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Adams spectral sequence
Stable homotopy group

1. Introduction

The topological modular forms spectrum tmf plays an essential role in the study of
the stable homotopy groups of spheres [2] [3] [12] [16] [19] [20] [21] [32]. The unit map
S — tmf from the sphere spectrum to tmf detects much of the structure of the stable
homotopy groups of S, including the elements 7 (1-stem), v (3-stem), € (8-stem), x (14-
stem), & (20-stem), and many additional elements. The unit map is far from injective
(for example, o (7-stem) maps to zero in tmf), so it does not detect all of the stable
homotopy groups of spheres. Moreover, it is also not surjective. The computation of
the tmf-Hurewicz image is a difficult problem that leads to the identification of infinite
vo-periodic families in the stable homotopy groups of spheres [4].

The spectrum tmf serves as an approximation to the sphere spectrum. This ap-
proximation is highly suitable for testing theories and for developing computational
techniques. The structure of ¢mf is complicated enough to exhibit the complex phenom-
ena related to the computation of stable homotopy groups, but it is also simple enough
to be computed exhaustively. We have found that the study of ¢mf is an indispensable
step along the way to understanding the sphere spectrum.

By comparison, the spectrum ko is arguably too simple to serve as a test case for com-
putational theories. For example, its Adams spectral sequence collapses, so its homotopy
reduces to an entirely algebraic problem. Neither the Adams nor the Adams-Novikov
spectral sequence collapses for tmf. However, the analysis of ¢tmf does not involve cross-
ing differentials or crossing extensions in the sense of [26, Section 2.1]. This means that
the homotopy of tmf does not share the most delicate parts of the homotopy groups of
spheres.

Bruner and Rognes [9] have recently exhaustively studied the Adams spectral sequence
for tmf. They completely determine the additive and (primary) multiplicative structure
of the stable homotopy groups of tmf, with one exception.

The goal of this manuscript is to carry out the Adams-Novikov spectral sequence
for tmf. In fact, we will work in the more general C-motivic context and compute the
motivic Adams-Novikov spectral sequence for the C-motivic modular forms spectrum
mmyf. The classical computation is easily recovered from the motivic computation by an
algebraic localization.

More specifically, there is a certain motivic element 7. Inverting 7 has the effect of
collapsing C-motivic computations to classical computations. In particular, 7-torsion
phenomena disappear in the classical context. Henceforth, we will work in the C-motivic
context. The interested reader can easily recover classical computations from our work
by inverting 7.



D.C. Isaksen et al. / Advances in Mathematics 458 (2024) 109966 3

From another perspective, we also compute the C-motivic effective slice spectral se-
quence for mmf, since it agrees with the Adams-Novikov spectral sequence over C. This
identification of spectral sequences does not appear to be cleanly stated in the literature,
but it is a computational consequence of the weight 0 result of [27, Theorem 1].

Our goal is not merely to record the details of the Adams-Novikov spectral sequence,
which have previously appeared in [2]. More specifically, we have attempted to give proofs
that are as algebraic as possible. Such algebraic proofs are less likely to contain subtle
mistakes, and they are more easily verifiable by machine. The motivic context provides
us with additional algebraic tools that are not accessible in the strictly classical context.
We also correct a few oversights and minor mistakes in the analysis of [2].

1.1. Algebraic philosophy

We do not use any information from the sphere spectrum as input for our computa-
tions. We do, however, assume full knowledge of the algebraic structure of the motivic
Adams and motivic Adams-Novikov Fs-pages for mmf, including the full structure of
the algebraic Novikov spectral sequence that converges to the Adams-Novikov Es-page
[1]. In later sections, the reader will most likely need to inspect motivic Adams Es-pages;
see [23] or [24].

This is consistent with our goal of using algebraic techniques whenever possible. It
is also consistent with our philosophy that the role of ¢mf is to inform us about the
sphere spectrum. By comparison, in [9] it is necessary to import the relation 7%k = 0 to
tmf from previous knowledge of the sphere spectrum. Fortunately for us, we have the
relation h3d = 0 in the Adams-Novikov Fy-page for mmf. Because there are no elements
in higher filtration, the relation n?x = 0 therefore has an entirely algebraic proof.

A computation involving the Adams or Adams-Novikov spectral sequence breaks into
two main stages. The first stage is entirely algebraic and involves the computation of
the Fs-page. In the modern era, this first stage is typically conducted by machine. The
computation of the Es-pages for tmf is not elementary, but it can be done manually
with enough patience [1] [2, Section 7] [9] [32, Section 18].

The second stage of the process involves the computation of differentials and hid-
den extensions. This stage typically requires input from topology, so it cannot be fully
automated because it is not entirely algebraic.

Our contribution is to recognize that much of this topological second stage actually
can be carried out using only algebraic information. The key idea is to use the additional
structure of the motivic context in order to pass back and forth between the Adams
and Adams-Novikov spectral sequences. Each Fs-page tells us some things about the
homotopy groups of tmf. The information contained in these Es-pages does overlap, but
not perfectly. The union of the information in both Es-pages is strictly greater than the
information in either one of the FEs-pages.

We give several concrete examples of information available in only one of the two
Fs-pages.
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(1) In the classical Adams Es-page for tmf, we have the relation hi = 0. This implies
the relation 7* = 0 in homotopy. However, in the classical Adams-Novikov E,-page,
the element hf{ is non-zero and is hit by an Adams-Novikov d3 differential. Thus,
the relation n* = 0 has an entirely algebraic proof, but only in the Adams spectral
sequence.

(2) In fact, the relation hi = 0 is a consequence of the Massey product h3 = (hg, h1, ho)
in the Adams Fs-page. In the classical Adams-Novikov Es-page, the corresponding
Massey product (2, hy,2) is zero. Consequently, the Toda bracket 7% = (2,7,2) has
an entirely algebraic proof, but only in the Adams spectral sequence.

(3) In the classical Adams-Novikov Es-page for tmf, we have the relation hj = hjc.
This implies the relation v = ne. However, in the classical Adams E»-page, we have
h3 = 0. In fact, there is a hidden v extension from h2 to hic in the Adams spectral
sequence. Thus, the relation v® = ne has an entirely algebraic proof, but only in the
Adams-Novikov spectral sequence.

(4) In fact, the relation h3 = hyc is a consequence of the Massey product ¢ = (ha, h1, ha)
in the Adams-Novikov Fs-page. In the classical Adams FEs-page, the corresponding
Massey product is zero. Consequently, the Toda bracket e = (v, 7, v) has an entirely
algebraic proof, but only in the Adams-Novikov spectral sequence. See Lemma 2.20

for more detail on this example.

In order to obtain one key Adams-Novikov differential, we use Bruner’s theorem on
the interaction between algebraic Steenrod operations [30] and Adams differentials in the
context of the Adams spectral sequence. We refer to [8, Theorem 2.2] for a precise read-
able statement; see also [10] and [28]. The practical implementation of Bruner’s theorem
requires only algebraic information in the form of algebraic Steenrod operations on Ext
groups. These operations can be computed by machine, although not as effectively as
the additive and multiplicative structure of the Ext groups. The algebraic Steenrod op-
erations are additional structure on top of what topologists usually think of as “standard
homological algebra”.

In the context of the Adams-Novikov spectral sequence, we also rely on the Leibniz rule
in the form d,.(z*) = kx*~1d, (). Philosophically, this formula is connected to Bruner’s
theorem, although we do not know how to make a precise connection. As in the case
of Bruner’s theorem, it feels like slightly more information than is usually considered in
standard homological algebra.

We also draw attention to Proposition 4.5, in which we establish a hidden 2 extension
in the 110-stem. Here we use some information about the homotopy groups of mmf/72.
One might argue that this information is not entirely of an algebraic nature. By com-
parison, the corresponding 2 extension in the Adams spectral sequence is hidden, but
not particularly difficult [9, Theorem 9.8(110)].
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1.2. Techniques

Section 2.10 describes a particularly powerful method for studying the C-motivic
Adams-Novikov spectral sequence in a way that has no classical analogue. The reader
may need to refer to Table 1, Table 2, and Table 3, as well as the charts at the end of
the manuscript, in order to make sense of the specific elements that we mention.

There is a map ¢ : mmf/7 — S~ Immf that can be viewed as projection to the top
cell of the 2-cell mmf-module mmf /7. (To interpret the symbol £~ see Section 1.7 for
a discussion of our grading conventions.) The homotopy of mmf /T is entirely understood
in an algebraic sense since it is isomorphic to the classical Adams-Novikov FEs-page for
tmf. Moreover, the map g maps onto the homotopy of mmf that is annihilated by 7. Thus
q can be used to detect structure in mmf that is related to classes that are annihilated
by 7.

In practice, many specific questions about hidden extensions do not directly involve
elements that are annihilated by 7. Frequently, if we multiply these elements by a power
of 7 and a power of g, then we end up with elements that are annihilated by 7. We
can use g to understand these latter elements, and finally deduce information about the
original elements. Table 5 lists numerous specific examples of this process. The majority
of hidden extensions can be handled very easily in this way, although a few extensions
require more complicated arguments.

We avoid the use of Toda brackets whenever possible, but occasionally they are in-
evitable. In those cases where we must compute a Toda bracket, we once again rely
exclusively on algebraic techniques. Namely, our Toda brackets arise from corresponding
Massey products in either the Adams or Adams-Novikov Fs-page. The Moss Convergence
Theorem [31] says that such algebraic Massey products detect Toda brackets in “well-
behaved” situations. In practice, all of the situations that we study are well-behaved.

1.8. The differentials on A*

Having carried out the entire analysis of the motivic Adams-Novikov spectral sequence
for mmf, we can see in hindsight that there are a few key steps from which all of the other
miscellaneous computations follow. Our experience shows that the key steps involve the
differentials on elements of the form 27 A¥. This is not particularly surprising; we expect
the element A to play a dominant role since it represents vo-periodicity.

First, we establish d5(A) = 72hag in Proposition 3.9. This follows immediately by
comparison to the Adams spectral sequence, in which 72hyg is already zero in the Ey-
page. Thus, we have an algebraic proof for ds(A). Then the Leibniz rule implies that
ds(A?) = 272 Ahag.

The Leibniz rule also implies that ds(A*) = 472A3hyg. However, 472A3hyg is zero
in the Adams-Novikov E>-page. Because of the hidden 2 extension from 272hs to 73h3,
the element 72A3h3g ought to play the role of 472A3hyg. This strongly suggests that
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there should be a differential d7(A%) = 72A3h3g. In fact, this formula is correct (see
Proposition 3.15), but it requires some work to give a precise proof.

Our solution, once again, is to play the Adams and Adams-Novikov spectral sequences
against each other. We used the Adams Fs-page to obtain the Adams-Novikov differen-
tial d5(A). Then we used the Leibniz rule in the Adams-Novikov spectral sequence to
obtain d5(A?). In turn, this last Adams-Novikov differential implies an Adams differ-
ential da(A?), or da(ws) in the notation of [9]. Next, we obtain an Adams differential
d3(A%), or d3(w3) in the notation of [9], by applying Bruner’s theorem on the interac-
tion between squaring operations and Adams differentials [10] [8]. Finally, the Adams
differential d3(A%) implies that there is an Adams-Novikov differential d7(A?*). For more
details, see Sections 3.3 and 3.4. Curiously, precise statements about the Adams-Novikov
differential d7(A*) are missing from [2] [21] [32].

1.4. Main results

Our main results are expressed in the charts in Section 7. For completeness, we express
this in the form of a main theorem.

Theorem 1.1. The charts in Section 7 represent the C-motivic Adams-Novikov spectral
sequence for the motivic modular forms spectrum mmf, including complete descriptions

of

o the E>-page.

o all differentials.

o the E-page.

o all hidden extensions by 2, n, and v.

The proof of Theorem 1.1 consists of the sum of a long list of miscellaneous compu-
tations, which are carried out throughout the manuscript. See especially the tables in
Section 6. These tables summarize the main computational facts, and they give cross-
references to more detailed proofs of each fact.

Our work is not as complete as [9] because we have not completely analyzed the
multiplicative structure. In principle, this could be done using the same techniques. We
do study one family of multiplicative relations in more detail. Bruner and Rognes identify
a family v, of elements in the homotopy of ¢mf. They mostly determine the products
among these elements. In one case, they determine only that a product takes one of two
possible values. Our techniques settle this last detail about the 2-primary multiplicative
structure of the homotopy of tmf.

The elements vy, are of interest for at least one other reason. They exhibit exceptional
behavior with respect to the image of the tmf-Hurewicz map [4, Theorem 1.2(3)]. We
know of no direct connection between this Hurewicz map perspective and the multiplica-
tive relations that we study.
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Theorem 1.2. In the context of [9], vavg = VoM.

Theorem 1.2 is proved later as Corollary 5.12. In fact, it is a consequence of the more
general Theorem 5.10, which offers a graceful simultaneous analysis of products v;vy.
Bruner and Rognes empirically observed the formula

viv; = (i 4+ vy,
Our proof shows that the coefficients (i 4+ 1) arise naturally from the Leibniz rule
ds(A™) = (i + 1)A%ds(A).
1.5. Future directions

Our work raises some questions that deserve further study.
Problem 1.1. Compute the A-periodic C-motivic spectrum mmf[& .

