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We consider neutral particle systems described by moments of a phase-space density and propose 
a realizability-preserving numerical method to evolve a spectral two-moment model for particles 
interacting with a background fluid moving with nonrelativistic velocities. The system of nonlinear 
moment equations, with special relativistic corrections to O(𝑣∕𝑐), expresses a balance between 
phase-space advection and collisions and includes velocity-dependent terms that account for 
spatial advection, Doppler shift, and angular aberration. The model is conservative for the correct 
O(𝑣∕𝑐) Eulerian-frame number density and is consistent, to O(𝑣∕𝑐), with Eulerian-frame energy 
and momentum conservation. This model is closely related to the one promoted by Lowrie et al. [1]
and similar to models currently used to study transport phenomena in large-scale simulations of 
astrophysical environments. The proposed numerical method is designed to preserve moment 
realizability, which guarantees that the moments correspond to a nonnegative phase-space 
density. The realizability-preserving scheme consists of the following key components: (i) a 
strong stability-preserving implicit-explicit (IMEX) time-integration method; (ii) a discontinuous 
Galerkin (DG) phase-space discretization with carefully constructed numerical fluxes; (iii) a 
realizability-preserving implicit collision update; and (iv) a realizability-enforcing limiter. In time 
integration, nonlinearity of the moment model necessitates solution of nonlinear equations, which 
we formulate as fixed-point problems and solve with tailored iterative solvers that preserve 
moment realizability with guaranteed global convergence. We also analyze the simultaneous 
Eulerian-frame number and energy conservation properties of the semi-discrete DG scheme and 
propose a “spectral redistribution” scheme that promotes Eulerian-frame energy conservation. 
Through numerical experiments, we demonstrate the accuracy and robustness of this DG-IMEX 
method and investigate its Eulerian-frame energy conservation properties.
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 Introduction

In this paper, we design and analyze a numerical method for solving a system of moment equations that model transport of neutral 
rticles (e.g., photons, neutrons, or neutrinos) interacting with a background fluid moving with nonrelativistic velocities — i.e., 
ws in which the ratio of the background flow velocity to the speed of light, 𝑣∕𝑐, is sufficiently small such that special relativistic 
rrections of order (𝑣∕𝑐)2 and higher can be neglected. Similar O(𝑣∕𝑐) models have been used to study transport phenomena in 
trophysical environments [2], including neutrino transport in core-collapse supernovae (e.g., [3–7]) and binary neutron star mergers 
.g., [8,9]). The numerical method is based on the discontinuous Galerkin (DG) phase-space discretization and an implicit-explicit 
EX) method for time integration, and we pay particular attention to the preservation of certain physical bounds by the fully 

screte scheme. The bound-preserving property is achieved by carefully considering the phase-space and temporal discretizations, 
 well as the formulation of associated iterative nonlinear solvers.
Neutral particle transport in physical systems where the particle mean-free path may be similar to, or exceed, other characteristic 

ngth scales demands a kinetic description based on the distribution function 𝑓 (𝒑, 𝒙, 𝑡), which is a phase-space density providing, at 
e 𝑡, the number of particles in an infinitesimal phase-space volume 𝑑𝒙𝑑𝒑 centered around phase-space coordinates {𝒑, 𝒙}. Here, 
and 𝒙 are momentum- and position-space coordinates, respectively. The evolution of 𝑓 is governed by a kinetic equation that 
presses a balance between phase-space advection and collisions (e.g., interparticle collisions and/or collisions with a background); 
e, e.g., [10,2] for detailed expositions. In this paper, as a simplification, we consider the situation where particles described by a 
netic distribution function interact with an external background whose properties are prescribed and unaffected by 𝑓 .
The design of numerical methods to model transport of particles interacting with a moving fluid is complicated, in part, by the 
cessity to choose coordinates for discretization of momentum space. While relativistic kinetic theory provides the framework to 
ely specify momentum-space coordinates, the two most obvious reference frame choices, the Eulerian and comoving frames, come 
ith distinct computational challenges (e.g., [11–13,2]). On the one hand, choosing momentum-space coordinates associated with 
 Eulerian observer eases the discretization of the phase-space advection problem at the expense of complicating the particle-fluid 
teraction kinematics and, for moment models, the closure procedure. On the other hand, choosing momentum-space coordinates 
sociated with the comoving frame (or comoving observer) — defined as the sequence of inertial frames whose velocity instanta-
ously coincides with the fluid velocity [13,2] — simplifies the description of particle-fluid interaction kinematics but at the expense 
 increased complexity in solving the phase-space advection problem numerically. Moreover, when particles equilibrate with the 
id, the distribution function becomes isotropic in the comoving frame, which simplifies the closure procedure for moment-based 
ethods [13]. We also mention the mixed-frame approach (e.g., [14]), where the distribution function depends on Eulerian-frame 
omentum coordinates. Then, to evaluate comoving-frame emissivities and opacities at Eulerian-frame momentum coordinates, ap-
opriate transformation laws and expansions to O(𝑣∕𝑐) are applied (see Section 7.2 in [2]). The mixed-frame approach attempts 
 combine the best of both coordinate choices but has difficulties with certain collision operators and does not generalize to the 
lativistic case. Nagakura et al. [15] combine both coordinate choices in a relativistic framework, using a discrete ordinates method, 
hich requires mapping of numerical data between momentum space coordinate systems. (Recently, this approach has been adopted 
so to thermal radiation transport [16].) This approach has yet to be applied to moment models.
Our primary goal is to model neutrino transport in large-scale core-collapse supernova simulations, which require the inclusion 

 a wide range of neutrino–matter interactions — with various kinematic forms (e.g., [17–19,7,20]) — which tend to dominate 
e overall computational cost. Therefore, we opt for relative simplicity in the collision term, adopt momentum-space coordinates 
sociated with the comoving frame, and focus our effort here on the discretization of the phase-space advection problem.
Because of the high computational cost associated with solving kinetic equations numerically in full dimensionality with sufficient 
ase-space resolution, dimension-reduction techniques are frequently employed. One commonly used method is to define and solve 
r a sequence of moments, instead of 𝑓 directly. Specifically, we employ spherical-polar momentum-space coordinates (𝜀, 𝜗, 𝜑)
d integrate the distribution function against angular basis functions (depending on momentum-space angles 𝜔 = (𝜗, 𝜑)) to obtain 
ectral, angular moments (depending on particle energy 𝜀, and 𝒙 and 𝑡) representing number densities, number fluxes, etc. The 
erarchy of moment equations is obtained by taking corresponding moments of the kinetic equation. In this study, we consider a 
-called two-moment model, where we solve for the zeroth (scalar) and first (vector) moments. The resulting system of moment 
uations, accurate to O(𝑣∕𝑐), describes the evolution of the moments due to advection in phase-space (the left-hand side) and 
llisions with the background fluid (the right-hand side). Due to the choice of comoving-frame momentum coordinates, the left-
nd side contains velocity-dependent terms that account for spatial advection, Doppler shift, and angular aberration. Moreover, the 
oment equations contain higher-order moments (rank-two and rank-three tensors) that must be expressed in terms of the lower-
der moments to close the system of equations. Specifically, we consider an approximate, algebraic moment closure originating from 
e maximum-entropy closure proposed by Minerbo [21] (see also [22,4]). Related two-moment models have recently been used to 
odel neutrino transport in core-collapse supernova simulations (e.g., [4,5]).
In this paper, we consider a number-conservative two-moment model obtained by taking the flat spacetime, O(𝑣∕𝑐) limit of 
neral-relativistic moment models, e.g., from [23,24,7]. We refer to the model as number-conservative because, in the absence of 
llisions, the zeroth moment equation is conservative for the correct O(𝑣∕𝑐) Eulerian-frame number density. The model is closely 
lated to the two-moment model promoted by Lowrie et al. [1]: With the assumption of one-dimensional, planar geometry, we 
tain their equations by multiplying our equations with the particle energy 𝜀. This two-moment model supports wave speeds that 
e bounded by the speed of light. It is also consistent, to O(𝑣∕𝑐), with conservation laws for Eulerian-frame energy and momentum. 
y to this consistency is retention of certain O(𝑣∕𝑐) terms in the time derivative of the moment equations, which are often omitted (e.g., 
2

5,4,5]). However, retention of these terms increases the computational complexity of the algorithm because the evolved moments 
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come nonlinear functions of the primitive (comoving-frame) moments needed to evaluate closure relations, which then introduces 
nlinear, iterative solves that contribute to increased computational costs.
We use the DG method [26] to discretize the moment equations. The choice of comoving-frame momentum coordinates results 

 advection-type terms along the energy dimension and four-dimensional divergence operators in the left-hand side of the moment 
uations. We use the DG method to discretize all four phase-space dimensions. DG methods have advantages for modeling particle 
nsport because of their ability to capture the asymptotic diffusion limit with coarse meshes [27–29] without modification of 
merical fluxes (as in, e.g., [30]), and we leverage this property here. Moreover, their variational formulation and flexibility with 
spect to test functions make them suitable for designing methods that conserve particle number and total energy simultaneously
.g., [31,32]), which can be more difficult to achieve with, e.g., finite-difference or finite-volume methods. We use IMEX time 
pping [33,34] to integrate the ordinary differential equations resulting from the semi-discretization of the moment equations by 
e DG method. Following our prior works [35,36], we integrate the phase-space advection problem explicitly and the collision 
rm implicitly. However, different from our prior works, due to the additional O(𝑣∕𝑐) terms in the time derivatives of the moment 
uations, the implicit part is nonlinear, even for the simplified collision term we consider here, and requires an iterative solution 
ocedure, which we formulate in this paper.
Given appropriate initial and boundary conditions, the solution to moment models with maximum-entropy closure is known to 

