Algebraic ¢ Geometric

Topology

Volume 24 (2024)

The HTF ,-homology of C,—equivariant Eilenberg—Mac Lane spaces

SARAH PETERSEN

:'msp



:'msp

Algebraic & Geometric Topology 24:8 (2024) 44874518
DOI: 10.2140/agt.2024.24.4487

Published: 17 December 2024

The H FF,-homology of C,—equivariant Eilenberg-Mac Lane spaces

SARAH PETERSEN

We extend Ravenel-Wilson Hopf ring techniques to C,—equivariant homotopy theory. Our main appli-
cation and motivation is a computation of the RO(C,)—graded homology of C,—equivariant Eilenberg—
Mac Lane spaces. The result we obtain for Cy—equivariant Eilenberg—Mac Lane spaces associated to
the constant Mackey functor [, gives a C,—equivariant analogue of the classical computation due to
Serre. We also investigate a twisted bar spectral sequence computing the homology of these equivariant
Eilenberg—Mac Lane spaces and suggest the existence of another twisted bar spectral sequence with
E?—page given in terms of a twisted Tor functor.
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Computations of invariants in equivariant homotopy theory have powerful applications contributing to

solutions of outstanding classification problems in geometry, topology, and algebra. A primary example

is Hill, Hopkins, and Ravenel’s solution [Hill et al. 2016] to the Kervaire invariant one problem, which

used computations in equivariant homotopy theory to answer the question of when a framed (4k+2)—

dimensional manifold can be surgically converted into a sphere. Despite the success of numerous

applications, many equivariant computations remain difficult to access due to their rich structure. This

is especially true for (unstable) equivariant spaces, for which many computations have not yet been

completed, despite their analogous nonequivariant results being well known.

© 2024 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.



4488 Sarah Petersen

This paper extends Ravenel-Wilson Hopf ring techniques [Ravenel and Wilson 1977; 1980; Wilson
1982] to Cy—equivariant homotopy theory. Our main application and motivation is a computation of
the RO(C,)—graded homology of C—equivariant Eilenberg—Mac Lane spaces. The result, stated over
the course of Theorems 5.6, 6.6, and 6.7, is a Cy—equivariant analogue of the classical cohomology
computation completed by Serre [1953].

Nonequivariantly, Serre applied the Borel theorem (see, for instance [Mosher and Tangora 1968, page 88,
Theorem 1]) to the path space fibration

K(Fp,n) ~QK(Fy,n+1) — P(K(Fp,n+1)) > K(Fp,n+1),

to calculate the cohomology of K(F,,n + 1) given H* K(IF,, n). In C,—equivariant homotopy theory,
the constant Mackey functor [, is the analogue of the group [F, and the Eilenberg—Mac Lane spaces
Ky = K(FF,, V) are graded on the real representations V' of the group C, rather than on the integers.
Since the group C, has two irreducible real representations, the trivial representation and the sign
representation o, the analogous equivariant computation would require computing the cohomology of
Ky 4+ from H* Ky in addition to H* Ky 41 from H* Ky,. This would necessitate having a so called
signed or twisted version of the Borel theorem. However, no such theorem is known to exist, making it
difficult to study the cohomology of the spaces Ky 1, with these techniques. We call Ky, a signed
delooping of Ky since the space of signed loops Q° Ky 4, >~ Ky .

While direct extension of Serre’s original argument does not allow for the computation of the cohomology
of signed deloopings, it has been successfully applied to study trivial representation deloopings of K,
whose cohomology is known [Hu and Kriz 2001]. This approach is described in Ugur Yigit’s thesis
[2019], where it is noted that the RO(C;)—graded cohomology of all C,—equivariant Eilenberg—Mac Lane
spaces K44 can be computed using this method. Throughout, we use * to denote integer grading and
reserve x to denote grading by finite-dimensional real representations.

A major reason to study Ravenel-Wilson Hopf ring techniques in C—equivariant homotopy theory is that
they provide a way to study o—deloopings. These techniques, which investigate multiplicative structures
coming from H-space maps on spaces having a graded multiplication, lend additional structure that can
be exploited to complete computations.

An important tool in classical applications of Ravenel-Wilson Hopf ring techniques is the bar construc-
tion B. This construction plays a significant role in computation because B is a trivial representation
delooping functor with BKy ~ Ky 1. In the Cy—equivariant world, there is a twisted bar construction B,
which is a sign representation delooping functor with B® Kyy ~ Ky 4, [Liu 2020]. We use these
two constructions to explicitly model multiplicative structures on the spaces Ky  at the point set level
(Theorem 5.4), directly extending work by Ravenel and Wilson [1980]. We also describe our approach to
using this structure to investigate signed and trivial representation deloopings in Section 5.

Whereas Ravenel and Wilson use a collapsing integer-graded bar spectral sequence to compute by
induction on n the homology of classical nonequivariant Eilenberg—Mac Lane spaces [Wilson 1982], we
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deduce many of our equivariant computations from nonequivariant ones using a computational method
introduced by Behrens and Wilson [2018, Lemma 2.8]. Starting with the RO(C,)—graded homology
of K5, we use the graded multiplication on the spaces Ky coming from the genuine equivariant ring
structure on HFF ,, to produce elements of the RO(C,)—graded homology of K.s. We then use the point
set level understanding of multiplicative structures on the spaces K, developed in Theorem 5.4 to verify
that these elements in fact form a free basis for the homology.

Once we have computed H, K« (Theorem 5.6), we use Hopf ring structures in RO(C,)—graded bar
spectral sequences to compute H, K5+ j (Theorem 6.6) by induction on j. In the case where i = 1, that is
for the spaces K4, we name all homology generators in terms of the Hopf ring structure (Theorem 6.7).
The task of naming homology generators for the spaces Ky, where o0 + 1 C V, increases in complexity
as the number of sign representations increases. We illustrative this phenomenon in Section 6.

Knowing the RO(C,)—graded homology of the C,—equivariant Eilenberg—Mac Lane spaces Ky, we
turn to investigating the RO(C,)—graded twisted bar spectral sequence. Much like the classical integer
graded bar spectral sequence, the RO(C;)—graded twisted bar spectral sequence arises from a filtered
complex. However, computations with this twisted spectral sequence are more complicated than in
the classical case. For example, in contrast to the classical case where the integer-graded bar spectral
sequence computing the nonequivariant mod p homology of the classical Eilenberg—Mac Lane spaces
Ky = K(IFp, *) collapses on the E 2_page [Wilson 1982], we find there are arbitrarily long equivariant
degree shifting differentials, similar to those observed in Kronholm’s study [2010] of the cellular spectral
sequence, in the RO(C,)—graded twisted bar spectral sequences computing the homology of the signed
representation spaces Kjq, where n > 2.

While the RO(C,)—graded twisted bar spectral sequence is quite complicated in general, the differentials
and extensions appear to arise in an extremely structured way, governed by a norm structure. We use
our knowledge of H, K., and the E°°—page to deduce information about the RO(C,)—graded twisted
bar spectral sequences computing the homology of K.,. This allows us to write down conjectures
concerning many of the differentials in Section 6. Our equivariant computations show that, unlike in the
nonequivariant integer graded situation, the RO(C,)—graded twisted bar spectral sequences computing
H, K, s, where n > 2, have a rich structure quite distinct from the collapsing bar spectral sequence in the
classical nonequivariant case [Wilson 1982]. Differences between integer graded and RO(C,)—graded
bar and twisted bar spectral sequences are discussed in Section 6.