Frequently, we detect elements and relations by first computing their products with
various powers of g or . In other words, much of the structure of mmf is reflected in the
R-periodic spectrum mmyf[F~1]. This motivic spectrum is non-trivial, but its homotopy
is entirely annihilated by 7'!. Consequently, its Betti realization is trivial, and it rep-
resents purely “exotic” motivic phenomena. We mention that [5] also studies g-periodic
phenomena in ¢mf, although not in a way that is particularly close to our perspective.

Problem 1.2. Develop better technology to deduce the differential d;(A*) = 73A3hjg
directly from the differential ds(A) = 72hag.

It is conceivable that d7(A*) could be deduced directly from ds(A) using a variant of
Bruner’s theorem that would apply in the Adams-Novikov spectral sequence, but we have
not even formulated a precise statement of such a variant. There is a connection between
Bruner’s theorem and the Leibniz rule d,.(z%) = 2xd,.(z), but the precise relationship is
not clear to us.

Another possible approach to Problem 1.2 might involve an enriched Es-page in which
the 2 extension from 272hy to 73h3 is not hidden.

Problem 1.3. Construct a spectral sequence whose FEs-page reflects the algebraic struc-
ture of both the Adams and Adams-Novikov Fa-pages.

We frequently pass back and forth between the Adams and Adams-Novikov spectral
sequences. In order to facilitate these transitions, Section 2.5 introduces a notion of
correspondence between elements of the Adams spectral sequence and elements of the
Adams-Novikov spectral sequence.
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This setup feels like a preliminary attempt to describe a richer connection between
the two spectral sequences. It would be much more convenient and effective to compute
in just a single spectral sequence that reflects the algebraic structure of both the Adams
and Adams-Novikov spectral sequences. There are some preliminary indications that
“bimotivic homotopy theory” (also known as HIFs-synthetic BP-synthetic homotopy
theory) provides a context for this.

1.6. Outline

We begin in Section 2 with a discussion of tools that we will use to carry out our
explicit computations. We describe both the motivic Adams and motivic Adams-Novikov
spectral sequences for mmf, and we establish notation for elements in these spectral
sequences. We also establish notation for certain homotopy elements that we will use
later. We draw particular attention to Sections 2.9 and 2.10, which establish a powerful
tool for detecting hidden extensions. The basic idea is to use the motivic spectrum
mmf /T, whose homotopy is entirely algebraic.

Our explicit computations begin in Section 3, where we establish all of the Adams-
Novikov differentials. The propositions in this section are mostly in order of increasing
length of differentials. However, we make some exceptions to this general rule to preserve
the logical order, so each result only depends on previously proved results.

Once the Adams-Novikov differentials are computed, we proceed to compute all hidden
extensions by 2, 7, and v in Section 4. Most of these extensions follow immediately by
comparison to the homotopy of mmf /7, but there are several cases with more difficult
proofs.

Finally, in Section 5, we consider an explicit family of products that are particularly
interesting. Our results on these products fill a gap in the product structure of m.tmf,
as described in [9].

1.7. Conventions

We work exclusively at the prime 2. There are interesting aspects to the computation
of tmf at the prime 3 ([2, Chapter 5], [12], [9, Chapter 13]), but we do not address that
topic. We use the motivic Adams-Novikov spectral sequence to compute the homotopy
groups of the 2-localization of mmf. We also use the Es-page of the motivic Adams
spectral sequence, which actually converges to the homotopy groups of the 2-completion
of mmf. The distinction between localization and completion is not essential since only
finitely generated abelian groups appear in our work. For expository simplicity, these
localizations or completions do not appear in our notation. For example, the symbol Z
refers to the integers localized at 2, or to the 2-adic integers. Similarly, m, .mmf refers
to the motivic stable homotopy groups of the 2-localization (or 2-completion) of mmf.

The adjective “motivic” always refers exclusively to the C-motivic context. We con-
sider no base fields other than C. There is more than one convention for bigrading in the
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motivic context. We use the grading (stem, weight), in which the sphere S*% is defined
to be the smash product (S1:0) =% A (SEHA%: and S10 and S are the simplicial cir-
cle A'/OA! and the punctured affine line A! — 0 respectively. In particular, the formal
suspension is £1:0. This same convention is also used in [26].

Many of our explicit results are labelled with the degrees in which they occur. These
degrees may help the reader navigate the overall computation, especially in finding the
relevant elements on Adams-Novikov charts.

1.8. Acknowledgments

We thank Tilman Bauer, Robert Bruner, and John Rognes for various discussions
related to the production of this manuscript. We also appreciate stimulating discussions
with the participants of the Winter 2023 eCHT reading seminar on the Adams spectral
sequence for tmf.

2. Background

In this section, we discuss the techniques that we will use later to carry out our
computations.

2.1. The C-motivic modular forms spectrum mmf

There is a C-motivic Ey-ring spectrum mmf that can be viewed as the analogue of
the classical topological modular forms spectrum tmf [15]. The Betti realization of mmf
is the classical spectrum tmf. Moreover, the cohomology of mmf is A J A(2), where A
denotes the C-motivic Steenrod algebra and A(2) is the subalgebra generated by Sq’,
Sq?, and Sq*.

2.2. The C-motivic Adams spectral sequence for mmf

We abbreviate the motivic Adams spectral sequence for mmf by mAss. The cohomol-
ogy of C-motivic A(2) is the Es-page of the mAss. The manuscript [23] computes the
cohomology of C-motivic A(2) using the motivic May spectral sequence, and it gives
a complete description of its ring structure. The mAss Fs-page consists entirely of al-
gebraic information, which we take as given. We grade the mAss Es-page in the form
(s, f,w), where s is the topological stem, f is the Adams filtration, and w is the motivic
weight.

The motivic Adams differentials are recorded in [24]. However, this manuscript does
not depend on previous knowledge of any Adams differentials, neither classical nor mo-
tivic. For completeness, we provide self-contained proofs for two Adams differentials in
Proposition 3.20.
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Table 1
Generators of the motivic
Adams Es-page for mmf.

(s, f,w) (23] [9]
(0,0,—-1) 7 1
(0,1,0) ho ho
(1,1,1) ha ha
(3,1,2) ha ha
(8,3,5) c co
(8,4,4) P w1
(11,3,7) w

(12,3,6) aora
(14,4,8) d do
(15, 3,8) norv f
(17,4,10) e eo
(20,4,12) g g
(25,5,13)  Ahy N
(32,7,17)  Ac 5
(35,7,19) Au
(48,8,24) AZ? wa

We adopt the notation of [23] and [24] for the mAss. For the reader’s convenience,
Table 1 provides a concordance between our notation and the notation of [9]. Beware
that the motivic generators u and Awu have no classical counterparts because they are
annhilated by 7.

2.3. The C-motivic Adams-Novikov spectral sequence for mmf

The Es-page of the classical Adams-Novikov spectral sequence for tmf is given by
Extpp, gp(BPy«, BP.tmf), where BP denotes the Brown-Peterson spectrum. Analo-
gously to the classical Adams-Novikov spectral sequence, one can construct a motivic
Adams-Novikov spectral sequence by resolving with respect to the motivic Brown-
Peterson spectrum. We abbreviate the motivic Adams-Novikov spectral sequence by
mANSss. Note that the mANss is the same as the 7-Bockstein spectral sequence. We
grade the mANss Fs-page in the form (s, f,w), where s is the topological stem, f is the
Adams-Novikov filtration, and w is the motivic weight.

The mANss is easy to describe in classical terms. The motivic Fs-page can be obtained
from its classical analogue by first assigning a third degree, called the weight, to be half of
the total degree for each class, then adjoining a polynomial generator 7 of degree (0,0, —1)
(see, e.g. [22][25]). More explicitly, a classical element x in degree (s, f) corresponds to a
family of elements {7"z|n > 0} in the mANss, where the motivic element x has degree

s, f, S‘g )

The Fs-page of the mANss consists entirely of algebraic information, which we take

as given. For our purposes, the best way to compute this Es-page is by the algebraic
Novikov spectral sequence, which is worked out in detail in [1].

Remark 2.1. The Fs-page of the classical Adams-Novikov spectral sequence for tmf is
the cohomology of a version of the elliptic curve Hopf algebroid ([32][2]). By the change-
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Table 2
Generators of the motivic
Adams-Novikov FEs-page

for mmf.
(s, f,w) generator
(0,0,-1) 7
(17 17 1) hi
(3,1,2)  hy
(5,1,3) hiv?
(8,0,4) P
(8,2,5) c
(12,0, 6) da
(14,2,8) d
(20,4,12) g

(24,0,12) A

of-rings theorem [32, Theorem 15.3], this is the same as the cohomology of the Hopf
algebroid (BP,tmf, BP,BP ®@pp, BP.tmf). See [32, Proposition 15.7 and Section 20)
for more details. We do not rely on this perspective.

2.4. Notation for the motivic Adams-Novikov spectral sequence

Table 2 lists the multiplicative generators for the mANss FEs-page for mmf. These
generators are the starting point of our computation.

One must be slightly careful with the definitions of some of these elements because
they belong to cyclic groups of order greater than 2. In these cases, there is more than
one possible generator. Specifically, this issue arises for the elements hy, P, 4a, g, and
A. For P, 4a, and g, we simply choose arbitrary generators.

Remark 2.2. (3,1,2) The choice of he makes little practical difference to us, as long as
it is a generator of the mANss Eo-page in degree (3,1,2). For definiteness, we take hs
to represent the homotopy element v, assuming an a priori definition of v. One possible
definition of v is the Hopf construction [18] on the quaternionic multiplication map
93 x 53 — 8§3. See also [13] for an explicitly motivic discussion of the Hopf construction.

The choice of A also makes little practical difference. We choose A in such a way to
make our formulas easier to write. See Remark 3.10 and Remark 5.8 for more details.
Note that the choice of A depends on a previous choice of hs.

Remark 2.3. (12,0,6) The notation 4a does not appear to be natural and deserves some
explanation. There are two closely related reasons why we find this notation to be con-
venient. First, the element 4a is detected in the algebraic Novikov spectral sequence [1]
by an element h3a. Second, the element 2 - 4a turns out to be a permanent cycle that
detects an element in 12 gmmf. This same homotopy element is detected by h3a in the
Adams spectral sequence for mmf.
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The element g is a permanent cycle and therefore represents a homotopy class .
Multiplication by g provides regular structure to the mANss for mmf. We typically sort
elements into families that are related by ¢ multiplication. In other words, when we
consider a particular element x, we also typically consider the elements z¢* for all k > 0
at the same time.

Taken together, Figs. 1 and 3 depict the Fs-page of the mANss for mmf graphically.
The careful reader should superimpose these figures in order to obtain a full picture of
the mANss. Fig. 1 depicts a regular v,-periodic pattern in the Es-page, to be discussed
in detail in Section 2.7. Fig. 3 depicts the remaining classes.

2.5. Comparison between the mANss and the mAss

The motivic Thom reduction map BP — HIFs induces a map from the mANss for
mmyf to the mAss for mmf. Unfortunately, this map does not detect as much as we would
like, so we need a more sophisticated way to compare elements between the mANss and
the mAss.

Definition 2.4. Let a be a permanent cycle in the mANss for mmf, and let b be a per-
manent cycle in the mAss for mmf. The elements a and b correspond if there exists a
non-zero element in 7, ,mmf that is detected by a in the mANss for mmf and is detected
by b in the mAss for mmf.

Remark 2.5. Beware that a permanent cycle may detect more than one element in
. «mmf, depending on the presence of permanent cycles in higher filtration. We ask
only that the cosets detected by a and b intersect; they need not coincide. We give an
explicit example.

The element P of the mANss E-page detects two elements of g 4mmf because of
the presence of ¢ in higher filtration. On the other hand, the element P of the mAss
E-page detects infinitely many elements (which differ only by a 2-adic unit factor)
because of the presence of PhE in higher filtration for & > 1. This is an example of a
corresponding pair of elements that do not detect precisely the same coset of homotopy
elements.

Remark 2.6. It is possible that a single element of the mANss corresponds to two different
elements of the mAss. For example, the element P of the mANss detects two elements
of mg 4mmf because of the presence of 7c in higher filtration. These two homotopy ele-
ments are detected by 7¢ and by P in the mAss. Consequently, the mANss element P
corresponds to the mAss element P, and it also corresponds to the mAss element 7c.
Fortunately, this kind of complication never arises in any of our specific computational
results. For example, none of the correspondences listed in Table 4 exhibit this type of
behavior.
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Remark 2.7. The element 2 of the mANss E.-page detects a single element in homotopy
since there are no elements in higher filtration. On the other hand, the element hg of
the mAss F.-page detects infinitely many elements in homotopy, all of which differ by
a 2-adic unit factor, because of the presence of h% in higher filtration. Consequently,
while 2 and hg are a corresponding pair, they do not detect the same sets of homotopy
elements. Rather, the homotopy elements detected by 2 form a subset of the homotopy
elements detected by hg.

