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1 Introduction

The quantum chromodynamics (QCD) phase diagram [1, 2], often represented in terms of tem-
perature (T ) vs. baryonic chemical potential (µB), is characterized by the phenomenologically
determined boundary T = Tch(µB), where Tch refers to the chemical freeze-out temperature.
A highly dense medium, called the Quark-Gluon Plasma (QGP), is expected to be created at
sufficiently high temperatures such as those produced at the Relativistic Heavy Ion Collider
(RHIC) at its top energy and at the energies of the Large Hadron Collider (LHC), where high
energy density and vanishing µB are achieved. According to Lattice QCD calculations [3] and
recent experimental results [4, 5], the transition from QGP to hadronic matter is a smooth
crossover with a pseudo-critical temperature at µB = 0 of Tc = 156.5 ± 1.5 MeV [6]. In low
energy collisions where the net-baryon density is large, a first-order phase transition between
QGP and hadronic matter has been predicted [7]. The first-order phase transition line is
expected to end at a critical point where a smooth crossover begins [8]. Recent discussions
on chemical freeze-out can be found in ref. [9].

Strangeness enhancement was proposed as a signature for the formation of the QGP
in high-energy nuclear collisions where thermalized strange quarks are created during QGP
evolution and coalesce into color-singlet hadrons during hadronization [10]. Such enhancement,
first measured in Pb-Pb collisions at SPS [11] has been observed experimentally over a wide
range of collision energies and system sizes. The system reaches the grand canonical limit in
central heavy-ion collisions at high energies, as shown by results from RHIC and LHC [1, 12–
16]. The sixth order net-proton cumulant ratios [5] from central Au+Au collisions at a
center-of-momentum energy per nucleon pair of √sNN = 200 GeV are consistent with Lattice
QCD calculations for the formation of the QGP [17, 18]. In the high net-baryon density
region (µB > 500 MeV), strangeness production serves as a crucial probe for analyzing the
hot and dense nuclear matter created in heavy-ion collisions and for studying the nuclear
equation of state (EoS) [19]. At lower collision energies, local strangeness conservation needs
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to be enforced for statistical hadronization models in order to describe the recent data on ϕ

and Ξ− production in √
sNN = 3 GeV Au+Au collisions [20]. Local canonical equilibrium is a

characteristic of the hadronic system where the correlation length for strangeness production
is significantly smaller than the radius of the fireball [21]. Results on collective flow and
high-order proton cumulant ratios from √

sNN = 3 GeV collisions also support the hadron-
dominant nature of the produced medium [22–24].

In this paper, we report strange hadron (Λ and K0
S) production in Au+Au collisions at

√
sNN = 3 GeV with the STAR experiment at RHIC. Transverse momentum (pT) and rapidity

(y) distributions of Λ and K0
S are presented. Due to the low yield of Λ at √

sNN = 3 GeV,
the present analysis focuses on the production of Λ particles. The paper is organized as
follows: section 2 describes the experimental setup, data sets, analysis details including signal
extraction and efficiency corrections. Systematic uncertainties are discussed in section 3. The
strange hadron transverse momentum spectra, rapidity distributions and mean transverse
momentum are presented for different centrality intervals in section 4. Various particle ratios
along with thermal and transport model comparisons are presented in the same section.
Finally, we summarize our findings in section 5.

2 Experimental setup and data analysis

The dataset used in this analysis was collected using the fixed-target (FXT) setup [25–27] at
the Solenoidal Tracker At RHIC (STAR) experiment during the 2018 RHIC run. A single
beam was provided by RHIC with a total energy equal to 3.85 GeV/nucleon. The gold target,
of thickness 0.25 mm corresponding to a 1% interaction probability, is installed inside the
vacuum pipe, 2 cm below the center of the beam axis, and located 200.7 cm west of the STAR
detector’s center. The main detector used in this analysis is the Time Projection Chamber
(TPC), which has full azimuthal coverage within a pseudorapidity range of −2 < η < 0
in FXT mode [28]. In addition to its track reconstruction and momentum determination
capabilities, the TPC provides particle identification for charged particles by measuring their
ionization energy loss per unit length (dE/dx) in the TPC gas. Details and performance
of the energy loss and particle identification method are explained in ref. [29]. The offline
reconstructed primary vertex position is required to be within 2 cm of the target along the
beam direction and within a radius of 1.5 cm in the transverse plane from the center of
the target in order to eliminate possible backgrounds arising from beam interactions with
the vacuum pipe. Approximately 2.6 × 108 minimum bias (MB) events pass the selection
criteria and are used in this analysis. The centrality of the collision is determined using
the number of reconstructed charged-particle tracks in the TPC acceptance in conjunction
with a Monte Carlo Glauber model simulation [30].