In parallel with calculating the homology of a space, the corresponding computational tools are worth
investigating in a purely algebraic setting. This study of the homological algebra involved produces tools
which can also be applied in settings outside of topology. One example of this are Tor functors, the derived
functors of the tensor product of modules over a ring. Besides playing a central role within algebraic
topology theorems such as the Kiinneth theorem and coefficient theorem, Tor functors can also be used to
calculate the homology of groups, Lie algebras, and associative algebras. Within the context of the classical
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Ravenel-Wilson Hopf ring method, the identification of the E2—page of the bar spectral sequence with
Tor allows for the computations Tor? [x](IFp, Fp) ~ I'[sx] and TorT[x] (Fp,Fp) ~ E[sx] ® I'[¢x], where
sx is the suspension of x, ¢x is the transpotent, and 7'[x] is the truncated polynomial ring Fj[x]/(x?),
to be used inductively in the calculations of the mod p homology of Eilenberg—Mac Lane spaces [Wilson
1982] and the Morava K—theory of Eilenberg—Mac Lane spaces [Ravenel and Wilson 1980].

In the Cy—equivariant setting, the RO(C;)—graded homology of each signed delooping, Ky ., of an
equivariant Eilenberg—Mac Lane space, Ky, also independently arises as the result of a C,—equivariant
twisted Tor computation. Thus under favorable circumstances, we believe it should be possible to
formulate a twisted bar spectral sequence with E2—page a twisted Tor functor arising as a derived functor
of the twisted product of HF ,—modules and use this to compute the E2—page. However, we have not yet
constructed such a spectral sequence.

Additionally, twisted Tor calculations are not yet well understood, with a complete lack of known examples.
Theorems 5.6, 6.6, and 6.7 provide a countably infinite number of initial examples, which in turn lend
insight on how such calculations might proceed in general. We discuss how the homology H. Ky 4
arises as a result of twisted Tor and give evidence for Torfv[x](H*, H,) >~ E[ox]® '[N eC 2(x)], where
ox is the signed suspension of x and N eCZ is the norm, under favorable circumstances in Section 7.

1.1 Statement of theorems

We state our main results. Recall that HF 5 has distinguished elements a € HE»,_oy and u € HE ;3.
To describe our answer for H, K., we need notation for H, K. Let

ec € Ho Ky, a;j€ HyiKs (i 20).
Then the homology, H,. K, is exterior on generators

ey, Q) = Ui i=0)
with coproduct
Yieg) =1Qes+e®1+ales ®es),

n n—1
V(@) =) @i @+ Y uleoly_ - ® esli).
i=0 i=0
For finite sequences
J = (o.Jo.J1,--)s  Jk =0,
define

—~\J _ ,%jo »~°J0 L =°j1 .
(e®)™ = €5'7 0l(g) 0y ©

where the o—product comes from the pairing o: Ky A Ky — Ky 4w

Algebraic € Geometric Topology, Volume 24 (2024)



The HF ,—homology of Co—equivariant Eilenberg—Mac Lane spaces 4491
Theorem 5.6 Then

Ho Ky = ®; E[(eq®)’]
as an algebra, where the tensor product is over all J and the coproduct follows by Hopf ring properties

from the &'’s.

Interestingly, this answer mirrors the classical nonequivariant answer at the prime 2 [Ravenel and Wilson
1980].
From there, we use the RO(C;)—graded bar spectral sequence to compute H, K44 j be induction on j,

starting with H, K;5. We show:

Theorem 6.6 The RO(C,)—graded homology of Ky, where o + 1 C V, is exterior on generators given
by the cycles on the E*—page of the RO(C,)—graded spectral sequence computing H, BKy _;.

For the spaces K44+, we name all homology generators in terms of the Hopf ring structure. To describe
these rings, we need notation for H, K, H. K>, and H, K,. Let
e1 € HHKy, o;€ Hy;Kq, ﬁiEEbbjCiﬂw, i>0.

This gives generators
er, oG =0y, PBu) = Bpi
of H, K; and H, K, with coproducts
n n
Vim) =) ani®ai, V(Bn) =) Pui®pi.

i=0 i=0

Bi € Hyi K(Z,p) (i >0).

Also let

This gives additional generators, ) )
Biy=PBy (i 20)
of H, K, with coproduct

1/f(lgn) = Zﬂ_n—i ®,3_i-
i=0

Then for finite sequences
I =(iy,ia,...,10), 0<ij<ip<---,
W = (w1, wa,...,wy), 0wy <wy <---,
J=(-1,J0,J1,---5j¢), where j_q €{0,1} and all other j, >0,
Y =0-1,%0,%1,---,r), where y_; € {0, 1} and all other y, > 0,
define . . . .
(eyaf) = ef"l 0 0l(jy) © (iy) O+ O O(jy) oﬁz’({)" oﬁf{)l o---oﬂzej)z,
(elogIB)W’Y = e(;y_l O () © U(y) O+ O U(yy,) 0138))0 013?1)))1 o...oﬂ?rj)’,
U=k, Wi=q [IJlI=Z%jn. Y]=Zyn
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Theorem 6.7 We have
HoKoi = E[(eaf)! o dgmy, (e1aB)"Y o B

where m > iy and m > {,t > wg and t > y,, |I|+2||J| =i and |W|+2||Y | =i —1, and the coproduct
follows by Hopf ring properties from the a;y’s, B()’s, &(;y’s, and ,B_(i)’s.

We observe that this equivariant answer mirrors the classical nonequivariant answer for odd primes
[Ravenel and Wilson 1980]. For the reader’s convenience, we explicitly write some low-dimensional

instances of the theorem. In particular,

H. K, = Eley 0&G), oy © &), Bi)]
and

Hy Kotz = Eler 00(y) 0 Qir). %iy) © %in) © Xz €1 © Bian)s Bjn) © Aoy i) © Biin)]

where i1 < i3, j1 < j; and the coproduct follows by Hopf ring properties from the a;)’s, B(;)’s, @(;)’s,
and B(i)’s.

Having computed the homology of the C—equivariant Eilenberg—Mac Lane spaces Ky, we turn to using
the results to investigate the twisted bar spectral sequence arising from the twisted bar construction.
Unlike the nonequivariant bar spectral sequence, the twisted bar spectral sequence E2 page lacks an
explicit homological description. This makes computations difficult in general. However, for the spaces
BF,~ K; ~RP, B°S! ~ K(Z, p) =~ CP, and B°S° ~ K(Z,20), there is a gap in the spectral
sequence forcing all differentials d” for » > 1 to be zero. Further for these spaces, if there were a nonzero
d! differential, we would end up killing a known generator of the underlying nonequivariant integer
graded homology and arrive at a contradiction. Thus we can calculate the additive RO(C,)—graded
homology of these spaces completely. The multiplicative structure can also be deduced from the twisted
bar spectral sequence.

Example 6.10 We have

H.RPZ = Eles, (o), &(1), - -] = Eles] @ T[ao)], les| = 0, |@y| = p2°,

H.CP3 = E[B(0). Ba).--1=Tle,] where |B)| = p2'.
Theorem 6.11 We have

HyK(Z,20) = Elezs] @ '[X(g)] where |ess| = 20, [X(0)| = 2p.

Remark 1.1 The spaces B°F, ~ Ky ~RP and B°S! ~ K(Z, p) ~ CPZ have well-known models
arising as colimits of Cy—equivariant Grassmanian manifolds. In particular, if Rt/ is the real C,—
representation composed of a direct sum of i copies of the trivial representation and j copies of the sign

representation, and the complex C,—representation C:+/9 is defined similarly, then R PSY is the colimit
of the natural cellular inclusions

PN ]P(R1+U) ;)P(RZ-HT) (_)]P;(]R2+20') ...
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and CPZ’ is the colimit of the natural cellular inclusions
cer > P(C119) 5 P(C?19) > P(C?T29) s ...,

In contrast, the space B°S? ~ K(Z,20) remains more mysterious. The author does not know of any
models for this space besides applying the twisted bar construction to S°.

In forthcoming work, we will use the homology of H, Ky to deduce differentials in the twisted bar
spectral sequence. The beginning stages of this work are described in Section 6.

