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The H F2–homology of C2–equivariant Eilenberg–Mac Lane spaces

SARAH PETERSEN

We extend Ravenel–Wilson Hopf ring techniques to C2–equivariant homotopy theory. Our main appli-

cation and motivation is a computation of the RO.C2/–graded homology of C2–equivariant Eilenberg–

Mac Lane spaces. The result we obtain for C2–equivariant Eilenberg–Mac Lane spaces associated to

the constant Mackey functor F2 gives a C2–equivariant analogue of the classical computation due to

Serre. We also investigate a twisted bar spectral sequence computing the homology of these equivariant

Eilenberg–Mac Lane spaces and suggest the existence of another twisted bar spectral sequence with

E2–page given in terms of a twisted Tor functor.
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1 Introduction

Computations of invariants in equivariant homotopy theory have powerful applications contributing to

solutions of outstanding classification problems in geometry, topology, and algebra. A primary example

is Hill, Hopkins, and Ravenel’s solution [Hill et al. 2016] to the Kervaire invariant one problem, which

used computations in equivariant homotopy theory to answer the question of when a framed .4kC2/–

dimensional manifold can be surgically converted into a sphere. Despite the success of numerous

applications, many equivariant computations remain difficult to access due to their rich structure. This

is especially true for (unstable) equivariant spaces, for which many computations have not yet been

completed, despite their analogous nonequivariant results being well known.
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This paper extends Ravenel–Wilson Hopf ring techniques [Ravenel and Wilson 1977; 1980; Wilson

1982] to C2–equivariant homotopy theory. Our main application and motivation is a computation of

the RO.C2/–graded homology of C2–equivariant Eilenberg–Mac Lane spaces. The result, stated over

the course of Theorems 5.6, 6.6, and 6.7, is a C2–equivariant analogue of the classical cohomology

computation completed by Serre [1953].

Nonequivariantly, Serre applied the Borel theorem (see, for instance [Mosher and Tangora 1968, page 88,

Theorem 1]) to the path space fibration

K.Fp; n/'�K.Fp; n C 1/! P .K.Fp; n C 1//! K.Fp; n C 1/;

to calculate the cohomology of K.Fp; n C 1/ given H �K.Fp; n/. In C2–equivariant homotopy theory,

the constant Mackey functor F2 is the analogue of the group F2 and the Eilenberg–Mac Lane spaces

KV D K.F2;V / are graded on the real representations V of the group C2 rather than on the integers.

Since the group C2 has two irreducible real representations, the trivial representation and the sign

representation � , the analogous equivariant computation would require computing the cohomology of

KV C� from H ?KV in addition to H ?KV C1 from H ?KV . This would necessitate having a so called

signed or twisted version of the Borel theorem. However, no such theorem is known to exist, making it

difficult to study the cohomology of the spaces KV C� with these techniques. We call KV C� a signed

delooping of KV since the space of signed loops ��KV C� ' KV .

While direct extension of Serre’s original argument does not allow for the computation of the cohomology

of signed deloopings, it has been successfully applied to study trivial representation deloopings of K� ,

whose cohomology is known [Hu and Kriz 2001]. This approach is described in Ugur Yigit’s thesis

[2019], where it is noted that the RO.C2/–graded cohomology of all C2–equivariant Eilenberg–Mac Lane

spaces K�C� can be computed using this method. Throughout, we use � to denote integer grading and

reserve ? to denote grading by finite-dimensional real representations.

A major reason to study Ravenel–Wilson Hopf ring techniques in C2–equivariant homotopy theory is that

they provide a way to study �–deloopings. These techniques, which investigate multiplicative structures

coming from H–space maps on spaces having a graded multiplication, lend additional structure that can

be exploited to complete computations.

An important tool in classical applications of Ravenel–Wilson Hopf ring techniques is the bar construc-

tion B. This construction plays a significant role in computation because B is a trivial representation

delooping functor with BKV ' KV C1. In the C2–equivariant world, there is a twisted bar construction B�,

which is a sign representation delooping functor with B�KV ' KV C� [Liu 2020]. We use these

two constructions to explicitly model multiplicative structures on the spaces KV at the point set level

(Theorem 5.4), directly extending work by Ravenel and Wilson [1980]. We also describe our approach to

using this structure to investigate signed and trivial representation deloopings in Section 5.

Whereas Ravenel and Wilson use a collapsing integer-graded bar spectral sequence to compute by

induction on n the homology of classical nonequivariant Eilenberg–Mac Lane spaces [Wilson 1982], we

Algebraic & Geometric Topology, Volume 24 (2024)
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deduce many of our equivariant computations from nonequivariant ones using a computational method

introduced by Behrens and Wilson [2018, Lemma 2.8]. Starting with the RO.C2/–graded homology

of K� , we use the graded multiplication on the spaces KV coming from the genuine equivariant ring

structure on HF2, to produce elements of the RO.C2/–graded homology of K�� . We then use the point

set level understanding of multiplicative structures on the spaces K�� developed in Theorem 5.4 to verify

that these elements in fact form a free basis for the homology.

Once we have computed H?K�� (Theorem 5.6), we use Hopf ring structures in RO.C2/–graded bar

spectral sequences to compute H?Ki�Cj (Theorem 6.6) by induction on j . In the case where i D 1, that is

for the spaces K�C�, we name all homology generators in terms of the Hopf ring structure (Theorem 6.7).

The task of naming homology generators for the spaces KV , where � C 1 � V , increases in complexity

as the number of sign representations increases. We illustrative this phenomenon in Section 6.

Knowing the RO.C2/–graded homology of the C2–equivariant Eilenberg–Mac Lane spaces KV , we

turn to investigating the RO.C2/–graded twisted bar spectral sequence. Much like the classical integer

graded bar spectral sequence, the RO.C2/–graded twisted bar spectral sequence arises from a filtered

complex. However, computations with this twisted spectral sequence are more complicated than in

the classical case. For example, in contrast to the classical case where the integer-graded bar spectral

sequence computing the nonequivariant mod p homology of the classical Eilenberg–Mac Lane spaces

K� D K.Fp;�/ collapses on the E2–page [Wilson 1982], we find there are arbitrarily long equivariant

degree shifting differentials, similar to those observed in Kronholm’s study [2010] of the cellular spectral

sequence, in the RO.C2/–graded twisted bar spectral sequences computing the homology of the signed

representation spaces Kn� , where n � 2.

While the RO.C2/–graded twisted bar spectral sequence is quite complicated in general, the differentials

and extensions appear to arise in an extremely structured way, governed by a norm structure. We use

our knowledge of H?K�� and the E1–page to deduce information about the RO.C2/–graded twisted

bar spectral sequences computing the homology of K�� . This allows us to write down conjectures

concerning many of the differentials in Section 6. Our equivariant computations show that, unlike in the

nonequivariant integer graded situation, the RO.C2/–graded twisted bar spectral sequences computing

H?Kn� , where n � 2, have a rich structure quite distinct from the collapsing bar spectral sequence in the

classical nonequivariant case [Wilson 1982]. Differences between integer graded and RO.C2/–graded

bar and twisted bar spectral sequences are discussed in Section 6.

In parallel with calculating the homology of a space, the corresponding computational tools are worth

investigating in a purely algebraic setting. This study of the homological algebra involved produces tools

which can also be applied in settings outside of topology. One example of this are Tor functors, the derived

functors of the tensor product of modules over a ring. Besides playing a central role within algebraic

topology theorems such as the Künneth theorem and coefficient theorem, Tor functors can also be used to

calculate the homology of groups, Lie algebras, and associative algebras. Within the context of the classical

Algebraic & Geometric Topology, Volume 24 (2024)



4490 Sarah Petersen

Ravenel–Wilson Hopf ring method, the identification of the E2–page of the bar spectral sequence with

Tor allows for the computations TorEŒx�.Fp;Fp/' �Œsx� and TorT Œx�.Fp;Fp/' EŒsx�˝�Œ�x�, where

sx is the suspension of x, �x is the transpotent, and T Œx� is the truncated polynomial ring Fp Œx�=.x
p/,

to be used inductively in the calculations of the mod p homology of Eilenberg–Mac Lane spaces [Wilson

1982] and the Morava K–theory of Eilenberg–Mac Lane spaces [Ravenel and Wilson 1980].

In the C2–equivariant setting, the RO.C2/–graded homology of each signed delooping, KV C� , of an

equivariant Eilenberg–Mac Lane space, KV , also independently arises as the result of a C2–equivariant

twisted Tor computation. Thus under favorable circumstances, we believe it should be possible to

formulate a twisted bar spectral sequence with E2–page a twisted Tor functor arising as a derived functor

of the twisted product of HF2–modules and use this to compute the E2–page. However, we have not yet

constructed such a spectral sequence.

Additionally, twisted Tor calculations are not yet well understood, with a complete lack of known examples.