Among the corresponding pairs listed in Table 4, the same phenomenon occurs for hs,
g, Ahy, and 4A2. In all of these cases, the homotopy elements detected by the mANss
FE-page element form a subset of the homotopy elements detected by the mAss F.-page
element.

Multiplicative structure respects corresponding pairs. The following proposition es-
tablishes this principle precisely.

Proposition 2.8. Let a and a' be elements of the mANss Eo,-page, and let b and b’ be
elements of the mAss Eo-page. If a corresponds to a’, b corresponds to b', and ab and
a't! are mon-zero; then ab corresponds to a'b’.

Proof. Let a and o' detect a homotopy element «, and let b and b’ detect a homotopy
element 8. Then ab and a’b’ detect the product af. O

Remark 2.9. The motivic Thom reduction map BP — HIFy induces a map from the
mANSss for mmf to the mAss for mmf. This map detects some corresponding pairs but
not all of them. Namely, it detects the pairs involving hy, ho, and g. These are the
elements for which there is no filtration shift between the mANss and the mAss.

2.6. Homotopy elements

Table 3 lists some notation that we use for elements in the homotopy of mmf. We use
the same symbols as in [9] for our motivic versions. Beware that some of our homotopy
elements may not be exactly compatible under Betti realization with the ones in [9]. We
discuss the details of these ambiguities in the following paragraphs.

We define elements in homotopy by specifying the elements in the mANss E.-page
that detect them. In some cases, it is already easy to see that these detecting elements
survive to the F,.-page. For example, there are no possible targets for differentials on
hy1 and ho; nor can they be hit by differentials. Beware that we do not yet know that
some of these detecting elements actually survive to the E,.-page. This will only become
apparent after our analysis of Adams-Novikov differentials.

In some cases, there are E-page elements in higher filtration. When this occurs,
the specified element in the F..-page detects more than one element in homotopy. For
example, the element 7h$ lies in filtration higher than the filtration of hy. Therefore, hy
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Table 3

Some elememts of 7. .mmf.
(s, w) name  detected by
(1,1) n h1
(3,2) v ho
(8,5) € c
(14, 8) K d
(20,12) & g
(25,13) m Ahy
(27,14) 1y 2Ahsy
(51, 26) Vo A%hy
(96, 48) Dy 244
(99, 50) V4 A*hy
(110,56) kK4 Atd
(123,62) v 2A5hy
(147,74)  ve AShy
(192,96) M A8

detects two distinct elements in homotopy. In Table 3, this ambiguity occurs only for v,
K4, and the elements of the form vy.

The choice of v is of little practical signficance to us. For definiteness, we may use an
a priori definition of v, as discussed in Remark 2.2. The choices of v will be discussed
later in Definition 5.4. The choice of k4 is immaterial for our purposes, so it can be an
arbitrary generator of m10,56.

Remark 2.10. (20,4, 12) Bruner and Rognes choose % by reference to the unit map S —
tmf, together with a prior choice of E in m99S. For our purposes, we only need that % is
detected by ¢ in the mANss E..-page, so we may choose % to be compatible with the
one in [9].

There is a slight complication with %. In [25] and [26], the symbol % is used for an
element of m99,11.5%° that is detected by 7g in the motivic Adams spectral sequence. The
point is that g does not survive the May spectral sequence, so it does not exist in the
motivic Adams spectral sequence.

Here, we use K for an element of myp 12mmf. This element is detected by g in the
Adams spectral sequence for mmf. The unit map S%° — mmf takes & to TE.

Remark 2.11. Bruner and Rognes refer to the “edge homomorphism” in order to specify
certain elements in m,tmf. From the perspective of the Adams-Novikov spectral se-
quence, this edge homomorphism takes a particularly convenient form that can be easily
described as a surjection followed by an injection. The surjection takes mw.tmf onto its
quotient by elements that are detected in strictly positive Adams-Novikov filtration. In
other words, the surjection maps m,¢tmf onto the Adams-Novikov E..-page in filtration
0. Then the injection is the inclusion of the Adams-Novikov E..-page into the Adams-
Novikov Fs-page in filtration 0. In other words, the edge homomorphism detects the
homotopy elements that are detected in Adams-Novikov filtration 0. This description of
the edge homomorphism applies equally well in the setting of 7, ,mmf and the motivic
Adams-Novikov spectral sequence.
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The edge homomorphism depends on the choice of A (see Remark 3.10). Beware that
our choice of A does not guarantee that our edge homomorphism is identical to the
one discussed in [9]. Consequently, our definitions of the homotopy elements Dy and M
in Table 3 may not be the same as [9, Definition 9.22]. All possible choices of A differ
by multiples of 2. Therefore, A* and A® are well-defined up to multiples of 16 and 32
respectively. As a consequence, our choices of Dy and M agree with the Bruner-Rognes
definitions up to multiples of 16 and 32 respectively.

2.7. vy-periodicity

Part of the mANss for mmf reflects vi-periodic homotopy. The pattern of differentials
in this part is similar to the Adams-Novikov differentials for ko (see [2, page 31]). We
consider this part separately and omit them from computations of higher differentials.
Beware that we are not employing an intrinsic definition of v1-periodic homotopy. Rather,
we are simply observing some specific structure in the mANss for mmf.

In the mANss E,-page, consider elements of the form 7¢h% P™(4a)€A™, where € equals
0 or 1 and m + € > 0. We refer to these elements as the vi-periodic classes.

Note that 1 and A™ (as well as their 7 multiples and h; multiples) are excluded from
this family of elements. The knowledgeable reader may observe that these powers of A
satisfy an intrinsic definition of v;-periodicity. Our family is constructed for its practical
convenience, not for its intrinsic properties. Our detailed analysis of the Adams-Novikov
spectral sequence reveals that the vi-periodic elements, as we have defined them, only
interact with each other through the Adams-Novikov differentials. However, the powers of
A support Adams-Novikov differentials that take values outside of the vi-periodic family.
Consequently, we consider them in conjunction with the non-v;-periodic elements.

Figs. 1 and 2 display the v;-periodic portions of the mANss Es-pages and F..-pages
respectively. Our other charts exclude the vi-periodic family.

2.8. The spectrum mmf /T
Consider the cofiber sequence
YO mmf 5 mmf AN mmf /T L S mmf (2.12)

of mmf-modules. The spectrum mmf /7 is a 2-cell mmf-module, in the sense that it is
built from two copies of mmf. We refer to i as inclusion of the bottom cell, and we refer
to q as projection to the top cell.

The mANSss for mmf /7 has a particularly simple algebraic form. The Es-page is iso-
morphic to the Es-page of the classical Adams-Novikov spectral sequence for tmf, except
that it has a third degree. However, this additional degree carries no extra information
since it equals half of the total degree, i.e., the sum of the stem and the Adams-Novikov
filtration.
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Moreover, the mANss for mmf /7 collapses. There are no differentials, so the Foo-
page equals the F>-page. Even better, there are no possible hidden extensions for degree
reasons. Consequently, the homotopy of mmf/7 is isomorphic to the classical Adams-
Novikov Es-page for tmf. Therefore, we take the homotopy of mmf /7 as given since it is
entirely algebraic information. The results discussed in this paragraph are tmf versions
of the results in [25, Section 6.2], which are stated for the sphere spectrum.

We use the notation of Table 2 in order to describe homotopy elements in 7, .mmf /7.
On the other hand, we need to be more careful about notation for elements in m, .mmf.
We can specify elements in 7, ,mmf by giving detecting elements in the mANss E.-
page, but this only specifies homotopy elements up to higher filtration. See Section 2.6
for more discussion of choices of elements in 7, .mmf.

The mAss for mmf/7 is isomorphic to the algebraic Novikov spectral sequence, for
which we have complete information [1]. This is a tmf version of the results in [14], which
are stated for the sphere spectrum.

2.9. Inclusion and projection

We discuss the inclusion i and the projection ¢ from Equation (2.12) in more detail.
Many of these ideas first appeared in [25, Chapter 5] in more primitive forms.

We already observed that both i and ¢ are mmf-module maps. The spectrum
mmf/T = mmf A S/T is a smash product of two rings [15] [7], so it is a ring. Note
that the inclusion 7 is a ring map. However, the projection ¢ is not a ring map.

Both ¢ and ¢ induce maps of motivic Adams-Novikov spectral sequences. These spec-
tral sequence maps are in fact module maps over the mANss for mmf. Similarly, the
induced maps of homotopy groups are , ,mmf-module maps.

We describe the inclusion ¢ : mmf — mmf/7 of the bottom cell in computational
terms. If « is a homotopy element that is not a multiple of 7, then i(«) is an element of
the mANss Fs-page that detects a. On the other hand, if « is a multiple of 7, then i(«a)
is zero. This fact is closely related to the observation that the motivic Adams-Novikov
spectral sequence is the same as the 7-Bockstein spectral sequence.

Table 3 gives a number of values of i. For example, we have i(n) = h;. Elements in
homotopy are typically defined in terms of the F.,-page elements that represent them,
so the table can be interpreted as definitions of the named homotopy elements (up to
some ambiguity in some cases).

For later use, we describe the computational implication that g : mmf /7 — S5~ tmmf
is an mmf-module map. Let a be an element of m, ,mmf, and let 2 be an element of
7 «mmf /7. The object mmf /7 is a right mmf-module, and

x-a=u1x-i(a),

where the dot on the left side represents the module action and the dot on the right side
represents the multiplication of the ring spectrum mmf /7. Then we have that
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q(z) - a=q(x-a)=q(z-i(a)), (2.13)

where the dot on the left represents multiplication in mmf; the dot in the center
represents the mmf-module action on mmf/7; and the dot on the right represents mul-
tiplication in mmf /7.

We need a precise statement about the values of ¢. Our desired statement has essen-
tially the same content as [11, Theorem 9.19(1c)], which we reformulate into a form that
is more convenient for us.

Proposition 2.14. Let x© be an element of the mANss Es-page that is not divisible by T,
and suppose that there is a non-zero motivic Adams-Novikov differential dory1(x) = 7"y.
If we consider x as an element of m. .mmf/T, then the element q(x) of m..mmf is
detected by —7" "'y in the mANss Eoo-page.

Proof. The proof is a chase of the right side of the diagram

mmf /T AN mmf /77Tt ——= mmf /7" LN mmf /T

I

mmf ——— mmf —— mmf /7" —— mmf

mmf — mmf —— mmf /T — mmf,
K3

in which the rows are cofiber sequences; beware that we have suppressed the suspensions
for clarity. We start with the element x in 7, ,mmf/7 in the bottom row. This element
lifts to mmf /7" in the middle row by [11, Theorem 9.19] because = survives to the Eg,.1-
page. The map S is the “Bockstein” mentioned in [11, Theorem 9.19], so we have that
B(x) equals —y in the upper right corner of the diagram. Then —y lifts to an element of
7o »mmf in the middle row that is detected by —y. Finally, multiply by 7"~! to obtain

q(z). O

Remark 2.15. Proposition 2.14 requires that = supports a non-zero Adams-Novikov dif-
ferential. On the other hand, suppose that z is a permanent cycle. Then « is in the image
of 4, and ¢(x) = 0 since the composition ¢i is zero.

2.10. Hidden extensions

We briefly review the notion of hidden extensions in spectral sequences. We adopt the
following definition of hidden extensions.
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Definition 2.16. [25, Definition 4.1.2] Let « be an element in the target of a multiplicative
spectral sequence, and suppose that « is detected by an element a in the E..-page of the
spectral sequence. A hidden extension by « is a pair of elements b and ¢ of the E.-page
such that:

(1) the product a - b equals zero in the E.-page.

(2) the element b detects an element 3 in the target such that ¢ detects the product
a- .

(3) if there exists an element 8’ of the target that is detected by ¥’ such that o - 3’ is
detected by ¢, then the filtration of &’ is less than or equal to the filtration of b.

If these conditions are met, then we say that there is a hidden a-extension from b to c.

We will use projection ¢ to simplify our analysis of hidden extensions. We shall show
that two different products in 7, .mmf are the image of the same element in m, .mmf /7.
Therefore, they are equal.

Method 2.17. Suppose that « is not divisible by 7, so i(a) = a, where a is an element

of the mANss that detects a. Consider a possible hidden a extension from b to ¢ in

the mANss for mmf. If b and ¢ detect classes § and v that are annihilated by 7, then

B and v are in the image of projection ¢ to the top cell. Let b and ¢ be their pre-

images in 7, .(mmf/7). Since this latter object is algebraic and completely known, we

can determine whether b and ¢ are related by an extension by mere inspection.
Equation (2.13) shows that

where the first two dots represent multiplication in mmf /7, while the last two dots
represent multiplication in mmf. If b- a equals ¢, then 3 - o equals ¢(¢) = 7, and there
is a hidden « extension from b to c.

On the other hand, if b-a equals zero, then /-« equals zero, and there is not a hidden
« extension from b to c.