 realizable; i.e., the moment solution is consistent with a kinetic distribution 𝑓 that satisfies required physical bounds [37,38]. 
r particle systems obeying Bose–Einstein or Maxwell–Boltzmann statistics, 𝑓 is nonnegative, whereas for particle systems obeying 
rmi–Dirac statistics, 𝑓 ∈ [0, 1]. These bounds translate into constraints on the associated moments, and moments satisfying these 
nstraints are referred to as “realizable” moments. Although moment realizability is preserved by continuous moment models, solving 
oment models numerically can result in unrealizable moments, which leads to ill-posedness of the closure procedure and can give 
physical results when coupling moment models to other physical models, such as fluid models. Therefore, maintaining moment 
alizability has been a key challenge in the design of numerical schemes for solving moment equations and has been explored in 
isting work from different perspectives, including development of realizability-preserving spatio-temporal discretizations [39,40,
], design of realizability-enforcing limiters [35], and relaxation of the realizability constraints via regularization [38]. While these 
isting approaches provide some essential components to construct a realizability-preserving scheme for the O(𝑣∕𝑐) two-moment 
odel considered in this work, they focus on models without any relativistic corrections and do not fully address the challenges of 
eserving moment realizability when relativistic corrections are included.
The realizability-preserving numerical scheme proposed in this paper consists of the following key components. First, for time 
tegration, we adopt a strong stability-preserving (SSP) IMEX method, which treats the advection terms explicitly and the collision 
rm implicitly. This choice avoids excessive time-step restrictions in the highly collisional regime and gives explicit stage updates 
at can be expressed as a convex combination of multiple forward Euler steps, which is necessary for preserving realizability. Second, 
e DG method is equipped with tailored numerical fluxes, which, together with the SSP IMEX time integration method, maintains 
nnegative cell-averaged number densities in the explicit update under a time-step restriction that takes the form of a hyperbolic-
pe Courant–Friedrichs–Lewy (CFL) condition. Third, the realizability-enforcing limiter proposed in [35] is used to recover pointwise 
alizable moments after each stage of the IMEX method. As discussed above, the moment closure procedure requires an iterative 
lver for nonlinear equations that convert evolved (conserved) moments to the primitive moments. To preserve realizability in this 
nversion process, we formulate the nonlinear equation as a fixed-point problem and apply an iterative solver analogous to the 
odified Richardson iteration (e.g., [41,42]) to ensure realizability in each iteration. We prove the global convergence property 
 this iterative solver in the O(𝑣∕𝑐) regime. The convergence analysis is applicable to the maximum-entropy closure as well as its 
gebraic approximation. Finally, the nonlinear systems arising from the implicit step of the IMEX method can also be formulated 
 a fixed-point problem and solved in a similar fashion. The realizability-preserving and convergence analyses both carry through 
ith minor modifications. With these components in hand, we prove that the proposed DG-IMEX scheme for solving the O(𝑣∕𝑐)
o-moment model indeed preserves moment realizability.
The two-moment model we consider is number conservative and, in the continuum limit, consistent to O(𝑣∕𝑐) with phase-space 
nservation laws for Eulerian-frame energy and momentum. Because the Eulerian-frame energy is not a primary evolved quantity of 
e model, but is instead obtained from a nontrivial combination of the evolved quantities, similar consistency with this conservation 
w is not guaranteed at the discrete level. In the context of finite-difference methods, Liebendörfer et al. [43] proposed a consistent 
scretization by carefully matching specific numerical flux terms in the finite-difference representation of the general-relativistic 
ltzmann equation (see also [44] for an approach in the case of moment models). For the semi-discrete DG scheme proposed here, 
e numerical fluxes are tailored to maintain moment realizability, which limits the flexibility of following this procedure. However, 
e flexibility provided by the approximation spaces of the DG method can be helpful in this respect. For example, by testing with 
e particle energy 𝜀, which is represented exactly by the DG approximation space with linear functions in the energy dimension, we 
tain the two-moment model promoted in [1]. We further analyze the simultaneous Eulerian-frame number and energy conservation 
operties of the semi-discrete DG scheme, and point out that our DG approximation of the background velocity, which is allowed 
 be discontinuous, can impact the ability to achieve consistency with Eulerian-frame energy conservation to O(𝑣∕𝑐). Moreover, 
e design a “spectral redistribution” that corrects for Eulerian-frame energy conservation violations introduced by the realizability-
forcing limiter mentioned above. Through numerical experiments, we observe that Eulerian-frame energy conservation violations 
ow as (𝑣∕𝑐)2, indicating the desired consistency for an O(𝑣∕𝑐) method.
The paper is organized as follows. The mathematical formulation of the two-moment model is presented in Section 2, while 
e closure procedure and wave propagation speeds supported by the resulting moment model are presented and discussed in 
3

ction 3. Section 4 provides an overview of the numerical method, including the DG phase-space discretization, IMEX time discretiza-
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n, and iterative solvers for the nonlinear systems arising from the conserved-to-primitive conversion problem and time-implicit 
aluation of the collision term. Section 5, where the realizability-preserving property of the method is established, contains the 
ain technical results of the paper. The simultaneous conservation of Eulerian-frame number and energy of the DG method is dis-
ssed in Section 6, where the spectral redistribution that corrects for Eulerian-frame energy conservation violations introduced by 
e realizability-enforcing limiter is also presented. The algorithms have been implemented in the toolkit for high-order neutrino 
diation-hydrodynamics (thornado1) and have been ported to utilize graphics processing units (GPUs). Our GPU programming 
odel and implementation strategy is briefly discussed in Section 7. Results from numerical experiments demonstrating the robust-
ss and accuracy of our method are presented in Section 8, where we also present GPU and multi-core performance results and 
ghlight the relative computational cost of algorithmic components. The kinetic equation from which our two-moment model can 
 easily derived is provided in Appendix A. Some technical proofs are given in Appendix B.
For the remainder of this paper we employ units in which the speed of light is unity (𝑐 = 1).

 Mathematical model

We consider a kinetic model where we solve for angular moments of the distribution function 𝑓 ∶ (𝜔, 𝜀, 𝒙, 𝑡) ∈ 𝕊2 ×ℝ+×ℝ3 ×ℝ+ →
+, which gives the number of particles propagating in the direction 𝜔 ∈ 𝕊2 ∶= { 𝜔 = (𝜗, 𝜑) | 𝜗 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋) }, with energy 
ℝ+, at position 𝒙 ∈ℝ3 and time 𝑡 ∈ℝ+. We define angular moments of 𝑓 as{

D, I𝑖, K 𝑖𝑗 , Q𝑖𝑗𝑘
}
(𝜀,𝒙, 𝑡) = 1

4𝜋 ∫
𝕊2

𝑓 (𝜔,𝜀,𝒙, 𝑡)
{
1, 𝓁𝑖, 𝓁𝑖𝓁𝑗 , 𝓁𝑖𝓁𝑗𝓁𝑘

}
𝑑𝜔, (1)

here 𝓁𝑖(𝜔) is the 𝑖th component of a unit vector parallel to the particle three-momentum 𝒑 = 𝜀 𝓵, and 𝑑𝜔 = sin𝜗 𝑑𝜗 𝑑𝜑. We take 
=
(
𝑝1, 𝑝2, 𝑝3

)⊺
to be the particle three-momentum, and 𝜀 and 𝜔 the particle energy and direction in a spherical-polar momentum-

ace coordinate system associated with an observer instantaneously moving with the fluid three-velocity 𝒗 (the comoving observer). 
is choice of momentum-space coordinates is commonly used to model particles interacting with a moving material, as it simplifies 
e particle–material interaction (collision) terms (see, e.g., [12,2]). For simplicity, we will assume that the components of the three-
locity 𝑣𝑖 are given functions of position 𝒙, independent of time 𝑡. In Eq. (1), D and I𝑖 are the comoving-frame, spectral particle 
nsity and flux density components, respectively.
Moment models that incorporate moving fluid effects are derived in the framework of relativistic kinetic theory [45], and the 
oment model considered here is obtained from taking angular moments of the O(𝑣) kinetic equation derived by Munier & Weaver [46,
], which we provide for convenience in Appendix A. In this limit, the zeroth-moment equation is given by

𝜕𝑡
(
D+ 𝑣𝑖 I𝑖

)
+ 𝜕𝑖
(
I𝑖 + 𝑣𝑖D

)
− 1
𝜀2
𝜕𝜀
(
𝜀3K 𝑖𝑘 𝜕𝑖𝑣

𝑘
)
= 𝜒
(
D0 −D

)
, (2)

here 𝜕𝑡 = 𝜕∕𝜕𝑡, 𝜕𝑖 = 𝜕∕𝜕𝑥𝑖, and 𝜕𝜀 = 𝜕∕𝜕𝜀. We use the Einstein summation convention, where repeated Latin indices run from 
to 3. In flat spacetime, assuming Cartesian spatial coordinates, we can raise and lower indices on vectors and tensors with the 
onecker tensor; e.g., I𝑖 = 𝛿𝑖𝑗I𝑗 . On the right-hand side of Eq. (2), 𝜒 ≥ 0 is the absorption opacity, and D0 is the zeroth moment of 
 equilibrium distribution 𝑓0. The corresponding first-moment equation is given by

𝜕𝑡
(
I𝑗 + 𝑣𝑖K𝑖𝑗

)
+ 𝜕𝑖
(
K 𝑖𝑗 + 𝑣

𝑖 I𝑗
)
− 1
𝜀2
𝜕𝜀
(
𝜀3Q𝑖𝑘𝑗 𝜕𝑖𝑣

𝑘
)

+ I𝑖 𝜕𝑖𝑣𝑗 −Q𝑖𝑘𝑗 𝜕𝑖𝑣
𝑘 = −𝜅 I𝑗 , (3)

here 𝜅 = 𝜒 + 𝜎 is the sum of the absorption opacity and the opacity due to elastic and isotropic scattering (𝜎 ≥ 0).
The two-moment model given by Eqs. (2) and (3) correspond to the moment equations for number transport given by Just et 

. [4]; their Equations (9a) and (9b). (See also Eq. (125) in [48] for the number-density equation.) The velocity-dependent terms 
 the spatial and energy derivatives in Eqs. (2) and (3) account for spatial advection and Doppler shift between adjacent comoving 
servers, respectively, while the fourth and fifth terms on the left-hand side of Eq. (3) account for angular aberration between 
jacent comoving observers (e.g., [43]). We point out that the velocity-dependent terms inside the time derivatives in Eqs. (2) and 
) were dropped in [4]. By retaining these terms, Eq. (2) evolves the O(𝑣) Eulerian-frame number density, and, as emphasized by 
wrie et al. [1], wave speeds remain bounded by the speed of light and the model is consistent with the correct O(𝑣) Eulerian-frame 
ergy and momentum equations. To elaborate on the latter, we define the “conserved” moments that are evolved in Eqs. (2) and (3)

N ∶=D+ 𝑣𝑖 I𝑖 and G𝑗 ∶= I𝑗 + 𝑣𝑖K𝑖𝑗 , (4)

spectively. Here, N is the correct O(𝑣) Eulerian-frame number density, and, in the absence of sources on the right-hand side, Eq. (2)
a phase-space conservation law. The Eulerian-frame energy and momentum densities are related to N and G𝑗 by

E = 𝜀 (N + 𝑣𝑖 G𝑖) = 𝜀 (D+ 2𝑣𝑖 I𝑖) +O(𝑣2) (5)
4

www.github.com/endeve/thornado.

https://github.com/endeve/thornado
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d

P𝑗 = 𝜀 (G𝑗 + 𝑣𝑗 N) = 𝜀 (I𝑗 + 𝑣𝑖K𝑖𝑗 + 𝑣𝑗 D) +O(𝑣2), (6)

spectively. The following proposition gives the energy and momentum conservation properties of the two-moment model in 
s. (2)–(3).

oposition 1. The two-moment model given by Eqs. (2)–(3) is, up to O(𝑣), consistent with phase-space conservation laws for the energy 
nsity E and momentum density P𝑗 .

oof. By multiplying Eqs. (2) and (3) with appropriate factors and summing up the resulting equations, the evolution equations for 
e energy and momentum densities can be derived, respectively, as

𝜕𝑡E+ 𝜕𝑖P𝑖 −
1
𝜀2
𝜕𝜀
(
𝜀4K 𝑖𝑘 𝜕𝑖𝑣

𝑘
)
= 𝜀𝜒

(
D0 −D

)
− 𝜀𝜅 𝑣𝑗 I𝑗 (7)

d

𝜕𝑡P𝑗 + 𝜕𝑖 S𝑖𝑗 −
1
𝜀2
𝜕𝜀
(
𝜀4Q𝑖𝑘𝑗 𝜕𝑖𝑣

𝑘
)
= −𝜀𝜅 I𝑗 + 𝜀𝑣𝑗 𝜒

(
D0 −D

)
. (8)

re, all O(𝑣2) terms are dropped, and the momentum flux density is denoted as S𝑖𝑗 ∶= 𝜀 (K 𝑖𝑗 + I𝑖 𝑣𝑗 + 𝑣𝑖 I𝑗 ). In the absence of 
urces on the right-hand side, Eqs. (7) and (8) become phase-space conservation laws for E and P𝑗 , respectively. □