Theorems 5.6, 6.6, and 6.7 provide a countably infinite number of initial examples, which in turn lend

insight on how such calculations might proceed in general. We discuss how the homology H?KV C�

arises as a result of twisted Tor and give evidence for Tor
EŒx�
tw .H?;H?/' EŒ�x�˝�ŒN

C2
e .x/�, where

�x is the signed suspension of x and N
C2
e is the norm, under favorable circumstances in Section 7.

1.1 Statement of theorems

We state our main results. Recall that HF2 has distinguished elements a 2 HF2f��g and u 2 HF2f1��g.

To describe our answer for H?K�� , we need notation for H?K� . Let

e� 2 H�K� ; N̨ i 2 H�iK� .i � 0/:

Then the homology, H?K� , is exterior on generators

e� ; N̨.i/ D N̨2i .i � 0/

with coproduct

 .e� /D 1 ˝ e� C e� ˝ 1 C a.e� ˝ e� /;

 . N̨n/D

n
X

iD0

N̨n�i ˝ N̨ i C

n�1
X

iD0

u.e� N̨n�1�i ˝ e� N̨ i/:

For finite sequences

J D .j� ; j0; j1; : : :/; jk � 0;

define

.e� N̨ /J D eıj�
� ı N̨

ıj0

.0/
ı N̨

ıj1

.1/
ı � � �

where the ı–product comes from the pairing ıW KV ^ KW ! KV CW .

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 5.6 Then

H?K�� Š ˝J EŒ.e� N̨ /J �

as an algebra , where the tensor product is over all J and the coproduct follows by Hopf ring properties

from the N̨ ’s.

Interestingly, this answer mirrors the classical nonequivariant answer at the prime 2 [Ravenel and Wilson

1980].

From there, we use the RO.C2/–graded bar spectral sequence to compute H?Ki�Cj be induction on j ,

starting with H?Ki� . We show:

Theorem 6.6 The RO.C2/–graded homology of KV , where � C 1 � V, is exterior on generators given

by the cycles on the E2–page of the RO.C2/–graded spectral sequence computing H?BKV �1.

For the spaces K�C�, we name all homology generators in terms of the Hopf ring structure. To describe

these rings, we need notation for H?K1, H?K2, and H?K�. Let

e1 2 H1K1; ˛i 2 H2iK1; ˇi 2 H2iCP1; i � 0:

This gives generators

e1; ˛.i/ D p̨i ; ˇ.i/ D p̌i

of H?K1 and H?K2 with coproducts

 .˛n/D

n
X

iD0

˛n�i ˝˛i ;  .ˇn/D

n
X

iD0

ˇn�i ˝ˇi :

Also let
Ň
i 2 H�iK.Z; �/ .i � 0/:

This gives additional generators,
Ň
.i/ D Ň

2i .i � 0/

of H?K� with coproduct

 . Ň
n/D

n
X

iD0

Ň
n�i ˝ Ň

i :

Then for finite sequences

I D .i1; i2; : : : ; ik/; 0 � i1 < i2 < � � � ;

W D .w1; w2; : : : ; wq/; 0 � w1 <w2 < � � � ;

J D .j�1; j0; j1; : : : ; j`/; where j�1 2 f0; 1g and all other jn � 0;

Y D .y�1;y0;y1; : : : ;yr /; where y�1 2 f0; 1g and all other yn � 0;

define
.e1˛ˇ/

I;J D e
ıj�1

1
ı˛.i1/ ı˛.i2/ ı � � � ı˛.ik/ ıˇ

ıj0

.0/
ıˇ

ıj1

.1/
ı � � � ıˇ

ıj`

.`/
;

.e1˛ˇ/
W ;Y D e

ıy�1

1
ı˛.w1/ ı˛.w2/ ı � � � ı˛.wq/ ıˇ

ıy0

.0/
ıˇ

ıy1

.1/
ı � � � ıˇ

ıjr

.r/
;

jI j D k; jW j D q kJk D jn; kY k D yn:
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Theorem 6.7 We have

H?K�Ci Š EŒ.e1˛ˇ/
I;J ı N̨.m/; .e1˛ˇ/

W ;Y ı Ň
.t/�

where m> ik and m � `, t >wq and t � yr , jI jC2kJk D i and jW jC2kY k D i �1, and the coproduct

follows by Hopf ring properties from the ˛.i/’s , ˇ.i/’s , N̨.i/’s , and Ň
.i/’s.

We observe that this equivariant answer mirrors the classical nonequivariant answer for odd primes

[Ravenel and Wilson 1980]. For the reader’s convenience, we explicitly write some low-dimensional

instances of the theorem. In particular,

H?K� Š EŒe1 ı N̨.i/; ˛.i1/ ı N̨.i2/; Ň
.i/�

and

H?K�C2 Š EŒe1 ı˛.i1/ ı N̨.i2/; ˛.i1/ ı˛.i2/ ı N̨.i3/; e1 ı Ň
.i1/; ˇ.j1/ ı N̨.j2/; ˛.i1/ ı Ň

.i2/�

where i1 < i2, j1 � j2; and the coproduct follows by Hopf ring properties from the ˛.i/’s, ˇ.i/’s, N̨.i/’s,

and Ň
.i/’s.

Having computed the homology of the C2–equivariant Eilenberg–Mac Lane spaces KV , we turn to using

the results to investigate the twisted bar spectral sequence arising from the twisted bar construction.

Unlike the nonequivariant bar spectral sequence, the twisted bar spectral sequence E2 page lacks an

explicit homological description. This makes computations difficult in general. However, for the spaces

B�
F2 ' K� ' RP1

tw , B�S1 ' K.Z; �/' CP1
tw , and B�S� ' K.Z; 2�/, there is a gap in the spectral

sequence forcing all differentials dr for r > 1 to be zero. Further for these spaces, if there were a nonzero

d1 differential, we would end up killing a known generator of the underlying nonequivariant integer

graded homology and arrive at a contradiction. Thus we can calculate the additive RO.C2/–graded

homology of these spaces completely. The multiplicative structure can also be deduced from the twisted

bar spectral sequence.

Example 6.10 We have

H?RP1
tw D EŒe� ; N̨.0/; N̨.1/; : : :�D EŒe� �˝�Œ N̨.0/�; je� j D �; j N̨.i/j D �2i ;

H?CP1
tw D EŒ Ň.0/; Ň

.1/; : : :�D �Œe�� where j Ň
.i/j D �2i :

Theorem 6.11 We have

H?K.Z; 2�/D EŒe2� �˝�Œ Nx.0/� where je2� j D 2�; j Nx.0/j D 2�:

Remark 1.1 The spaces B�
F2 ' K� ' RP1

tw and B�S1 ' K.Z; �/' CP1
tw have well-known models

arising as colimits of C2–equivariant Grassmanian manifolds. In particular, if R
iCj� is the real C2–

representation composed of a direct sum of i copies of the trivial representation and j copies of the sign

representation, and the complex C2–representation C
iCj� is defined similarly, then RP1

tw is the colimit

of the natural cellular inclusions

� � � ,! P .R1C� / ,! P .R2C� / ,! P .R2C2� / ,! � � �

Algebraic & Geometric Topology, Volume 24 (2024)
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and CP1
tw is the colimit of the natural cellular inclusions

� � � ,! P .C1C� / ,! P .C2C� / ,! P .C2C2� / ,! � � � :

In contrast, the space B�S� ' K.Z; 2�/ remains more mysterious. The author does not know of any

models for this space besides applying the twisted bar construction to S� .

In forthcoming work, we will use the homology of H?KV to deduce differentials in the twisted bar

spectral sequence. The beginning stages of this work are described in Section 6.

1.2 Paper structure

This paper has two primary aims: extending Ravenel–Wilson Hopf ring techniques [Ravenel and Wilson

1977; 1980; Wilson 1982] to C2–equivariant homotopy theory, and computing the RO.C2/–graded

homology of C2–equivariant Eilenberg–Mac Lane spaces associated to the constant Mackey functor F2.

These topics are investigated in several sections.

The first section consists of an introduction providing context for the main results, a description of the

paper structure, and a list of notational conventions.

The second section recalls classical Ravenel–Wilson Hopf ring methods.

The third section recollects material from equivariant homotopy theory necessary for understanding our

proof and computations.

The fourth section details the bar and twisted bar constructions, which are trivial and sign representation

delooping functors respectively.

The fifth section applies the preliminaries of the previous sections to study multiplicative structures on

C2–equivariant Eilenberg–Mac Lane spaces. This section contains some primary extensions of Ravenel–

Wilson Hopf ring methods to C2–equivariant homotopy theory (Theorem 5.4). It also contains our

calculation of the RO.C2/–graded homology of many C2–equivariant Eilenberg–Mac Lane spaces KV

associated to the constant Mackey functor F2 (Theorems 5.6, 6.6, and 6.7).