In practice, Method 2.17 is very effective for determining hidden extensions. The
main restriction is that it only applies to extensions between classes that are annihilated
by 7.

Example 2.18. (54, 2,28) We illustrate Method 2.17 with a concrete example of the hid-
den 2 extension from A2h3 to 74dg? in the 54-stem. In this example, we assume some
knowledge of the relevant Adams-Novikov differentials (see Section 3). Consequently,
one should view this example as a deduction of a hidden extension from previously
determined differentials.
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First, multiply by 7¢. If we establish a hidden 2 extension from 7A%h3g to 7°dg? in the
74-stem, then we can immediately conclude the desired extension in the 54-stem. This
step already requires motivic technology, since both A2h2g and dg® are hit by classical
Adams-Novikov differentials.

The key point is that the two elements under consideration in the 74-stem are non-zero
but annihilated by 7. They are annihilated by 7 because of the differentials d5(A3hy) =
72A%h3g and dq3(2A%hy) = 75dg3, to be proved later in Propositions 3.9 and 3.17.

The elements 7A%h3g and 7°dg> represent classes in 774 39mmf that are annihilated
by 7. Therefore, these elements lie in the image of ¢ : w75 ssmmf /T — 774 39mmf.

By Proposition 2.14, the preimages in 775 ssmmf /T are A%hy and 2A3hs respectively.
These two elements are connected by a 2 extension. Therefore, their images under g are
also connected by a 2 extension.

2.11. Toda brackets

For background on Massey products and Toda brackets, including statements of the
May convergence theorem and the Moss convergence theorem, we refer readers to [33],
[29], [31] and also [25], [6].

Massey products in the Fs-page of an Adams or Adams-Novikov spectral sequence
are algebraic information since they are part of the structure of Ext groups. Some Toda
brackets in homotopy can be deduced directly from these Massey products using the Moss
convergence theorem. In order to apply this theorem, one must establish the absence of
crossing differentials. Whenever we apply the Moss convergence theorem, there will be
no possible crossing differentials. In other words, the crossing differentials condition is
satisfied for algebraic reasons. Thus, the Toda brackets that we use are algebraic in the
sense that they can be deduced directly from the algebraic structure of Ext.

Remark 2.19. In general, Massey products and Toda brackets are defined as sets, not
elements. An equality of the form («, 8,~) = 0 means that

(1) 4 is contained in the bracket;
(2) the bracket has zero indeterminacy.

The following lemma gives an explicit example of an algebraic deduction of a Toda
bracket. See Table 3 for an explanation of the notation.

Lemma 2.20. (8,3,5) The Toda bracket (v,n,v) in mgsmmf is detected by ¢ and has no
indeterminacy.

Proof. The proof follows several steps:

(1) Establish the Massey product ¢ = (ha, h1, ha) in the Es-page of the mANss.
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(2) Check that there are no crossing differentials.

(3) Check that the Toda bracket (v, n,v) is well-defined and that it has no indeterminacy.

(4) Apply the Moss convergence theorem to the Massey product and deduce the desired
Toda bracket.

For step (1), we check the following statements:

(a) The Massey product is well-defined because of the relation hihy = 0 in the Es-page
of the mANss for mmf (see Fig. 3).

(b) The element c is contained in the Massey product [2, Equation (7.3)] [1].

(¢) The indeterminacy is trivial by inspection. In more detail, the indeterminacy equals
ho - Eg’l’?’. The only non-zero element of Eg’l’?’ is hlvf7 and hs - hlv% = 0. This
last relation holds already in the Fs-page of the motivic algebraic Novikov spectral
sequence [1].

For step (2), we need to check for crossing differentials for the relation hihs in degree
(4,2,3). We are looking for non-zero Adams-Novikov differentials in degrees (5, f,3),
where f < 1. There are no possible sources for such differentials (see Fig. 3).

For step (3), we check that the Toda bracket is well-defined because nv is zero in
mq3mmf for degree reasons. The indeterminacy equals v - 5 3mmf, which is zero for
degree reasons.

For step (4), we apply the Moss convergence theorem. The theorem implies that there
exists an element in (hs, h1, ho) that is a permanent cycle and that detects an element in
(v,n,v). Since there are no indeterminacies for both the Massey product and the Toda
bracket, the permanent cycle must be ¢. O

3. Differentials

In this section, we compute all differentials in the mANss for mmf, proving hidden
extensions and Toda brackets only as needed along the way. Our results are presented
in logical order, so each proof only depends on earlier results. We return to a more
exhaustive study of hidden extensions later in Section 4.

Theorem 3.1. Table 6 lists all of the non-zero differentials on all of the indecomposable
elements of each mANss E,.-page.

Proof. The differentials are proved in the various propositions later in this section. The
last column of Table 6 indicates the specific proposition that proves each differential.

Some indecomposables do not support differentials. In most cases, this follows for
degree reasons, i.e., because there are no possible targets. Proposition 3.31 handles two
slightly more difficult cases. O
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All differentials follow from straightforward applications of the Leibniz rule to the
ones listed in Table 6.

3.1. ds differentials
Proposition 3.2. (5,1,3) ds(h1v?) = Thi.

Proof. In the mAss Er-page, h{ is a non-zero element that is annihilated by 7. By
inspection, h{ corresponds to the element of the same name in the mANss. Therefore,
Thi must be hit by an Adams-Novikov differential, and there is only one possibility. O

Proposition 3.3. (12,0, 6) ds(4a) = 7Ph3.

Proof. For degree reasons, d3(P) = 0. Thus Proposition 3.2 implies that d3(P - hiv}) =
7Phi. We have the relation P-hjv? = hy -4a in the Adams-Novikov E»-page. Note that
this relation arises from a hidden h; extension from ha to Ph_‘ll in the algebraic Novikov
spectral sequence [1]. Therefore, 4a must also support a dz differential, and there is only
one possibility. O

The Leibniz rule, combined with Proposition 3.2 and Proposition 3.3, implies some
additional d3 differentials. By inspection, the other multiplicative generators do not
support ds differentials.

Remark 3.4. All of the ds differentials are hi-periodic, in the sense that they can be
computed in the localization of the mANss Fs-page in which hy is inverted. This localized
spectral sequence computes the homotopy of the n-periodic spectrum mmf[n~—?]. See [17,
Section 6.1] for a related discussion.

3.2. Corresponding pairs

Earlier in Section 2.5, we discussed the notion of elements from the mANss and from
the mAss that correspond. Having computed the d3 differentials, we are now in a position
to establish a number of corresponding pairs that will be used in later arguments.

Theorem 3.5. Table / lists some pairs of elements that correspond.

Proof. We discuss the correspondence between 2Ahs and an in detail. Most of the other
corresponding pairs are established with essentially the same argument. Some slightly
more difficult cases are established later in Lemmas 3.11 and 3.35.

For degree reasons, the element 2Ahs of the mANss for mmf cannot support an
Adams-Novikov differential, nor can it be hit by an Adams-Novikov differential. (Be-
ware that Ahy does support a differential.) Therefore, 2Ahy detects some element « in

27,14 mmf.
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Table 4
Some corresponding elements in the motivic Adams and motivic
Adams-Novikov spectral sequences.

mANss degree  mANSss element mAss element  mAss degree

(0,0,0) 2 ho (0,1,0)
(1,1,1) ha h1 (1,1,1)
(3,1,2) ha ha (3,1,2)
(14,2, 8) d d (14,4,8)
(20, 4,12) g g (20, 4,12)
(25,1,13) Ahy Ahy (25,5,13)
(27,1, 14) 2Ahsy an (27,6, 14)
(48,0, 24) 4A? A%RZ (48,10, 24)
(110, 2, 56) A*d A*d (110, 20, 56)

The inclusion i : mmf — mmf /7 (see Section 2.9) induces a map

Es(mmf) —— Es(mmf /1) (3.6)

ﬂ ﬂ

Ty ommf —— m, mmf /T

of motivic Adams spectral sequences. The top horizontal map and the spectral sequence
on the right are entirely algebraic. Consequently, they are completely known from our
perspective, as described in Section 1.1. The spectral sequence on the right is identified
with the algebraic Novikov spectral sequence that converges to the classical Adams-
Novikov Es-page for tmf [14].

The element « in the lower left corner maps to 2Ahs in the lower right corner. This
latter element is detected by an in filtration 6 in the upper right corner [1]. Therefore,
« is detected in the upper left corner in filtration at most 6. The only possible value is
an. O

Remark 3.7. The algebraic Novikov spectral sequence is essential in the proof of Theo-
rem 3.5. We expect that this spectral sequence would play a central role in a solution to
Problem 1.3.

Remark 3.8. Previous knowledge of the d3 differentials is required in order to conclude
that 2Ahs (and other elements as well) does not support an Adams-Novikov differential.
For example, it is conceivable that dos(2Ahs) = 7'2h25. However, we already know that
712126 is hit by the differential ds(7''h%2 - hyv?).

3.3. ds differentials
Having determined all ds differentials, one can mechanically compute the E4-page.

Through the 22-stem, no additional differentials are possible for degree reasons, so the
E4-page equals the F..-page in that range.
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Proposition 3.9. (24,0,12) There exists a generator A of the mANss Fs-page in degree
(24,0,12) such that d5(A) = 72hag.

Proof. The mAss element hog is annihilated by 72 in the FE5-page. Moreover, Thog does
not support a hidden 7 extension in the mAss because of the presence of Thag in the
homotopy of mmf/T. More precisely, projection to the top cell takes Thaog to Thag, so
Thsg must detect homotopy elements that are annihilated by 7.

The mANSss element hog corresponds to the mAss element hsg because of Table 4 and
Proposition 2.8. Therefore, 72hog must be hit by an Adams-Novikov differential. The
only possibility is a ds differential whose source is in degree (24,0, 12). Since 72hag is
not a multiple of 2, the source of the differential must be a generator. 0O

Remark 3.10. (24,0, 12) Proposition 3.9 does not uniquely specify A. Since 472hsg is zero
in the mANss Es-page, A is only well-defined up to multiples of 4. Later in Remark 5.8
we will make a further refinement in the definition of A. Also note that the choice of A
depends on a previous choice of hs, as in Remark 2.2.

The Leibniz rule, together with Proposition 3.9, implies additional d5 differentials.
The other multiplicative generators of the Fs-page do not support differentials.
Of particular note is the differential

d5(A2) = 2Ad5(A) = 2T2Ahgg.

This easy computation is an Adams-Novikov version of Bruner’s theorem on the inter-
action between Adams differentials and algebraic squaring operations [10] [8]. However,
its corresponding Adams differential da(A?) = 72ang is not as easy to obtain by direct
analysis of the Adams spectral sequence [9]. The difficulty is that A2 is not the value of
an algebraic squaring operation since A is not present in the Adams Fs-page. By “post-
poning” the differential that hits 72hog from algebra to topology, we obtain an easier
argument for the differential on AZ.

Lemma 3.11. (48,0,24) The element 4A% of the mANss for mmf corresponds to A%h3
in the mAss for mmf.

Proof. Having established that ds(A2%) = 272Ahsg as a consequence of the Leibniz
rule and Proposition 3.9, we conclude that 4A? does not support an Adams-Novikov
differential for degree reasons. (Beware that 2A% does support a differential, but we do
not need to know that already.) Note that 4A? is detected in the algebraic Novikov
spectral sequence by A?h2, which has filtration 10. Using the argument in the proof of
Theorem 3.5, we conclude that 4A2 corresponds to an element in the mAss with filtration
at most 10. However, there are three possibilities: A%, A%hg, and A?h3.
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The top horizontal map of Diagram (3.6) takes A? and A2%hq to elements of the same
name. These elements detect A% and 2A? in the Adams-Novikov Es-page. This means
that 4A2% cannot correspond to A% or A%hy. O

3.4. dr differentials

The main goal of this section is to establish some d7 differentials in Proposition 3.15
and Proposition 3.22. In order to obtain these differentials, we will need some hidden
extensions and some later differentials. We establish these other results first, in order to
preserve strict logical order.

Lemma 3.12. (3,1,2) There is a hidden 2 extension from 2hsy to Th3.

Proof. According to Table 4 and Proposition 2.8, the mANss element 2ho corresponds
to the mAss element hghs. The element hgho supports an hg extension in the mAss
E>-page that survives to the E.-page, so 2hs must support a 2 extension in the mANss.
There is only one possible target for this extension. 0O

Remark 3.13. The hidden extension of Lemma 3.12 is the first in an infinite family of
similar hidden extensions from the elements 2hyg* to the elements Th3g*. For k > 1,
these extensions are “exotic” in the sense that they do not occur classically, since both
2hog* and high are the targets of classical Adams-Novikov differentials.

Lemma 3.14. (27,1,14) There is a hidden 2 extension from 2Ahy to TARS.

Proof. We already observed in Table 4 that 2Ahy and Ah; -h? correspond to an and Ah$
in the mAss. In the mAss Es-page, we have the relation hg-an = 7Ah3. Therefore, there
must be a hidden 2 extension between the corresponding Adams-Novikov elements. 0O

Proposition 3.15.