Λ and K0
S hadrons are reconstructed via their weak decay channels Λ → p+π− (branching

ratio B.R. = 63.9%) and K0
S → π+π− (B.R. = 69.20%) [31], respectively. We require the

reconstructed tracks to have at least 15 measured space points in the TPC (out of a maximum
possible 45) and a minimum reconstructed transverse momentum of 100 MeV/c to ensure
good track quality. To suppress split tracks, the ratio of the number of hits on a track to
the maximum possible number of hits that this track may possess must be larger than 0.52.
Particle identification for π−, π+ and proton is achieved by measuring the dE/dx in the TPC.
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Figure 1. Invariant mass distributions (black open circles) of (a) pπ− and (b) π+π− in Au+Au
collisions at √sNN= 3 GeV. The grey shaded histogram represents the rotated background distribution
used to estimate the combinatorial background. The red solid circles depict the Λ (a) and K0

S

(b) signals after subtracting the combinatorial background. The black dashed line represents the
polynomial function which is an estimate for the residual background. Reconstructed Λ (c) and K0

S

(d) acceptances are shown as pT vs. rapidity in the center-of-momentum frame (ycm) . The arrow
indicates the target rapidity.

In this analysis, a cut of |nσ| < 3 is used in particle identification. Here nσ is defined as

nσ = 1
σR

log ⟨dE/dx⟩
⟨dE/dx⟩Bichsel

,

where ⟨dE/dx⟩Bichsel is the expected ⟨dE/dx⟩ from the Bichsel function [32] for that particle
species at a given momentum and σR is the resolution of log(⟨dE/dx⟩/⟨dE/dx⟩Bichsel) of the
TPC [29]. The KFParticle package [33], a particle reconstruction software package based on
the Kalman Filter, is used for the reconstruction of Λ and K0

S . Various topological variables,
such as the distances of closest approach (DCA) between the mother/daughter particles to the
primary vertex, and the DCA between the two daughters [34], are examined. Cuts on these
topological variables are applied to the signal candidates to optimize the statistical significance.

Figure 1 shows the invariant mass distributions of (a) pπ− pairs and (b) π+π− pairs in
the pT region (0.8–1.2) GeV/c in 0–80% collisions. The combinatorial background is estimated
using a rotation technique, in which all π− tracks in a single event are rotated by fixed angles
(π/2, π, and 3π/2) in the transverse plane. The invariant mass distributions obtained from
this rotation technique are then scaled to match the number of pπ− pairs or π+π− pairs in
the off-peak regions (1.13 − 1.15 GeV/c2 for pπ− pairs, 0.45 − 0.47, and 0.53 − 0.55 GeV/c2
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for π+π− pairs). The background shape is well reproduced using the rotation technique
for both Λ and K0

S as shown in figure 1 (a) and (b). The combinatorial background is
subsequently subtracted from the data in 2D phase space (pT and rapidity ycm) in the
collision center-of-momentum frame. After subtracting the combinatorial background, the
resulting distributions, shown as red solid circles, are fitted with double-Gaussian (a sum of
two Gaussian functions with the same mean value) plus a polynomial function to determine the
signal peak width as well as the shape of the remaining residual correlated background. These
residual backgrounds originate from unavoidable particle mis-identification. For example,
a proton from a Λ decay misidentified as a π+ could be combined with the π− daughter,
thus contributing to the residual background in K0

S reconstruction. In order to suppress such
residual background, veto cuts are introduced. For K0

S reconstruction, the π+ daughter of
a K0

S candidate is assumed to be a p and the invariant mass of the pair is recalculated. If
it falls inside the invariant mass peak of Λ, then the K0

S candidate is rejected. The Λ and
K0

S raw yields are obtained via histogram bin counting from the invariant mass distributions
with all backgrounds subtracted within mass windows of width 3σ from the mean (µ), where
the µ and σ of the double Gaussian are obtained from the fit explained previously. The Λ
and K0

S acceptances represented as pT versus rapidity in the center-of-momentum frame are
shown in figure 1 (c) and (d), respectively. The target is located at ycm = -1.05, using the
convention where the beam travels in the positive direction.

The raw yields of each particle are obtained in pT and rapidity bins for different centrality
selections, and are subsequently corrected for acceptance and efficiency. The TPC acceptance
and tracking efficiency corrections account for tracks not falling inside the TPC acceptance or
failing to meet the single track selection criteria, while the topology cut efficiency correction
accounts for track pairs failing to meet the decay topology criteria. These corrections are
estimated using a Monte Carlo (MC) simulation. The simulated particles are propagated
through a TPC detector response simulator using GEANT3 [35] to produce simulated track
data. These simulated tracks are embedded into real events, and reconstructed using the
same analysis chain as for real data.