The sixth section details a number of computations and observations regarding the RO.C2/–graded bar

and twisted bar spectral sequences. The examples we provide should be a useful stepping stone towards

further computations.

The seventh section describes a few questions of immediate interest given the results of this paper.

1.3 Notational conventions

� The asterisk � denotes integer grading.

� The star ? denotes representation grading.

Algebraic & Geometric Topology, Volume 24 (2024)
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� By the classical or nonequivariant Eilenberg–Mac Lane space Kn, we mean the classical nonequiv-

ariant Eilenberg–Mac Lane space Kn D K.Fp; n/, where p is prime.

� C2 is the cyclic group of order two with C2 D h
 i.

� � denotes the one-dimensional sign representation of C2.

� � is the regular representation of C2.

� SV is the one-point compactification of a finite-dimensional real representation V where the point

at infinity is given a trivial group action and taken as the base point.

�  V .�/D SV ^ �.

� �V .�/ is the space of continuous based maps Map�.S
V ;�/ where the group action is given by

conjugation.

� S is the category of spectra.

� S
G is the category of G–spectra indexed on a complete universe.
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2 Classical Ravenel–Wilson Hopf ring methods

Classically, one place Hopf rings arise in homotopy theory is in the study of �–spectra. Consider an

�–spectrum

G D fGkg

and a multiplicative homology theory E�.�/ with a Künneth isomorphism for the spaces Gk . The

�–spectrum G represents a generalized cohomology theory with

G�X ' ŒX;G��:

Since GkX is an abelian group, Gk must be a homotopy commutative H–space (in fact Gk is an infinite

loop space). This H–space structure

�W Gk � Gk ! Gk

gives rise to a product in homology

�W E�Gk ˝ E�Gk Š E�.Gk � Gk/! E�Gk

and the Künneth isomorphism implies the homology is in fact a Hopf algebra.
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If G is a ring spectrum, then G�X is a graded ring and the graded abelian group object G� becomes a

graded ring object in the homotopy category. The multiplication

GkX � GnX ! GkCnX

has a corresponding multiplication in G�,

ıW Gk � Gn ! GkCn;

and applying E�.�/ we have

ıW E�Gk ˝E�
E�Gn ! E�GkCn

turning E�G into a graded ring object in the category of coalgebras.

As a ring, E�G has a distributive law,

.2.1/ x ı .y � z/D
X

Û.x0 ı y/� .x00 ı z/ where  .x/D
X

x0 ˝ x00;

coming from the distributive law in G�X .

Ravenel and Wilson pursued the idea that these two products could be used to construct many elements in

homology from just a few. They successfully applied this approach to compute the Hopf ring for complex

cobordism [Ravenel and Wilson 1977], the Morava K–theory of nonequivariant Eilenberg–Mac Lane

spaces [Ravenel and Wilson 1980], and the mod p homology of classical Eilenberg–Mac Lane spaces

[Wilson 1982].

In the case of classical Eilenberg–Mac Lane spaces, the Eilenberg–Mac Lane spectrum

HFp D fK.Fp; n/g D fKng

is a ring spectrum with �KnC1 ' Kn. Further, H�.�/ WD H�.�I Fp/, ordinary homology with mod p

coefficients, has a Künneth isomorphism and thus the homology H�K� has the structure of a Hopf ring.

A key computational insight of Ravenel and Wilson was that the bar spectral sequence

E2
�;� ' Tor

E�Gk
�;� .E�;E�/) E�GkC1

is in fact a spectral sequence of Hopf algebras. The additional structure of the ı multiplication in the bar

spectral sequence meant that they could inductively deduce the homology of Eilenberg–Mac Lane spaces

using standard homological algebra. Starting with elements in H�K1 and H�CP1 and identifying circle

products in the bar spectral sequence, Ravenel and Wilson computed the Hopf ring associated to the

mod p Eilenberg–Mac Lane spectrum [Wilson 1982].

To describe their answer, let

e1 2 H1K1; ˛i 2 H2iK1; ˇi 2 H2iCP1; i � 0:

The generators are

e1; ˛.i/ D p̨i ; ˇ.i/ D p̌i

Algebraic & Geometric Topology, Volume 24 (2024)



4496 Sarah Petersen

with coproduct

 .˛n/D

n
X

iD0

˛n�i ˝˛i ;  .ˇn/D

n
X

iD0

ˇn�i ˝ˇi :

For finite sequences,
I D .i1; i2; : : :/; 0 � i1 < i2 < � � � ;

J D .j0; j1; : : :/; jk � 0;

define

˛I D ˛.i1/ ı˛.i2/ ı � � � ; ˇJ D ˇ
ıj0

.0/
ıˇ

ıj1

.1/
ı � � � ;

and let T .x/ denote the truncated polynomial algebra Fp Œx�=.x
p/.

Theorem A (Ravenel and Wilson [Wilson 1982]) We have

H�K� ' ˝I;J E.e1 ı˛I ıˇJ /˝I;J T .˛I ıˇJ /

as an algebra where the tensor product is over all I and J and the coproduct follows by Hopf ring

properties from the ˛’s and ˇ’s.

When the prime p D 2, there are additional relations e1 ı e1 D ˇ.0/ and ˛.i�1/ ı ˛.i�1/ D ˇ.i/. In this

case, the theorem can be stated using only circle products of generators of RP1.

For finite sequences

I D .i.�1/; i0; i1; i2; : : :/; ik � 0;

define

.e1˛/
I D e

ıi.�1/

1
ı˛

ıi0

.0/
ı˛

ıi1

.1/
ı � � � :

Theorem B (Ravenel and Wilson [Wilson 1982]) Then

H�Kn Š ˝I EŒ.e1˛/
I �;

where
P

ik D n, and considering all spaces at once ,

H�K� ' ˝I EŒ.e1˛/
I �

as an algebra where the tensor product is over all I and the coproduct follows by Hopf ring properties

from the ˛’s.

Ravenel and Wilson also show that homology suspending ˇ.i/ to define

�i 2 H2.pi �1/H;

and ˛.i/ to define

�i 2 H2pi �1H:

Theorem A then implies that stably,

H�H ' EŒ�0; �1; : : :�˝ P Œ�1; �2; : : :�:

Algebraic & Geometric Topology, Volume 24 (2024)
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3 Equivariant preliminaries

We set notation and recall equivariant foundations. Throughout, the group G D C2.

Given an orthogonal real G–representation V , SV denotes the representation sphere given by the one-point

compactification of V . For a p–dimensional real C2–representation V , we write

V Š R
.p�q;0/ ˚ R

.q;q/

where R
.1;0/ is the trivial 1–dimensional real representation of C2 and R

.1;1/ is the sign representation.

We allow p and q to be integers, so V may be a virtual representation. The integer p is called the

topological dimension while q is the weight or twisted dimension of V Š R
.p;q/.

The V th graded component of the ordinary RO.C2/–graded Bredon equivariant homology of a C2–space

X with coefficients in the constant Mackey functor F2 is denoted H
C2

V
.X I F2/ D Hp;q.X I F2/. To

consider all representations at once we write H?.X /, and when working nonequivariantly H�.X
e/

denotes the singular homology of the underlying topological space with F2 coefficients.

It is often convenient to plot the bigraded homology in the plane. Our plots have topological dimension p

on the horizontal axis and weight q on the vertical axis.

The homology of a point with coefficients in the constant Mackey functor F2, is the bigraded ring

H?.pt;F2/D F2Œa;u�˚
F2Œa;u�

.a1;u1/
f�g

where jaj D �� , juj D 1 � � , and j� j D 2� � 2. A bigraded plot of H?.pt;F2/ appears in Figure 1. The

image on the left is more detailed with each lattice point within the two cones representing a copy of F2.

The image on the right is a more succinct representation and appears in figures illustrating our spectral

sequence computations.

The genuine equivariant Eilenberg–Mac Lane spectrum representing H?.�/ is HF2, the Eilenberg–

Mac Lane spectrum for the C2 constant Mackey functor F2. It has underlying nonequivariant spec-

trum HF2. We denote the spaces of HF2 by

HF2 D fK.F2;V /gV Šk�Cl D fKV gV Šk�Cl :

p

q

ua

�

p

q

Figure 1: H?.pt;F2/ with axis gradings determined by V ' R
p�q ˚ R

q� .
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Analogously to the nonequivariant case, HF2 is characterized up to C2–equivariant homotopy by

H V .X I F2/D ŒX;KV � naturally for all C2–spaces X.