1.2 Paper structure

This paper has two primary aims: extending Ravenel-Wilson Hopf ring techniques [Ravenel and Wilson
1977; 1980; Wilson 1982] to Cy—equivariant homotopy theory, and computing the RO(C,)—graded
homology of C,—equivariant Eilenberg—Mac Lane spaces associated to the constant Mackey functor .
These topics are investigated in several sections.

The first section consists of an introduction providing context for the main results, a description of the
paper structure, and a list of notational conventions.

The second section recalls classical Ravenel-Wilson Hopf ring methods.

The third section recollects material from equivariant homotopy theory necessary for understanding our
proof and computations.

The fourth section details the bar and twisted bar constructions, which are trivial and sign representation
delooping functors respectively.

The fifth section applies the preliminaries of the previous sections to study multiplicative structures on
C,—equivariant Eilenberg—Mac Lane spaces. This section contains some primary extensions of Ravenel—
Wilson Hopf ring methods to C,—equivariant homotopy theory (Theorem 5.4). It also contains our
calculation of the RO(C,)—graded homology of many C,—equivariant Eilenberg—Mac Lane spaces Ky
associated to the constant Mackey functor F, (Theorems 5.6, 6.6, and 6.7).

The sixth section details a number of computations and observations regarding the RO(C,)—graded bar
and twisted bar spectral sequences. The examples we provide should be a useful stepping stone towards
further computations.

The seventh section describes a few questions of immediate interest given the results of this paper.

1.3 Notational conventions
e The asterisk * denotes integer grading.

e The star » denotes representation grading.

Algebraic € Geometric Topology, Volume 24 (2024)
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¢ By the classical or nonequivariant Eilenberg—Mac Lane space K, we mean the classical nonequiv-
ariant Eilenberg—Mac Lane space K, = K(IFp, n), where p is prime.

e (, is the cyclic group of order two with Cy = (y).
e ¢ denotes the one-dimensional sign representation of C,.
e pis the regular representation of Cj.

o SV is the one-point compactification of a finite-dimensional real representation V' where the point
at infinity is given a trivial group action and taken as the base point.

e V() =8V A—

o QY (—) is the space of continuous based maps Map, (S, —) where the group action is given by
conjugation.

¢ Y is the category of spectra.

o ¥C is the category of G—spectra indexed on a complete universe.
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2 Classical Ravenel-Wilson Hopf ring methods

Classically, one place Hopf rings arise in homotopy theory is in the study of Q2—spectra. Consider an

Q-spectrum

G =1{Gy}

and a multiplicative homology theory E.(—) with a Kiinneth isomorphism for the spaces G;. The
Q-spectrum G represents a generalized cohomology theory with

G*X ~[X, G4l

Since GX X is an abelian group, G must be a homotopy commutative H—space (in fact G is an infinite
loop space). This H—space structure
*x: G X G — Gy,

gives rise to a product in homology

and the Kiinneth isomorphism implies the homology is in fact a Hopf algebra.
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If G is a ring spectrum, then G* X is a graded ring and the graded abelian group object G« becomes a
graded ring object in the homotopy category. The multiplication

GFX xG"X — GFTx
has a corresponding multiplication in G,
0: Gy X Gy = Gy,

and applying E.(—) we have

turning £+ G into a graded ring object in the category of coalgebras.

As aring, E+G has a distributive law,

2.1 xo(y*z)= Z +(x'0y)*(x"0z) where Y¥(x)= Zx/ ® x”,
coming from the distributive law in G* X.

Ravenel and Wilson pursued the idea that these two products could be used to construct many elements in
homology from just a few. They successfully applied this approach to compute the Hopf ring for complex
cobordism [Ravenel and Wilson 1977], the Morava K—theory of nonequivariant Eilenberg—Mac Lane
spaces [Ravenel and Wilson 1980], and the mod p homology of classical Eilenberg—Mac Lane spaces
[Wilson 1982].

In the case of classical Eilenberg—Mac Lane spaces, the Eilenberg—Mac Lane spectrum
HFp ={K(Fp,n)} = {Kn}

is a ring spectrum with QK| >~ Kj,. Further, Hy(—) := H«(—;IF), ordinary homology with mod p
coefficients, has a Kiinneth isomorphism and thus the homology H K has the structure of a Hopf ring.

A key computational insight of Ravenel and Wilson was that the bar spectral sequence

E2, ~ Tor£

*,%k —

in(E*’ Ey) = ExGryy

is in fact a spectral sequence of Hopf algebras. The additional structure of the o multiplication in the bar
spectral sequence meant that they could inductively deduce the homology of Eilenberg—Mac Lane spaces
using standard homological algebra. Starting with elements in Hy K; and H.C P and identifying circle
products in the bar spectral sequence, Ravenel and Wilson computed the Hopf ring associated to the
mod p Eilenberg—Mac Lane spectrum [Wilson 1982].

To describe their answer, let
e1 € HHKy, o;€ Hy);Kq, ,BiGHzi(CPOO, i>0.
The generators are
er, g =i,  Bu) = Ppi

Algebraic € Geometric Topology, Volume 24 (2024)
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with coproduct

V) =) tn-i @i, V(Ba) =) Bn-i®pi.

i=0 i=0
For finite sequences,
I=(i,ip,..), 0=5ij<ip<---,

J = (o j1.--2), Jk =0,
define

ar =auyoagyo-. B =B o) o
and let 7'(x) denote the truncated polynomial algebra IF,[x]/(x?).
Theorem A (Ravenel and Wilson [Wilson 1982]) We have

HyK«~®p yE(e;oarop”)®1 5 T(arop”)
as an algebra where the tensor product is over all I and J and the coproduct follows by Hopf ring
properties from the «’s and B’s.
When the prime p = 2, there are additional relations ej oe; = B(g) and a;—1) o ct;—1) = B(;). In this
case, the theorem can be stated using only circle products of generators of R P,

For finite sequences
I:(i(_l),io,il,iz,...), ir >0,
define

I _ oi1 oig oiy ...
(e1a)” =e, 00y Oy O e

Theorem B (Ravenel and Wilson [Wilson 1982]) Then
HyK, =~ QrE[(e;)]],
where ) iy = n, and considering all spaces at once,
HyKy ~ @ E[(e;a)]

as an algebra where the tensor product is over all I and the coproduct follows by Hopf ring properties

from the o'’s.

Ravenel and Wilson also show that homology suspending ;) to define

Si S HZ(pi—l)Hv
and ;) to define
T; S Hzpi_lH.

Theorem A then implies that stably,
H.H~ E[‘L’o,‘[], .. .]® P[El,gz, .. ]
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3 Equivariant preliminaries

We set notation and recall equivariant foundations. Throughout, the group G = C;.

Given an orthogonal real G—representation V', SV denotes the representation sphere given by the one-point
compactification of V. For a p—dimensional real Cy—representation V', we write

V =~ R(P4:0) g R@:9)

where R0 s the trivial 1-dimensional real representation of C and R-1 js the sign representation.
We allow p and ¢ to be integers, so V' may be a virtual representation. The integer p is called the
topological dimension while ¢ is the weight or twisted dimension of V = R@D,

The V'™ graded component of the ordinary RO(C,)-graded Bredon equivariant homology of a C,—space
X with coefficients in the constant Mackey functor [, is denoted ng (X;F2) = Hpg(X;F,). To
consider all representations at once we write H,(X), and when working nonequivariantly H(X¢)
denotes the singular homology of the underlying topological space with [F, coefficients.

It is often convenient to plot the bigraded homology in the plane. Our plots have topological dimension p
on the horizontal axis and weight ¢ on the vertical axis.

The homology of a point with coefficients in the constant Mackey functor [ ,, is the bigraded ring

Ho(pn E2) = Fafo, )@ 2 216)
where |a| = —o, |u| = 1—0, and |8| = 20 — 2. A bigraded plot of H,(pt,F,) appears in Figure 1. The
image on the left is more detailed with each lattice point within the two cones representing a copy of F5.
The image on the right is a more succinct representation and appears in figures illustrating our spectral

sequence computations.