The pT spectra of each strange hadron are obtained by dividing the event-normalized raw
yield in a certain pT interval by the corresponding acceptance and reconstruction efficiencies.
For the Λ pT spectra, weak decay feed-down contributions from Ξ− and Ξ0 need to be
considered. The feed-down contribution from Ω is found to be negligible and is neglected in
this study. Following the procedure from ref. [36], the feed-down contributions from such
decays are estimated with the help of embedding data. The MC Ξ− and Ξ0 yields are weighted
with realistic kinematic distributions: the differential yield of Ξ− is taken from ref. [20] while
the Ξ0 is assumed to have the same pT, rapidity, and centrality dependence as Ξ− with a ratio
of Ξ0/Ξ− = 0.9 estimated from thermal model THERMUS [37], which will be described in
detail in the next section. The decayed Λs from MC Ξ− and Ξ0 are then reconstructed using
the same reconstruction chain as used for real data analysis. The feed-down contributions
are determined as a function of pT, rapidity and centrality. They decrease with increasing
pT and from mid-rapidity to backward rapidity, and are found to be small (< 4% in 0-10%
collisions and < 1% in 60-80% collisions). These feed-down contributions are subtracted from
the inclusive Λ yield as a function of pT, rapidity, and centrality. It should be noted that
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Σ0 baryons decay to Λ via γ emission with a 100% branching ratio. Due to the Σ0’s short
lifetime, the Λs arising from its decays cannot be distinguished from primordial Λs. In this
work, we do not subtract feed-down contributions arising from Σ0 decays.

Due to limited detector acceptance at low pT, and reduced statistics at high pT, the
spectra cannot be measured in these regions and extrapolation is needed in order to obtain the
pT-integrated yield (dN/dy) as well as the mean transverse momentum (⟨pT⟩). The blast-wave
model [38] is used for fitting pT spectra in the measured region and extrapolating them to
the unmeasured regions. The pT spectra of strange hadrons produced in Au+Au collisions at
the RHIC beam energy scan (BES) energies are well described by the blast-wave model [36].
This model assumes that particles decouple from a system in local thermal equilibrium
with temperature T , that expands both longitudinally and transversely. The longitudinal
expansion is taken to be boost-invariant and the transverse expansion is defined in terms
of a transverse flow velocity profile. The transverse velocity profile can be parameterized
according to a power law: βT (r) = βS(r/R)n where βS is the maximum surface flow velocity
and the exponent n describes the evolution of the flow velocity (flow profile) from any radius
r up to R (r < R), where R is the maximum radius of the expanding source at thermal
freeze-out. In this analysis, a linear (n = 1) r-dependence of the transverse flow velocity is
used. The extrapolated region contributions vary from 30% to 60% for Λ and 5% to 30%
for K0

S of the pT -integrated yields. The final dN/dy is obtained by summing the data in
the measured region and the integral of the fitted function in the unmeasured region. The
⟨pT⟩ is determined as follows:

⟨pT⟩ =
∫

pT
dN

dpT
dpT∫ dN

dpT
dpT

.

The same functional forms used to determine the total yield are used for the calculation
of ⟨pT⟩. Total hadron yields are obtained by integrating the rapidity distribution in the
measured region and using a three-Gaussian [39] fit for extrapolating to the unmeasured
region, where one Gaussian has a mean at ycm = 0 and the other two have means symmetric
about ycm = 0 with the same amplitudes and widths.

3 Systematic uncertainties

We consider four major sources of systematic uncertainty in the pT spectra: imperfect
description of topological variables in the simulations, the track selection, the signal extraction
technique, and uncertainty in the global tracking efficiency. The first three contributions are
estimated by varying the topological cuts, the TPC track quality selection cuts (minimum
number of TPC hits), and the background subtraction method. The systematic uncertainty
due to global tracking efficiency has been estimated assuming 5% uncertainty in the single
charged-particle tracking efficiency [40], resulting in 10% systematic uncertainty for Λ and K0

S

with two decay daughter particles. These four uncertainties are assumed to be uncorrelated
with each other and are added in quadrature. For Λ, based on the difference between
THERMUS and ART [41] calculations, we vary the estimated Ξ0 yield by ±30% to estimate
the uncertainty from the feed-down correction, which is less than 1% in all considered kinematic
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Source Λ K0
S

Topological cuts 0.7 − 3.4% 1.1 − 3.1%
Track selection 0.1 − 0.5% 0.6 − 4.6%

Tracking efficiency 10% 10%
Signal extraction 0.4 − 0.8% 0.1 − 0.7%

Extrapolation 3.6 − 11% 0.2 − 1.6%
Feed-down correction 0.4 − 0.8% N/A

Total 10.8 − 15.3% 10.2 − 11.6%

Table 1. Summary of systematic uncertainties for the Λ and K0
S dN/dy measurements in 0-10%

Au+Au collisions at √
sNN = 3.0 GeV. The ranges indicate the variation of the systematic uncertainty

among rapidity bins.

regions. The systematic uncertainties of different sources are listed in table 1 for measurements
in 0-10% centrality. The systematic uncertainties are similar for different centralities. For
dN/dy and ⟨pT⟩ measurements, the systematic uncertainty in the extrapolation to the
unmeasured region needs to be considered. Different functional forms, such as the mT-
exponential function and the Levy function, are also used for extrapolation. The variations
compared to that from the default function are assigned as the systematic uncertainty. The
systematic uncertainty of the dN/dy extrapolation to obtain the yields for the full phase
space (4π yields) is estimated based on the difference between fits to the data using a sum of
three-Gaussian functions and the dN/dy shape from the Ultra-relativistic Quantum Molecular
Dynamics model (UrQMD) [42], that is described in detail in the next section.