To close the two-moment model (2)–(3), the higher-order moments K 𝑖𝑗 and Q𝑖𝑗𝑘 must be specified. We will use an algebraic 
osure, which we discuss in more detail in Section 3. To this end, we write the second-order moments as

K 𝑖𝑗 = 𝗄𝑖𝑗D, (9)

here the symmetric variable Eddington tensor components are given by (e.g., [49])

𝗄𝑖𝑗 = 1
2

[
(1 −𝜓)𝛿𝑖𝑗 + (3𝜓 − 1) 𝗇̂𝑖 𝗇̂𝑗

]
, (10)

here 𝗇̂𝑖 = I𝑖∕I and I =
√
I𝑖I𝑖. The expression given by Eq. (10) satisfies the trace condition 𝗄𝑖 𝑖 = 𝛿𝑖𝑗𝗄

𝑖𝑗 = 1 (cf. Eq. (1)), and the 
dington factor can be obtained from

𝜓 = 𝗇̂𝑖 𝗇̂𝑗 𝗄
𝑖𝑗 =

∫𝕊2 𝑓 (𝗇̂𝑖𝓁𝑖)2 𝑑𝜔
∫𝕊2 𝑓 𝑑𝜔

. (11)

Similarly, the third-order moments can be written as

Q𝑖𝑗𝑘 = 𝗊𝑖𝑗𝑘D, (12)

here we define the symmetric “heat-flux” tensor (e.g., [4]),

𝗊𝑖𝑗𝑘 = 1
2

[
(ℎ− 𝜁 )

(
𝗇̂𝑖 𝛿𝑗𝑘 + 𝗇̂𝑗 𝛿𝑖𝑘 + 𝗇̂𝑘 𝛿𝑖𝑗

)
+ (5𝜁 − 3ℎ) 𝗇̂𝑖 𝗇̂𝑗 𝗇̂𝑘

]
, (13)

here ℎ = I∕D is the flux factor. The expression in Eq. (13) satisfies the trace condition 𝛿𝑗𝑘 𝗊𝑖𝑗𝑘 = 𝗊𝑖𝑗 𝑗 = I
𝑖∕D, and the “heat-flux” 

ctor can be obtained from

𝜁 = 𝗇̂𝑖 𝗇̂𝑗 𝗇̂𝑘 𝗊
𝑖𝑗𝑘 =

∫𝕊2 𝑓 (𝗇̂𝑖𝓁𝑖)3 𝑑𝜔
∫𝕊2 𝑓 𝑑𝜔

. (14)

s (2) and (3) are closed by specifying the Eddington and heat-flux factors in terms of the “primitive” moments M =
(
D, I

)⊺
; i.e., 

= 𝜓(M) and 𝜁 = 𝜁 (M).
Assuming a closure for the higher-order tensors, we define the vector of evolved moments,

U(M,𝒗) =
[
N
G𝑗

]
=
[
D+ 𝑣𝑖 I𝑖
I𝑗 + 𝑣𝑖K𝑖𝑗

]
, (15)

e phase-space fluxes,

F 𝑖(U,𝒗) =
[
I𝑖 + 𝑣𝑖D
K 𝑖𝑗 + 𝑣

𝑖 I𝑗

]
and F 𝜀(U,𝒗) = −

[
K 𝑖
𝑘

Q𝑖
𝑘𝑗

]
𝜕𝑖𝑣

𝑘, (16)

d the sources, [
0

] [
𝜒
(
D0 −D

) ]

5

S(U,𝒗) = Q𝑖
𝑘𝑗
𝜕𝑖𝑣

𝑘 − I𝑖 𝜕𝑖𝑣𝑗
and C(U) = −𝜅 I𝑗

, (17)
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 we can write the two-moment model in the compact form,

𝜕𝑡U + 𝜕
𝜕𝑥𝑖

(
F 𝑖(U,𝒗)

)
+ 1
𝜀2

𝜕
𝜕𝜀

(
𝜀3F 𝜀(U,𝒗)

)
= S(U,𝒗) + C(U). (18)

te that the collision term C does not depend explicitly on the three-velocity 𝒗. This is a consequence of choosing comoving-frame, 
omentum-space coordinates.
The moment closure is defined in terms of the primitive moments M, while we will evolve the “conserved” moments U =
, G𝑗
)⊺
. The relation between the conserved and primitive moments can be written as

U =L(M,𝒗)M, (19)

here

L(M,𝒗) =

⎡⎢⎢⎢⎢⎢⎣

1 𝑣1 𝑣2 𝑣3

𝑣𝑘 𝗄𝑘1(M) 1 0 0
𝑣𝑘 𝗄𝑘2(M) 0 1 0
𝑣𝑘 𝗄𝑘3(M) 0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (20)

hen solving Eq. (18) numerically, it is necessary to convert between primitive and conserved moments. Computing the conserved 
oments from the primitive moments is straightforward, but obtaining the primitive moments from the conserved moments is non-
vial because, for a given nontrivial velocity 𝒗, there is no closed-form expression for M in terms of U, due to the nonlinear 
pendence 𝗄𝑖𝑗 (M). Thus, the primitive moments must be obtained through an iterative procedure, which we discuss in more detail 
ter, where we will pay particular attention to maintaining physically-realizable moments throughout the iteration process. One is 
ced with a similar problem, e.g., when solving the relativistic Euler and magnetohydrodynamics equations (e.g., [50]).

 Moment closure

We use the maximum-entropy closure of Minerbo [21] to close the two-moment model. We let the admissible set of kinetic 
stribution functions be

R ∶=
⎧⎪⎨⎪⎩𝑓 | 𝑓 ≥ 0 and

1
4𝜋 ∫

𝕊2

𝑓 𝑑𝜔 > 0
⎫⎪⎬⎪⎭ , (21)

hich is then used to define moment realizability as below.

finition 1. The moments M = (D, I )⊺ are realizable if they can be obtained from a distribution function 𝑓 (𝜔) ∈R. The set of all 
alizable moments R is

R ∶=
{
M = (D,I )⊺ | D > 0 and 𝛾(M) =D− I ≥ 0

}
, (22)

here the function 𝛾(M) is concave.

The Minerbo closure is based on the maximum-entropy principle, assuming an entropy functional of the form 𝑠[𝑓 ] = 𝑓 ln𝑓 − 𝑓 . 
e functional form of the distribution maximizing this entropy functional is, in this case, the Maxwell–Boltzmann distribution,

𝑓ME(𝜔) = exp
(
𝛼 + 𝛽 (𝗇̂𝑖𝓁𝑖)

)
, (23)

here 𝛼 and 𝛽 are determined from the constraints,

D = 1
4𝜋 ∫

𝕊2

𝑓ME(𝜔)𝑑𝜔 and 𝗇̂𝑖 I𝑖 = I =
1
4𝜋 ∫

𝕊2

𝑓ME(𝜔) (𝗇̂𝑖𝓁𝑖)𝑑𝜔. (24)

ote that 𝑓ME ∈R.) Letting 𝗇̂𝑖𝓁𝑖 = 𝜇, we can write 𝑓ME as a function of 𝜇 and perform a change of variable to write the integrals in 
. (24) in terms of 𝜇, which allows us to evaluate the constraints in Eq. (24) analytically (cf. [21]) and leads to

D = 𝑒𝛼 sinh(𝛽)∕𝛽 and I = 𝑒𝛼
(
𝛽 cosh(𝛽) − sinh(𝛽)

)
∕𝛽2. (25)

e flux factor can then be written solely as a function of 𝛽; i.e., ℎ = coth(𝛽) − 1∕𝛽 =∶ 𝐿(𝛽), where 𝐿(𝛽) is the Langevin function. 
us, for a given ℎ, we can obtain 𝛽(ℎ) = 𝐿−1(ℎ). Note that 𝐿(𝛽) ∈ (−1, 1), so that solutions for 𝛽 only exist for ℎ < 1 (i.e., for M in 
e interior of R). Using the maximum-entropy distribution in Eq. (23), direct calculations give, for ℎ ∈ [0, 1),

2ℎ
6

𝜓(ℎ) = 1 −
𝛽(ℎ)

and 𝜁 (ℎ) = coth(𝛽(ℎ)) − 3𝜓(ℎ)∕𝛽(ℎ). (26)



M.

Fig

Th

W

ki

he

be

er

Fo

ha

𝜁 ,
se

ap

is 
(1

Re

Th

𝑓
Ei

pa

di

co

is 

ab

to

w

an
Journal of Computational Physics 520 (2025) 113477Paul Laiu, E. Endeve, J. Austin Harris et al.

. 1. The left plot shows the values of the Eddington factor, 𝜓 , the heat-flux factor, 𝜁 , and their polynomial approximations, 𝜓𝖺 and 𝜁𝖺 , versus the flux factor, ℎ. 
e right plot illustrates the relative errors, 𝛿𝜓 = (𝜓 −𝜓𝖺)∕𝜓 and 𝛿𝜁 = (𝜁 − 𝜁𝖺)∕𝜁 , versus ℎ.

hen ℎ = 1 (i.e., when M is on the boundary of R), it is known [51] that, for the two-moment case considered here, the underlying 
netic distribution is a weighted Dirac delta function. In this case, the moment closure is given by the associated Eddington and 
at-flux factors 𝜓(1) = 𝜁 (1) = 1. Instead of inverting the Langevin function for 𝛽, the Eddington and heat-flux factors, 𝜓 and 𝜁 , can 
 accurately approximated by polynomials in ℎ. For 𝜓 , the following polynomial approximation leads to a relative approximation 
ror, 𝛿𝜓 ∶= (𝜓 −𝜓𝖺)∕𝜓 , within 1% [22]:

𝜓𝖺(ℎ) =
1
3
+ 2

15
(
3ℎ2 − ℎ3 + 3ℎ4

)
. (27)

r 𝜁 , the following approximation, given by [4],

𝜁𝖺(ℎ) = ℎ
(
45 + 10ℎ− 12ℎ2 − 12ℎ3 + 38ℎ4 − 12ℎ5 + 18ℎ6

)
∕75, (28)

s a relative approximation error, 𝛿𝜁 ∶= (𝜁 − 𝜁𝖺)∕𝜁 , lower than 3%. In Fig. 1, we plot the Eddington factor, 𝜓 , the heat-flux factor, 
 and their polynomial approximations, 𝜓𝖺 and 𝜁𝖺, and report the relative approximation error versus the flux factor, ℎ. It can be 
en from Fig. 1 that 𝜓𝖺 and 𝜁𝖺 are quite accurate polynomial approximations to the Eddington and heat-flux factors. Thus, the 
proximate closure is used in the numerical tests for the two-moment model reported in Section 8, in which the two-moment model 
closed by plugging the algebraic expressions given in Eqs. (27) and (28) into the Eddington and heat-flux tensors in Eqs. (10) and 
3), respectively.

mark 1. In this work, we focus on the Minerbo closure, which is based on the Maxwell–Boltzmann entropy 𝑠[𝑓 ] = 𝑓 ln𝑓 − 𝑓 . 
e results can be extended to two-moment models with maximum-entropy closures based on the Bose–Einstein entropy 𝑠[𝑓 ] =
ln𝑓 − (1 + 𝑓 ) ln(1 + 𝑓 ) with maximum entropy distribution 𝑓ME = [exp(−𝛼 − 𝛽 (𝗇̂𝑖𝓁𝑖)) − 1]−1. For particle systems obeying Bose–
nstein or Maxwell–Boltzmann statistics, the admissible set R and the realizable set R in this work are appropriate. For Fermi–Dirac 
rticles, e.g., neutrinos, the entropy functional is 𝑠[𝑓 ] = 𝑓 ln𝑓 + (1 − 𝑓 ) ln(1 − 𝑓 ), with bounds 0 ≤ 𝑓 ≤ 1 and maximum entropy 
stribution 𝑓ME = [exp(−𝛼 − 𝛽 (𝗇̂𝑖𝓁𝑖)) + 1]−1 [22]. In the low-occupancy limit, 𝑓 ≪ 1, this simplifies to the Maxwell–Boltzmann case 
nsidered here. However, the extension of this work to systems obeying Fermi–Dirac statistics, where 𝑓 is also bounded from above, 
non-trivial and deferred to future work.