The genuine equivariant Eilenberg—Mac Lane spectrum representing H,(—) is HF ,, the Eilenberg—
Mac Lane spectrum for the C, constant Mackey functor F,. It has underlying nonequivariant spec-
trum HF,. We denote the spaces of HF , by

HF, ={KF2, V)}yakot! = 1Kv}vekoti-

(/‘

> P > P

Figure 1: H,(pt,F,) with axis gradings determined by V ~ R?~7 ¢ R4°.
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Analogously to the nonequivariant case, HF, is characterized up to C,—equivariant homotopy by
HY (X;F,) =[X, Ky] naturally for all C,—spaces X.

We recall a computational lemma due to Behrens and Wilson [2018], which allows us to check whether a
set of elements in the RO(C,)-homology in fact forms a free basis for H.(X), greatly simplifying our
computations. To state this lemma, we first define two homomorphisms, ®¢ and ®€2. Let Ca be the
cofiber of the Euler class a € n_Cf,S given geometrically by the inclusion

S0 s 59,
Applying ngz to the map
HAX > HAXACa,

we get a homomorphism
P°: HV(X) — H|V|(Xe).

Taking geometric fixed points of a map
SY -~ HAX

gives a map
C
AN LIS 2 13

Using the equivalence H,?X ~ Hy(X®2)[a~u] coming from H®C2 ~ Viso Y HF, and passing to
the quotient by the ideal generated by a~!u gives the homomorphism

®: Hy(X) — H oy (X P9,
Lemma 3.1 [Behrens and Wilson 2018] Suppose X € SpC2 and {b;} is a set of elements of H,(X)
such that
(1) {®°(b;)} is a basis of Hy«(X*¢) and
(2) {®C2(b;)} is a basis of Hyx(X ®€2).
Then H,(X) is free over H, and {b;} is a basis.

We use the following notation for H* K.

Theorem 3.2 [Hu and Kriz 2001] H*(RPZ°) = H*(pt)[e, B]/(a? = aa +up) where |a| =0, |B| = p,
la| =0, and |u| =0 —1.

Since this cohomology is free, the homology H,. K, immediately follows. In our notation we have
elements
ee € H Ky, a;j € HyiKs (i >0).

The generators are
es, 5[(,‘) = 5[21' (i > 0)

Algebraic € Geometric Topology, Volume 24 (2024)
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with coproduct
Vieo) =1Q®es +ec ®1+ales ®es),

n n—1
v(an) = Z&n—i ®a; + Z u(egln—1—i  eg;),

i=0 i=0
and ring structure Hy K; >~ Eles, &(;)] which can be deduced from the twisted bar spectral sequence
computing H,B°F, =~ H.RPY .
We also require notation for H, K(Z, p). This can be deduced by applying the RO(C,)—graded bar
spectral sequence to S°. Let )

Bie HyK(Z.p) (i >0).
The generators are . .
Biy=PBy (20)
with coproduct
n
Y(Bn) =) Bn-i ®Bi
i=0

and ring structure

H,K(Z, p) ~ E[B]-
3.1 The fixed point spaces of C,—equivariant Eilenberg—-Mac Lane spaces

It is useful to understand the C, fixed points of the C,—equivariant Eilenberg—Mac Lane spaces Ky in
applications of the Behrens—Wilson computational lemma. We state a relevant proposition due to Caruso.

Proposition 3.3 [Caruso 1999] Let G = C, and V be an n—dimensional fixed point free virtual
representation of G with n > 0 and m an integer. Then

K(@Ep,m+ V)P ~ K(Fy,m)x---x K(Fy, m+n).
3.2 Notation for the underlying nonequivariant homology of K 5 z

To use the Behrens—Wilson lemma, we also need to understand the homology of the fixed point spaces.
Applying Theorem B to the nonequivariant homology of (K,y)¢? gives

Ho(KS2) ~ Eleq. a(,). (i) 0 iy - - - A(iy) 0 0 (i)

where 0 <i; <iy <---<iy, |eg] =0, and |a(,~)| =i

4 Bar and twisted bar constructions

A first task in implementing the Ravenel-Wilson Hopf ring approach is to generalize the bar spectral
sequence to the Cy—equivariant case. In the classical story, the bar spectral sequence is used to inductively
compute the homology of K,, >~ BK,_ from HxK,_1. In the Cy—equivariant setting, our spaces Ky
are bigraded on the trivial and sign representations of C,. Due to this new grading, we should now
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additionally compute the homology of Ky 4, inductively from H, Ky . In order to do so, we need a
good model of o—delooping. We begin by reviewing the classical bar construction which is a trivial
representation delooping functor.

Construction 4.1 (Classical bar construction) For a topological monoid A, the pointed space BA is
defined as a quotient

BA=][A"x 4"/ ~
n
where the relation ~ is generated by
) (ti...tyay,....ap) ~ 1, biveo s tyaay, ..., di, (@i@is1), ... .ap) if t; = tiyq or a; = *;

(2) for i = n, delete the last coordinate if t, = 1 or a, = *; for i = 0, delete the first coordinate if
to = —1 or ag = *; and A" denotes the topological simplex

A" ={(t1,ts,....tn) ER" | =1 <t; <--- <1, < 1}.

Remark 4.2 We use the slightly nonstandard topological n—simplex

AN ={(t1,ty,....ty) eER" | -1 <t; <--- <1, <1}
so that when we introduce a C, action, the simplex rotates around the origin. This makes writing
down a model for the H—space structure on the Cr—equivariant Eilenberg—Mac Lane spaces K more
straightforward.
Given a commutative monoid A, we observe that BA is also a commutative monoid via the pairing

*: BX x BX - BX

defined by

(ll, Y A o TP x")*a' (tn+1a o Indms Xng1s - xn+m) = (Zr(l)’ ey tr(n+k)9 Xz(1)s---» x,(,,+m)),
where 7 is any element of the symmetric group on n + k letters such that 7;(;) < t7(;+1). This pairing

was first described by Milgram [1967].

Definition 4.3 [Liu 2020] A C,-space 4 is a twisted monoid if it is a topological monoid in the
nonequivariant sense with the product satisfying y(xy) = y(y)y(x) where C; >~ (y).

Construction 4.4 [Liu 2020] For any twisted monoid A, construct B A in the same way as the
nonequivariant bar construction, that is such that By A = A" x A". However, define a C,—action on A"

by
v(ay,az,...,an) = (yan, yan—1,...,yd1).

Then the C,—actions commute with the face and degeneracy maps as y os; = sy—;joy and yod; = dy—joy.
Further, define the C,—action on each

A" ={(t1,ty,...,tp) eRT | 1<y <. <1, <1}
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by y(ti,t2,...,tn) = (—ty,—ty—1,...,—t1)). Then define B° A to be the geometric realization
[Jarxar/~.

Example 4.5 The space B°K( >~ RPS? is the space of lines through a direct sum of an infinite number
of copies of the Cp—regular representation p.

We can inductively define an H—space pairing on B!B¥°TF,, similar to the one given by Milgram in the
nonequivariant case. Define a mapping
x6: B°X xB°X - B°X
by
(Zo, ey Xy e ey xn)*a(ln—i—lv e lndms Xpd1s e, xn+m) = (Zr(l)a ceslrtk) s X (1) - e s xt(,H_m)),

where 7 is any element of the symmetric group on 7 + k letters such that 77y < #(;41). Then x4 is well
defined, continuous, and Cp—equivariant. Going forward, we suppress the o notation in ., using only
to denote the H—space pairing. The relevant C—action is deduced from context.

Definition 4.6 A G—space X is said to be G—connected if X H js connected for each subgroup H of G.

Proposition 4.7 [Liu 2020] For any commutative monoid A in the category of based C,—spaces, the
V —degree bar construction BV A is defined by applying the ordinary bar construction | times and the
twisted bar construction m times for V- = I + mo. There exists a natural map A — QY BV A. When A is
C,—connected, this map is a C,—equivalence.