4 Results and discussion

Figure 2 shows the acceptance and efficiency corrected Λ (a) and K0
S (b) invariant yields as

a function of pT for −0.1 < ycm < 0 in six centrality intervals from √
sNN = 3 GeV Au+Au

collisions. Dashed lines depict fits to the spectra with the blast-wave function. For the Λ and
K0

S invariant yields in other rapidity regions, please refer to section A.
The pT-integrated rapidity distributions dN/dy are displayed in figure 3 for Au+Au

collisions at √
sNN = 3 GeV for different centralities. The solid lines represent fits using the

three-Gaussian function. They are used to extrapolate to the unmeasured rapidity region for
calculating 4π yields where the positive rapidity region is a reflection of negative region.

The UrQMD model is a microscopic hadronic transport model based on the propagation
and 2-body scattering of hadrons. In order to compare the shape of the rapidity distributions,
the model curves for K0

S are scaled by a factor of 0.6. The UrQMD calculation gives a fair
description of the rapidity dependence and the centrality dependence of both Λ and K0

S ,
although it overestimates the absolute yield of K0

S . Comparing the K0
S rapidity distribution to

that of the K− [20], it is found that the width of the distributions is narrower for K− compared
to K0

S for all centralities. In a hadronic medium, K− is produced from pair production
NN → NNK−K+, which requires a total energy threshold √

sNN,threshold = Es = 2.86 GeV,
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Figure 2. Transverse-momentum spectra of Λ (a) and K0
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bins in Au + Au collisions at √
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for each centrality bin as indicated in the legend. The vertical lines and boxes represent the statistical
and systematic uncertainties, respectively. The dashed curves represent fits to the data using the
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the calculations from UrQMD and are scaled up by 20% to match the data at mid-rapidity. Proton
data are taken from ref. [40].

while K0 has contributions from both pair production and associated production NN →
NΛK0, with a nucleon-nucleon (NN) production threshold of Es = 2.56 GeV which is lower
than that of pair production. The different thresholds and production kinematics can lead
to a wider rapidity width for K0

S compared to K− [43, 44].
The comparison of the kinematic distributions of the similar mass baryons, p [40] and Λ,

may help us gain more information about the production of strangeness. Also, the Λ/p ratio
is a necessary input to compute the strangeness population factor, S3 = 3

ΛH/(3He × Λ/p),
which can give insight into the hypernuclei production mechanisms [45]. Figure 4 shows the
rapidity dependence of the Λ/p ratio in different centrality selections. The data are compared
to UrQMD calculations that are scaled up by 20%. The proton yield has been corrected for
weak decay feed-down from hyperons [40]. The Λ/p ratio increases from target rapidity to
mid-rapidity, and also increases from peripheral to central collisions. Calculations from the
UrQMD model reproduce the centrality and rapidity distributions well but underestimate
the overall ratios by 20%. Since the model reproduced the Λ yields (see figure 3), this means
that proton yields are overpredicted by the model calculations.

Figure 5 shows ⟨pT⟩ as a function of the mean number of participating nucleons in a
collision, ⟨Npart⟩, for K− [20], K0

S , p [40], Λ, ϕ [20] and Ξ− [20] at mid-rapidity (−0.2 < ycm <

0) in Au+Au collisions at √
sNN = 3 GeV. A gradual increase in ⟨pT⟩ with increasing ⟨Npart⟩

is observed for all particles which reflects stronger multiple scattering in central compared
to peripheral collisions. The ⟨pT⟩ for protons is larger than for Λs in central collisions even
though the proton has a smaller mass than Λ. The effective temperature of protons in
0-10% collisions at mid-rapidity, extracted via a fit using the Boltzmann function, is found
to be 0.1629 ± 0.0011 GeV, which is larger than that of Λs (0.1469 ± 0.0005 GeV). Similar
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sNN = 3 GeV. The curves represent

the calculations from UrQMD. Vertical lines represent statistical uncertainties, while boxes represent
systematic uncertainties. p, ϕ, Ξ−, K− data are taken from refs. [20, 40].

observations have been reported at similar collision energies [46, 47]. We note that Λs are
produced particles, while a fraction of protons arises directly from the incoming nucleons at
such low energies. Comparing different strange hadrons, the data indicate ⟨pT⟩K− ≈ ⟨pT⟩K0