We recall a computational lemma due to Behrens and Wilson [2018], which allows us to check whether a

set of elements in the RO.C2/–homology in fact forms a free basis for H?.X /, greatly simplifying our

computations. To state this lemma, we first define two homomorphisms, ˆe and ˆC2 . Let Ca be the

cofiber of the Euler class a 2 �
C2
��S given geometrically by the inclusion

S0 ,! S� :

Applying �
C2

V
to the map

H ^ X ! H ^ X ^ Ca;

we get a homomorphism

ˆe W HV .X /! HjV j.X
e/:

Taking geometric fixed points of a map

SV ! H ^ X

gives a map

SV C2
! H ˆC2 ^ X ˆC2 :

Using the equivalence H ˆ
� X ' H�.X

ˆC2/Œa�1u� coming from H ˆC2 '
W

i�0 
iHF2 and passing to

the quotient by the ideal generated by a�1u gives the homomorphism

ˆC2 W HV .X /! HjV C2 j.X
ˆC2/:

Lemma 3.1 [Behrens and Wilson 2018] Suppose X 2 SpC2 and fbig is a set of elements of H?.X /

such that

(1) fˆe.bi/g is a basis of H�.X
e/ and

(2) fˆC2.bi/g is a basis of H�.X
ˆC2/.

Then H?.X / is free over H? and fbig is a basis.

We use the following notation for H ?K� .

Theorem 3.2 [Hu and Kriz 2001] H ?.RP1
tw /D H ?.pt/Œ˛; ˇ�=.˛2 D a˛Cuˇ/ where j˛j D � , jˇj D �,

jaj D � , and juj D � � 1.

Since this cohomology is free, the homology H?K� immediately follows. In our notation we have

elements

e� 2 H�K� ; N̨ i 2 H�iK� .i � 0/:

The generators are

e� ; N̨.i/ D N̨2i .i � 0/
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with coproduct
 .e� /D 1 ˝ e� C e� ˝ 1 C a.e� ˝ e� /;

 . N̨n/D

n
X

iD0

N̨n�i ˝ N̨ i C

n�1
X

iD0

u.e� N̨n�1�i ˝ e� N̨ i/;

and ring structure H?K� ' EŒe� ; N̨.i/� which can be deduced from the twisted bar spectral sequence

computing H?B�
F2 Š H?RP1

tw .

We also require notation for H?K.Z; �/. This can be deduced by applying the RO.C2/–graded bar

spectral sequence to S� . Let
Ň
i 2 H�iK.Z; �/ .i � 0/:

The generators are
Ň
.i/ D Ň

2i .i � 0/

with coproduct

 . Ň
n/D

n
X

iD0

Ň
n�i ˝ Ň

i

and ring structure

H?K.Z; �/' EŒˇ.i/�:

3.1 The fixed point spaces of C2–equivariant Eilenberg–Mac Lane spaces

It is useful to understand the C2 fixed points of the C2–equivariant Eilenberg–Mac Lane spaces KV in

applications of the Behrens–Wilson computational lemma. We state a relevant proposition due to Caruso.

Proposition 3.3 [Caruso 1999] Let G D Cp and V be an n–dimensional fixed point free virtual

representation of G with n> 0 and m an integer. Then

K.Fp;m C V /Cp ' K.Fp;m/� � � � � K.Fp;m C n/:

3.2 Notation for the underlying nonequivariant homology of K
C2

V

To use the Behrens–Wilson lemma, we also need to understand the homology of the fixed point spaces.

Applying Theorem B to the nonequivariant homology of .Kn� /
C2 gives

H�.K
C2
n� /' EŒe0; a.i1/; a.i1/ ı a.i2/; : : : ; a.i1/ ı � � � ı a.in/�

where 0 � i1 � i2 � � � � � in, je0j D 0, and ja.i/j D 2i .

4 Bar and twisted bar constructions

A first task in implementing the Ravenel–Wilson Hopf ring approach is to generalize the bar spectral

sequence to the C2–equivariant case. In the classical story, the bar spectral sequence is used to inductively

compute the homology of Kn ' BKn�1 from H�Kn�1. In the C2–equivariant setting, our spaces KV

are bigraded on the trivial and sign representations of C2. Due to this new grading, we should now
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additionally compute the homology of KV C� inductively from H?KV . In order to do so, we need a

good model of �–delooping. We begin by reviewing the classical bar construction which is a trivial

representation delooping functor.

Construction 4.1 (Classical bar construction) For a topological monoid A, the pointed space BA is

defined as a quotient

BA D
a

n

�n � A�n=�

where the relation � is generated by

(1) .t1; : : : tn; a1; : : : ; an/� .t1; : : : ; Oti ; : : : ; tn; a1; : : : ; Oai ; .aiaiC1/; : : : ; an/ if ti D tiC1 or ai D �;

(2) for i D n, delete the last coordinate if tn D 1 or an D �; for i D 0, delete the first coordinate if

t0 D �1 or a0 D �; and �n denotes the topological simplex

�n D f.t1; t2; : : : ; tn/ 2 R
n j �1 � t1 � � � � � tn � 1g:

Remark 4.2 We use the slightly nonstandard topological n–simplex

�n D f.t1; t2; : : : ; tn/ 2 R
n j �1 � t1 � � � � � tn � 1g

so that when we introduce a C2 action, the simplex rotates around the origin. This makes writing

down a model for the H–space structure on the C2–equivariant Eilenberg–Mac Lane spaces KV more

straightforward.

Given a commutative monoid A, we observe that BA is also a commutative monoid via the pairing

�W BX � BX ! BX

defined by

.t1; : : : ; tn;x0; : : : ;xn/�� .tnC1; : : : ; tnCm;xnC1; : : : ;xnCm/D .t�.1/; : : : ; t�.nCk/;x�.1/; : : : ;x�.nCm//;

where � is any element of the symmetric group on n C k letters such that t�.i/ � t�.iC1/. This pairing

was first described by Milgram [1967].

Definition 4.3 [Liu 2020] A C2–space A is a twisted monoid if it is a topological monoid in the

nonequivariant sense with the product satisfying 
 .xy/D 
 .y/
 .x/ where C2 ' h
 i.

Construction 4.4 [Liu 2020] For any twisted monoid A, construct B�
� A in the same way as the

nonequivariant bar construction , that is such that B�
n A D�n � An. However , define a C2–action on An

by


 .a1; a2; : : : ; an/D .
an; 
an�1; : : : ; 
a1/:

Then the C2–actions commute with the face and degeneracy maps as 
 ısi D sn�i ı
 and 
 ıdi D dn�i ı
 .

Further , define the C2–action on each

�n D f.t1; t2; : : : ; tn/ 2 R
tC1 j �1 � t1 � � � � � tn � 1g:
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by 
 .t1; t2; : : : ; tn/D .�tn;�tn�1; : : : ;�t1//. Then define B�A to be the geometric realization
a

�n � An=� :

Example 4.5 The space B�K0 ' RP1
tw is the space of lines through a direct sum of an infinite number

of copies of the C2–regular representation �.

We can inductively define an H–space pairing on BlBk�
F2, similar to the one given by Milgram in the

nonequivariant case. Define a mapping

�� W B�X � B�X ! B�X

by

.t0; : : : ; tn;x0; : : : ;xn/�� .tnC1; : : : ; tnCm; xnC1; : : : ;xnCm/D .t�.1/; : : : ; t�.nCk/;x�.1/; : : : ;x�.nCm//;

where � is any element of the symmetric group on n C k letters such that t�.i/ � t�.iC1/. Then �� is well

defined, continuous, and C2–equivariant. Going forward, we suppress the � notation in �� , using only �

to denote the H–space pairing. The relevant C2–action is deduced from context.

Definition 4.6 A G–space X is said to be G–connected if X H is connected for each subgroup H of G.

Proposition 4.7 [Liu 2020] For any commutative monoid A in the category of based C2–spaces , the

V –degree bar construction BVA is defined by applying the ordinary bar construction l times and the

twisted bar construction m times for V D l C m� . There exists a natural map A !�VBVA. When A is

C2–connected , this map is a C2–equivalence.

5 Multiplicative structures on C2–equivariant Eilenberg–Mac Lane spaces

We describe multiplicative structures on C2–equivariant Eilenberg–Mac Lane spaces, extending Ravenel

and Wilson’s description of similar structures on classical nonequivariant Eilenberg–Mac Lane spaces.

We use our understanding of these structures to compute the RO.C2/–graded homology of many C2–

equivariant Eilenberg–Mac Lane spaces KV associated to the constant Mackey functor F2. In particular,

we compute the RO.C2/–graded homology of all C2–equivariant Eilenberg–Mac Lane spaces K��

and K�C�.

5.1 Multiplicative structures on KV

The RO.C2/–graded cup product is induced by a map

.5.1/ ı D ıV;W W KV ^ KW ! KV CW :

We will construct ıV;W explicitly within the framework of trivial and �–representation delooping given

by B and B� . We will also discuss how ıV;W descends to a product on the fixed points.
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Given a real C2 representation V Š l C k� , the Eilenberg–Mac Lane space KV is a V –fold delooping of

F2 and therefore can be constructed iteratively by taking BlBk�
F2 where l and k are nonnegative integers.