Next we explore the wave propagation speeds of the moment system in Eq. (18) with the approximate Minerbo closure introduced 
ove. To calculate the wave speed, we compute the maximum magnitude of the eigenvalues of the spatial-flux Jacobians with respect 
 the conserved moments, (𝜕UF 𝑖), 𝑖 = 1, 2, 3. Specifically, we compute the spatial-flux Jacobian by(

𝜕F 𝑖

𝜕U

)
=
(
𝜕F 𝑖

𝜕M

)(
𝜕U
𝜕M

)−1
, (29)

here (
𝜕U
𝜕M

)
𝑖𝑗
=

[
1 𝑣𝑗

𝑣𝑘
[(

𝜕𝗄𝑖𝑘
𝜕D

)
D+ 𝗄𝑖𝑘

]
𝛿𝑖𝑗 + 𝑣𝑘

(
𝜕𝗄𝑖𝑘
𝜕I𝑗

)
D

]
(30)

d

(
𝜕F 𝑖

𝜕M

)
=

⎡⎢⎢⎢⎢⎢⎢

𝑣𝑖 𝛿𝑖1 𝛿𝑖2 𝛿𝑖3(
𝜕𝗄𝑖1
𝜕D

)
D+ 𝗄𝑖1

(
𝜕𝗄𝑖1
𝜕I1

)
D+ 𝑣𝑖

(
𝜕𝗄𝑖1
𝜕I2

)
D

(
𝜕𝗄𝑖1
𝜕I3

)
D(

𝜕𝗄𝑖2
𝜕D

)
D+ 𝗄𝑖2

(
𝜕𝗄𝑖2
𝜕I1

)
D

(
𝜕𝗄𝑖2
𝜕I2

)
D+ 𝑣𝑖

(
𝜕𝗄𝑖2
𝜕I3

)
D(

𝜕𝗄𝑖
) (

𝜕𝗄𝑖
) (

𝜕𝗄𝑖
) (

𝜕𝗄𝑖
)

⎤⎥⎥⎥⎥⎥⎥
(31)
7

⎢⎣ 3
𝜕D D+ 𝗄𝑖3

3
𝜕I1 D 3

𝜕I2 D 3
𝜕I3 D+ 𝑣𝑖 ⎥⎦



M.

Fig

co

𝜆m
the

the

fo

pr

Pr

m

Pr

ar

Ed

us

w

cl

th

𝜆m

in

Re

O(
th

in

in

to

as

4.

4.

di

sp

w

of
Journal of Computational Physics 520 (2025) 113477Paul Laiu, E. Endeve, J. Austin Harris et al.

. 2. Figures on both panels show the value of 𝜆max , the maximum magnitude of the spatial-flux Jacobian eigenvalues in various configurations. Fig. 2a plots the 
mputed values of 𝜆max = max(𝜆(𝜕UF 1)) at 𝑣 ∈ [0, 1] and ℎ ∈ [0, 1] in a simplified one-dimensional case considered in Proposition 2. The result verifies the claim 
ax ≤ 1 in Proposition 2. Fig. 2b shows that, in the three-dimensional case, the maximum wave speed of the two-moment model Eq. (18) scales as 1 + O(𝑣2). Here, 
 maximum wave speed is given by 𝜆max ∶= max

𝑖=1,2,3
max
U∈R

(𝜆𝑖max), where 𝜆𝑖max = max(𝜆(𝜕UF 𝑖)). (For interpretation of the colors in the figure(s), the reader is referred to 
 web version of this article.)

llow from the definitions given in Eqs. (15) and (16), respectively. With this expression, we are able to demonstrate the following 
oposition, which states that the maximum wave speed is bounded above by the speed of light in a one-dimensional setting.

oposition 2. Suppose 𝒗 = (𝑣, 0, 0) and I = (I, 0, 0), with |𝑣| ≤ 1, |I| ≤D, and D > 0. Let 𝜆max ∶= max
(|𝜆(𝜕UF 1)|) denote the maxi-

um magnitude of the spatial-flux Jacobian eigenvalues. Then 𝜆max ≤ 1.

oof. In this setting, the spatial-flux Jacobian reduces to a 2-by-2 matrix, because the entries associated with the 𝑥2 and 𝑥3 axes 
e all zeros. In addition, the only nonzero component of the Eddington tensor is 𝗄11 , which takes the values of the (approximate) 

dington factor 𝜓𝖺. Thus, the partial derivatives 
𝜕𝗄11
𝜕D and 

𝜕𝗄11
𝜕I1 become 

𝜕𝜓𝖺
𝜕D and 𝜕𝜓𝖺

𝜕I1 , respectively. Evaluating these partial derivatives 
ing the chain rule then leads to(

𝜕F 1

𝜕U

)
= 1

1 − 𝑣2𝜓𝖺 + 𝑣(1 + 𝑣ℎ)𝜓 ′
𝖺

[
𝑣− 𝑣𝜓𝖺 + 𝑣(𝑣+ ℎ)𝜓 ′

𝖺 1 − 𝑣2

(1 − 𝑣2)(𝜓𝖺 − ℎ𝜓 ′
𝖺) 𝑣− 𝑣𝜓𝖺 + (1 + 𝑣ℎ)𝜓 ′

𝖺

]
, (32)

here 𝜓 ′
𝖺 denotes the derivative of the approximate Eddington factor, 𝜓𝖺 , in Eq. (27) with respect to the flux factor, ℎ. To prove the 

aim, we need to show that the eigenvalues of (𝜕UF 1) are in [−1, 1]. Since 𝜓𝖺 and 𝜓 ′
𝖺 are both one-dimensional polynomials in ℎ, 

e proof of the claim is straightforward but tedious. Here we omit the detailed analysis and show in Fig. 2a the computed values of 
ax for 𝑣 ∈ [0, 1] and ℎ ∈ [0, 1], which illustrates that 𝜆max is bounded from above by one. □

This result is an extension of the wave speed analysis in [1, Section 6.2], in which it is assumed that the Eddington factor is 
dependent of the flux factor; i.e., that 𝜓 ′

𝖺 = 0.

mark 2. In the three-dimensional case, the magnitude of the eigenvalues of the spatial-flux Jacobian are bounded above by 1 +
𝑣2), which we provide verification of in Fig. 2b. Although the upper bound can exceed unity, which implies that the wave speed of 
e two-moment model in Eq. (18) can become unphysical, it shows that including the velocity-dependent term in the time derivatives 
 Eqs. (2) and (3) improves the maximum wave speed estimation from 1 +O(𝑣) (see, e.g., discussions in [1]) to 1 +O(𝑣2). Note that 
 the design of the numerical flux discussed in Section 4.1, we use unity as the estimate for the maximum wave speed, which appears 
 be valid in the regimes for which the O(𝑣) model is applicable. In particular, unphysical wave speeds are not observed for 𝑣 ≤ 0.25, 
 shown in Fig. 2b, for which we do not yet have a theoretical explanation.

 Numerical scheme

1. Discontinuous Galerkin phase-space discretization

We use the DG method to discretize Eq. (18) in phase-space. To this end we divide the phase-space domain 𝐷 =𝐷𝜀 ×𝐷𝒙 into a 
sjoint union T of open elements 𝑲 =𝐾𝜀 ×𝑲𝒙, so that 𝐷 = ∪𝑲∈T𝑲 . Here, 𝐷𝜀 is the energy domain and 𝐷𝒙 is the 𝑑𝒙-dimensional 
atial domain, and

𝑲𝒙 =
{
𝒙∶ 𝑥𝑖 ∈𝐾𝑖

𝒙
∶= (𝑥𝑖

L
, 𝑥𝑖
H
) | 𝑖 = 1,… , 𝑑𝒙

}
and 𝐾𝜀 ∶= (𝜀L, 𝜀H), (33)

here 𝑥𝑖
L
(𝑥𝑖
H
) is the low (high) boundary of the spatial element in the 𝑖th spatial dimension, and 𝜀L (𝜀H) is the low (high) boundary 
8

 the energy element. We also define 𝜏(𝜀) = 𝜀2 and denote the volume of a phase-space element by
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|𝑲| = ∫
𝑲

𝜏 𝑑𝜀𝑑𝒙, where 𝑑𝒙 =
𝑑𝒙∏
𝑖=1
𝑑𝑥𝑖. (34)

e length of an element in the 𝑖th dimension is |𝐾𝑖
𝒙
| = 𝑥𝑖

H
− 𝑥𝑖

L
, and |𝐾𝜀| = 𝜀H − 𝜀L. We also define the phase-space surface element 

𝑖 = (×𝑗≠𝑖𝐾𝑗
𝒙) ×𝐾𝜀 and the spatial coordinates orthogonal to the 𝑖th spatial dimension 𝒙̃𝑖, so that as a set 𝒙 = { 𝑥𝑖, ̃𝒙𝑖 }. Finally, we 

t 𝒛 = (𝜀, 𝒙) denote the phase-space coordinate, and define 𝑑𝒛 = 𝑑𝜀𝑑𝒙, 𝑑𝒛̃𝑖 = 𝑑𝜀𝑑𝒙̃𝑖, and let, again as a set, 𝒛̃𝑖 = {𝜀, ̃𝒙𝑖}.
On each element 𝑲 , we let the approximation space for the DG method be

𝕍 𝑘ℎ (𝑲) =
{
𝜑ℎ ∶ 𝜑ℎ|𝑲 ∈ℚ𝑘(𝑲),∀𝑲 ∈ T

}
, (35)

here ℚ𝑘(𝑲) is the phase-space tensor product of one-dimensional polynomials of maximal degree 𝑘. We will denote the ap-
oximation space on spatial elements as 𝕍 𝑘

ℎ
(𝑲𝒙), which is defined as in Eq. (35), where ℚ𝑘(𝑲𝒙) is the spatial tensor product of 

e-dimensional polynomials of maximal degree 𝑘. We will use 𝕍 𝑘
ℎ
(𝑲𝒙) to approximate the fluid three-velocity 𝒗 = (𝑣1, 𝑣2, 𝑣3), which 

ill be assumed to be a given function of 𝒙.
The semi-discrete DG problem is then to find Uℎ ∈ 𝕍 𝑘