5 Multiplicative structures on C,—equivariant Eilenberg—Mac Lane spaces

We describe multiplicative structures on Cy—equivariant Eilenberg—Mac Lane spaces, extending Ravenel
and Wilson’s description of similar structures on classical nonequivariant Eilenberg—Mac Lane spaces.
We use our understanding of these structures to compute the RO(C,)—graded homology of many C,—
equivariant Eilenberg—Mac Lane spaces Ky  associated to the constant Mackey functor [F,. In particular,
we compute the RO(C,)—graded homology of all Cy—equivariant Eilenberg—Mac Lane spaces Ko
and Ky 4.

5.1 Multiplicative structures on Ky

The RO(C,)—graded cup product is induced by a map
(5.1) OZOV,W:KV/\KW%KV—FW-

We will construct oy, explicitly within the framework of trivial and o—representation delooping given
by B and B?. We will also discuss how oy jr descends to a product on the fixed points.
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Given a real C, representation V =/ 4 ko, the Eilenberg—-Mac Lane space K is a V—fold delooping of
IF, and therefore can be constructed iteratively by taking B’ B*9TF, where [ and k are nonnegative integers.
The following construction extends exposition by Ravenel and Wilson [1980] in their computation of the
Morava K—-theory of Eilenberg—Mac Lane spaces.

We construct the map (5.1) inductively on V. Assuming oy p has been defined, we define oy |y and
oy 4o,w by replacing Ky 1, Ky w41 and Ky 1, Ky w4 with their bar and twisted bar construc-
tions respectively. In both cases this is denoted as follows; there is a notationally suppressed C,—action

each case:
n n
Lett € A", x = (xg,...,X,) € Ky, and y € K. The image of x; A y € Ky A Ky under the map (5.1)
is denoted x; o y. We use the notation x o y to mean (xgo y,..., X, o )). Define (5.2) by
(5'3) {(Z9x)}oy :{(Z7xoy)}

Theorem 5.4 The above construction is well defined and gives the cup product pairings

ol Kyt 1 ANKw = Kyyw+1, o Kyyo ANKw = Kyiwio-
Lemma 5.5 The map o: Ko x Ky — Ky is given by (q) o x = x*7 where g € IF5.
Proof This map multiplies 7[52 Ky ~TF, by g which is what o should do restricted to (¢) x Ky ~ Ky. O

Proof of Theorem 5.4 We must show the map (5.2) defined by (5.3) is well defined and in fact gives the
cup product pairings o: Ky 11 A Ky — Kyyw+1 and o: Ky 5 A Ky — Ky 4w 4o. Our proof is a
direct extension of the nonequivariant argument of Ravenel and Wilson [1980]. We prove our result by
induction on i in the o direction noting that the result also holds and is similar in the trivial representation
direction (that is we assume the statement holds for V', and show it for V' + ¢). Assume we have proved
Theorem 5.4 for Kyy A Ky — Ky 4+ with Lemma 5.5 beginning the induction. We need our construction
to satisfy
(z1xz2) oy =(z10p) % (z20).
Fori =0, z; = q; € F, = K. So,

(q1%q2) 0y =(q1 +q2) oy =y"Te2 =™ % y*2 = (g0 y) x (g2 0 ).

Fori > 0,
[z1 % z2]oy = [(£,X) * (Ing1s- - s bnks Xt 1 - - s Xk )] O Y

= (Ce(1) o te (k) X (1o X (dey) © Y

= (te(1)s -+ - Le(ntk)s X2 (1) © Vs - -+ Xe(n+k) © V)
=(tx0p) % (Int1s -+ s lntks Xn+19 Vs o s Xntk O Y)
=(z10y)*(z20)),
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where the second line is due to the definition of *, the third is due to the induction hypothesis and (5.3),
and the fourth is due to the definition of *. d

We must show (5.3) gives well-defined maps Ky 1 AKw — Kpyywy1 and Ky o AKw — Ky ywio-
The relations in the (twisted) bar construction make this the case. We show the main case, leaving the
others to the reader. Assume 0 < ¢ <n with 75 = 7,11 or x4 = *. Then

(t,x)oy =(t,x0p)

~ (e lgy e X100 P, (Xg O Y) % (Xg410 D)oo Xp 0 Y)
=(ll,...,t;,...,tn;xloy,...,(xq*xq_,.l)oy,...,x,,oy)
=(Zl,...,Z;,...,tn;xl,...,xq*xq+1,...,xn)oy,

which is the necessary relation. That this map factors through the smash product is straightforward to
verify using induction.

The remaining task is to show that this is the cup product pairing map. This follows by induction from
the observation that o commutes with (signed) suspension on the first factor since B; Ky ~ S' A Ky
and B Ky >~ §9 A Ky, and following diagrams commute:

Sl/\KV/\Kw—)Sl/\KV+W S ANKy AKy —— S°AKypyiw
Kyti Ky — Kysw+1 Kyio NKw —— Kyiw+o

5.2 Multiplicative structures on K 5 z

We turn to understanding the o—product on the fixed points of the spaces K. Notice (B A)€2 consists
of points of the form

(t1s oo tn, Ot —t1,a1s e an, Y (@n), ..., y(ar)) € (B® A)27H1
where a € A2 since for
(et —tms oo =11, a1s o A Y (@m), -, Y(@1)) € (BC AP,
there is a degeneracy map inducing an equivalence to
(s ooty Oty o =11, A1l %, V(an), ..., y(ay)) € (B A1,

Taking the fixed points in the construction of map (5.2) we recover the classical nonequivariant o product
on the fixed point spaces.

5.3 Circle product generators for H, K, ,

Recall that HFF ; has generators a € HF (-0} andu € HF, {1—0}- To describe our answer, we recall our

notation for H, K. Let
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The homology, H, K, is exterior on generators
o, &(1) - &2! (i Z 0)’

with coproduct
Vieg) =1Res+e; @1 +ales Reg),

n—1
V() = Zan z®az+2”(30an 1—-i Qesd;).
i=0 i=0

For finite sequences
J=(j0'!j0’j1’---)v ijO’
define
=\J _ 9jo J ~oj
(eo@)” = g7 0@l od i) o

where the o product comes from the pairing o: Ky A Ky — Ky 1.
Theorem 5.6 Then
H.K+o = ®7 E[(es)”]
as an algebra, where the tensor product is over all J and the coproduct follows by Hopf ring properties

from the &'’s.

Proof For finite sequences
J:(ja,jo,jl»---)7 ]kiO,
define || J|| = _ jx (including the o subscript) and

J ojo ~ =%J0 . ~°J1
(ec)” =e, °Q gy 0dj) ©

Consider elements (e,&)” with ||.J|| = in the homology of B® Kp-1)o-

To show these elements in fact form a free basis for the homology, we show that they satisfy the conditions
of the Behrens—Wilson computational lemma. The map to the underlying homology, Hx K, — Hx K},
the underlying homology of H, K, is given by

(eo@)” > (e1a)”.
The map on fixed points H, K5 — H*K ne 18 given by
- °jo J J
(eaoz) e oa(o;) oa(l)l

Thus these elements from a free basis for Hy K,

We deduce the multiplicative ring structure using a Hopf ring argument due to Ravenel and Wilson

[Wilson 1982]. Each (e5@)” can be written as e,,] oa(({)‘) ooz(lj)1 oa( ) " where n is some nonnegative
integer or n = o. By the distributive law (2.1),
(ec@)” % (esa)! = elo ooz(({)" oa(J) <+ 0 (@(n) * A(m)) = 0.
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The coproduct is induced by the map Ky X -+ - X Ky — K Which is a map of coalgebras on H,. O

Remark 5.7 Note that e(‘;k = ¢g for k > 0 by Lemma 5.5.

6 Bar and twisted bar spectral sequence computations

The first half of this section focuses on the RO(C,)—graded bar spectral sequence. We describe the
d—differentials, the Tor term coinciding with the E?—page, and Hopf ring structure present in the spectral
sequences computing H, Ky wheno +1 C V.