S

< ⟨pT⟩ϕ ≈ ⟨pT⟩Λ ≈ ⟨pT⟩Ξ− , which approximately follows mass ordering. The ordering is
consistent with collective radial flow caused by rescattering. The ⟨pT⟩ of Λ is close to ϕ and Ξ−

and show a deviation from the trend defined by K− and p. Similar trends have been observed
at higher collision energies, as shown in figure 11, which may be due to strange hadrons having
a smaller scattering cross section compared to ordinary hadrons in the later hadronic stage of
the collisions [48]. The increase in ⟨pT⟩ from peripheral to central collisions, and the mass
ordering of ⟨pT⟩ for strange hadrons suggest the importance of hadronic rescatterings at this
energy, and may be interpreted as evidence of collectivity. Note that by collectivity we mean
the combined motion of observed hadrons that results, for example, in observables v1, v2 [22]
and the hadron mass and collision centrality dependence of mean transverse momentum ⟨pT⟩,
see in figure 5. The hadronic transport model UrQMD approximately reproduces the trends
in mass and centrality dependences of ⟨pT⟩ for all particles. The ⟨pT⟩ of K0

S is overpredicted
by UrQMD by ∼ 20%. In √

sNN = 2.4 GeV Au+Au collisions, K0
S is produced below the

threshold and its mean transverse momentum is also overpredicted by UrQMD [49]. Further
studies are called for in order to understand the source of the discrepancy and the underlying
mechanism for strangeness production in such collisions.

With the wide rapidity coverages for all measured hadrons in the STAR FXT setup, 4π

yields can be readily estimated by fitting dN/dy distribution. The 4π yields of K− [20], K0
S ,

Λ as well as p [40], ϕ [20] and Ξ− [20], normalized with the mean number of participants
Yield/⟨Npart⟩, are shown in figure 6 as a function of ⟨Npart⟩. To quantify the centrality
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Figure 6. Hadron 4π yields per mean number of participants Yield/⟨Npart⟩ as a function of ⟨Npart⟩.
Vertical lines represent statistical uncertainties, while boxes represent systematic uncertainties. Power-
law fits are shown as dashed lines for each particle. The result of a simultaneous fit to S = 1 hadron
yields (K−, K0

S , Λ) gives αS = 1.348 ± 0.028 with χ2/NDF = 7/11, which is shown as solid lines.
Data (p, K−, ϕ and Ξ−) are taken from [20, 40]. For comparison, Λ and K0

S yields in p+p collisions
at √

sNN = 2.98 GeV [50] are also shown as red symbols.

dependence, yields of K−, K0
S , Λ are fitted with a function f = C⟨Npart⟩αS , where C is a

constant, and αS is a power-law scaling parameter [49]. The αS parameters for S = 1 hadrons
(Λ, K0

S , K−) are consistent within uncertainties. A common fit to these three hadrons leads
to the result αS = 1.348 ± 0.028. A similar result, 1.383 ± 0.021, is obtained if we only
use mid-rapidity yields (−0.5 < ycm < 0) for fitting. This common scaling between S = 1
hadrons suggests a similar production mechanism for these particles.

For comparison, the yields of p, ϕ and Ξ− are also shown in figure 6. The centrality
dependence of ϕ is consistent with that of the S = 1 hadrons, while p and Ξ− deviate from
the scaling, indicating a different production mechanism. At this energy √

sNN = 3 GeV,
most protons are not produced but are remnants from the incoming nuclei, which explains
the smaller αS . Meanwhile, the αS for Ξ− is larger compared to that for S = 1 hadrons
by ∼ 1.8σ. Similar results were reported for √

sNN = 3.45 GeV Au+Au collisions [51] and
this difference is also seen in UrQMD. The multi-strange baryon Ξ− has a NN -production
threshold of 3.25 GeV. Its value of αS ∼ 2 is larger than for other strange hadrons which
may be reflecting the effect of sub-threshold production [52]. The yields of K0

S and Λ are
also measured in √

sNN = 2.98 GeV p+p collisions [50] and shown as red symbols in figure 6.
These yields are consistent with ⟨Npart⟩ scaling within 3σ. In general, αS is larger than 1
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Figure 7. Energy dependence of the strange hadron production scaling parameter αS . STAR data
for mid-rapidity yields are shown as open circles (|ycm| ≤ 0.5) [36] and filled circles (−0.5 ≤ ycm ≤ 0).
The open square is the 4π strange hadron yield from HADES [49].

for strange hadrons, indicating an increase of normalized yields from peripheral to central
collisions. This behavior is also observed in UrQMD calculations, which yield αS = 1.45.
This increase may be attributed to hadronic rescatterings involving baryonic resonances that
dominantly contribute to the production of strange particles near threshold [43, 44, 46, 53].