ℎ
(𝑲), which approximates U in Eq. (18), such that(

𝜕𝑡Uℎ,𝜑ℎ
)
𝑲
=Bℎ

(
Uℎ,𝒗ℎ,𝜑ℎ

)
𝑲
+
(
C(Uℎ), 𝜑ℎ

)
𝑲
, (36)

r all test functions 𝜑ℎ ∈ 𝕍 𝑘
ℎ
(𝑲), 𝒗ℎ ∈ 𝕍 𝑘

ℎ
(𝑲𝒙), and all 𝑲 ∈ T . In Eq. (36), we have defined the inner product(

𝑎ℎ, 𝑏ℎ
)
𝑲
= ∫

𝑲

𝑎ℎ 𝑏ℎ 𝜏 𝑑𝒛, 𝑎ℎ, 𝑏ℎ ∈ 𝕍 𝑘ℎ (𝑲) (37)

d the phase-space advection operator

Bℎ
(
Uℎ,𝒗ℎ,𝜑ℎ

)
𝑲
=B𝒙

ℎ

(
Uℎ,𝒗ℎ,𝜑ℎ

)
𝑲
+B𝜀ℎ

(
Uℎ,𝒗ℎ,𝜑ℎ

)
𝑲
+
(
S(Uℎ,𝒗ℎ), 𝜑ℎ

)
𝑲
, (38)

here the contribution from position space fluxes is

B𝒙
ℎ

(
Uℎ,𝒗ℎ,𝜑ℎ

)
𝑲
= −

𝑑𝒙∑
𝑖=1

∫̃
𝑲
𝑖

[
F̂ 𝑖
(
Uℎ,𝒗ℎ

)
𝜑ℎ|𝑥𝑖

H
− F̂ 𝑖

(
Uℎ,𝒗ℎ

)
𝜑ℎ|𝑥𝑖

L

]
𝜏 𝑑𝒛̃𝑖

+
𝑑𝒙∑
𝑖=1

(
F 𝑖(Uℎ,𝒗ℎ), 𝜕𝑖𝜑ℎ

)
𝑲

(39)

d the contribution from energy space fluxes is

B𝜀ℎ
(
Uℎ,𝒗ℎ,𝜑ℎ

)
𝑲
= −∫

𝑲𝒙

[
𝜀3 F̂ 𝜀

(
Uℎ,𝒗ℎ

)
𝜑ℎ|𝜀H − 𝜀3 F̂ 𝜀

(
Uℎ,𝒗ℎ

)
𝜑ℎ|𝜀L ]𝑑𝒙

+
(
𝜀F 𝜀(Uℎ,𝒗ℎ), 𝜕𝜀𝜑ℎ

)
𝑲
. (40)

In Eq. (39), F̂ 𝑖
(
Uℎ, 𝒗ℎ

)
is a numerical flux approximating the flux on the surface 𝑲̃ 𝑖

, which is evaluated using the global Lax–
iedrichs (LF) flux

F̂ 𝑖
(
Uℎ,𝒗ℎ

)|𝑥𝑖 =ℱ𝑖
LF

(
Uℎ(𝑥𝑖,−, 𝒛̃𝑖),Uℎ(𝑥𝑖,+, 𝒛̃𝑖), 𝒗̂(𝑥𝑖, 𝒙̃𝑖)

)
, (41)

here 𝑥𝑖,∓ = lim𝛿→0+ 𝑥
𝑖 ∓ 𝛿 and where we write the global LF flux function as

ℱ𝑖
LF

(
U𝑎,U𝑏, 𝒗̂

)
= 1

2
(
F 𝑖(U𝑎, 𝒗̂) +F 𝑖(U𝑏, 𝒗̂) − 𝛼𝑖 (U𝑏[𝒗̂

𝑖] −U𝑎[𝒗̂
𝑖] )
)
, (42)

here 𝛼𝑖 is the largest (absolute) eigenvalue of the flux Jacobian 𝜕F 𝑖∕𝜕U over the entire domain, for which we simply set 𝛼𝑖 = 1.2
e components of the fluid three-velocity at the element interface is computed as the average

𝒗̂(𝑥𝑖, 𝒙̃𝑖) = 1
2
(
𝒗ℎ(𝑥𝑖,−, 𝒙̃𝑖) + 𝒗ℎ(𝑥𝑖,+, 𝒙̃𝑖)

)
. (43)

te that the three-velocity components can be discontinuous across element interfaces.

mark 3. In the flux function in Eq. (42), we have defined the dissipative term to be proportional to ( U𝑏[𝒗̂
𝑖] −U𝑎[𝒗̂

𝑖] ), where 
=
(
𝛿𝑖1 𝑣̂1, 𝛿𝑖2 𝑣̂2, 𝛿𝑖3 𝑣̂3

)⊺
, as opposed to the standard LF flux where the dissipative term is proportional to ( U𝑏[𝒗̂] −U𝑎[𝒗̂] ). We 

With this choice, at the expense of potentially increased numerical dissipation when the flux factor is small (see Fig. 2a), computation of flux Jacobian eigenvalues 
9

 avoided, and the realizability analysis is simplified.
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ve found this to be necessary in order to improve the realizability-preserving property of the scheme in the multi-dimensional 
tting (see Section 5).

In order to compute the energy space fluxes F 𝜀(Uℎ, 𝒗ℎ) and the sources S(Uℎ, 𝒗ℎ), we need to approximate spatial derivatives 
 the three-velocity components within elements. We denote the derivative of the 𝑖th velocity component with respect to 𝑥𝑗 by 
𝑗𝑣
𝑖)ℎ ∈ 𝕍 𝑘

ℎ
(𝑲𝒙), and compute this by demanding that

∫
𝑲𝒙

(𝜕𝑗𝑣𝑖)ℎ 𝜑ℎ 𝑑𝒙 = ∫̃
𝑲
𝑗
𝒙

[
𝑣̂𝑖 𝜑ℎ|𝑥𝑗

H
− 𝑣̂𝑖 𝜑ℎ|𝑥𝑗

L

]
𝑑𝒙̃𝑗 − ∫

𝑲𝒙

𝑣𝑖ℎ 𝜕𝑗𝜑ℎ 𝑑𝒙 (44)

lds for all 𝜑ℎ ∈ 𝕍 𝑘
ℎ
(𝑲𝒙) and all 𝑲𝒙, and where 𝑣̂𝑖(𝑥𝑗 , ̃𝒙𝑗 ) is computed as in Eq. (43).

The energy space flux F̂ 𝜀
(
Uℎ, 𝒗ℎ

)
in Eq. (40) is also computed using an LF-type flux

F̂ 𝜀
(
Uℎ,𝒗ℎ

)|𝜀 =ℱ𝜀
LF

(
Uℎ(𝜀−,𝒙),Uℎ(𝜀+,𝒙),𝒗ℎ(𝒙)

)
, (45)

here 𝜀∓ = lim𝛿→0+ 𝜀 ∓ 𝛿, and we take the LF flux function to be given by

ℱ𝜀
LF

(
U𝑎,U𝑏,𝒗ℎ

)
= 1

2
(
F 𝜀(U𝑎,𝒗ℎ) +F 𝜀(U𝑏,𝒗ℎ) − 𝛼𝜀 (M𝑏 −M𝑎 )

)
, (46)

here 𝛼𝜀 is an estimate of the largest absolute eigenvalue of the flux Jacobian 𝜕F 𝜀∕𝜕U. To estimate 𝛼𝜀 we consider the quadratic 
rm

𝑄(𝒗ℎ) = (−𝜕𝑗𝑣𝑖)ℎ 𝓁𝑖 𝓁𝑗 = 𝓵⊺𝐴(𝒗ℎ)𝓵, where 𝐴𝑖𝑗 (𝒗ℎ) = −1
2
(
(𝜕𝑖𝑣𝑗 )ℎ + (𝜕𝑗𝑣𝑖)ℎ

)
. (47)

can be shown that |𝑄(𝒗ℎ)| ≤ 𝜆𝐴, where 𝜆𝐴 is the largest absolute eigenvalue of the matrix 𝐴. (Since 𝐴 is symmetric, the eigenvalues 
e real.) Hence, we set 𝛼𝜀 = 𝜆𝐴.

mark 4. In the energy space flux function in Eq. (46), the numerical dissipation term is given in terms of the primitive moments 
rather than the conserved moments U. This choice is motivated by the realizability analysis in Section 5.1.2.

mark 5. For simplicity we assume that the absorption and scattering opacity (𝜒 and 𝜎, respectively), appearing in the second term 
 the right-hand side of Eq. (36), are constant within each phase-space element 𝑲 .

In this work, we consider the nodal DG scheme (see, e.g., [52] for an overview), which writes Uℎ ∈ 𝕍 𝑘
ℎ
(𝑲) as an expansion of 

nsor products of one-dimensional Lagrange polynomials of degrees up to 𝑘 in each element. As in [36], we use the (𝑘 + 1)-point 
gendre–Gauss (LG) quadrature points (see, e.g., [53]) as the interpolation points for the Lagrange polynomials. Following the 
ndard practice (i.e., for Ritz–Galerkin), we choose the test functions 𝜑ℎ to be identical to the trial functions, which are the tensor 
oducts of Lagrange polynomials used in the expansion of Uℎ, and evaluate the inner products (⋅, ⋅)𝑲 using the (𝑘 + 1)-point LG 
adrature rule. In the remainder of this paper, we denote the sets of the (𝑘 + 1)-point LG quadrature points in an element 𝑲 on 𝐾𝜀
d 𝐾𝑖

𝒙
by 𝑆𝑲

𝜀 ∶= {𝜀1, … , 𝜀𝑘+1} and 𝑆𝑲
𝑖 ∶= {𝑥𝑖1, … , 𝑥𝑖

𝑘+1}, respectively. Then the set of local DG nodes in element 𝑲 is denoted as

𝑆𝑲
⊗ ∶= 𝑆𝑲

𝜀 ⊗
(⨂𝑑𝒙

𝑖=1 𝑆
𝑲
𝑖

)
. (48)

ith this notation, the semidiscretized Eq. (36) can then be written as

𝜕𝑡U𝒌 = 𝗕
(
Uℎ,𝒗ℎ

)
𝒌
+𝗖(U𝒌) , ∀𝑲 ∈ T , (49)

here 𝗕 and 𝗖 denote the advection and collision operators acting on the collection of nodal values U𝒌(𝑡) ∶= {Uℎ(𝜀, 𝒙, 𝑡)∶ (𝜀, 𝒙) ∈
𝑲}. Here the subscript 𝒌 implies evaluations at points in 𝑆𝑲

⊗ . This nodal representation will become useful in the following sections. 
 simplify the notations therein, we will introduce a few auxiliary point sets in phase-space, which become useful in the realizability 
alysis in Sections 5.1.1 and 5.1.2. In element 𝑲 , let 𝑆𝑲

𝜀 ∶= {𝜀̂1, … , ̂𝜀𝑘̂} and 𝑆
𝑲
𝑖 ∶= {𝑥̂𝑖1, … , 𝑥̂𝑖

𝑘̂
} denote the sets of quadrature points 

ven by the 𝑘̂-point Legendre–Gauss–Lobatto (LGL) quadrature rule (see, e.g., [53]) on 𝐾𝜀 and 𝐾𝑖
𝒙
, respectively. Here 𝑘̂ ≥ 𝑘+5

2 is 
osen so that the quadrature integrates polynomials up to degree 𝑘 + 2 exactly, which is required in the analysis. In element 𝑲 , we 
fine the auxiliary sets 𝑆𝑲

𝜀,⊗ and 𝑆𝑲
𝑖,⊗, 𝑖 = 1, … , 𝑑𝒙, as

𝑆𝑲
𝜀,⊗ ∶= 𝑆𝑲

𝜀 ⊗
(⨂𝑑𝒙

𝑖=1 𝑆
𝑲
𝑖

)
and 𝑆𝑲

𝑖,⊗ ∶= 𝑆𝑲
𝜀 ⊗

(⨂𝑑𝒙
𝑗=1,𝑗≠𝑖 𝑆𝑲

𝑗

)
⊗𝑆𝑲

𝑖 , (50)

spectively. We denote the union of these auxiliary sets in element 𝑲 as

𝑆𝑲
⊗ ∶= 𝑆𝑲

𝜀,⊗ ∪
(⋃𝑑𝒙

𝑖=1 𝑆
𝑲
𝑖,⊗

)
(51)

d further denote the union of the auxiliary sets and the local DG nodes as
10

𝑆𝑲
⊗ ∶= 𝑆𝑲

⊗ ∪𝑆𝑲
⊗ . (52)
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. 3. Illustration of the collection of DG nodes 𝑆𝑲 and the auxiliary phase-space point sets 𝑆𝑲
1,⊗ and 𝑆𝑲

𝜀,⊗ in an element 𝑲 in a computational domain ℝ ×ℝ+ . These 
s are defined in Eqs. (48) and (50), respectively. In this figure, 𝑆𝑲

𝑖,⊗ reduces to 𝑆𝑲
1,⊗ since here 𝒙 = 𝑥1 is considered.

 illustration of the local point sets 𝑆𝑲 , 𝑆𝑲
1,⊗, and 𝑆

𝑲
𝜀,⊗ is given in Fig. 3, in which the case 𝑑𝒙 = 1 and 𝒙 = 𝑥1 is considered. Therefore 

𝑲
,⊗ is simply 𝑆𝑲

1,⊗ ∶= 𝑆𝑲
𝜀 ⊗ 𝑆

𝑲
1 , as defined in Eq. (50).