In the second half of this section, we study the analogous twisted spectral sequence giving evidence of
arbitrarily long equivariant degree shifting differentials appearing computations of the RO(C;)—graded
homology of the spaces Kis. We describe how these differentials appear to arise in a structured way
involving the norm.

6.1 The RO(C,)-graded bar spectral sequence

The RO(C3)—graded bar spectral sequences arises via a filtered complex in the same way as the ordinary
integer graded version. The bar construction B on a topological monoid A4, is filtered by
BA~ ] A"x4"/~cBA
t=n=0

with associated graded pieces
(B 4/BU1y g ~ 5T A AN

Applying H,(—) to these filtered spaces gives the RO(C,)—graded bar spectral sequence with E'—page
E}, = HJ(S")® Ho(A)®",
computing H,(BA). This RO(C,)—graded bar spectral sequence has
Ei,~ TOFf,IKV (HF,,,HF,,) = H.BKy = H. Ky 1

*,k —
and behaves similarly to the integer graded version in many examples. In particular, the spectral se-
quences computing the RO(C,)—graded homology of BS! ~ CP>®, BS° ~ CP, and BKy ~ RP>®
(Example 6.1) collapse for degree reasons.

Example 6.1 We have

H.CP> = E[B0), B1), - -] =Tlea] where |B;| = 2",
H.CPy = E[B(o), ,3_(1), ...]=Tlep] where |,[§(,-)| = p2t,
H.RP* = Eley, a), A1) - - -] where e =1 and |a@| = 2

Remark 6.2 The relations ejoe; = e, = 1 = B(g) and ey oes =€y = B = ,3_(0) in RO(C,)-graded
homology are analogous to the classical relation ej o ey = 81 = B(¢) in nonequivariant integer graded
homology (see [Wilson 1982, Proof of 8.5]).
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Figure 2: Example: a d;—differential in the RO(C;)—graded bar spectral sequence.

- [x | y]
N 1 /2 /- 678‘

6.2 The RO(C;)-graded bar spectral sequence: d{—differentials

The classical bar construction does not introduce any group action; hence the d;—differentials in the
RO(Cy)—graded bar spectral sequence behave in almost the same as those in the underlying integer-graded
spectral sequence. The difference is that the cycles supporting d—differentials in the RO(C,)—graded
spectral sequence are representation degree shifted copies of the RO(C,)—graded homology of the point
and their targets are the same. This is in contrast with the integer-graded case where the differentials
are maps of nongraded rings. For example, all d; differentials in the RO(C,)—graded case look and
behave like those shown in Figure 2, where the bigraded homology is plotted and the filtration degree is
suppressed. We follow this convention for all remaining figures.

In greater specificity, Figure 3 shows a d; differential in the RO(C,)—graded bar spectral sequence

E2, ~Torls %o (HF,,, HF»,) = H.BKs = H. Ky 41

8

7

6

s

X &

. A 11
—141\ IAA T 6 7 8 )
- ]

[xy]

Figure 3: A more detailed picture of a d;—differential in the RO(C,)—graded bar spectral sequence.
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computing the RO(C3)—graded homology of K. In the figure, x := e, with |x| = o and y := &(g) with
|y| = p. The two double cones shown are supported by the bar representatives [xy] and [x | y]. The
dy—differential maps from the unit of the infinite-dimensional graded ring HF ,, supported by [x | y] onto
the unit of the RO(C,)—graded homology of a point supported by the bar representative [xy]. Figure 3
depicts that this map of units in fact induces a map of graded rings surjecting onto the copy of the
RO(C3)—graded homology of a point supported by [xy].

6.3 Hopf ring structure in the RO(C,)—graded bar spectral sequence and H, Ky, where
o+1cCV

In Theorem 5.6, we computed H, K, showing that it is free over H,. To compute H, Ky for real
representations V =i + jo, we consider o—product structure in the RO(C,)—graded bar spectral sequence

E2, ~Tor:®v(H, H,) = H. Ky,

*,%k —

and observe that theorems of Thomason and Wilson extend directly from the nonequivariant integer
graded setting to the C,—equivariant RO(C,)—graded setting. In Theorem 6.4, we need an additional
flatness hypothesis to account for H, (X ; F,) not necessarily being flat, unlike Hy(X;F;).
Theorem 6.3 [Thomason and Wilson 1980] The o product factors as

B Ky x Ky — BiKy+w

N N
o: BKy x Ky —— BKypiw

and the map
(B:Ky/Bi—1Ky) x Ky —— (B:Ky+w/Bi—1Ky+w)

2 2

t At t AL
S'ANKD x Ky > STAKYL

is described inductively as (ki,...,k;)ok = (k1ok,... ks ok).

Theorem 6.4 [Thomason and Wilson 1980] Let E§ , (E«Ky)= E« Ky 41 be the bar spectral sequence
and suppose E" is H,—flat for all i <r. Compatible with

o: ExKy41 ®H, E«Kw — ExKy w1,
there is a pairing
65) El (E.Ky)®m, ExKw — EL (EvKy1w)
where d” (x) oy =d”"(x o y). When r = 1 this pairing is given by
(ki| ki) ok = " k(ky ok'|ky o k] -+ kg 0 k©)
where k — Y k' @ k" ® --- ® k'O is the iterated reduced coproduct.
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Theorem 6.6 The RO(C,)—graded homology of Ky, where o + 1 C V, is exterior on generators given
by the cycles on the E*—page of the RO(C,)—graded bar spectral sequence.

Proof Let E;’*(E*KV) = E. Ky be the bar spectral sequence and A: Ky — Ky x Ky be the
diagonal map. If E” is H,—flat for all i < r, then there is a natural transformation

wE"X)QE"(Y)— E"(X xY)

and the coalgebra structure on E” is given by =1 A,.

Suppose Ej , where r > 2 is the first page after the E i ,—page with a nonzero differential. Then

E.,=E ,%,* = TorE;KV (H., H,) which is a coalgebra, so u is an isomorphism and the differentials
d, satisfy the Leibniz and co-Leibniz rules.

Consider the shortest nonzero differential d, in lowest topological degree. If such a differential exists, it
must map from an algebra indecomposable to a coalgebra primitive. To see this, we recount a classical
Hopf ring argument, which also appears in [Ravenel and Wilson 1980] and [Angeltveit and Rognes 2005].
Suppose d,(xy) # 0 and xy is in lowest topological degree. Then

dr(xy) =d"(x)y £ xd(y)

so dy(x) or d,(y) are nonzero, contradicting that xy is in lowest topological degree. Dually, if d, (z) is
not a coalgebra primitive, then
¥ (2) = z|1 + 1]z + 2zl
and the co-Leibniz formula
Yod, = (dy|1 £ 1|dy)Y

implies d,(z]) or d,(z]') is nonzero, contradicting that z is in lowest topological degree.

There are no coalgebra primitives on E f,* = EY , due to the coproduct structure on Hy K. Thus there
are no nontrivial differentials and the spectral sequence collapses.

Let x be a cycle on E i,*. To show there are no extension problems, we only need to show
x*x=0.
The multiplication by 2 map 2: Ky — Ky, which factors as the composition

KVA>KVXKVL>KV,
is homotopically trivial so
0=2,: H,Ky - H.Ky.

