page, together with all 

hidden extensions by 2, η, and ν.

Fig. 1. The v1-periodic portion of the C-motivic Adams-Novikov E2-page for mmf .

Fig. 2. The v1-periodic portion of the C-motivic Adams-Novikov E∞-page for mmf .

Fig. 3. The C-motivic Adams-Novikov E2-page for mmf with differentials of length at most 7.
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Fig. 4. The C-motivic Adams-Novikov E9-page for mmf with differentials of length at least 9.

Fig. 5. The C-motivic Adams-Novikov E∞-page for mmf with hidden extensions by 2, η, and ν.

7.1. Elements

For each fixed stem and filtration, the mANss consists of a Z[Ä ]-module. We use a 

graphical notation to describe these modules. Our notation represents the associated 

graded object of a filtration that is related to the powers of 2.

• An open box indicates a copy of Z[Ä ] in the associated graded object.

• A solid gray dot • indicates a copy of F2[Ä ] in the associated graded object.

• A solid colored dot indicates a copy of F2[Ä ]/Ä r in the associated graded object. The 

value of r is encoded in the color of the dot, as shown in Table 11.

• Short vertical lines indicate extensions by 2.

Table 11

Color interpretations for elements. 
(For interpretation of the colors in 
the table(s), the reader is referred 
to the web version of this article.)

n color

F2[τ ] • gray
F2[τ ]/τ • red
F2[τ ]/τ2 • blue
F2[τ ]/τ3 • green
F2[τ ]/τ4 • cyan
F2[τ ]/τ5 • brown
F2[τ ]/τ6 • magenta
F2[τ ]/τ11 • orange
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Our graphical notation has the advantages of flexibility, compactness, and conve-

nience. We illustrate with two examples.

Example 7.1. In Fig. 3 at degree (48, 0), one sees . This notation indicates a copy of 

Z[Ä ]. More precisely, it represents the filtration 4Z[Ä ] ⊆ 2Z[Ä ] ⊆ Z[Ä ] whose filtration 

quotients are Z[Ä ], F2[Ä ], and F2[Ä ]. This particular filtration is relevant for our mANss 

computation because 2Z[Ä ] is the subgroup of d5 cycles, and 4Z[Ä ] is the subgroup of d7

cycles.

Example 7.2. In Fig. 5 at degree (120, 24), one sees . This notation indicates the Z[Ä ]-

module

Z[Ä ]

8, 4Ä2, 2Ä6, Ä11
,

which is somewhat cumbersome to describe in traditional notation. More precisely, it 

represents the filtration

4Z[Ä ]

8, 4Ä2
⊆

2Z[Ä ]

8, 4Ä2, 2Ä6
⊆

Z[Ä ]

8, 4Ä2, 2Ä6, Ä11
,

whose filtration quotients are F2[Ä ]/Ä2, F2[Ä ]/Ä6, and F2[Ä ]/Ä11. The blue, magenta, and 

orange dots correspond to these filtration quotients, as shown in Table 11.

7.2. Differentials

Lines of negative slope indicate Adams-Novikov differentials. The differentials are 

colored according to their lengths, as described in Table 12. These color choices are 

compatible with our choice of colors for Ä torsion in Section 7.1, in the following sense. 

An Adams-Novikov d2r+1 differential always takes the form d2r+1(x) = Ä ry, and it 

creates Ä r torsion in the following page. We use matching colors for d2r+1 and for Ä r

torsion.

7.3. Extensions

• Solid lines of slope 1 indicate h1 multiplications. The colors of these lines are deter-

mined by the Ä torsion of the targets.

• Arrows of slope 1 indicate infinite families of elements that are connected by h1

multiplications. The colors of the arrows reflect the Ä torsion of the elements.

• Solid lines of slope 1/3 indicate h2 multiplications. The colors of these lines are 

determined by the Ä torsion of the targets.



46 D.C. Isaksen et al. / Advances in Mathematics 458 (2024) 109966

Table 12

Color interpretations for 
Adams-Novikov differen-
tials.

color slope dr

red −3 d3

blue −5 d5

green −7 d7

cyan −9 d9

brown −11 d11

magenta −13 d13

orange −23 d23

• Dashed lines indicate hidden extensions by 2, η, and ν. Some of these lines are curved 

solely for the purpose of legibility.

• The colors of dashed lines indicate the Ä torsion of the targets of the extensions. For 

example, the vertical dashed line in the 23-stem of Fig. 5 is blue because its value 

Äh3
1g is annihilated by Ä2.

Fig. 5 shows an h1 extension and also a hidden η extension on the element ∆4cg in 

degree (124, 6, 65). See Remark 4.3 for an explanation.
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