2. Time integration

We use IMEX methods to evolve the semi-discrete two-moment model in Eq. (36) forward in time, where the phase-space advection 
rm is treated explicitly and the collision term is treated implicitly. The general 𝑠-stage IMEX scheme can then be written as [33,34](

U(𝑖)
ℎ
,𝜑ℎ
)
𝑲
=
(
U𝑛
ℎ,𝜑ℎ

)
𝑲

+Δ𝑡
𝑖−1∑
𝑗=1
𝛼̃𝑖𝑗 Bℎ

(
U(𝑗)
ℎ
,𝒗ℎ,𝜑ℎ

)
𝑲
+Δ𝑡

𝑖∑
𝑗=1
𝛼𝑖𝑗
(
C(U(𝑗)

ℎ
), 𝜑ℎ

)
𝑲
, (53)

(
U𝑛+1
ℎ
,𝜑ℎ
)
𝑲
=
(
U𝑛
ℎ,𝜑ℎ

)
𝑲

+Δ𝑡
𝑠∑
𝑖=1
𝑤̃𝑖Bℎ

(
U(𝑖)
ℎ
,𝒗ℎ,𝜑ℎ

)
𝑲
+Δ𝑡

𝑠∑
𝑖=1
𝑤𝑖
(
C(U(𝑖)

ℎ
), 𝜑ℎ

)
𝑲
, (54)

r 𝑖 = 1, … , 𝑠, all 𝑲 ∈ T , and all 𝜑ℎ ∈ 𝕍 𝑘
ℎ
(𝑲). Here the coefficients 𝛼̃𝑖𝑗 , 𝛼𝑖𝑗 , 𝑤̃𝑖, and 𝑤𝑖 are required to satisfy certain order conditions 

r achieving the desired accuracy of the IMEX scheme. In addition, to preserve realizability of the evolved moments, each stage in the 
EX update needs to be formulated as convex combinations of realizable terms, which results in additional restrictions on the choices 
 coefficients. We refer the readers to [35, Section 6] for details on the order and convex-invariant conditions on the coefficients in 
e IMEX scheme.

3. Iterative solvers for nonlinear systems

In this section, we introduce the iterative solvers for the nonlinear systems that occur in the evolution of the IMEX scheme in 
s. (53)–(54). In Section 4.3.1, we present the iterative solver for the conversion of conserved moments U to primitive moments 
. This moment conversion is required to evaluate the closures for the higher-order moments K 𝑖𝑗 and Q𝑖𝑗𝑘 at each stage of the IMEX 
heme, since these closures are defined in terms of the primitive moments as discussed in Section 3. In Section 4.3.2, we discuss the 
lver for the nonlinear equations arising from the implicit update in the IMEX scheme. Even though the simplified collision term 
U) in Eq. (17) appears to be linear in terms of the primitive moments, the implicit system is still nonlinear because the IMEX 
heme evolves the conserved moments. This nonlinear system formulation is also extendable to handle systems with collision terms 
at include more comprehensive physics; e.g., neutrino–electron scattering and thermal pair processes, as considered in [36].
Under the nodal DG framework (see Eq. (49)), each of these nonlinear systems can be formulated locally at each node in the 
ase-space element because there is no coupling between nodes in either the moment conversion or the collision solve. Therefore, 
e nonlinear systems considered in this section are written in terms of the nodal moments at a given phase-space node 𝒛 ∈ 𝑆𝑲

⊗ , 
∈ T , where 𝑆𝑲

⊗ is the set of DG nodes in element 𝑲 , as defined in Eq. (48). For convenience, we drop the subscript from the 
dal representation in this section, and note that, such nonlinear systems must be solved at each 𝒛 ∈ 𝑆𝑲

⊗ and in each 𝑲 ∈ T to 
rform the moment conversion from U to M or the implicit steps in the IMEX scheme.

3.1. Moment conversion solver
For a given conserved moment U ∈ R, finding a corresponding primitive moment M ∈ R that satisfies Eq. (19) requires solving 

nonlinear system. A naive approach is to formulate Eq. (19) as a fixed-point problem(
D
) (

−𝑣𝑖I𝑖 +N
)

11

M = I𝑗
= −𝑣𝑖𝗄𝑖𝑗D+G𝑗

∶= H̃U(M). (55)
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wever, when standard fixed-point iteration, i.e., Picard iteration (see, e.g., [54, Section I.8]), is applied to solve Eq. (55), this 
rmulation does not guarantee that the resulting moments are realizable at each iteration, which, in turn, may result in failures to 
nvergence on problems in this form. To address these issues, we adopt the idea from Richardson iteration, see, e.g., [41] and [42, 
ction 13.2.1], for solving linear systems and reformulate the fixed-point problem in Eq. (55) as

M =
(
D
I𝑗

)
=
(
D
I𝑗

)
− 𝜆

(
D+ 𝑣𝑖I𝑖 −N
I𝑗 + 𝑣𝑖𝗄𝑖𝑗D−G𝑗

)
∶=HU(M), (56)

here 𝜆 ∈ (0, 1] is a constant. Here we choose 𝜆 = (1 + 𝑣)−1, where 𝑣 ∶= |𝒗| =√𝑣𝑖𝑣𝑖, to guarantee the realizability-preserving and 
nvergence properties of the Picard iteration method; i.e.,

M[𝑘+1] =HU(M[𝑘]). (57)

e realizability-preserving and convergence properties of Eq. (57) are stated and proved in Section 5.3.

3.2. Collision solver
The implicit steps in Eq. (53) require solving nonlinear systems to find the updated conserved moments. Similar to the implicit 
stems considered in [36], these systems take the form

U =U(∗) + Δ𝑡C C(U) , (58)

here U(∗) denotes the known conserved moments from the explicit steps, U denotes the unknown updated conserved moments 
iven by the implicit collision term C(U) defined in Eq. (17), and Δ𝑡C denotes the effective time step size for the implicit system. 
nce the sources are expressed in terms of primitive moments, we solve Eq. (58) as a nonlinear fixed-point problem on the unknown 
imitive moments and use the primitive moment solution to compute the collision term C(U), which is then used to update the 
nserved moments U in Eq. (58). As in the moment conversion case discussed in Section 4.3.1, we apply the idea from Richardson 
ration to Eq. (58) and formulate it as a fixed-point problem in terms of the primitive moments; i.e.,

M =
(
D
I𝑗

)
=
(
D
I𝑗

)
− 𝜆

(
D+ 𝑣𝑖I𝑖 −N (∗) − Δ𝑡C𝜒

(
D0 −D

)
I𝑗 + 𝑣𝑖𝗄𝑖𝑗D−G(∗)𝑗 +Δ𝑡C𝜅 I𝑗

)
=∶ Q̃(M), (59)

here N (∗) and G(∗) denote the number density and number flux components of the given conserved moment U(∗), respectively, and 
e constant 𝜆 ∈ (0, 1]. Although, this formulation is consistent with the one considered in Section 4.3.1 when there are no collisions 
= 𝜅 = 0), it cannot guarantee that the realizability of moments is preserved when collisions are taken into account. To address this 
ue, we follow the approach taken in [36] and reformulate the fixed-point problem as

M =
(
D
I𝑗

)
=Λ

(
(1 − 𝜆)D+ 𝜆(−𝑣𝑖I𝑖 +N (∗) + Δ𝑡C𝜒D0)

(1 − 𝜆)I𝑗 + 𝜆(−𝑣𝑖𝗄𝑖𝑗D+G(∗)𝑗 )

)
=∶Q(M) , (60)

here Λ ∶= diag(𝜇𝜒 , 𝜇𝜅 ) with 𝜇𝜒 = (1 + 𝜆 Δ𝑡C 𝜒)−1 and 𝜇𝜅 = (1 + 𝜆 Δ𝑡C 𝜅)−1. Applying Picard iteration to this fixed-point problem 
en leads to the iterative scheme

M[𝑘+1] =Q(M[𝑘]) . (61)

 Section 5.4, we prove the realizability-preserving and convergence properties of this iterative solver with 𝜆 = (1 + 𝑣)−1.

4. Flowcharts for the DG-IMEX method

The proposed DG-IMEX scheme is summarized in the flowchart in Fig. 4, in which the left chart shows the procedure of one 
rward-backward Euler step, and each of the three processes in one time step is described in one of the three charts on the right-
nd side. This flowchart can be extended to more general IMEX time integration schemes. The advection and collision updates are 
ven in Eqs. (62a) and (62c), respectively. In the advection update, conversion between conserved moment U and primitive moment 
discussed in Section 4.3.1 is performed to allow for closure evaluation, which is needed for evaluating the flux of the moment 
stem. The collision update invokes the moment conversion in Section 4.3.1 and the implicit collusion solver in Section 4.3.2. The 
ps for enforcing realizability and improving conservation properties are given later in Algorithms 1 and 2, respectively.