The following construction extends exposition by Ravenel and Wilson [1980] in their computation of the

Morava K–theory of Eilenberg–Mac Lane spaces.

We construct the map (5.1) inductively on V . Assuming ıV;W has been defined, we define ıV C1;W and

ıV C�;W by replacing KV C1;KV CW C1 and KV C� ;KV CW C� with their bar and twisted bar construc-

tions respectively. In both cases this is denoted as follows; there is a notationally suppressed C2–action

each case:

.5.2/

�
a

n

�n � Kn
V =�

�

^ KW !

�
a

n

�n � KV CW =�

�

:

Let t 2�n, x D .x0; : : : ;xn/ 2 KV , and y 2 KW . The image of xi ^y 2 KV ^KW under the map (5.1)

is denoted xi ı y. We use the notation x ı y to mean .x0 ı y; : : : ;xn ı y/. Define (5.2) by

.5.3/ f.t;x/g ı y D f.t;x ı y/g:

Theorem 5.4 The above construction is well defined and gives the cup product pairings

ıW KV C1 ^ KW ! KV CW C1; ıW KV C� ^ KW ! KV CW C� :

Lemma 5.5 The map ıW K0 � KV ! KV is given by .q/ ı x D x�q where q 2 F2.

Proof This map multiplies �
C2

V
KV ' F2 by q which is what ı should do restricted to .q/�KV ' KV .

Proof of Theorem 5.4 We must show the map (5.2) defined by (5.3) is well defined and in fact gives the

cup product pairings ıW KV C1 ^ KW ! KV CW C1 and ıW KV C� ^ KW ! KV CW C� . Our proof is a

direct extension of the nonequivariant argument of Ravenel and Wilson [1980]. We prove our result by

induction on i in the � direction noting that the result also holds and is similar in the trivial representation

direction (that is we assume the statement holds for V , and show it for V C � ). Assume we have proved

Theorem 5.4 for KV ^KW ! KV CW with Lemma 5.5 beginning the induction. We need our construction

to satisfy

.z1 � z2/ ı y D .z1 ı y/� .z2 ı y/:

For i D 0, zi D qi 2 F2 D K0. So,

.q1 � q2/ ı y D .q1 C q2/ ı y D yq1Cq2 D y�q1 � y�q2 D .q1 ı y/� .q2 ı y/:

For i > 0,
Œz1 � z2� ı y D Œ.t;x/� .tnC1; : : : ; tnCk I xnC1; : : : ;xnCk/� ı y

D .t�.1/;:::;t�.nCk/Ix�.1/;:::;x�.nCk/
/ ı y

D .t�.1/; : : : ; t�.nCk/I x�.1/ ı y; : : : ;x�.nCk/ ı y/

D .t I x ı y//� .tnC1; : : : ; tnCk I xnC1 ı y; : : : ;xnCk ı y/

D .z1 ı y/� .z2 ı y/;
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where the second line is due to the definition of �, the third is due to the induction hypothesis and (5.3),

and the fourth is due to the definition of �.

We must show (5.3) gives well-defined maps KV C1 ^KW ! KV CW C1 and KV C� ^KW ! KV CW C� .

The relations in the (twisted) bar construction make this the case. We show the main case, leaving the

others to the reader. Assume 0 � q < n with tq D tqC1 or xq D �. Then

.t;x/ ı y D .t;x ı y/

� .t1; : : : ; Otq; : : : ; tnI x1 ı y; : : : ; .xq ı y/� .xqC1 ı y/; : : : ;xn ı y/

D .t1; : : : ; Otq; : : : ; tnI x1 ı y; : : : ; .xq � xqC1/ ı y; : : : ;xn ı y/

D .t1; : : : ; Otq; : : : ; tnI x1; : : : ;xq � xqC1; : : : ;xn/ ı y;

which is the necessary relation. That this map factors through the smash product is straightforward to

verify using induction.

The remaining task is to show that this is the cup product pairing map. This follows by induction from

the observation that ı commutes with (signed) suspension on the first factor since B1KV ' S1 ^ KV

and B�
1

KV ' S� ^ KV , and following diagrams commute:

S1 ^ KV ^ KW S1 ^ KV CW S� ^ KV ^ KW S� ^ KV CW

KV C1 ^ KW KV CW C1 KV C� ^ KW KV CW C�

5.2 Multiplicative structures on K
C2

V

We turn to understanding the ı–product on the fixed points of the spaces KV . Notice .B�A/C2 consists

of points of the form

.t1; : : : ; tn; 0;�tn; : : : ;�t1; a1; : : : ; an; a; 
 .an/; : : : ; 
 .a1// 2 .B�A/Œ2nC1�

where a 2 AC2 since for

.t1; : : : ; tm;�tm; : : : ;�t1; a1; : : : ; am; 
 .am/; : : : ; 
 .a1// 2 .B�A/Œ2n�;

there is a degeneracy map inducing an equivalence to

.t1; : : : ; tn; 0;�tn; : : : ;�t1; a1; : : : ; an;�; 
 .an/; : : : ; 
 .a1// 2 .B�A/Œ2nC1�:

Taking the fixed points in the construction of map (5.2) we recover the classical nonequivariant ı product

on the fixed point spaces.

5.3 Circle product generators for H?Kn�

Recall that HF2 has generators a 2 HF2f��g and u 2 HF2f1��g. To describe our answer, we recall our

notation for H?K� . Let

e� 2 H�K� ; N̨ i 2 H�iK� .i � 0/:
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The homology, H?K� , is exterior on generators

e� ; N̨.i/ D N̨2i .i � 0/;

with coproduct
 .e� /D 1 ˝ e� C e� ˝ 1 C a.e� ˝ e� /;

 . N̨n/D

n
X

iD0

N̨n�i ˝ N̨ i C

n�1
X

iD0

u.e� N̨n�1�i ˝ e� N̨ i/:

For finite sequences

J D .j� ; j0; j1; : : :/; jk � 0;

define

.e� N̨ /J D eıj�
� ı N̨

ıj0

.0/
ı N̨

ıj1

.1/
ı � � � ;

where the ı product comes from the pairing ıW KV ^ KW ! KV CW .

Theorem 5.6 Then

H?K�� Š ˝J EŒ.e� N̨ /J �

as an algebra , where the tensor product is over all J and the coproduct follows by Hopf ring properties

from the N̨ ’s.

Proof For finite sequences

J D .j� ; j0; j1; : : :/; jk � 0;

define kJk D
P

jk (including the � subscript) and

.e� N̨ /J D eıj�
� ı N̨

ıj0

.0/
ı N̨

ıj1

.1/
ı � � � :

Consider elements .e� N̨ /J with kJk D n in the homology of B�K.n�1/� .

To show these elements in fact form a free basis for the homology, we show that they satisfy the conditions

of the Behrens–Wilson computational lemma. The map to the underlying homology, H?Kn� ! H�Kn,

the underlying homology of H?Kn� , is given by

.e� N̨ /J 7! .e1˛/
J :

The map on fixed points H?Kn� ! H�K
C2
n� is given by

.e� N̨ /J 7! e
ıj�

0
ı a

ıj0

.0/
ı a

ıj1

.1/
ı � � � :

Thus these elements from a free basis for H?Kn� .

We deduce the multiplicative ring structure using a Hopf ring argument due to Ravenel and Wilson

[Wilson 1982]. Each .e� N̨ /J can be written as e
ıj�
� ı N̨

ıj0

.0/
ı N̨

ıj1

.1/
ı � � � ı N̨

ıjn

.n/
where n is some nonnegative

integer or n D � . By the distributive law (2.1),

.e� N̨ /J � .e� N̨ /J D eıj�
� ı N̨

ıj0

.0/
ı N̨

ıj1

.1/
ı � � � ı . N̨.n/ � N̨.n//D 0:
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The coproduct is induced by the map K� � � � � � K� ! Kn� which is a map of coalgebras on H?.

Remark 5.7 Note that eık
0

D e0 for k > 0 by Lemma 5.5.

6 Bar and twisted bar spectral sequence computations

The first half of this section focuses on the RO.C2/–graded bar spectral sequence. We describe the

d1–differentials, the Tor term coinciding with the E2–page, and Hopf ring structure present in the spectral

sequences computing H?KV when � C 1 � V .

In the second half of this section, we study the analogous twisted spectral sequence giving evidence of

arbitrarily long equivariant degree shifting differentials appearing computations of the RO.C2/–graded

homology of the spaces K�� . We describe how these differentials appear to arise in a structured way

involving the norm.