Consider the coproduct structure on H, Ky and E ﬁ,*. There is a cycle y on E f,*, with the symmetric
term of the coproduct ¥ (») equal to x ® x. This means there is y such that 2,y = x * x, so x * x = 0 as
desired. O
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6.4 Circle product names for the generators of H, K, ;;
We give names to the generators of H, K4, and indicate how the bookkeeping becomes increasingly
complicated as the number of sign representations in V' where 1 + o C V increases (Example 6.8).
To write these answers, we recall our notation for H, K. Let
Pi € HyK(Z.p) (i20).
This gives additional generators, _ )
Biy= Py (i 20),
of H, K, with coproduct .
V(Bn) =Y Bni ®Bi.
Then for finite sequences =0
I =(iy,ia,...,10), 0=<iy<iz<---,
W =(wi,wsz,...,wg), 0wy <wy <---,
J=(-1,Jo,Jj1>---+jz), where j_; €{0,1} and all other j, > 0,
Y =(0-1.%0,Y1,...,yr), where y_; €{0, 1} and all other y, > 0,

define LJ _ o) °jo o, goJ oj
(eraf)™ =e" o) oag, o o) 0By 0By oo By
(elot,B)W’Y = efy_l O Q) © A(w,) O+ O A(w,) 0,38})0 o ,ley)l 0.--0 ﬁzr])’,
=k, [W|l=q, [JI=2%jn, IYI=Zyn
Then:

Theorem 6.7 We have

HoKoti = E[(e10B)" 0@, (e108)"Y 0 B(y)]
where m > i and m>1, t >wg and t > y,, |I|+2||J| =i and |W|+2||Y || =i —1, and the coproduct
follows by Hopf ring properties from the o;y’s, B(;)’s, &(;)’s and ,B_(,-)’s.
We offer a proof distinct from that of Theorem 6.6.
)W,Y

o B ®
defined in the theorem. The map to the underlying homology is clear as the generators have no a—torsion.

Proof Apply the Behrens—Wilson lemma to the generators (e;af)”/ o ®(m) and (ejaf

On fixed points,
(10B) 1 0@y > (e1af) oagmy, (e1aB)"Y 0By > (e1af)VY 0aqy,

giving a basis for KS_ZH

homology of K, (see Section 3.2). The multiplicative and comultiplicative structures are deduced

>~ Kjt1 X K; where the a(;y are notation for the underlying nonequivariant

similarly to Theorem 5.6. m|
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Example 6.8 Consider the RO(C;)—graded bar spectral sequence
E2, ~Torts® (HF,,. HF5,) = H.BK»s = H.Ksg41.
The indecomposable cycles on the E?—page are
s 05l lecoam]  [ag) 0 dgy)
$P(es0ee), 9P (eooaw), ¢® @y oay),
where q)(k) (x) is notation for the bar representative

[x]---|x].
——
21 copies
Since trivial representation suspension is o multiplication with e, we can identify [e; 0es] With ej oeq 0eq,
[es 0 & ;)] with ej o eg 0 G (;), and [@(;,) © &(j,)] With ej o @(j,) 0 &(j,). Using the bar spectral sequence
pairing (6.5) compatible with

o: Hy(BKy) @, Hi(Kys) — Hy(BK>g),

we can identify ¢(k) (es 0Q(;)) with ,B_(th) ©&(j,+1), and using the bar spectral sequence pairing (6.5)
compatible with
o: Hy(BKo) ®p, Hi(Kzs) = Hi(BK3s),

we can identify ¢®) (G¢j,) ©a(j,)) With ;) 0 &(,) 0 Q(j;). By Theorem 6.6, the »®) (e, 0 ey) are also
permanent cycles. However, degree reasons make it impossible to identify them in terms of circle products
(there are too many sign representations) and thus we have a new family of generators which are not
circle products of elements in K, K4, Ky, or Ky4.

Corollary 6.9 We have

H, K412 Eleroeg0eq. €10¢508 ). €196(j,) 00 (j5). B(j1+1) 082+ 1)- #(i1) 0% (12) 08 () ¢ (e 0¢0)]

as an algebra, where the coproduct follows by Hopf ring properties from the a;)’s, B@iy’s, &(;)’s, ,3(,-) ’s,
and coproduct structure on Torf f( 20(HF,,, HF,,).

As the number of sign representations in V' where 140 C V increases, the number of additional generators
grows, making bookkeeping and identifying homology generators in terms of the bar spectral sequence
pairing (6.5) an increasingly complicated task.

6.5 The RO(C,)—graded twisted bar spectral sequence

We now turn to the twisted analogue of the RO(C,)—graded bar spectral sequence. Similar to the classical
case, the twisted bar construction B? A4 is filtered by
(BUA)[I] ~ ]_[ AnXAn/NCBUA
t=n=>0
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with associated graded pieces
(BO’A)[Z‘]/(BO’A)[Z‘—I] ~ S|—t/2-|0'+|_t/2j /\AAt,

where the C,—action on A’ is given by y(a; A-+-Aay) = (yay A-++- Ayay). Applying H, (—) to these
filtered spaces gives the twisted bar spectral sequence

E}, = H,(SM20t U2l A g1y = H, B 4,
with differentials

dr : E;’* — E;_r,*_l ’

computing H,(B° A).
In general, this spectral sequence lacks an explicit £2—page and can be difficult to compute. We give some
readily computable examples which collapse on the £ !—page and then turn to analyzing the structure of the
twisted bar spectral sequence in examples computing the RO(C,)—graded homology of Cp—equivariant
Eilenberg—Mac Lane spaces.

Example 6.10 The RO(C,)-graded twisted bar spectral sequences computing the homology of
B°F, ~ K(F,,0) ~RP, B°S'~K(Z,p)~CP

tw
collapse on the E!—page. As rings,
HRPZ = Eles, 0y, &), - -] = Eles] @ T[a(o)],  les| = 0, |&y| = p2°,
H.CP3 = E[B0). Ba),--1=Tlep] where |B)| = p2'.

We write the proof for H,R PZ° as the computation for H,CPS° is similar.
Proof We first prove the additive statement that H,R P is a free H,—module with a single generator in

each degree |_%-|0+ L%J . We then show H,R P has ring structure Eles, &(g), &(1). - - -] = E[es]@T[(q)]
where |e5| = 0 and |@ ;)| = 2! p. We start with the twisted bar spectral sequence

Etl,* = ﬁ*(srt/Z]U‘Hf/ZJ /\Fé) = H,B°T,.

Specifically,
E}, = H.((B{F2/BJ_)F,)
~ H, (STH/2o+l/2] 5 F2) (by definition)
~ H, (S Wﬂaﬂt/z]) ® H, (.Nec2 (IFZA Le/2] F5)) (freeness & properties of Necz)
~ H,(S/2lo+lt/2]y & {7, (F,)N (homology of norm of underlying free space)

where in the last step, since the homology of I, splits as the homology of induced representation spheres,
the homology of the norm is the norm of the homology of the underlying space [Hill 2022].

Because the filtration degree ¢ corresponds to the topological degree p and differentials d” shift topological
degree down by one, there are no nonzero d” for r > 1. There can be no nonzero d! because if there
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Figure 4: The E'—page of the twisted bar spectral sequence computing H, K.

were, on passing to the nonequivariant homology of the underlying space, HxR P°°, we would be killing
a known generator which is a contradiction. Hence the homology is free with a single generator in each
degree [4]o + | 4]. This E'-page is depicted in Figure 4.

We deduce the multiplicative structure. There is no element in degree 20 so e, must be exterior. The
remaining exterior structure can also be deduced without appealing to Hopf rings. The multiplication by
2 map 2: Ky — K4, which factors as the composition

Ko 25 Ko x Ko 2> Ky
is homotopically trivial, so
0=2,: H,Ks - H, K;.

Since 2, (4(;+1)) = &(;) * &(;), this proves the exterior multiplication. O
Theorem 6.11 The RO(C;)—graded twisted bar spectral sequence computing the homology of
B°S° ~ K(Z,20)
collapses on the E'—page. As aring,
HyK(Z,20) = Elezs] @ I'[X(q)] where |ezs| = 20, [X(0)| = 2p.
The proof of Theorem 6.11 is analogous to the computation of H,R P3° given in Example 6.10.
6.6 Higher differentials in the RO(C,)—graded twisted bar spectral sequence

In this section, we use our understanding of H, Ko to analyze the structure of the twisted bar spectral
sequence and find evidence of arbitrarily long equivariant degree shifting differentials.