 Realizability-preserving property

In this section, we show that, by imposing a proper time-step restriction and a realizability-enforcing limiter, the DG scheme with 
EX time integration given in Section 4 preserves the realizability of both conserved and primitive moments. To this end, we focus 
 the analysis of a forward-backward Euler method for its simplicity. The theoretical results can be extended to more general IMEX 
ethods that are strong stability-preserving (SSP) with the size of time steps dependent only on the explicit part, such as the IMEX 
heme implemented in the numerical tests reported in Section 8. Specifically, we analyze the realizability-preserving property of the 
12

llowing numerical scheme.
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. 4. DG-IMEX flowcharts. The left chart shows the procedure of one forward-backward Euler step in the proposed numerical scheme. Each of the three processes—
vection update, collision update, and realizability enforcement and conservation improvement—is described in one of the three charts on the right-hand side.(

Û
𝑛+1∕2
ℎ ,𝜑ℎ

)
𝑲
=
(
U𝑛
ℎ,𝜑ℎ

)
𝑲
+Δ𝑡Bℎ

(
U𝑛
ℎ,𝒗ℎ,𝜑ℎ

)
𝑲
, (62a)

U𝑛+1∕2
ℎ

= RealizabilityLimiter ( Û
𝑛+1∕2
ℎ ), (62b)(

Û
𝑛+1
ℎ ,𝜑ℎ

)
𝑲
=
(
U𝑛+1∕2
ℎ

,𝜑ℎ
)
𝑲
+Δ𝑡

(
C(Û

𝑛+1
ℎ ), 𝜑ℎ

)
𝑲
, (62c)

U𝑛+1
ℎ

= RealizabilityLimiter ( Û
𝑛+1
ℎ ). (62d)

re, RealizabilityLimiter() denotes the realizability-enforcing limiter proposed in [35], the details of which is given in Sec-
n 5.2 for completeness.
Loosely speaking, the realizability-preserving property of the scheme (62a)–(62d) requires that, if the current moments U𝑛

ℎ
are 

alizable, then the updated moments U𝑛+1
ℎ

remain realizable. In the following paragraphs, we summarize the realizability-preserving 
operties proved in this section, where more detailed realizability results and conditions are described using the sets of phase-space 
ints defined in Section 4.1.
A key assumption in the realizability analysis is the exact closure assumption.

sumption 1 (Exact closures). The moment closures for closing the higher order moments K 𝑖𝑗 and Q𝑖𝑗𝑘 in Eq. (62a) are exact, i.e., 
ven lower order primitive moments (D, I𝑖), the moments (K 𝑖𝑗 , Q𝑖𝑗𝑘) are computed such that (D, I𝑖, K 𝑖𝑗 , Q𝑖𝑗𝑘) satisfy Eq. (1) for 
me nonnegative distribution 𝑓 .

We note that Assumption 1 holds when the exact Minerbo closure is used, i.e., when the Eddington and heat-flux factors are 
ven in Eq. (26) (as opposed to the approximation given in Eqs. (27)–(28)). Evaluating (either the exact or approximate) Eddington 
ctor and heat-flux factor uses the flux factor ℎ (= I∕D) of the primitive moments M =

(
D, I

)⊺
. Since the numerical scheme 

s. (62a)–(62d) evolves the conserved moments U, evaluating moment closures requires the conversion between conserved and 
imitive moments. In other words, given U (or M), the solver needs to compute the associated M (or U) that satisfies Eq. (19).
Under Assumption 1, we state the main theoretical result of the realizability-preserving analysis for the scheme Eqs. (62a)–(62d)

 Theorem 1, where this scheme is shown to preserve realizability of moments Uℎ on the point set 𝑆𝑲
⊗ defined in Eq. (52), for all 

ements 𝑲 ∈ T .

eorem 1 (Realizability preservation). Suppose (i) Assumption 1 holds, (ii) 𝑣ℎ ∶= |𝒗ℎ| < 1 for all 𝑲 ∈ T , and (iii) the time step Δ𝑡 in 
. (62a) satisfies the hyperbolic-type time-step restriction

Δ𝑡 ≤min
{
Δ𝑡min

𝒙
, Δ𝑡min

𝜀

}
, with

Δ𝑡min
𝒙

∶= min
𝑲∈T

min
𝑖
(1 − 𝑣ℎ)𝐶𝑖|𝐾𝑖

𝒙
| and Δ𝑡min

𝜀 ∶= min
𝑲∈T

(1 − 𝑣ℎ)𝐶𝜀|𝐾𝜀|∕𝜀H (63)

ere 𝐶𝑖 and 𝐶𝜀, which are independent of the size of elements in the discretization, are given in Eqs. (80) and (93), respectively. Then the 
heme (62a)–(62d) is realizability-preserving, i.e., U𝑛+1

ℎ
∈ R on 𝑆𝑲

⊗ , ∀𝑲 ∈ T , provided that U𝑛
ℎ
∈ R on 𝑆𝑲

⊗ , ∀𝑲 ∈ T .

Theorem 1 is a direct consequence of the following Propositions 3, 4, 5, and 6, which provide the realizability-preserving properties 
 the explicit update (Eq. (62a)), the realizability-enforcing limiter (Eq. (62b)), the moment conversion (Eq. (19)), and the implicit 
date (Eq. (62c)), respectively. In these propositions, the notion of cell-averaged moments will come in handy. Given U𝑛

ℎ
, the 

ll-averaged moments U𝑲 ∶= (N𝑲 , G𝑲 ) are defined as( )

13

U𝑲 = Uℎ 𝑲
∕|𝑲|. (64)
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oposition 3 (Explicit advection update). Suppose (i) Assumption 1 holds, (ii) 𝑣ℎ < 1 for all 𝑲 ∈ T , and (iii) Δ𝑡 in Eq. (62a) satisfies the 
striction (63). Let Û

𝑛+1∕2
𝑲

∶= (N̂𝑛+
1∕2

𝑲
, ̂G

𝑛+1∕2
𝑲

) denote the element average of the moment Û
𝑛+1∕2
ℎ (as defined in Eq. (64)) updated by Eq. (62a)

m U𝑛
ℎ
. Then, it is guaranteed that, ∀𝑲 ∈ T , N̂𝑛+

1∕2
𝑲

> 0, provided U𝑛
ℎ
∈ R on 𝑆𝑲

⊗ , ∀𝑲 ∈ T . Further, when a reduced one-dimensional 

anar geometry3 is considered, it is guaranteed that, ∀𝑲 ∈ T , Û
𝑛+1∕2
𝑲

∈ R when an additional time-step restriction (101) is satisfied.

oposition 4 (Realizability-enforcing limiter). Suppose N̂𝑲 > 0 on element 𝑲 , applying the realizability-enforcing limiter given in Algo-
hm 1 (see Section 5.2) to the moments Ûℎ on 𝑲 leads to realizable moments Uℎ ∈ R on 𝑆𝑲

⊗ ∪𝑆𝑲
⊗ in 𝑲 .

oposition 5 (Moment conversion). Suppose that Assumption 1 holds and that 𝑣ℎ < 1 on all 𝑲 ∈ T , then the conversion between conserved 
d primitive moments following the relation in Eq. (19) preserves realizability, i.e., for a pair of conserved and primitive moments (U, M)
tisfying Eq. (19), U ∈ R if and only if M ∈ R. Further, given U ∈ R, the iterative solver (57) in Section 4.3.1 converges to the unique 
∈ R that satisfies Eq. (19).

oposition 6 (Implicit collision solve). Suppose Assumption 1 holds and 𝑣ℎ < 1 on all 𝑲 ∈ T . Let U𝑛+1∕2
ℎ

∈ R on 𝑆𝑲
⊗ for all 𝑲 ∈ T , then 

lving Eq. (62c) with the iterative solvers considered in Section 4.3 gives Û
𝑛+1
ℎ ∈ R on 𝑆𝑲

⊗ for all 𝑲 ∈ T .

These propositions form a basis for the proof of Theorem 1. Specifically, Proposition 3 guarantees that the updated moments 
𝑛+1∕2
ℎ from Eq. (62a) have a nonnegative cell-averaged density N̂𝑛+

1∕2
𝑲

for each 𝑲 ∈ T . It follows from Proposition 4 that the limited 
oments U𝑛+1∕2

ℎ
are realizable on 𝑆𝑲

⊗ for all 𝑲 ∈ T . Solving Eq. (62c) on each nodal point in 𝑆𝑲
⊗ for all 𝑲 ∈ T gives the updated 

oment Û
𝑛+1
ℎ , which is guaranteed to be realizable on 𝑆𝑲

⊗ , ∀𝑲 ∈ T , by Proposition 6. Applying the realizability-enforcing limiter 

ain to Û
𝑛+1
ℎ on every 𝑲 ∈ T leads to U𝑛+1

ℎ
, which is realizable on 𝑆𝑲

⊗ , ∀𝑲 ∈ T , again from Proposition 4.
In Sections 5.1, 5.2, 5.3, and 5.4, we prove Propositions 3, 4, 5, and 6, respectively. These results together lead to the main 
alizability-preserving property of the numerical scheme Eqs. (62a)–(62c) given in Theorem 1, under the exact closure assumption, 
sumption 1. In Section 5.5, we extend the realizability-preserving and convergence results in Propositions 5 and 6 to the case of 
aluating the closure with the approximate Eddington factor 𝜓𝖺 in Eq. (27), which is often used in practice to reduce computational 
st.

1. Explicit advection update

In this section, we prove Proposition 3 by deriving the time-step restriction (63) under which the updated cell-averaged number 
nsity N̂𝑛+

1∕2
𝑲

> 0. In a one-dimensional planar geometry, we show that Û
𝑛+1∕2
𝑲

∈ R under an additional time-step restriction given in 
. (101).

Since constant functions are in the approximation space 𝕍 𝑘
ℎ
(𝑲), we start with deriving the update formula for cell-averaged 

oments by setting 𝜑ℎ = 1 in Eq. (62a), which leads to

Û
𝑛+1∕2
𝑲

=U𝑛
𝑲
+ Δ𝑡|𝑲| Bℎ(U𝑛

ℎ,𝒗ℎ
)
𝑲

= 𝛾𝒙
{
U𝑛

𝑲
+ Δ𝑡
𝛾𝒙 |𝑲| B𝒙

ℎ

(
U𝑛
ℎ,𝒗ℎ

)
𝑲

}
+ 𝛾𝜀

{
U𝑛

𝑲
+ Δ𝑡
𝛾𝜀 |𝑲| B𝜀ℎ(U𝑛

ℎ,𝒗ℎ
)
𝑲

}
+ 𝛾S

{
U𝑛

𝑲
+ Δ𝑡
𝛾S |𝑲| (S(U𝑛

ℎ,𝒗ℎ)
)
𝑲

}
, (65)

=∶ 𝛾𝒙 Û
𝑛+1∕2,𝒙
𝑲

+ 𝛾𝜀 Û
𝑛+1∕2, 𝜀
𝑲

+ 𝛾S Û
𝑛+1∕2,S
𝑲

,

here we have defined 𝛾𝒙, 𝛾𝜀, 𝛾S > 0, satisfying 𝛾𝒙 + 𝛾𝜀 + 𝛾S = 1. In the following subsections, we show that, when U𝑛
ℎ
∈ R on 𝑆𝑲

⊗

r all 𝑲 ∈ T , Û
𝑛+1∕2,𝒙
𝑲

and Û
𝑛+1∕2,𝜀
𝑲

are realizable under time-step restrictions given in Eq. (63) (Sections 5.1.1 and 5.1.2) and that 
𝑛+1∕2,S
𝑲

> 0 (Section 5.1.3) for all 𝑲 ∈ T . Further, we show in Section 5.1.3 that Û
𝑛+1∕2,S
𝑲

is realizable in one-dimensional, planar 

ometry under an additional time-step restriction given in Eq. (101). Since the realizable set R is convex and Û
𝑛+1∕2
𝑲

is written as a 
nvex combination of Û

𝑛+1∕2,𝒙
𝑲

, Û
𝑛+1∕2,𝜀
𝑲

, and Û
𝑛+1∕2,S
𝑲

in Eq. (65), we thus conclude that, under the time-step restrictions in Eqs. (63)
d (101), (i) N̂𝑛+

1∕2
𝑲

> 0 and (ii) Û
𝑛+1∕2
𝑲

∈ R in a planar geometry.