To further interpret the data, in figure 7 we investigate the energy dependence of the
common power-law scaling of strange hadron yields. Strange particle yields (Λ, K0

S) in
√

sNN = 7.7, 11.5, 19.6, 27 and 39 GeV collisions [36] are used to extract αS at these energies
and compared to the present result at √

sNN = 3 GeV and to the √
sNN = 2.4 GeV results

from HADES [49]. As shown in figure 7, the power-law scaling parameter αS decreases with
collision energy. Above √

sNN = 10 GeV, the rate of decrease becomes much slower for most
of the produced hadrons and appears to saturate at high beam energies [36] (αS = 1.1 ± 0.03
in √

sNN = 200 GeV Au+Au collisions [54] and 1.15 ± 0.02 in √
sNN = 2.76 TeV Pb+Pb

collisions [55]). Calculations of mid-rapidity strange hadron production from the UrQMD
model, indicated by the solid gray line in figure 7, reproduce the decreasing slope in the energy
dependence, although the trend is steeper in the model compared to the data. At low collision
energies, the increase of αS is partly due to sub-threshold production which may be sensitive
to the EoS [49], while at higher energies, thermal production of strangeness in the QGP is
not included in UrQMD and may explain the differences between data and calculations.

The Λ yield as a function of energy is non-monotonic [36], with a local minimum near
√

sNN = 39 GeV. This behavior is believed to originate from an interplay between pair
production, which strongly increases with increasing collision energy, and the associated
production of Λ in nucleon-nucleon scatterings, which strongly increases with increasing net
baryon density. The proton dN/dy also shows a similar minimum at 39 GeV [56], which
may suggest that Λs are predominantly created via associated production from protons and
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Figure 8. Mid-rapidity yield ratios of K0
S/Λ (stars), Λ/p (circles) and Ξ−/Λ (squares) as a function

of collision energy √
sNN. The new results for top 10% central Au+Au collisions at √

sNN = 3 GeV
are shown as red filled symbols, while empty markers in black are used for data from various other
energies [36, 51, 57–59]. Vertical lines and boxes represent statistical and systematic uncertainties,
respectively. Blue hatched bands are calculations from THERMUS [37] with canonical ensemble using
a strangeness correlation radius rc ranging from 2.9 to 3.9 fm. Blue dashed lines are results from
the same model but with the grand canonical ensemble. Green dotted lines show calculations from
UrQMD [42] for central Au+Au collisions.

neutrons in this energy range. To cancel baryon density effects, we study the ratios Λ/p

and Ξ−/Λ. The energy dependence of the mid-rapidity yield ratios of Λ/p (circles) and
Ξ−/Λ (squares) is shown in figure 8, including the midrapidity data in central Au+Au or
Pb+Pb data from the AGS, SPS and RHIC BES at higher energies [36, 51, 57–59]. The
new results from top 10% central Au+Au collisions at √

sNN = 3 GeV are shown as red filled
symbols. The Λ/p and Ξ−/Λ ratios decrease rapidly with decreasing collision energy. This
rapid decrease is primarily due to two effects. The first is the elementary NN production
threshold. The production rates of strange hadrons Λ and Ξ− will drop rapidly when the
beam energy falls below the elementary NN production threshold, while the proton dN/dy

will increase as the collision energy decreases due to baryon stopping at lower collision
energies. The second effect is canonical suppression which leads to an additional suppression
for strange hadrons at lower incident energies [20]. The K0

S/Λ ratio increases monotonically
with collision energy, suggestive of a transition from baryon-dominated matter at lower
energies to a meson-dominated matter at higher energies.

As one can see in the figure, UrQMD cannot quantitatively reproduce the energy
dependence of the measured ratios Λ/p and Ξ−/Λ. This may indicate that important
mechanisms for strange hadron production are still missing in the model calculations, e.g.
feed-down from high-mass baryon resonances [60].

Statistical thermal model calculations, which assume thermal and chemical equilibrium
at freeze-out, have been widely used to characterize the properties of the produced medium
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in heavy-ion collisions. The strange hadron ratios from thermal model THERMUS with
Canonical Ensemble (CE), using a strangeness correlation radius rc ∼ 2.9 − 3.9 fm, are
obtained and depicted by blue hatched bands in figure 8. Results from the same model
calculations with Grand Canonical Ensemble (GCE), blue dashed lines, are also shown
for comparison. In the present analysis, the freeze-out parameters, including the chemical
freeze-out temperature Tch and the baryon chemical potential µB are taken from ref. [61], with
µS constrained by requiring zero net strangeness. Both CE and GCE can describe the K0

S/Λ
data and they are very similar in the whole energy range. For Λ/p and Ξ−/Λ, both CE and
GCE results converge and are consistent with experimental observations at higher collision
energies, while only the calculations with CE could reproduce the ratios at lower collision
energies. The failure of GCE to describe strangeness production at lower collision energy
suggests that at lower collision energies where the multiplicity is low, there is a local/exact
conservation of charge, baryon and strangeness quantum numbers.