(1) (24,0,12) d7(4A) = m3h3g.
(2) (48,0,24) dr(2A2) = r3AR3g.

Proof. Proposition 3.9 says that 72hyg is hit by an Adams-Novikov differential, so 272hyg
is also hit by an Adams-Novikov differential. Remark 3.13 says that there is a hidden 2
extension from 2hag to Th3g. Therefore, 73h3g is hit by a differential, and there is just
one possible source for this differential.

The proof for the second differential is essentially the same. We need a hidden 2
extension from 2Ahog to TAh$g, which follows from Lemma 3.14 and multiplication
by g. O
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Remark 3.16. Proposition 3.9 and Proposition 3.15 show that both 27hog* and 72h3g*
are annihilated by 7. In hindsight, we can see that the hidden 2 extensions connecting
them are examples of Method 2.17. Their pre-images in mmf /T are 2Ag*~! and 4Ag*~1,
which are related by 2 extensions.

However, beware that we needed the hidden 2 extension from 2hy to 7h$ in order to
establish the differential d7(4A). An independent proof of Lemma 3.12 is necessary in
order to avoid a circular argument.

Before finishing the analysis of the d; differential in Proposition 3.22, we deduce some
higher differentials.

Proposition 3.17. (75,1, 38) d13(2A3hy) = 70dg>.

Proof. We have the relation ang - an = 7*dg® in the mAss Fs-page because of the
relations a?n = 7d - Ahy and Ahy -n = 73¢? [23, Theorem 4.13]. According to Table 4
and Proposition 2.8, the mANss elements 2Ahog, 2Ahs, d, and g correspond to the
mAss elements ang, an, d, and g. This means that there is a hidden 2Ahs extension
from 2Ahyg to 7dg? in the mANss.

Using the Leibniz rule and Proposition 3.9, we already know that 2r2Ahsg is hit by
the differential ds(A?%). Therefore, 76dg® must also be hit by a differential. There are
two possibilities for this differential: di;(7A%h3) and di3(A%hs). However, TA3hS is a
product 7(Ah;)? of permanent cycles, so it cannot support a differential. O

Remark 3.18. The proof of Proposition 3.17 contains an example of Method 2.17. There
is a hidden 2Ahs extension from 27Ahag to 7°dg3. Both of these elements are annihilated
by 7. Their pre-images under projection to the top cell of mmf/7 are A? and 2A3h;
respectively, which are related by a 2Ahy extension.

Proposition 3.19. (56,2,29) do(A2%c) = 74h1dg?.

Proof. Recall from Example 2.18 that there is a hidden 2 extension from A2h3 to T%dg?.
The argument for this hidden extension uses Proposition 3.9 and Proposition 3.17. There-
fore, 7*h1dg? must be hit by a differential because 2h; = 0. There is only one possible

differential. O
Proposition 3.20. In the mAss for mmf, we have the Adams differentials:

(1) (48,8,24) do(A?) = 2ang.
(2) (96,16,48) d3(A*) = r8ng.

Proof. We start with the Adams-Novikov differential d5(A?) = 272Ahyg. We know from
Table 4 and Proposition 2.8 that 2Ahsg corresponds to the element ang in the mAss.
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Therefore, 72ang must be hit by some Adams differential, and the only possibility is that
d2(A?) equals T2ang.

Next, we apply Bruner’s theorem on the interaction between Adams differentials and
algebraic squaring operations. We refer to [9, Theorem 5.6] for a precise readable state-
ment, although [8], [10] and [28] are preceding references. We apply Bruner’s theorem
with z = A%, r =2, and i = 8;s0 s = 8, t = 56, v = v(48) = 1, and @ = hy. We obtain
that

d. Sq®(A?) = Sq” da(A?) F ho - A%-da(A?) = Sq°(2ang) + ho - A% - T2ang = Sq°(r2ang).

Next, we compute that ng(TQang) =7%.7Ah; -n? - g%, using the Cartan formula for
algebraic squaring operations, as well as the formulas Sq?(a) = T7Ah, ng(n) =n?, and
Sq*(g) = ¢? [9, Theorem 1.20]. Finally, apply the relation Ah; - n = 73¢? [23] to obtain
the Adams differential d3(A*) = 8ng*. O

Remark 3.21. The careful reader may object to our use of a motivic version of Bruner’s
theorem in the proof of Proposition 3.20, while only the classical version of the theorem
has a published proof. In fact, this concern is irrelevant here. One can use the classical
Bruner’s theorem to establish the classical Adams d3 differential and then deduce the
motivic version of the differential.

Proposition 3.22. (96,0,48) d7(A*) = 73A3h3g.

Proof. Table 4 shows that the mANss element 4A? corresponds to the mAss element
A2h3. Therefore, Proposition 2.8 shows that the mANss element 16A* corresponds to
the mAss element A*hg.

Proposition 3.20 shows that A% does not survive the mAss. Therefore, A*hg does
not detect homotopy elements that are divisible by 16. Consequently, the corresponding
element 16A% in the mANss does not detect homotopy elements that are divisible by 16.
This means that A% must support an Adams-Novikov differential.

There are two possible values for this differential: 73A3h3g and 7°hidg*. How-
ever, Proposition 3.19 shows that the latter element is already hit by the differential
do(T°A%cg?) = °h1dg*. O

3.5. dg differentials

At this point, we have determined all differentials d, for r < 7. It remains to study
higher differentials, although some higher differentials have already been determined
in earlier propositions. We continue to proceed roughly in order of increasing values
of r, although we occasionally need some Toda brackets, hidden extensions, and later
differentials to preserve strict logical order.

Proposition 3.23. (171,1,86) di3(2A7hy) = 76A%dg3.
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Proof. The argument is nearly identical to the proof of Proposition 3.17. The mAss
E>-page relation A*ang - an = 72A%*dg>® implies that there is a hidden 2Ahs extension
from 2A%hog to T#A%dg? in the mANss. We already know that 272A5hyg is hit by the
differential d5(AS). Therefore, 76A%dg® must also be hit by a differential.

There are two possibilities for this differential: dy1(7A7h3) and dy3(2A7hs). The for-
mer possibility is ruled out by the decomposition TASh? - Ah; and the observation that
both ASh? and Ah; survive past the Eji-page for degree reasons. 0O

Lemma 3.24. (150,2,76) There is a hidden 2 extension from A®h3 to 7*A*dg?.

Proof. The proof is similar to the argument in Example 2.18. We already know the
differentials ds(A"hy) = 72A%h2g and d;3(2A7hy) = 76A%dg?® from Propositions 3.9 and
3.23. Therefore, projection to the top cell detects a hidden 2 extension from 7A%hZg to
79A%*dg3. Finally, use 7g multiplication to deduce the hidden 2 extension on ASh2. O

Proposition 3.25.

(1) (80,2,41) do(A3c) = T*Ahqdg?.
(2) (176,2,89) do(A7c) = 74 A%hydg?.

Proof. We saw in Example 2.18 that 72dg? detects a multiple of 2. Therefore, Ah;-7*dg?
must detect zero since Ahy does not support a 2 extension for degree reasons. Therefore,
74Ah1dg? must be hit by a differential, and there is only one possibility.

The argument for the second differential is nearly identical. Lemma 3.24 shows that
the element 74A*dg? detects a multiple of 2. Therefore, Ah; - 7 A*dg? must detect zero,
and there is only one differential that can hit it. 0O

Proposition 3.26. (152,2,77) do(ASc) = 7*A*h,dg?.

Proof. The argument is similar to the proof of Proposition 3.19. Lemma 3.24 shows that
72A%dg? detects a multiple of 2. Therefore, 7*A*h1dg? must be hit by a differential
because 2h; = 0. There is only one possible differential. O

Lemma 3.27. (25,1, 13) The Toda bracket (n,v, 72k) is detected by Ahy and has indeter-
minacy detected by P3h,.

Proof. By inspection, the Toda bracket is well-defined and has indeterminacy detected
by P3hy (which is a v;-periodic element).

We use the Moss convergence theorem in the mAss for mmf. By [23, Definition 4.4(1)],
we have the Massey product Ahy = (hy, ha, 72g) in the Eo-page of the mAss for mmf.
There are no possible crossing differentials in the mAss for mmf.

Finally, Table 4 implies that the mAss elements hi, hs, and 72g detect 1, v, and 728
respectively (see also Table 3). O
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Lemma 3.28. (25,1,13) There is a hidden v extension from Ahy to T2cg.

Proof. Lemmas 2.20 and 3.27 show that the Toda brackets (v,n,v) and (n, v, 7%k) are
detected by ¢ and Ah; respectively.
The hidden v extension follows from the shuffling relation

vin,v, 7Ry = (v,n,v)T%R. O
Lemma 3.29. (27,1,14) There is a hidden n extension from 2Ahy to T2cg.

Proof. As in the proof of Lemma 3.28, the element 72cg detects (n, v, 7%%)v, which equals
n{v, 7%, v). Therefore, 72cg is the target of a hidden 7 extension. There are two possible
sources for such an extension: TAhR$ and 2Ahy. The former possibility is ruled out by

Lemma 3.14, which shows that 7Ah? is the target of a hidden 2 extension. O

Proposition 3.30.

(1) (49,1,25) do(A%hq) = Theg?.

(2) (73,1,37) do(A3hy) = T*Acg?.

(3) (97,1,49) A*hy is a permanent cycle.
(4) (121,1,61) dg(A5hy) = 0.

(5) (145,1,73) dg(AChy) = T4 A%cg?.

(6) (169,1,85) do(ATh1) = T4A%cq?.

Proof. It follows from Lemma 3.29 that there is a hidden 71 extension from 2Ahog to
72¢g?. Proposition 3.9 and the Leibniz rule imply that ds(A2) = 272Ahyg. Therefore,
74cg? must be hit by some differential, and there is only one possibility.

Having established the first differential, we can compute that

dg(A‘gh%) = Ahl . dg(Ath) = T4Ah1092.

Since A%h2 = A3h; - hy, it follows that dg(A3hy) equals T7*Acg?.

The possible values for a differential on A*h; are 73A3h}g and 7#A2cg?. The former
is already known to be hit by an earlier dsz differential, and the latter is already known
to support a dg differential by Proposition 3.19.

The only possible non-zero value for dg(A®h;) is 7#A3cg?, but this is ruled out by the
observation that 7#A3cg? supports a dg differential by Proposition 3.25.

Next,

do(ATh3) = AShy - do(A%hy) = T AShycg?,

from which it follows that dg(A"h;) equals 72 A%cg?.
Finally, note that do(A"h?) = Ahy - dg(A®hy). The value of do(A7h?) was computed
in the previous paragraph. It follows that dg(A°h;) equals 7¢A%cg?. O
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Proposition 3.31.

(1) do(A%c) = 0.
(2) do(ASc) = 0.

Proof. It follows from Proposition 3.30 that 7*A%cg? and 72A%cg? are targets of dyg
differentials, so they cannot support dg differentials. This implies that A%c and A°c
cannot support dg differentials. 0O

The Leibniz rule, together with the differentials given in Propositions 3.25, 3.26, 3.30,
and 3.31, determines all dg differentials.

3.6. dyi1 differentials

Lemma 3.32. (14,2,8) There is a hidden € extension from d to Th3g.

Proof. We will show that there is a hidden e extension from hid to Thig. The desired
extension follows immediately.

The relation hic = hj in the mANss Es-page implies that ne equals v3. Also, the
relation h3d = 4g implies that 12k = 4%. Then

nek = v’k = 4R = ™°F.

The last equality uses the hidden 2 extension from 2hy to Th$, as shown in Lemma 3.12. O
Lemma 3.33. (39,3,21) There is a hidden v extension from Ahid to T3h3g>.

Proof. The element Ah;id detects the product 7; - k. Lemma 3.28 implies that v -n; - &
equals 72ex®. Lemma 3.32 implies that this last product equals 731?%2, which is detected
by 73h3¢%. O

Proposition 3.34.

(1) (62,2,32) di1(A%d) = 7°hy1g>.
(2) (158,2,80) dq1(A%d) = T°A%hyg3.

Proof. The element 7°h2g® detects 7°1%%>. Lemma 3.33 implies that 7°1%&> equals 72vR-
N1 - K. Because of Proposition 3.9, we know that 72vE is zero. Therefore, 7°h3g® is hit
by some differential. The only possibility is that di;(A2hid) = 75h3g3. Tt follows that
i (A2d) = T0h, gP.

For the second formula, multiply by the permanent cycle A*h; to see that dy (AShid)
equals T9A*h2g3. Tt follows that dq;(A%d) equals T°A*h g%, O
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3.7. di3 differentials

We have already established some dy3 differentials in Propositions 3.17 and 3.23 be-
cause we needed those results in order to compute shorter differentials. We now finish
the computation of the dy3 differentials.

Lemma 3.35. (110,2,56) The element A*d of the mANss for mmf corresponds to the
element of the same name in the mAss for mmf.

Proof. We have already analyzed all possible Adams-Novikov differentials of length 11
or less, and there are no other possible values for a differential on A*d. Therefore, A*d
is a permanent cycle in the mANss for mmf.