Consider the RO(C,)—graded twisted bar spectral sequence
E}, = H (S22l N K2 = H, B K4

Algebraic € Geometric Topology, Volume 24 (2024)
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8

7

6

5

4 / [z1|22]|22]21]

3

2

1

“ > P
321}//123 5 6 7 9 1p 11 12

[z1] [z2]22]

Figure 5: Twisted bar representatives fixed under the C,—action support full double cones.

computing H, K,,. There are two basic building blocks in this spectral sequence. Twisted bar represen-
tatives [z | - -+ | z], where z; € H. Ky, that are fixed under the Cp—action of the twisted bar construction
and those that possess nontrivial Cy—action. The twisted bar representatives which are fixed support a full
double cone, that is an RO(C,)—graded representation degree shifted copy of the homology of the point.
An example where |z1| = ¢ and |z;| = p is shown in Figure 5. Let ¥ denote the generator of C,. The
remaining twisted bar representatives come in pairs [z | --- | zy] and y -[z1 | - - - | zx]. Each pair gives a
copy of C, 4 and we choose a single twisted bar representative to represent each copy. In the twisted
bar spectral sequence, the representatives [z | - - - | z,] with nontrivial C,—action support shifted degree
copies of H,C; as depicted in Figure 6.

LY

n > [
12341367851()1112/

Figure 6: Twisted bar representatives with nontrivial C, action support copies of H,C 4.
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[xy] [xylxy]

[x|y|ylx]
Figure 7: Differentials in the twisted bar spectral sequence computing H, K>, .

A portion of the twisted bar spectral sequence computing H, K, appears in Figure 7, where x represents
es and y represents &(q). To compute the d;—differential in this spectral sequence, consider the cofiber
sequence

S04, 89 5 Ca~3C,,.

This induces a long exact sequence in homology involving
H,S° % H,S° — H.(Cy,),

as shown in Figure 8. The map
Ho(Cyy) — H (ST

is the map depicted in Figure 9.

q q, £
/ 3 l/
2

3 3

2 2

1 1 I
Fay ) n > & > D
N IR — R -1 NN

1 /1 -1
H,S° H,S° Ho(Cary) = Falu® e}

Figure 8: Computing a d;—differential in the twisted bar spectral sequence.
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q, q /

3 3
2 2
] 0 1 |
O 4 8 a4
—1 | 2 3 | hidden
extension
H,(Cyy) = Folu®]{ig} H,S5°!

Figure 9: RO(C,)—graded twisted bar spectral sequence d;—differential with hidden extension.

We have shown that the d;—differentials marked in green in Figure 7 both exist and have the behavior of
the map in Figure 8. We also know from Theorem 5.6 that

Hy K35 = Elesq. a(j;) 0 a(j,)]
where j; < j5.

Since the RO(C,)—graded homology of K, is free over the RO(C,)—graded homology of a point, all
copies of H,C, appearing on the E !_page must either be killed off or used in shifting the representation
degree of the RO(C;)—graded homology of a point, similar to the equivariant degree shifting differential
d; and hidden extension of Figure 9.

We also know the underlying integer-graded homology of K, and have both the forgetful map

H* Kzo- — Hz K2
and the fixed point map

H, Ky — Hy(K25)©? = Hy(Ky x Ky % Ky).

Given that H, K, is free and in the underlying nonequivariant case [xy | xy] is killed by a d; differential
(all generators of H, K,; have nontrivial underlying homology), the entire double cone supported by the
twisted bar representative [xy | xy] must be hit by a differential.

There is a dy—differential and hidden extension shifting the double cone supported by [xy | xy] up
by representation degree ¢ so that by the E2?—page the double cone is in fact in representation degree
x|+ 1y +p+0=p(p+0)+p+0=4p+ 0. We hypothesize there is a d,—differential induced by
a d—differential supported by [x | y | ¥ | x]. We notice that [x | y | ¥ | x] is a norm of [xy | xy]. We expect
such norms play an important role in governing the structure of all the higher nontrivial differentials.

As one goes farther along in the spectral sequence, considering cycles supported by twisted bar repre-
sentatives such as [xy | xy | xy] and [xyz | xyz], which must all be killed off in order to recover the
correct underlying homology, we see that arbitrarily long equivariant degree shifting differentials are
required in order to arrive at the answer given by Theorem 5.6. We conjecture all such cycles are killed
by differentials induced by a norm structure on the twisted bar spectral sequence.

Algebraic € Geometric Topology, Volume 24 (2024)



4516 Sarah Petersen

7 Related questions

We describe a few questions of immediate interest given the results of this paper.

7.1 Twisted Tor and the RO(C;)—graded twisted bar spectral sequence

In the Cy—equivariant setting, the RO(C;)—graded homology of each signed delooping, Ky 4, of an
equivariant Eilenberg—Mac Lane space, Ky, also independently arises as the result of a C,—equivariant
twisted Tor computation. This can be seen by taking the model of o—delooping defined in [Hill 2022]. In
this model, A is an Es—algebra and

B?(A) = B(4,Map(C, A), Map(Cy, %)),

where the action of Map(C5, A) on A4 is via the Es—structure [Hill 2022, Definition 5.10]. In the case that
A has R—free homology, Hill [2022, Theorem 5.11] constructs yet another twisted bar spectral sequence
with E2—page

Co ox L
ES* = Tors e RCeD (R (Map(Cy, X)), Ra(A)) = Ru—s(B®(4)).

Computations with this spectral sequence are complicated and the literature lacks substantial examples.
However, it does have a twisted Tor functor as its E?—page and thus it would be interesting to compare
with our computations.

One notable feature of the nonequivariant computation of Hy K(IF,, *) is that the integer graded bar
spectral sequences collapse on the E2—page [Wilson 1982]. In contrast, we saw that the RO(C,)-graded
twisted bar spectral sequences computing H, K «s have arbitrarily long differentials in Section 6.6. Thus
under favorable circumstances, we hope to formulate a twisted bar spectral sequence with E2—page a
twisted Tor functor arising as a derived functor of the twisted product of HTF ;—modules, which collapses
in the relevant cases of Hy Kxq.

Given our computation of H, K, such a twisted Tor over an exterior algebra should have the property
that
E[x]

tw

Tor, ~ Elox]® F[J\feczx].

7.2 Global Hopf rings

In their work computing the integer graded homology of classical nonequivariant Eilenberg—Mac Lane
spaces, Ravenel and Wilson obtain a global statement. Specifically:

Theorem C (Ravenel and Wilson [Wilson 1982]) Hy K is the free Hopf ring on Hyx Ko = H[Fp],
H.K,, and H,CP® C HyK, subject to the relation e; oe; = B.

It is natural to ask if a similar statement be obtained in the C,—equivariant case, and in that case, what
specifically, is the global structure of the Hopf rings that do arise. One may also ask how the Hopf rings
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here relate to Hill and Hopkins’ work [2018] extending Ravenel and Wilson’s construction of a universal
Hopf ring over M U* to Cy—equivariant homotopy theory.

7.3 Stabilizing to the C;—dual Steenrod algebra

Besides understanding a global version of the unstable story, it also remains to fully understand how the
unstable answer for H, K stabilizes to give the C,—equivariant dual Steenrod algebra,

c
A3 = HFy[v0, 71, ..., 1,62, .. )/ (17 = (u + ato)éiy1 +atit1).

By Hu and Kriz’s construction [2001] of the Cy—equivariant dual Steenrod algebra, we should homology
suspend ,B_(,-) to define

& € H(zi_l)pH
and &(;) to define

Ti € Hzip_aH.

However, it is not at all clear what an arbitrary element in H, Ky~ should stabilize to in the C,—equivariant
dual Steenrod algebra. Additionally, there is the interesting problem of understanding how the stable
relation ‘(l-z = (u + avg)é;+1 + ati+ arises unstably. We look forward to studying these questions in
forthcoming work.
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