It is worth noting that the strangeness correlation radii of rc ∼ 2.9 − 3.9 fm are used in
order to simultaneously describe the measured Λ/p, Ξ−/Λ and K0

S/Λ data. The Thermal-
FIST model [62] with CE can also reproduce the data, albeit with a slightly different rc ∼
3.2 − 3.9 fm. However, as discussed in ref. [20], different radii of rc ∼ 2.7 fm (rc ∼ 4.2 fm)
are needed to reproduce the ratio of ϕ/K−(ϕ/Ξ−) [20] from the same collisions. Further
investigation, including the precise determination of the chemical freeze-out parameters Tch,
µB, and strangeness suppression factor γs [63] through a global fit to all measured particle
yields from √

sNN = 3 GeV Au+Au collisions, should be conducted in the future.

5 Summary

In summary, we report multi-differential yield measurements of Λ and K0
S in Au+Au collisions

at √
sNN = 3 GeV with the STAR experiment at RHIC. Clear centrality dependence of the

average transverse momentum of strange particles (K−, K0
S , ϕ, Λ, Ξ−) has been observed,

providing evidence of hadronic collectivity due to hadronic rescatterings in such collisions.
The 4π yields of strange hadrons follow a common centrality dependence within experimental
uncertainties except for Ξ−. This discrepancy could be due to the sub-threshold production
for Ξ− at this collision energy. The extracted strange hadron scaling parameter αS is
consistent with a monotonically decreasing energy dependence within 2.4 ≤ √

sNN ≤ 40 GeV.
The hadronic transport model UrQMD qualitatively describes the decreasing trend in αS ,
while also describing the trends in the centrality and rapidity dependence observed in the
√

sNN = 3 GeV data. In contrast to the situation in high energy collisions where the thermal
model with GCE describes particle production well, at 3 GeV, CE with rc from 2.9 to 3.9 fm
simultaneously describes the mid-rapidity ratios K0

S/Λ, Λ/p, and Ξ−/Λ in central collisions.
Similar features in the ratios ϕ/K− and ϕ/Ξ− have also been observed [20]. The change from
GCE to CE, reflected in the strange particle ratios, in addition to the fact that a hadronic
transport model reproduces the results, imply the dominance of hadronic interactions in the
EoS of the medium created in √

sNN = 3 GeV Au+Au collisions.
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Rapidity 0-10% 10-20% 20-30%
y[-0.9, -0.8] 0.561 ± 0.007 ± 0.083 0.468 ± 0.006 ± 0.081 0.320 ± 0.004 ± 0.061
y[-0.8, -0.7] 0.815 ± 0.008 ± 0.125 0.603 ± 0.006 ± 0.095 0.413 ± 0.004 ± 0.062
y[-0.7, -0.6] 1.093 ± 0.009 ± 0.161 0.757 ± 0.007 ± 0.109 0.499 ± 0.004 ± 0.070
y[-0.6, -0.5] 1.359 ± 0.011 ± 0.192 0.890 ± 0.007 ± 0.126 0.572 ± 0.005 ± 0.078
y[-0.5, -0.4] 1.586 ± 0.013 ± 0.224 0.996 ± 0.008 ± 0.138 0.615 ± 0.005 ± 0.082
y[-0.4, -0.3] 1.836 ± 0.015 ± 0.253 1.119 ± 0.010 ± 0.151 0.678 ± 0.006 ± 0.089
y[-0.3, -0.2] 2.061 ± 0.019 ± 0.248 1.251 ± 0.012 ± 0.147 0.724 ± 0.007 ± 0.089
y[-0.2, -0.1] 2.262 ± 0.015 ± 0.244 1.355 ± 0.009 ± 0.164 0.772 ± 0.005 ± 0.084
y[-0.1, 0.0] 2.258 ± 0.017 ± 0.267 1.329 ± 0.010 ± 0.173 0.752 ± 0.006 ± 0.088
Rapidity 30-40% 40-60% 60-80%

y[-0.9, -0.8] 0.216 ± 0.003 ± 0.041 0.107 ± 0.002 ± 0.024 0.031 ± 0.001 ± 0.009
y[-0.8, -0.7] 0.268 ± 0.003 ± 0.045 0.122 ± 0.002 ± 0.024 0.027 ± 0.001 ± 0.006
y[-0.7, -0.6] 0.309 ± 0.003 ± 0.047 0.133 ± 0.002 ± 0.025 0.040 ± 0.001 ± 0.009
y[-0.6, -0.5] 0.352 ± 0.003 ± 0.047 0.142 ± 0.002 ± 0.023 0.037 ± 0.001 ± 0.008
y[-0.5, -0.4] 0.376 ± 0.004 ± 0.050 0.153 ± 0.002 ± 0.023 0.035 ± 0.001 ± 0.007
y[-0.4, -0.3] 0.399 ± 0.004 ± 0.054 0.167 ± 0.002 ± 0.025 0.041 ± 0.001 ± 0.007
y[-0.3, -0.2] 0.422 ± 0.005 ± 0.057 0.165 ± 0.002 ± 0.024 0.052 ± 0.002 ± 0.010
y[-0.2, -0.1] 0.436 ± 0.003 ± 0.053 0.172 ± 0.002 ± 0.022 0.047 ± 0.001 ± 0.010
y[-0.1, 0.0] 0.425 ± 0.004 ± 0.048 0.177 ± 0.002 ± 0.022 0.045 ± 0.001 ± 0.009