Now the argument given in the proof of Theorem 3.5 applies. The mANss element A%d
is detected in filtration 20 in the Adams Fs-page for mmf /7. Therefore, A*d corresponds
to an element of the mAss with Adams filtration at most 20. There is only one possible
element in the mAss with sufficiently low filtration. O

Lemma 3.36.

(1) (39,3,21) There is a hidden n extension from Ahyd to 272g>.
(2) (135,3,69) There is a hidden n extension from APhid to 272 A%g2.

Proof. Table 4 shows that the elements Ahq and d in the mANss for mmf correspond to
elements of the same name in the mAss for mmf. The product Ahq -h1d is non-zero in the
mAss FEs-page and also in the mAss F,-page because there are no possible differentials
that could hit it. (Note that this product is non-zero in the motivic context, but the
corresponding classical product is zero in the Fs-page of the Adams spectral sequence
for tmf.)

Therefore, Ah;d must support a hidden 7 extension in the mANss for mmf. There
are three possible targets for this extension: 72¢2, 272¢2, and 372g%. The first and last
possibilities are ruled out by the relation 2n = 0.

The argument for the second extension is nearly identical. Table 4 and Proposition 2.8
imply that the mANss element A®h;d corresponds to the mAss element A*-Ah; -d. The
product A*-Ah; -hid is non-zero in the mAss E..-page, so A°h;d must support a hidden
n extension in the mANss. The only possible target for this extension is 272A%g%. O

Proposition 3.37.

(1) (81, 3,42) dlg(A?’hlc) = 27'694.
(2) (177,3,90) d13(A7h10) = 2T6A4g4.
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Proof. Lemma 3.36 implies that there is a hidden 7 extension from Ah;dg® to 272g*.
Proposition 3.25 shows that 74 Ah;dg? is hit by a differential. Therefore, 27%¢* must also
be hit by a differential. There is only one possible source for this differential.

The proof for the second formula is similar. There is a hidden 7 extension from
AShidg? to 272A%¢*. Since T7*APh dg? is hit by a differential, 276A%g* must also be
hit by a differential. 0O

3.8. dog differentials
Lemma 3.38. (75,3, 38) There is a hidden n; extension from TA3h3 to 79g5.

Proof. According to Table 4, the mANss elements Ah; and g correspond to elements of
the same name in the mAss. In the mAss Fs-page, the relations given in [23, Theorem
4.13] imply that 7(Ahy)* = 79¢5. Therefore, in the mANss, 79¢° detects the product
7nf. On the other hand, 7A3h3$ detects the product 773 in the mANss. O

Remark 3.39. (75,3,39) Beware that A3h$ does not support a hidden 7; extension.
Rather, it supports a non-hidden extension since A*h} is non-zero. However, A*h{ is
annihilated by 7, which allows for the hidden extension on TA3h3.

One might be tempted by Lemma 3.38 to assume that there is a hidden 7 extension
from A*h} to 79¢°, but this is not correct. Because of the presence of 78¢° in higher
filtration, the element A*h} detects two elements in homotopy. One of those elements is
ni, and the other is annihilated by 7. See also Remark 4.3 for a similar phenomenon.

Proposition 3.40. (121,1,61) do3(A°hy) = 71gE.

Proof. The hidden extension of Lemma 3.38 implies that there is a hidden 7; extension
from TA3h3g to 7°g%. We already know that 73A3h3g is zero because of the differential
d7(A%) from Proposition 3.22. Therefore, 711¢® must be the value of some differential,
and there is only one possibility. O

4. Hidden extensions

In Section 3, we established several hidden extensions in the mANss for mmf as
steps towards computing differentials. In this section, we finish the analysis of all hidden
extensions by 2, n, and v. Our work does not completely determine the ring structure
of m, .mmf because there exist hidden extensions by other elements. Up to one minor
uncertainty, the entire ring structure of m.tmf is determined in [9].

Theorem 4.1. Up to multiples of g and A8, Tables 7, 8 and 9 list all hidden extensions
by 2, n, and v in the mANss for mmf.
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Table 5

Some hidden extensions deduced from Method 2.17.
s w source type target reason
(s, f,w) yp g
(51,1, 26) 2A%hy 2 TA%R3 d5(2A3) =272A%hyyg d7(4A%) = 3 A%R3g
(54,2,28) A% 2 T4dg? ds(A%hs) = 72A%h3g  d13(2A%hs) = 78dg®
(99,1, 50) 2A%hy 2 TAYRS ds(2A°) = 272 A%hag d7(4A%) = T3 A%R3g
(123,1,62) 2A%h, 2 TASRHY ds(A%) = 272 Ahayg d7(2A%) = 3 A°hig
(147,1,74)  2A%h, 2 TASHS ds(2A7) = 272AShyg  d7(4A7) = T2 ASK3yg
(51,1, 26) Azhz n TZAscg 5(Af) = TzAihzg dg(A35h1) = T4ﬁ(;%2
(99, 1, 50) A%hy n 79 ds(A°) = 72 A%hag das(A°hy) =71""g
(123,1,62) 2A%h, n 2A%cg ds(A%) = 272 A%hayg do(AShy) = 74 Acg?
(124,6,63) 72A%cg 7 TiAhlgs4 dg(A‘;hl) = I4A4392 dgs(Ajhf) =71 Ahy g8
(129,3,66)  AShic n T Afhfg do(A"h)=1*A%hicg®  d23(A"hY) = T AR g0
(147,1,74)  A%hs n T?Ajcg ds (A7) = 72 AC%hag do(A"hy) = 7495592
(161,3,82) AShad  q T3APR2g?  ds(ATd) = 72A%hadg  di1(AThid)=T°APhIg®
(0,0,0) 4 v Th? ds(Ahsyd) = 472 g2 d7(4Ag) = m3h3g?
E4s,o,24; 4Az v T4A22§ d5(A3§L2 ) = ;LTZA? 2 d7(z(1A3g) :) T3A:h292
51,1,26 2A hz v T dg d5(2A )_ 27°A hgg d13 2A h2 =T dg
(57,3, 30) A%R3 v 27493 ds(A%h3) = T2 A%h3g di3(A3h3) = 275¢%
(96, 0, 48) an? v TAYhS d5(A5h2d) =472A%%  d7(4APg) = T3 ATR3 g2
(144,0,72) 4AS v TASKS ds(A"hod) = 472 ASg e d7(4A7g) = T3A6h§gz
(147,1,74)  2A%h, v T4 A%dg? ds(2A7) = 27-2A6h2g d13(2A7hy) = 76A%dg®
(153,3,78)  AShS v 274 At g3 ds(ATh3) = T2 A%h3g di3(ATh3) = 275A%g?

Proof. Some of the non-zero hidden extensions are established in the previous results
because we needed them to compute Adams-Novikov differentials. The remaining non-
zero hidden extensions are proved in the following results. The last columns of the tables
indicate the specific proofs for each extension.

There are some possible hidden extensions that turn out not to occur. Most of these
possibilities can be ruled out using Method 2.17. For example, consider the possible
hidden 7 extension from T7Ah? to 72cg. Because of multiplication by 7¢g, we may instead
consider the possible hidden 7 extension from 72Ah3g to 73cg?. These last two elements
are annihilated by 7, so they are in the image of projection to the top cell. By inspection,
there is no n extension in the homotopy of mmf /7 in the appropriate degree.

A few miscellaneous cases remain, but their proofs are straightforward. For example,

« (65,3,34) there is no hidden 2 extension from A2had to 73Ah;g? because the latter
element supports an h; extension.

e (24,0,12) there is no hidden v extension from 8A to TAh$ because the first element
is annihilated by ¢g while the second element is not. O

Proposition 4.2. Table 5 lists some hidden extensions in the mANss for mmf.

Proof. All of these extensions follow from Method 2.17, using the differentials in the last
two columns of Table 5. To illustrate, we discuss the first extension in the table. In order
to obtain the extension from 2AZ%hy to TAZh3, we can establish a hidden 2 extension
from 27A%hsg to 72A%h3g. Then the desired extension follows immediately.

The elements 27A%hyg and 72A2%h3g are annihilated by 7 in the E..-page of the

mANSss for mmf. Therefore, they detect elements in 771 37mmf that are in the image of
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T72.36mmf /T under projection to the top cell. By inspection, these preimages are 2A3
and 4A3. These latter elements are connected by a 2 extension, so their images are also
connected by a 2 extension.

The other extensions have essentially the same proof. First multiply by an appropriate
power of g. Then pull back to . .mmf /T, where the extension is visible by inspection. O

Remark 4.3. (124,6,63) The hidden 7 extension from 72A%cg to 7°Ah1g® in Table 5
deserves further discussion. Note that Acg and 7A%*cg support 7 extensions that are
not hidden. However, 72A%h;cg is zero, so 72A%cg can support a hidden 7 extension.
This explains why the E..-page chart in Fig. 5 shows both an h; extension and a hidden
71 extension on the element A%cg in the 124-stem.

The subtleties of this situation are illuminated by consideration of homotopy elements.
Let a be an element of 7124 65 mmf that is detected by A%cg. The element 72« is detected
by 72A%cg. The hidden 7 extension implies that 725« is detected by 79Ah;g°.

Now let 3 be an element in 72264 that is detected by A*h3g. Note that 723 must
be zero because 72A%h3g is zero and because there are no E..-page elements in higher
filtration. Then v is detected by hy - A*h3g, which equals A*h;cg.

Both na and vf3 are detected by the same element of the F.-page, but they are not
equal. The first product is not annihilated by 72, while the latter product is annihilated by
72, In fact, the difference between na and vf is detected by 77 Ah;g®. This phenomenon

2

corresponds to the classical relation v“vy = neq + 771E4 [9, Proposition 9.17].

Remark 4.4. (65,3, 34) The chart in [2] shows a hidden 7 extension from A2hyd to Ah3g?
in the 66-stem. According to Definition 2.16, this is not a hidden extension because of
the presence of Ah;g? in higher filtration.

Nevertheless, there is a relevant point here about multiplicative structure. Because of
the presence of 72Ahyg? in higher filtration, the element A?hod detects two homotopy
elements. One of these elements is annihilated by 7, and one is not. The product vk
is one of the two homotopy elements that are detected by A2hod. In fact, vok is the
homotopy element that is not annihilated by 7. This follows from the hidden 7 extension
from A%hy to 72Acg and the hidden  extension from Acg to TARZg? (see Lemma 3.32).

Proposition 4.5. (110,2,56) There is a hidden 2 extension from A*d to T6A%h2g3.

Proof. The proof is a variation on Method 2.17, in which we use the long exact sequence
T wommf —— T ommf /T2 —— Tu1 orommf ., Ti—1,«mmf
induced by the cofiber sequence
mmf —— mmf/7? —— XL 2Zmmf -, H0mmf.

We will show that there is a hidden 2 extension from 7*A%dg? to 719A2h2¢%. The
desired 2 extension follows immediately by multiplication by 74g3.
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Recall from Proposition 3.23 that there is a differential dy3(2A7hy) = 76A%dg3. Also,
it follows from Proposition 3.40 that there is a differential daz(A7h3) = 71LAZR3g5.

Therefore, 7*Atdg® and 710 A2h2 g5 detect elements in 179 ssmmf that are annihilated
by 72. Hence they have preimages in w171 ggmmf /72 under projection to the top cell. By
inspection, these preimages are 2A"hy and TATh3.

In the mANss for mmf, there is a differential d5(A7) = 72A%h,g. However, in the
mANSss for mmf /72, the element 72AShyg is already zero in the Fy-page. Therefore, A7
is a permanent cycle in the mANss for mmf /72.

Recall the hidden 2 extension from 2hy to 7h$ established in Lemma 3.12. Multiplica-
tion by A7 gives a hidden 2 extension in the mANss E..-page for mmf /72 from 2A7hs
to TATh3.

Finally, apply projection to the top cell to obtain the hidden 2 extension from 7#A*dg3
to 719A2R24%. O

Proposition 4.6. (50,2,26) There is a hidden v extension from A?h3 to T2Ahycg.

Proof. This follows from Ah; multiplication on the hidden extension from Ah; to 72cg
established in Lemma 3.28. O

The next several lemmas establish some Toda brackets that we will use to deduce
further hidden extensions. All of these Toda brackets are deduced from algebraic infor-
mation, i.e., from Massey products in the mANss Fs-page.

Lemma 4.7. (32,2,17) The Toda bracket (v*,2,n,) is detected by Ac and has no inde-
terminacy.

Proof. We have the Massey product ¢ = (h3, ho, h1) in the motivic algebraic Novikov Es-
page [1]. The May convergence theorem [29] [6, Theorem 4.16] implies that ¢ = (h3,2, h1)
in the mANss Fs-page. Multiply by A to obtain

Ac = (h3,2,h1)A = (h3,2, Ahy).

The second equality holds because there is no indeterminacy by inspection.