6.1 The RO.C2/–graded bar spectral sequence

The RO.C2/–graded bar spectral sequences arises via a filtered complex in the same way as the ordinary

integer graded version. The bar construction B on a topological monoid A, is filtered by

BŒt �A '
a

t�n�0

�n � An=� � BA

with associated graded pieces

.BŒt �A=BŒt�1�/A ' S t ^ A^t :

Applying H?.�/ to these filtered spaces gives the RO.C2/–graded bar spectral sequence with E1–page

E1
t;? D H?.S

t /˝ H?.A/
˝t ;

computing H?.BA/. This RO.C2/–graded bar spectral sequence has

E2
�;? ' Tor

H?KV
�;? .HF2?;HF2?/) H?BKV Š H?KV C1

and behaves similarly to the integer graded version in many examples. In particular, the spectral se-

quences computing the RO.C2/–graded homology of BS1 ' CP1, BS� ' CP1
tw , and BK0 ' RP1

(Example 6.1) collapse for degree reasons.

Example 6.1 We have

H?CP1 D EŒˇ.0/; ˇ.1/; : : :�D �Œe2� where jˇ.i/j D 2iC1;

H?CP1
tw D EŒ Ň.0/; Ň

.1/; : : :�D �Œe�� where j Ň
.i/j D �2i ;

H?RP1 D EŒe1; ˛.0/; ˛.1/; : : :� where je1j D 1 and j˛.i/j D 2iC1:

Remark 6.2 The relations e1 ı e1 D e2 D ˇ1 D ˇ.0/ and e1 ı e� D e� D Ň
1 D Ň

.0/ in RO.C2/–graded

homology are analogous to the classical relation e1 ı e1 D ˇ1 D ˇ.0/ in nonequivariant integer graded

homology (see [Wilson 1982, Proof of 8.5]).
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Œx j y�

d1

Figure 2: Example: a d1–differential in the RO.C2/–graded bar spectral sequence.

6.2 The RO.C2/–graded bar spectral sequence: d1–differentials

The classical bar construction does not introduce any group action; hence the d1–differentials in the

RO.C2/–graded bar spectral sequence behave in almost the same as those in the underlying integer-graded

spectral sequence. The difference is that the cycles supporting d1–differentials in the RO.C2/–graded

spectral sequence are representation degree shifted copies of the RO.C2/–graded homology of the point

and their targets are the same. This is in contrast with the integer-graded case where the differentials

are maps of nongraded rings. For example, all d1 differentials in the RO.C2/–graded case look and

behave like those shown in Figure 2, where the bigraded homology is plotted and the filtration degree is

suppressed. We follow this convention for all remaining figures.

In greater specificity, Figure 3 shows a d1 differential in the RO.C2/–graded bar spectral sequence

E2
�;? ' Tor

H?K�
�;? .HF2?;HF2?/) H?BK� Š H?K�C1

p

q

�1

0

1

2

3

4

5

6

7

8

�1 1 2 3 4 5 6 7 8

Œxy�

Œx j y�

d1

Figure 3: A more detailed picture of a d1–differential in the RO.C2/–graded bar spectral sequence.

Algebraic & Geometric Topology, Volume 24 (2024)



The HF2–homology of C2–equivariant Eilenberg–Mac Lane spaces 4507

computing the RO.C2/–graded homology of K�. In the figure, x WD e� with jxj D � and y WD N̨.0/ with

jyj D �. The two double cones shown are supported by the bar representatives Œxy� and Œx j y�. The

d1–differential maps from the unit of the infinite-dimensional graded ring HF2? supported by Œx j y� onto

the unit of the RO.C2/–graded homology of a point supported by the bar representative Œxy�. Figure 3

depicts that this map of units in fact induces a map of graded rings surjecting onto the copy of the

RO.C2/–graded homology of a point supported by Œxy�.

6.3 Hopf ring structure in the RO.C2/–graded bar spectral sequence and H?KV , where

� C 1 � V

In Theorem 5.6, we computed H?Kn� , showing that it is free over H?. To compute H?KV for real

representations V Š i Cj� , we consider ı–product structure in the RO.C2/–graded bar spectral sequence

E2
�;� ' Tor

H?KV
�;� .H?;H?/) H?KV C1;

and observe that theorems of Thomason and Wilson extend directly from the nonequivariant integer

graded setting to the C2–equivariant RO.C2/–graded setting. In Theorem 6.4, we need an additional

flatness hypothesis to account for H?.X I F2/ not necessarily being flat, unlike H�.X I F2/.

Theorem 6.3 [Thomason and Wilson 1980] The ı product factors as

BtKV � KW BtKV CW

ıW BKV � KW BKV CW

� �

and the map

.BtKV =Bt�1KV /� KW .BtKV CW =Bt�1KV CW /

S t ^ K^t
V

� KW S t ^ K^t
V CW

' '

is described inductively as .k1; : : : ; kt / ı k D .k1 ı k; : : : ; kt ı k/.

Theorem 6.4 [Thomason and Wilson 1980] Let Er
�;?.E?KV /)E?KV C1 be the bar spectral sequence

and suppose Er is H?–flat for all i � r . Compatible with

ıW E?KV C1 ˝H?
E?KW ! E?KV CW C1;

there is a pairing

.6.5/ Er
t;?.E?KV /˝H?

E?KW ! Er
t;?.E?KV CW /

where dr .x/ ı y D dr .x ı y/. When r D 1 this pairing is given by

.k1j � � � jkt / ı k D
X

Û.k1 ı k 0jk2 ı k 00j � � � jks ı k.t//

where k !
P

k 0 ˝ k 00 ˝ � � � ˝ k.t/ is the iterated reduced coproduct.
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Theorem 6.6 The RO.C2/–graded homology of KV , where � C 1 � V , is exterior on generators given

by the cycles on the E2–page of the RO.C2/–graded bar spectral sequence.

Proof Let Er
�;?.E?KV / ) E?KV C1 be the bar spectral sequence and � W KV ! KV � KV be the

diagonal map. If Er is H?–flat for all i � r , then there is a natural transformation

� W Er .X /˝ Er .Y /! Er .X � Y /

and the coalgebra structure on Er is given by ��1��.

Suppose Er
�;? where r > 2 is the first page after the E2

�;?–page with a nonzero differential. Then

Er
�;? D E2

�;? Š Tor
H?KV
�;� .H?;H?/ which is a coalgebra, so � is an isomorphism and the differentials

dr satisfy the Leibniz and co-Leibniz rules.

Consider the shortest nonzero differential dr in lowest topological degree. If such a differential exists, it

must map from an algebra indecomposable to a coalgebra primitive. To see this, we recount a classical

Hopf ring argument, which also appears in [Ravenel and Wilson 1980] and [Angeltveit and Rognes 2005].

Suppose dr .xy/¤ 0 and xy is in lowest topological degree. Then

dr .xy/D dr .x/y Û xdr .y/

so dr .x/ or dr .y/ are nonzero, contradicting that xy is in lowest topological degree. Dually, if dr .z/ is

not a coalgebra primitive, then

 .z/D zj1 C 1jz C z0
i jz

00
i

and the co-Leibniz formula

 ı dr D .dr j1 Û 1jdr / 

implies dr .z
0
i/ or dr .z

00
i / is nonzero, contradicting that z is in lowest topological degree.

There are no coalgebra primitives on E2
�;? D Er

�;? due to the coproduct structure on H?K� . Thus there

are no nontrivial differentials and the spectral sequence collapses.

Let x be a cycle on E2
�;?. To show there are no extension problems, we only need to show

x � x D 0:

The multiplication by 2 map 2 W KV ! KV , which factors as the composition

KV
��! KV � KV

��! KV ;

is homotopically trivial so

0 D 2? W H?KV ! H?KV :

Consider the coproduct structure on H?K�� and E2
�;?. There is a cycle y on E2

�;?, with the symmetric

term of the coproduct  .y/ equal to x ˝ x. This means there is y such that 2?y D x � x, so x � x D 0 as

desired.
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6.4 Circle product names for the generators of H?K�Ci

We give names to the generators of H?K�Ci and indicate how the bookkeeping becomes increasingly

complicated as the number of sign representations in V where 1 C � � V increases (Example 6.8).