Table 2. Integral yield (dN/dy) of Λ at different centralities in Au+Au collisions at √
sNN = 3 GeV.

The first uncertainty is statistical, and the second is systematic.
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Rapidity 0-10% 10-20% 20-30%
y[-0.8, -0.7] 0.456 ± 0.011 ± 0.047 0.302 ± 0.008 ± 0.031 0.190 ± 0.006 ± 0.020
y[-0.7, -0.6] 0.509 ± 0.007 ± 0.052 0.317 ± 0.005 ± 0.032 0.201 ± 0.004 ± 0.021
y[-0.6, -0.5] 0.578 ± 0.007 ± 0.059 0.355 ± 0.004 ± 0.036 0.223 ± 0.003 ± 0.023
y[-0.5, -0.4] 0.645 ± 0.006 ± 0.065 0.387 ± 0.004 ± 0.039 0.240 ± 0.003 ± 0.024
y[-0.4, -0.3] 0.690 ± 0.006 ± 0.070 0.408 ± 0.004 ± 0.042 0.251 ± 0.003 ± 0.026
y[-0.3, -0.2] 0.709 ± 0.006 ± 0.073 0.425 ± 0.004 ± 0.044 0.256 ± 0.003 ± 0.026
y[-0.2, -0.1] 0.740 ± 0.006 ± 0.077 0.436 ± 0.004 ± 0.045 0.267 ± 0.003 ± 0.028
y[-0.1, 0.0] 0.742 ± 0.007 ± 0.079 0.437 ± 0.005 ± 0.047 0.264 ± 0.003 ± 0.030
Rapidity 30-40% 40-60% 60-80%

y[-0.8, -0.7] 0.119 ± 0.005 ± 0.012 0.052 ± 0.002 ± 0.005 0.015 ± 0.001 ± 0.002
y[-0.7, -0.6] 0.116 ± 0.003 ± 0.012 0.055 ± 0.001 ± 0.006 0.015 ± 0.001 ± 0.002
y[-0.6, -0.5] 0.134 ± 0.002 ± 0.014 0.060 ± 0.001 ± 0.006 0.017 ± 0.001 ± 0.002
y[-0.5, -0.4] 0.142 ± 0.002 ± 0.014 0.064 ± 0.001 ± 0.007 0.017 ± 0.001 ± 0.002
y[-0.4, -0.3] 0.149 ± 0.002 ± 0.015 0.068 ± 0.001 ± 0.007 0.019 ± 0.001 ± 0.002
y[-0.3, -0.2] 0.155 ± 0.002 ± 0.016 0.066 ± 0.001 ± 0.007 0.021 ± 0.001 ± 0.002
y[-0.2, -0.1] 0.156 ± 0.002 ± 0.016 0.071 ± 0.001 ± 0.008 0.020 ± 0.001 ± 0.002
y[-0.1, 0.0] 0.155 ± 0.002 ± 0.018 0.070 ± 0.001 ± 0.008

Table 3. Integral yield (dN/dy) of K0
S at different centralities in Au+Au collisions at √

sNN = 3 GeV.
The first uncertainty is statistical, and the second is systematic.

⟨pT⟩ (GeV/c) 0-10% 10 − 20% 20 − 30%
Λ 0.608 ± 0.0015 ± 0.020 0.574 ± 0.0015 ± 0.022 0.560 ± 0.0016 ± 0.016

K0
S 0.465 ± 0.001 ± 0.017 0.449 ± 0.001 ± 0.012 0.436 ± 0.001 ± 0.012

⟨pT⟩ (GeV/c) 30 − 40% 40 − 60% 60 − 80%
Λ 0.541 ± 0.0018 ± 0.017 0.514 ± 0.0027 ± 0.019 0.466 ± 0.006 ± 0.034

K0
S 0.422 ± 0.001 ± 0.016 0.403 ± 0.002 ± 0.016 0.369 ± 0.004 ± 0.011

Table 4. Mean transverse momentum ⟨pT⟩ of Λ and K0
S at different centralities in Au+Au collisions

at √
sNN = 3 GeV. The first uncertainty is statistical, and the second is systematic.
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