There are no crossing differentials, so the Moss convergence theorem [31, Theorem 1.2]
[6, Theorem 4.16] implies that Ac detects the Toda bracket. By inspection, the bracket
has no indeterminacy. O

Lemma 4.8. (128,2,65) The Toda bracket <V22,2,’I71> is detected by ASc and has no in-
determinacy.

Proof. As in the proof of Lemma 4.7, we have the Massey product ¢ = (h3,2, h1) in the
mANss E,-page. Multiply by A® to obtain

APc = A*(h3,2,h)A = (A*h2,2, Ahy).
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The second equality holds because there is no indeterminacy by inspection.

There are no crossing differentials, so the Moss convergence theorem [31, Theorem
1.2] [6, Theorem 4.16] implies that A°c detects the Toda bracket. By inspection, the
bracket has no indeterminacy. 0O

Lemma 4.9. (35,7,21) The Toda bracket (1?2, €k) is detected by hidg and has no inde-
terminacy.

Proof. We have the Massey product hidg = (h3, ho, cg) in the motivic algebraic Novikov
Es-page [1]. The May convergence theorem [29] [6, Theorem 4.16] implies that hidg =
(h3,2,cg) in the mANss Es-page.

There are no crossing differentials, so the Moss convergence theorem [31, Theorem
1.2] [6, Theorem 4.16] implies that hidg detects the Toda bracket. By inspection, the
bracket has no indeterminacy. O

Lemma 4.10. (131,7,69) The Toda bracket <u§, 2, 6R> is detected by A*hidg and has no
indeterminacy.

Proof. As in the proof of Lemma 4.9, we have the Massey product hydg = (h3,2, cg) in
the mANss Fs-page. Multiply by A* to obtain

A'hidg = AY(h3, ho, cg) = (A*h2, ho, cg).

The second equality holds because there is no indeterminacy by inspection.

There are no crossing differentials, so the Moss convergence theorem [31, Theorem
1.2] [6, Theorem 4.16] implies that A*h;dg detects the Toda bracket. By inspection, the
bracket has no indeterminacy. 0O

Proposition 4.11. There are hidden v extensions:

(1) (32,2,17) from Ac to 72hy1dg.
(2) (128,2,65) from A®c to T2A*hdg.

Proof. Recall from Lemma 4.7 that the Toda bracket (v2,2,7;) is detected by Ac. We
have

<I/2,2,T]1>l/ = <V2727V ' 771> = <V27277'2€F"’>'

The first equality holds because there is no indeterminacy by inspection. The second
equality follows from the hidden v extension of Lemma 3.28. Lemma 4.9 implies that
72h1dg detects the last Toda bracket.

The proof for the second hidden extension is nearly identical. Consider the equalities

W3, 2,m)v = (V3,2,v-m) = (V3,2, T%R),
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and use Lemma 4.8 and Lemma 4.10. O

Proposition 4.12. There are hidden v extensions:

(1) (97,1,49) from A*hy to 79¢°.
(2) (122,2,62) from A°h? to T9Ahyg.
(3) (147,3,75) from ASh3 to T9A%R2g5.

Proof. We prove the third hidden extension. Then the first two hidden extensions follow
from multiplication by Ah;.

Proposition 4.5 and Lemma 3.24 imply that there is a hidden 4v extension from
AShy to T19A%h2g5. We also have a hidden 2 extension from 2A%hs to 7ASh3, as shown
in Proposition 4.2. It follows that there must be a hidden v extension from A®h$ to

IAN2p2 5
T A*hig°. O

Proposition 4.13. (110,2,56) There is a hidden € extension from A*d to TA*h3g.

Proof. We showed in Lemma 3.32 that there is a hidden e extension from d to Th?g.
Multiply by A*h; to obtain a hidden € extension from A*h;d to TA*h2g. Finally, use h;
multiplication to obtain the hidden extension on A*d. O

Proposition 4.14. (135,3,69) There is a hidden v extension from A°hyd to T2A*h3g2.

Proof. By Lemma 3.27, the element Ah; detects the Toda bracket (n,v,72k). Recall
from Table 3 that x4 is an element of m11056mmf that is detected by the permanent
cycle A*d. Then the element A°hyd detects (n, v, 72k) k4. Now shuffle to obtain

V<nv v, T2E>K4 = <V7 m, V>T2E cRqg.
Recall from Lemma 2.20 that € = (v,n,v). Also recall from Proposition 4.13 that there
is a hidden ¢ extension from A*d to TA*h?g. We conclude that e - 72 - k4 is detected by
PAY?. O

5. The elements vy

The multiplicative structure of classical m,tmf at the prime 2 has been completely
computed, with one exception [9, p. 19]. We will use the mANss for mmf in order to
resolve this last piece of 2-primary multiplicative structure.

As discussed in Remark 2.11, our choices of homotopy elements are not necessarily
strictly compatible with the choices in [9]. However, our choices do agree up to multi-
ples of certain powers of 2. Our computations below in Proposition 5.9, Theorem 5.10,
Corollary 5.12, Proposition 5.13, and Proposition 5.15 lie in groups of order at most 8,
so the possible discrepancies are irrelevant.
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We will frequently multiply by the element 7% in w29 11 mmf in order to detect elements
and relations. Beware that multiplication by 7% is not injective in general. However, in all
degrees that we study, inspection of the Adams-Novikov chart shows that multiplication
by 7K is in fact an isomorphism.

Recall the projection ¢ : mmf /7 — mmf to the top cell that was discussed in detail in
Section 2.9. We will rely heavily on this map in order to transfer the algebraic information
in 7, mmf /7T into homotopical information about 7. ,mmf.

Lemma 5.1. The element q(A**1) of 7. .mmf is detected by —(k+1)7AFhag in Adams-
Nowikov filtration 5.

Proof. If k + 1 is not a multiple of 4, then we have the non-zero differential ds(A* 1) =
(k +1)72AFhyg. Proposition 2.14 implies that ¢(A**1) is detected by —(k + 1)7AFhag.
If k+1 is congruent to 4 modulo 8, then we have the non-zero differential d7(A* 1) =
3AFh3g. Proposition 2.14 implies that ¢(A**1) is detected by 72AFh3g in filtration 7.
This implies that ¢(A¥*1) is detected by zero in filtration 5.
If £+ 1 is a multiple of 8, then A**! is a permanent cycle, so q(A**1) equals zero.
This implies that ¢(A¥*1) is detected by zero in filtration 5. O

Remark 5.2. For uniformity, we have stated Lemma 5.1 for all values of k. As shown in
the proof of the lemma, there are in fact three cases, depending on the value of k. If
k + 1 is not a multiple of 4, then —(k + 1)7AFhyg is a non-zero element in the mANss
E-page.

On the other hand, if k£ + 1 is a multiple of 4, then —(k +1)7A*hag is zero in the Eo-
page since TAFhyg is an element of order 4. In these cases, the lemma says that g(A**1)
is detected by zero in filtration 5. In other words, g(A**1) is detected in filtration strictly
greater than 5, if it is non-zero. In fact, ¢(AF+1) is detected by 72A*h3g in filtration 7
when k + 1 is congruent to 4 modulo 8. Also, g(A*+1) is zero when k + 1 is a multiple
of 8 because A**! is a permanent cycle.

Lemma 5.3. The element q(A*T1) is a multiple of TR.

Proof. Lemma 5.1 shows that q(AF+1) is detected by —(k 4+ 1)7AFhyg. By inspection,
all possible values of g(A*+1) are multiples of 7%. O

Definition 5.4. Let v, be the element of mask312k+2mmf such that q(AkH) equals
—TR * V.

Note that vy, exists because of Lemma 5.3. By inspection of the Adams-Novikov chart,
multiplication by 7% is an isomorphism in the relevant degrees, so vy, is specified uniquely.
We choose a minus sign in the defining formula of Definition 5.4 for later convenience.
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Remark 5.5. Bruner and Rognes consider v3 and v7 to be “honorary” members of the
family of elements vj,. They are not multiplicative generators; v3 is non-zero but decom-
posable, and v7 equals zero. Definition 5.4 also implies that v is zero. This follows from
the observation that ¢(A®) equals zero since A® is a permanent cycle.

The careful reader will note that the elements vy were already partially defined in
Table 3 in Section 2.6. The following lemma shows that the two approaches to v are
compatible. Table 3 leaves some ambiguity in the definition of vy, and Definition 5.4

resolves that ambiguity.
Lemma 5.6. The element vy, is detected by (k + 1)AFhy in Adams-Novikov filtration 1.

Proof. Lemma 5.1 determines the mANss E..-page elements that detect g(A*+1). Then
Definition 5.4 means that —7% - v, is detected by those same elements. By inspection
of the Adams-Novikov chart, multiplication by 7¢ is an isomorphism in the relevant
degrees, so the detecting elements for vy are then determined. O

Remark 5.7. Similarly to Remark 5.2, Lemma 5.6 includes three cases. If £+ 1 is not a
multiple of 4, then (k 4+ 1)AFhs is a non-zero element of the mANss E.-page. If k + 1
is a multiple of 4, then (k + 1)AFhy is zero since A*hy is an element of order 4. This
means that vy is detected in filtration strictly greater than 1, if it is non-zero. In fact, vy
is detected by TA¥h? in filtration 3 if k + 1 is congruent to 4 modulo 8, and v, is zero if
k + 1 is a multiple of 8.

Remark 5.8. Earlier in Remark 2.2, we chose hs so that it detects the element wv.
Lemma 5.6 shows that 1 is also detected by ho, but that does not guarantee that
it equals v because of the presence of 7h$ in higher filtration. We can only conclude that
v and vy are equal up to multiples of 4.

If v equals 51, then we compute that

q(bA) = —=57FK - vg = —TR - 1.

So we may replace A by 5A, if necessary, and assume without loss of generality that vy
equals v. This replacement is compatible with our previous choice of A in Remark 3.10,
which specified A only up to multiples of 4.

Proposition 5.9. vy s = vy - M.
Proof. Using Equation (2.13), we have
g(AMFO) = g(AMTE AF) = g(AM (M) = (AN M = —7R vy, - M.

Here we are using that i(M) = A3 which is equivalent to the definition that M is
detected by A® (see Table 3).
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On the other hand, g(A**?) equals —7%-vy g by Definition 5.4. Finally, multiplication
by —7K is an isomorphism in the relevant degrees by inspection of the Adams-Novikov
chart. O

Proposition 5.9 means that for practical purposes, we only need to consider the ele-
ments v, for 0 < k < 7.

Theorem 5.10.
vivg = (k+ 1)v1r10.

Proof. The proof splits into two cases, depending on whether k£ 4 1 is a multiple of 4.

First, we handle the (more interesting) situation when k + 1 is not a multiple of 4. We

address the case when k + 1 is a multiple of 4 below in a separate Proposition 5.13. The

proof techniques for the two cases are similar, but the details are somewhat different.
Multiplication by 7% is an isomorphism in the relevant degrees by inspection of the

Adams-Novikov chart, so it suffices to establish our relation after multiplication by 7%.
Using Equation (2.13), we have

q((k + AT hy) = g(ATHEFL - (B + 1)h) = (A7 i((k + 1wo)) =
= q(ATTFYY (k+ Vg = —7F - vjpr - (k+ D,

Here we are using that i((k + 1)vg) = (k + 1)ho; in other words, (k + 1) is detected
by (k 4 1)ha. This requires that k£ + 1 is not a multiple of 4. Otherwise, (k + 1)vp is a
multiple of 7, and i((k + 1)vp) is zero.

We will now compute q((k+1)AJ+5+1hy) another way. We have i(vy,) = (k-+1)AFhy; in
other words, v, is detected by the non-zero element (k+1)AFhy, as shown in Lemma 5.6.
This requires that k + 1 is not a multiple of 4. Otherwise, vy, is a multiple of 7, and i(vy)
is zero.

Then we have

q((k+1)Aj+k+1h2) = q(AjH-(k—i—l)Akhg) = q(Aj'H-i(l/k)) = q(AjH)q/k = —TR-Vj V.

Remark 5.11. The exact form of the equation in Theorem 5.10 is guided by the structure
of our proof. One could also write

vivy = (i + viy;,

which more closely aligns with the notation in [9]. All of the elements vy are in odd
stems, so they pairwise anti-commute.

Corollary 5.12. (246,2,124) v4vg = veM.
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Proof. Theorem 5.10 implies that 416 equals Tvigrg, which equals —7rgrg by graded
commutativity. By Remark 5.8 and Proposition 5.9, the latter expression equals
—T7vvo M. Finally, vvs M belongs to a group of order 4, so —7Tvvs M equals vio M. O

We now return to the case of Theorem 5.10 in which k£ + 1 is a multiple of 4.
Proposition 5.13. If k + 1 is a multiple of 4, then v; - vy, = (k+ 1)vj1x1p.

Proof. First, let k£ + 1 be a multiple of 8, so v, is zero. The element v; ;v belongs to a
group whose order divides 8, so (k + 1)v;4x0 is zero. In other words, the equality holds
because both sides are zero.