To write these answers, we recall our notation for H?K�. Let

Ň
i 2 H�iK.Z; �/ .i � 0/:

This gives additional generators,
Ň
.i/ D Ň

2i .i � 0/;

of H?K� with coproduct

 . Ň
n/D

n
X

iD0

Ň
n�i ˝ Ň

i :

Then for finite sequences

I D .i1; i2; : : : ; ik/; 0 � i1 < i2 < � � � ;

W D .w1; w2; : : : ; wq/; 0 � w1 <w2 < � � � ;

J D .j�1; j0; j1; : : : ; j`/; where j�1 2 f0; 1g and all other jn � 0;

Y D .y�1;y0;y1; : : : ;yr /; where y�1 2 f0; 1g and all other yn � 0;

define
.e1˛ˇ/

I;J D e
ıj�1

1
ı˛.i1/ ı˛.i2/ ı � � � ı˛.ik/ ıˇ

ıj0

.0/
ıˇ

ıj1

.1/
ı � � � ıˇ

ıj`

.`/
;

.e1˛ˇ/
W ;Y D e

ıy�1

1
ı˛.w1/ ı˛.w2/ ı � � � ı˛.wq/ ıˇ

ıy0

.0/
ıˇ

ıy1

.1/
ı � � � ıˇ

ıjr

.r/
;

jI j D k; jW j D q; kJk D jn; kY k D yn:

Then:

Theorem 6.7 We have

H?K�Ci Š EŒ.e1˛ˇ/
I;J ı N̨.m/; .e1˛ˇ/

W ;Y ı Ň
.t/�

where m> ik and m � l , t >wq and t � yr , jI jC2kJk D i and jW jC2kY k D i �1, and the coproduct

follows by Hopf ring properties from the ˛.i/’s , ˇ.i/’s , N̨.i/’s and Ň
.i/’s.

We offer a proof distinct from that of Theorem 6.6.

Proof Apply the Behrens–Wilson lemma to the generators .e1˛ˇ/
I;J ı N̨.m/ and .e1˛ˇ/

W ;Y ı Ň
.t/

defined in the theorem. The map to the underlying homology is clear as the generators have no a–torsion.

On fixed points,

.e1˛ˇ/
I;J ı N̨.m/ 7! .e1˛ˇ/

I;J ı a.m/; .e1˛ˇ/
W ;Y ı Ň

.t/ 7! .e1˛ˇ/
W ;Y ı a.t/;

giving a basis for K
C2

�Ci ' KiC1 � Ki where the a.i/ are notation for the underlying nonequivariant

homology of K� (see Section 3.2). The multiplicative and comultiplicative structures are deduced

similarly to Theorem 5.6.
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Example 6.8 Consider the RO.C2/–graded bar spectral sequence

E2
�;? ' Tor

H?K2�
�;? .HF2?;HF2?/) H?BK2� Š H?K2�C1:

The indecomposable cycles on the E2–page are

Œe� ı e� �; Œe� ı N̨.i/�; Œ N̨.j1/ ı N̨.j2/�;

�.k/.e� ı e� /; �.k/.e� ı N̨.i//; �.k/. N̨.j1/ ı N̨.j2//;

where �.k/.x/ is notation for the bar representative

Œxj � � � jx�
„ ƒ‚ …

2i copies

:

Since trivial representation suspension is ı multiplication with e1, we can identify Œe� ıe� � with e1ıe� ıe� ,

Œe� ı N̨.i/� with e1 ı e� ı N̨.i/, and Œ N̨.j1/ ı N̨.j2/� with e1 ı N̨.j1/ ı N̨.j2/. Using the bar spectral sequence

pairing (6.5) compatible with

ıW H?.BK� /˝H?
H?.K� /! H?.BK2� /;

we can identify �.k/.e� ı N̨.i// with Ň
.j1C1/ ı N̨.j2C1/, and using the bar spectral sequence pairing (6.5)

compatible with

ıW H?.BK0/˝H?
H?.K2� /! H?.BK2� /;

we can identify �.k/. N̨.j1/ ı N̨.j2// with ˛.i1/ ı N̨.i2/ ı N̨.j3/. By Theorem 6.6, the �.k/.e� ı e� / are also

permanent cycles. However, degree reasons make it impossible to identify them in terms of circle products

(there are too many sign representations) and thus we have a new family of generators which are not

circle products of elements in K1, K� , K�, or K2� .

Corollary 6.9 We have

H?K2�C1 ŠEŒe1ıe�ıe� ; e1ıe�ı N̨.i/; e1ı N̨.j1/ı N̨.j2/; Ň
.j1C1/ı N̨.j2C1/; ˛.i1/ı N̨.i2/ı N̨.j3/; �

.k/.e�ıe� /�

as an algebra , where the coproduct follows by Hopf ring properties from the ˛.i/’s , ˇ.i/’s , N̨.i/’s , Ň
.i/’s ,

and coproduct structure on Tor
HK2�
�;? .HF2?;HF2?/.

As the number of sign representations in V where 1C� � V increases, the number of additional generators

grows, making bookkeeping and identifying homology generators in terms of the bar spectral sequence

pairing (6.5) an increasingly complicated task.

6.5 The RO.C2/–graded twisted bar spectral sequence

We now turn to the twisted analogue of the RO.C2/–graded bar spectral sequence. Similar to the classical

case, the twisted bar construction B�A is filtered by

.B�A/Œt � '
a

t�n�0

�n � An=� � B�A

Algebraic & Geometric Topology, Volume 24 (2024)



The HF2–homology of C2–equivariant Eilenberg–Mac Lane spaces 4511

with associated graded pieces

.B�A/Œt �=.B�A/Œt�1� ' Sdt=2e�Cbt=2c ^ A^t;

where the C2–action on At is given by 
 .a1 ^ � � � ^ an/D .
an ^ � � � ^ 
a1/. Applying H?.�/ to these

filtered spaces gives the twisted bar spectral sequence

E1
t;? D zH?.S

dt=2e�Cbt=2c ^ At /) H?B�A;

with differentials

dr W Er
t;? ! Er

t�r;?�1;

computing H?.B
�A/.

In general, this spectral sequence lacks an explicit E2–page and can be difficult to compute. We give some

readily computable examples which collapse on the E1–page and then turn to analyzing the structure of the

twisted bar spectral sequence in examples computing the RO.C2/–graded homology of C2–equivariant

Eilenberg–Mac Lane spaces.

Example 6.10 The RO.C2/–graded twisted bar spectral sequences computing the homology of

B�
F2 ' K.F2; �/' RP1

tw ; B�S1 ' K.Z; �/' CP1
tw

collapse on the E1–page. As rings,

H?RP1
tw D EŒe� ; N̨.0/; N̨.1/; : : :�D EŒe� �˝�Œ N̨.0/�; je� j D �; j N̨.i/j D �2i ;

H?CP1
tw D EŒ Ň.0/; Ň

.1/; : : :�D �Œe�� where j Ň
.i/j D �2i :

We write the proof for H?RP1
tw as the computation for H?CP1

tw is similar.

Proof We first prove the additive statement that H?RP1
tw is a free H?–module with a single generator in

each degree
Û

n
2

�

�C
�

n
2

Ú

. We then show H?RP1 has ring structure EŒe� ; N̨.0/; N̨.1/; : : :�DEŒe� �˝�Œ N̨.0/�

where je� j D � and j N̨.i/j D 2i�: We start with the twisted bar spectral sequence

E1
t;? D zH?.S

dt=2e�Cbt=2c ^ F
t
2/) H?B�

F2:

Specifically,

E1
t;? Š zH?..B

�
t F2=B

�
t�1/F2/

Š zH?.S
dt=2e�Cbt=2c ^ F

^t
2 / .by definition/

Š zH?.S
dt=2e�Cbt=2c/˝ zH?.N

C2
e .F

^bt=2c
2

^ F
�
2// .freeness & properties of N

C2
e /

Š zH?.S
dt=2e�Cbt=2c/˝ zH?.F2/

^t .homology of norm of underlying free space/

where in the last step, since the homology of F2 splits as the homology of induced representation spheres,

the homology of the norm is the norm of the homology of the underlying space [Hill 2022].

Because the filtration degree t corresponds to the topological degree p and differentials dr shift topological

degree down by one, there are no nonzero dr for r > 1. There can be no nonzero d1 because if there
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p

q

2

1

Figure 4: The E1–page of the twisted bar spectral sequence computing H?K� .

were, on passing to the nonequivariant homology of the underlying space, H�RP1, we would be killing

a known generator which is a contradiction. Hence the homology is free with a single generator in each

degree
Û

n
2

�

� C
�

n
2

Ú

. This E1–page is depicted in Figure 4.

We deduce the multiplicative structure. There is no element in degree 2� so e� must be exterior. The

remaining exterior structure can also be deduced without appealing to Hopf rings. The multiplication by

2 map 2 W K� ! K� , which factors as the composition

K�
��! K� � K�

��! K�

is homotopically trivial, so

0 D 2? W H?K� ! H?K� :

Since 2?. N̨.iC1//D N̨.i/ � N̨.i/, this proves the exterior multiplication.

Theorem 6.11 The RO.C2/–graded twisted bar spectral sequence computing the homology of

B�S� ' K.Z; 2�/

collapses on the E1–page. As a ring ,

H?K.Z; 2�/D EŒe2� �˝�Œ Nx.0/� where je2� j D 2�; j Nx.0/j D 2�:

The proof of Theorem 6.11 is analogous to the computation of H?RP1
tw given in Example 6.10.