Next, let k + 1 be congruent to 4 modulo 8. Let o be an element of m, ,mmf that is
detected by A*h3. The element vy, is detected by TA*h3, according to Remark 5.7. Since
there are no elements in higher filtration, we can conclude that v equals 7. We have

q(ATTRHIRS) = g(ATTL. ARRS) = (AT 1i(a)) = (A7) - a = —TR-vj-a = —R v - 1.

Now we add the assumption that j + 1 is not congruent to 4 modulo 8. Given the
assumption that k£ + 1 is congruent to 4 modulo 8, we get that j 4+ k+ 1 is not congruent
to 7 modulo 8. Then AJ*¥+1h3 is a permanent cycle, so q(AJT*+1h3) is zero. Together
with the computation in the previous paragraph, this implies that v; - v is zero since
multiplication by ¥ is an isomorphism in the relevant degrees by inspection of the Adams-
Novikov chart. Note also that (k + 1)v; 4,1y is zero because it belongs to a group whose
order divides 4.

Finally, we must consider the case when j + 1 is congruent to 4 modulo 8, i.e., that
j + k+11is congruent to 7 modulo 8. Then g(A7+*+1h3) is detected by 710 AT+HE=4p246
because of Proposition 2.14 and the differential doz(AJT*+1A3) = 7L AITE=4p246 This
means that —% - v; - vy, is detected by TIOAITFE=4p246 Tt follows that v; - vy is detected
by 70ATtF=4h245 Finally, this latter element also detects (k -+ 1)v; ko because of the
hidden 2 extensions in the 150-stem and their multiples under A% multiplication (see
Table 7). O

Remark 5.14. As shown in the proof, most cases of Proposition 5.13 hold because both
sides of the equation are zero. Both sides of the equation are non-zero precisely when
7+ 1 and k£ + 1 are congruent to 4 modulo 8.

Bruner and Rognes establish some relations that reduce the ambiguity in their def-
initions of vg. Finally, we will show that our elements defined in Definition 5.4 satisfy
those same relations. We have already discussed the choice of 1y in Remark 5.8. The
only additional requirements are the relations

VOD4 = 2V4

Vs = 2V
5 0V6
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VolVy = 3V01/6.

The first formula is proved in Proposition 5.15, while the last two are specific instances
of Theorem 5.10.

Proposition 5.15. (99, 1,50) vy Dy = 2vy4.

Proof. Because of Lemma 5.6, both products are detected by 2A*h,. However, they
are not necessarily equal because of the presence of TA*h$ in higher filtration. We will
show that 7% - vDy equals 7% - 2v4. Our desired relation follows immediately because
multiplication by 7% is an isomorphism in the relevant degree by inspection of the Adams-
Novikov chart.

Using Equation (2.13), we have

g(2A%) = g(A - 2A%) = g(A - i(Dy)) = g(A) - Dy = —7% - v+ Dy,

Here we are using that i(D,) = 2A%, which is equivalent to the definition that Dy is
detected by 2A* (see Table 3). On the other hand, we also have

q(2A%) = q(A® - 2) = q(A° - i(2)) = q(A®) -2 = TR -vy-2. O

6. Tables
Table 6
Adams-Novikov differentials.
(s, f,w) T r d(zx) proof
(5,1,3) hivi 3 Thi Proposition 3.2
(12,0, 6) 4a 3 TPh3 Proposition 3.3
, 0, T%hag roposition 3.¢
24,0,12 A 5 2h P ition 3.9
, 0, T g roposition 3.15
24,0,12 4A 7 3h3 P ition 3.15
> U, T roposition 3.15
48,0,24 242 7 3AR3g P ition 3.15
(96,0,48) At 7 T3A%h3g Proposition 3.22
(49,1, 25) A%hy 9 Theg Proposition 3.30
(56,2,29) A?c 9 74h1dg? Proposition 3.19
(73,1,37) A3hy 9 T Acg? Proposition 3.30
(80, 2,41) Adc 9 T4 Ah1dg? Proposition 3.25
, 1, 1 T cg roposition 3.:
145,1,73 ASh 9 tAtcg? P ition 3.30
s 4y 1 T cg roposition 3.
169, 1,85 A"h 9 A5 cg? P ition 3.30
(152,2,77) ASc 9 74 A*h1dg?  Proposition 3.26
(176,2,89) A'c 9 7*A%h1dg?  Proposition 3.25
(62,2,32) A%d 11 7°hig® Proposition 3.34
(158,2,80) ASd 11 7°A%h, g8 Proposition 3.34
(75,1, 38) 2A%hy 13 78dg? Proposition 3.17
(81, 3,42) A3hie 13 27%g% Proposition 3.37
(171,1,86) 2A7hs 13 75A%dg® Proposition 3.23
(177,3,90)  AThic 13 27%A%g* Proposition 3.37

(121,1,61)  ASh,y 23 iyl Proposition 3.40
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Table 7
Hidden 2 extensions.
(s, f,w) source  target proof
(3,1,2) 2ho Th? Lemma 3.12
(27,1, 14) 2Ahs TARS Lemma 3.14
(51,1, 26) 2A%hy  TAZRS Proposition 4.2
(54,2, 28) A%hZ T4dg? Example 2.18
(99,1, 50) 2A%hy  TAYRS Proposition 4.2
(110,2,56) A*d T6A%h2g®  Proposition 4.5
(123,1,62)  2A5hy A°h3 Proposition 4.2
(147,1,74)  2ASh,  TASRY Proposition 4.2
(150,2,76)  AShZ Tt Atdg? Proposition 4.2
Table 8
Hidden 7 extensions.
(s, f,w) source target proof
(27,1,14) 2Ahs T2eg Lemma 3.29
(39,3,21) Ahid 27242 Lemma 3.36
(51,1, 26) A2hy 72 Acg Proposition 4.2
(99,1, 50) A*hy 79g° Proposition 4.2
(123,1,62) 2A°hs 2 Atcg Proposition 4.2
(124,6,63) 12A%cg 79Ahyg° Proposition 4.2
(129,3,66) APhjc 77A%h%g*  Proposition 4.2
(135,3,69) A°hid 272A%g Proposition 4.2
(147,1,74)  AShy 72 A%¢qg Proposition 4.2
(161,3,82) AShad 73A%h?g%®  Proposition 4.2
Table 9
Hidden v extensions.
(s, f,w) source target proof
(0,0,0) 4 Th3 Proposition 4.2
(25,1,13) Ahy 2cg Lemma 3.28
(32,2,17) Ac 72hydyg Proposition 4.11
(39, 3,21) Ahyd T3h3g? Lemma 3.33
(48,0, 24) 4N? TAZRS Proposition 4.2
(50,2, 26) A%p? 72Ahicg Proposition 4.6
(51,1, 26) 2A%hy  T1dg? Proposition 4.2
(57,3, 30) AZhS 2743 Proposition 4.2
(96,0, 48) 4N+ TAYR3 Proposition 4.2
(97,1, 49) Ahy 9g° Proposition 4.12
(122,2,62) A°h? 72 Ahig° Proposition 4.12
(128,2,65) ASc 72A*h1dg  Proposition 4.11
(135,3,69) AShid 13A*h%2g®>  Proposition 4.14
(144,0,72)  4AS TASKS Proposition 4.2
(147,1,74) 2AShy  12A%dg? Proposition 4.2
(147,3,75)  ASh3 79A%2h2¢%  Proposition 4.12
(153,3,78)  ASh3 274 A% g3 Proposition 4.2
Table 10
Some Toda brackets.
(s, f,w) Toda bracket  detected by indet  proof used in
(8,2,5) (v,m,v) c 0 Lemma 2.20  3.28, 4.14
(25,1,13) (n, v, T°F) Ahy P3h;  Lemma 3.27  3.28, 3.29, 4.14
(32,2,17) (v2,2,m1) Ac 0 Lemma 4.7 4.11
(128,2,65)  (v2,2,m1) Abc 0 Lemma, 4.8 4.11
(35,7,21) (V?,2, €R) hidg 0 Lemma 4.9 4.11
(131,7,69)  (v3,2,€R) A*hidg 0 Lemma 4.10  4.11
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7. Charts

The following charts display the Es-page, Eg-page, and F..-page of the mANss for
mmf. Each of these pages is free as a module over Z[A®], where A® is a class in the
192-stem. For legibility, we display the vi-periodic elements on separate charts. See Sec-
tion 2.7 for discussion of vi-periodicity. To obtain the full Fs-page, one must superimpose
Figs. 1 and 3. To obtain the full E,.-page, one must superimpose Figs. 2 and 5.

We describe each chart in slightly more detail.

e Fig. 1 shows the vi-periodic portion of the mANss Fs-page, together with all differ-
entials that are supported by the displayed elements.

e Fig. 2 shows the v;-periodic portion of the mANss E,,-page.

e Fig. 3 shows the non-v;-periodic portion of the mANss Fs-page, together with all
ds, ds, and d7 differentials that are supported by the displayed elements.

e Fig. 4 shows the non-vi-periodic portion of the mANss Ey-page, together with all
differentials that are supported by the displayed elements.

e Fig. 5 shows the non-v;-periodic portion of the mANss E..-page, together with all
hidden extensions by 2, n, and v.

AT A AA A AAAAAA

Fig. 1. The v;-periodic portion of the C-motivic Adams-Novikov Es-page for mmf.

AN AT S AL . P 2.

Fig. 2. The v;-periodic portion of the C-motivic Adams-Novikov E.-page for mmf.

Fig. 3. The C-motivic Adams-Novikov FEs-page for mmf with differentials of length at most 7.
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Fig. 5. The C-motivic Adams-Novikov E..-page for mmf with hidden extensions by 2, 1, and v.

7.1. Elements

For each fixed stem and filtration, the mANSss consists of a Z[r]-module. We use a
graphical notation to describe these modules. Our notation represents the associated
graded object of a filtration that is related to the powers of 2.

e An open box [ indicates a copy of Z[7] in the associated graded object.

o A solid gray dot e indicates a copy of Fa[7] in the associated graded object.

e A solid colored dot indicates a copy of Fa[r]/7" in the associated graded object. The
value of r is encoded in the color of the dot, as shown in Table 11.

e Short vertical lines indicate extensions by 2.

Table 11

Color interpretations for elements.
(For interpretation of the colors in
the table(s), the reader is referred
to the web version of this article.)

n color
Fo[r] e gray
Fao[r]/7 e red

Fs [7—]/72 e blue

F, [T]/T3 ® green
F, [T]/T‘l e cyan

Fs [T]/TS e brown
F, [T]/TG e magenta
FQ[T]/TH e orange
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Our graphical notation has the advantages of flexibility, compactness, and conve-
nience. We illustrate with two examples.

Example 7.1. In Fig. 3 at degree (48,0), one sees T This notation indicates a copy of
Z|7]. More precisely, it represents the filtration 4Z[r] C 2Z[r] C Z[r] whose filtration
quotients are Z[r], Fa[7], and Fa[r]. This particular filtration is relevant for our mANss
computation because 27Z(7] is the subgroup of ds cycles, and 4Z[r] is the subgroup of dy
cycles.

Example 7.2. In Fig. 5 at degree (120, 24), one sees ¢. This notation indicates the Z[7]-
module

Z[r]
8,472 276 7117

which is somewhat cumbersome to describe in traditional notation. More precisely, it
represents the filtration

47]7] c 27[7] c Z[7]
8,412 ~ 8,472, 276 — 8 472 276 7117

whose filtration quotients are Fy[7]/72, Fo[7]/7°, and Fy[7]/7!L. The blue, magenta, and
orange dots correspond to these filtration quotients, as shown in Table 11.

7.2. Differentials

Lines of negative slope indicate Adams-Novikov differentials. The differentials are
colored according to their lengths, as described in Table 12. These color choices are
compatible with our choice of colors for 7 torsion in Section 7.1, in the following sense.
An Adams-Novikov da,.11 differential always takes the form do,y1(x) = 77y, and it
creates 7" torsion in the following page. We use matching colors for ds,y1 and for 77
torsion.

7.3. Extensions

e Solid lines of slope 1 indicate h; multiplications. The colors of these lines are deter-
mined by the 7 torsion of the targets.

e Arrows of slope 1 indicate infinite families of elements that are connected by h;
multiplications. The colors of the arrows reflect the 7 torsion of the elements.

e Solid lines of slope 1/3 indicate ho multiplications. The colors of these lines are
determined by the 7 torsion of the targets.



46 D.C. Isaksen et al. / Advances in Mathematics 458 (2024) 109966

Table 12
Color interpretations for
Adams-Novikov  differen-

tials.
color slope d,
red -3 ds
blue -5 ds
green -7 dr
cyan -9 do
brown —11 dq1
magenta —13 dis
orange —23 dos

¢ Dashed lines indicate hidden extensions by 2, 77, and v. Some of these lines are curved
solely for the purpose of legibility.

e The colors of dashed lines indicate the 7 torsion of the targets of the extensions. For
example, the vertical dashed line in the 23-stem of Fig. 5 is blue because its value
Th3g is annihilated by 72.

Fig. 5 shows an h; extension and also a hidden 7 extension on the element A*cg in
degree (124, 6,65). See Remark 4.3 for an explanation.
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