6.6 Higher differentials in the RO.C2/–graded twisted bar spectral sequence

In this section, we use our understanding of H?K�� to analyze the structure of the twisted bar spectral

sequence and find evidence of arbitrarily long equivariant degree shifting differentials.

Consider the RO.C2/–graded twisted bar spectral sequence

E1
t;? D zH?.S

dt=2e�Cbt=2c ^ K^t
� /) H?B�K�

Algebraic & Geometric Topology, Volume 24 (2024)



The HF2–homology of C2–equivariant Eilenberg–Mac Lane spaces 4513

p

q

�1

0

1

2

3

4

5

6

7

8

�3 �2 �1 1 2 3 4 5 6 7 8 9 10 11 12

Œz1� Œz2jz2�

Œz1jz2jz2jz1�

Figure 5: Twisted bar representatives fixed under the C2–action support full double cones.

computing H?K2� . There are two basic building blocks in this spectral sequence. Twisted bar represen-

tatives Œz1 j � � � j zn�, where zi 2 H?K� , that are fixed under the C2–action of the twisted bar construction

and those that possess nontrivial C2–action. The twisted bar representatives which are fixed support a full

double cone, that is an RO.C2/–graded representation degree shifted copy of the homology of the point.

An example where jz1j D � and jz2j D � is shown in Figure 5. Let 
 denote the generator of C2. The

remaining twisted bar representatives come in pairs Œz1 j � � � j zn� and 
 � Œz1 j � � � j zn�. Each pair gives a

copy of C2C and we choose a single twisted bar representative to represent each copy. In the twisted

bar spectral sequence, the representatives Œz1 j � � � j zn� with nontrivial C2–action support shifted degree

copies of H?C2C as depicted in Figure 6.

p

q

�1

0

1

2

3

4

5

6

7

8

�3 �2 �1 1 2 3 4 5 6 7 8 9 10 11 12

Œz1jz2� Œz1jz2jz1z2�

Œz2jz1jz1z2�

Figure 6: Twisted bar representatives with nontrivial C2 action support copies of H?C2C.
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p

q

�1

0

1

2

3

4

5

6

7

8

�3 �2 �1 1 2 3 4 5 6 7 8 9 10 11 12

Œxy�

Œx�� Œy�

d1

Œxjy�

Œxyjxy�

Œxjyjxy�

Œyjxjxy�

d1

Œxjyjyjx�

d1

d2

Figure 7: Differentials in the twisted bar spectral sequence computing H?K2� .

A portion of the twisted bar spectral sequence computing H?K2� appears in Figure 7, where x represents

e� and y represents N̨.0/. To compute the d1–differential in this spectral sequence, consider the cofiber

sequence

S0 a�! S� ! Ca ' C2C:

This induces a long exact sequence in homology involving

H?S0 �a�! H?S� ! H?.C2C/;

as shown in Figure 8. The map

H?.C2C/! H?.S
��1/

is the map depicted in Figure 9.

p

q

�1

0

1

2

3

�1 1 2 3 4

H?S0

p

q

�1

0

1

2

3

�1 1 2 3 4

H?S�

p

q

�1

0

1

2

3

�1 1 2 3 4

H?.C2C/Š F2Œu
Û�f�1g

Figure 8: Computing a d1–differential in the twisted bar spectral sequence.
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H?.C2C/Š F2Œu
Û�f�1g

p

q

�1

0

1

2

3

H?S��1

hidden

extension

Figure 9: RO.C2/–graded twisted bar spectral sequence d1–differential with hidden extension.

We have shown that the d1–differentials marked in green in Figure 7 both exist and have the behavior of

the map in Figure 8. We also know from Theorem 5.6 that

H?K2� Š EŒe2� ; N̨.j1/ ı N̨.j2/�

where j1 � j2.

Since the RO.C2/–graded homology of K2� is free over the RO.C2/–graded homology of a point, all

copies of H?C2C appearing on the E1–page must either be killed off or used in shifting the representation

degree of the RO.C2/–graded homology of a point, similar to the equivariant degree shifting differential

d1 and hidden extension of Figure 9.

We also know the underlying integer-graded homology of K2, and have both the forgetful map

H?K2� ! H2K2

and the fixed point map

H?K2� ! H�.K2� /
C2 Š H�.K2 � K1 � K0/:

Given that H?K2� is free and in the underlying nonequivariant case Œxy j xy� is killed by a d1 differential

(all generators of H?K2� have nontrivial underlying homology), the entire double cone supported by the

twisted bar representative Œxy j xy� must be hit by a differential.

There is a d1–differential and hidden extension shifting the double cone supported by Œxy j xy� up

by representation degree � so that by the E2–page the double cone is in fact in representation degree

�.jxjC jyj/C�C� D �.�C�/C�C� D 4�C� . We hypothesize there is a d2–differential induced by

a d1–differential supported by Œx j y j y j x�. We notice that Œx j y j y j x� is a norm of Œxy j xy�. We expect

such norms play an important role in governing the structure of all the higher nontrivial differentials.

As one goes farther along in the spectral sequence, considering cycles supported by twisted bar repre-

sentatives such as Œxy j xy j xy� and Œxyz j xyz�, which must all be killed off in order to recover the

correct underlying homology, we see that arbitrarily long equivariant degree shifting differentials are

required in order to arrive at the answer given by Theorem 5.6. We conjecture all such cycles are killed

by differentials induced by a norm structure on the twisted bar spectral sequence.
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7 Related questions

We describe a few questions of immediate interest given the results of this paper.

7.1 Twisted Tor and the RO.C2/–graded twisted bar spectral sequence

In the C2–equivariant setting, the RO.C2/–graded homology of each signed delooping, KV C� , of an

equivariant Eilenberg–Mac Lane space, KV , also independently arises as the result of a C2–equivariant

twisted Tor computation. This can be seen by taking the model of �–delooping defined in [Hill 2022]. In

this model, A is an E� –algebra and

B� .A/D B.A;Map.C2;A/;Map.C2;�//;

where the action of Map.C2;A/ on A is via the E� –structure [Hill 2022, Definition 5.10]. In the case that

A has R–free homology, Hill [2022, Theorem 5.11] constructs yet another twisted bar spectral sequence

with E2–page

E
s;?

2
D Tor

N
C2
e .i�

e R�.i�
e A//

�s .R?.Map.C2;X //;R?.A//) R?�s.B
� .A//:

Computations with this spectral sequence are complicated and the literature lacks substantial examples.

However, it does have a twisted Tor functor as its E2–page and thus it would be interesting to compare

with our computations.

One notable feature of the nonequivariant computation of H�K.Fp;�/ is that the integer graded bar

spectral sequences collapse on the E2–page [Wilson 1982]. In contrast, we saw that the RO.C2/–graded

twisted bar spectral sequences computing H?K�� have arbitrarily long differentials in Section 6.6. Thus

under favorable circumstances, we hope to formulate a twisted bar spectral sequence with E2–page a

twisted Tor functor arising as a derived functor of the twisted product of HF2–modules, which collapses

in the relevant cases of H?K�� .

Given our computation of H?K�� , such a twisted Tor over an exterior algebra should have the property

that

Tor
EŒx�
tw Š EŒ�x�˝�ŒNC2

e x�:

7.2 Global Hopf rings

In their work computing the integer graded homology of classical nonequivariant Eilenberg–Mac Lane

spaces, Ravenel and Wilson obtain a global statement. Specifically:

Theorem C (Ravenel and Wilson [Wilson 1982]) H�K� is the free Hopf ring on H�K0 D H�ŒFp �,

H�K1, and H�CP1 � H�K2 subject to the relation e1 ı e1 D ˇ1.

It is natural to ask if a similar statement be obtained in the C2–equivariant case, and in that case, what

specifically, is the global structure of the Hopf rings that do arise. One may also ask how the Hopf rings
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here relate to Hill and Hopkins’ work [2018] extending Ravenel and Wilson’s construction of a universal

Hopf ring over M U � to C2–equivariant homotopy theory.

7.3 Stabilizing to the C2–dual Steenrod algebra

Besides understanding a global version of the unstable story, it also remains to fully understand how the

unstable answer for H?KV stabilizes to give the C2–equivariant dual Steenrod algebra,

A
C2
? D HF2Œ�0; �1; : : : ; �1; �2; : : :�=.�

2
i D .u C a�0/�iC1 C a�iC1/:

By Hu and Kriz’s construction [2001] of the C2–equivariant dual Steenrod algebra, we should homology

suspend Ň
.i/ to define

�i 2 H.2i �1/�H

and N̨.i/ to define

�i 2 H2i ���H:

However, it is not at all clear what an arbitrary element in H?KV should stabilize to in the C2–equivariant

dual Steenrod algebra. Additionally, there is the interesting problem of understanding how the stable

relation �2
i D .u C a�0/�iC1 C a�iC1 arises unstably. We look forward to studying these questions in

forthcoming work.
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