An example of this one-dimensional geometry is the reduced case of the full three-dimensional geometry when the fluxes in two of the three spatial dimensions 
14

 assumed to be zero. See Section 5.1.3 for further discussions.
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1.1. Position space fluxes
For transport in position space we follow the approach in [35] and write

Û
𝑛+1∕2,𝒙
𝑲

=U𝑛
𝑲
+

Δ𝑡𝒙|𝑲| B𝒙
ℎ

(
U𝑛
ℎ,𝒗ℎ

)
𝑲

(Δ𝑡𝒙 =Δ𝑡∕𝛾𝒙). (66)

 find sufficient conditions such that Û
𝑛+1∕2,𝒙
𝑲

∈ R, we define (cf. [35])

Γ𝑖
[
U𝑛
ℎ

]
(𝒛̃𝑖) = 1|𝐾𝑖

𝒙
| [ ∫
𝐾𝑖𝒙

U𝑛
ℎ 𝑑𝑥

𝑖 −
Δ𝑡𝒙
𝛽𝑖

(
F̂ 𝑖
(
U𝑛
ℎ,𝒗ℎ

)|𝑥𝑖
H
− F̂ 𝑖

(
U𝑛
ℎ,𝒗ℎ

)|𝑥𝑖
L

)]
, (67)

 that

Û
𝑛+1∕2,𝒙
𝑲

=
𝑑𝒙∑
𝑖=1

𝛽𝑖|𝑲̃ 𝑖| ∫̃
𝑲
𝑖

Γ𝑖
[
U𝑛
ℎ

]
(𝒛̃𝑖) 𝜏 𝑑𝒛̃𝑖, (68)

here we have defined the set of positive constants {𝛽𝑖}𝑑𝒙
𝑖=1 satisfying 

∑𝑑𝒙
𝑖=1 𝛽

𝑖 = 1.
If a quadrature rule Q̃𝑖 ∶ 𝐶0(𝑲̃ 𝑖) →ℝ with positive weights, e.g., the tensor product of one-dimensional LG quadrature, is used to 
proximate the integral in Eq. (68), it is sufficient to show that, under the assumptions in Proposition 3, Γ𝑖

[
U𝑛
ℎ

]
(𝒛̃𝑖) ∈ R holds for 

∈ S̃𝑖 ⊂ 𝑲̃
𝑖
, where S̃𝑖 denotes the set of quadrature points given by Q̃𝑖. We prove this sufficient condition in the remainder of this 

bsection.

Let 𝑄̂𝑖 ∶ 𝐶0(𝐾𝑖
𝒙
) → ℝ denote the 𝑘̂-point LGL quadrature rule on 𝐾𝑖

𝒙
with points 𝑆𝑲

𝑖 = {𝑥𝑖
L
= 𝑥̂𝑖1, … , 𝑥̂𝑖

𝑘̂
= 𝑥𝑖

H
} as defined in 

ction 4.1 and strictly positive weights {𝑤̂𝑞}𝑘̂𝑞=1, normalized such that 
∑𝑘̂
𝑞=1 𝑤̂𝑞 = 1. Since 𝑘̂ ≥ 𝑘+5

2 , this quadrature integrates U𝑛
ℎ

actly, and thus we have

∫
𝑲 𝑖

𝒙

U𝑛
ℎ(𝑥

𝑖)𝑑𝑥𝑖 = 𝑄̂𝑖
[
U𝑛
ℎ

]
= |𝐾𝑖

𝒙
| 𝑘̂∑
𝑞=1

𝑤̂𝑞U𝑛
ℎ(𝑥̂

𝑖
𝑞), (69)

here, for notational convenience, we have suppressed explicit dependence on 𝒛̃𝑖 in writing U𝑛
ℎ
(𝑥̂𝑖𝑞 , ̃𝒛

𝑖) = U𝑛
ℎ
(𝑥̂𝑖𝑞). Similarly, 

𝑛
ℎ
(𝑥𝑖,±
L
, ̃𝒛𝑖) =U𝑛

ℎ
(𝑥𝑖,±
L
) and U𝑛

ℎ
(𝑥𝑖,±
H
, ̃𝒛𝑖) =U𝑛

ℎ
(𝑥𝑖,±
H
). Then, using the quadrature rule in Eq. (69) and the LF flux in Eq. (42), we 

n write Eq. (67) as a convex combination

Γ𝑖
[
U𝑛
ℎ

]
(𝒛̃𝑖)

=
𝑘̂−1∑
𝑞=2

𝑤̂𝑞U𝑛
ℎ(𝑥̂

𝑖
𝑞) + 𝑤̂1 Φ𝑖1

[
U𝑛
ℎ(𝑥

𝑖,−
L
), U𝑛

ℎ(𝑥
𝑖,+
L
), 𝒗̂(𝑥𝑖

L
)
]
+ 𝑤̂𝑘̂Φ

𝑖
𝑘̂

[
U𝑛
ℎ(𝑥

𝑖,−
H
), U𝑛

ℎ(𝑥
𝑖,+
H
), 𝒗̂(𝑥𝑖

H
)
]
, (70)

here

Φ𝑖1
[
U𝑎,U𝑏, 𝒗̂

]
=U𝑏 + 𝜆𝑖𝒙ℱ

𝑖
LF

(
U𝑎,U𝑏, 𝒗̂

)
, (71)

Φ𝑖
𝑘̂

[
U𝑎,U𝑏, 𝒗̂

]
=U𝑎 − 𝜆𝑖𝒙ℱ

𝑖
LF

(
U𝑎,U𝑏, 𝒗̂

)
, (72)

d 𝜆𝑖
𝒙
=Δ𝑡𝒙∕(𝛽𝑖 𝑤̂𝑘̂ |𝐾𝑖

𝒙
|). Since Eq. (70) is a convex combination, it is sufficient to show the realizability of each term independently 

 obtain Γ𝑖
[
U𝑛
ℎ

]
(𝒛̃𝑖) ∈ R. For the first term on the right-hand side of Eq. (70), it is sufficient that U𝑛

ℎ
(𝑥̂𝑖𝑞) ∈ R, which holds under 

e assumption that U𝑛
ℎ
∈ R on 𝑆𝑲

⊗ for all 𝑲 ∈ T . It remains to find conditions for which Φ𝑖1, Φ
𝑖
𝑘̂
∈ R, which we summarize in the 

llowing lemmas.

mma 1. Define

Θ𝑖±(U, 𝒗̂ ) =U[𝒗̂𝑖] ±F 𝑖(U, 𝒗̂ ), (73)

ere U[𝒗̂𝑖] and F 𝑖( U, ̂𝒗 ) are defined as in Eqs. (15) and (16), respectively, and 𝒗̂𝑖 =
(
𝛿𝑖1 𝑣̂1, 𝛿𝑖2 𝑣̂2, 𝛿𝑖3 𝑣̂3

)⊺
as defined in Remark 3. 

ppose that U ∈ R and 𝑣̂ = |𝒗̂| < 1. Then Θ𝑖±( U, ̂𝒗 ) ∈ R.

oof. The first component of Θ𝑖±( U, ̂𝒗 ) can be written as

1
4𝜋 ∫

𝕊2

( 1 ± 𝑣̂𝑖 ) ( 1 ± 𝓁𝑖 )𝑓 𝑑𝜔, (74)
15

hile the remaining components can be written as
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1
4𝜋 ∫

𝕊2

( 1 ± 𝑣̂𝑖 ) ( 1 ± 𝓁𝑖 )𝑓 𝓁𝑗 𝑑𝜔, (𝑗 = 1,2,3). (75)

nce ( 1 ± 𝑣̂𝑖 ) ( 1 ± 𝓁𝑖 ) 𝑓 ∈R, the result follows. □

mma 2. Let Φ𝑖1 and Φ
𝑖
𝑘̂
be defined as in Eqs. (71) and (72), respectively. Assume that the following holds

) U𝑎, U𝑏 ∈ R, defined as in Eq. (15) as the moments of distributions 𝑓𝑎, 𝑓𝑏 ∈R.

) The three-velocity in Eq. (43) satisfies 𝑣̂ = |𝒗̂| < 1.
) The time step Δ𝑡𝒙 is chosen such that 𝜆𝑖𝒙 ≤ (1 − 𝑣̂).

en Φ𝑖1
[
U𝑎, U𝑏, ̂𝒗

]
, Φ𝑖

𝑘̂

[
U𝑎, U𝑏, ̂𝒗

]
∈ R.

oof. Define

Θ𝑖0(U, 𝒗̂ ) =
U[𝒗̂] − 𝜆𝑖

𝒙
U[𝒗̂𝑖]

1 − 𝜆𝑖
𝒙

. (76)

en, using the LF flux in Eq. (42), we can write

Φ𝑖1
[
U𝑎,U𝑏, 𝒗̂

]
= (1 − 𝜆𝑖

𝒙
)Θ𝑖0(U𝑏, 𝒗̂ ) +

1
2
𝜆𝑖
𝒙
Θ𝑖+(U𝑎, 𝒗̂ ) +

1
2
𝜆𝑖
𝒙
Θ𝑖+(U𝑏, 𝒗̂ ), (77)

hich is a convex combination for 𝜆𝑖
𝒙
< 1. From assumptions (a) and (b) above, it follows from Lemma 1 that Θ𝑖+( U𝑎, ̂𝒗 ), Θ𝑖+( U𝑏, ̂𝒗 ) ∈

 It remains to show that Θ𝑖0( U𝑏, ̂𝒗 ) ∈ R. The first component of Θ𝑖0( U𝑏, ̂𝒗 ) can be written as

1
4𝜋 ∫

𝕊2

𝖿 (𝜔)𝑑𝜔, where 𝖿 (𝜔) =
[(1 − 𝒗̂ ⋅ 𝓵) − 𝜆𝑖

𝒙
(1 + 𝑣̂𝑖 𝓁𝑖)]

(1 − 𝜆𝑖
𝒙
)

𝑓, (78)

hile the remaining components can be written as

1
4𝜋 ∫

𝕊2

𝖿 (𝜔)𝓁𝑗 (𝜔)𝑑𝜔, (𝑗 = 1,2,3). (79)

om assumptions (b) and (c), it follows that 𝖿 ∈R, which implies Θ𝑖0( U𝑏, ̂𝒗 ) ∈ R. The proof for Φ𝑖𝑘̂
[
U𝑎, U𝑏, ̂𝒗

]
is analogous and is 

itted. □

To this end, the results of Lemma 2 lead to Û
𝑛+1∕2,𝒙
𝑲

∈ R under the assumptions therein. It is straightforward to verify that these 
sumptions are fulfilled for each 𝑲 ∈ T when the assumptions in Proposition 3 hold. In particular, from Eq. (43), it is clear that 
< 1 is implied by 𝑣ℎ < 1. Also, by defining

𝐶𝑖 ∶= 𝛾𝒙𝛽𝑖𝑤̂𝑘̂ , (80)

e time-step restriction in Eq. (63) guarantees 𝜆𝑖
𝒙
≤ (1 − 𝑣̂) for all 𝑲 ∈ T . Therefore, we have shown that, under the assumptions of 

oposition 3, Û
𝑛+1∕2,𝒙
𝑲

∈ R for all 𝑲 ∈ T .

1.2. Energy space fluxes
For energy space advection, we define

Û
𝑛+1∕2,𝜀
𝑲

=U𝑛
𝑲
+

Δ𝑡𝜀|𝑲| B𝜀ℎ(U𝑛
ℎ,𝒗ℎ

)
𝑲

(Δ𝑡𝜀 =Δ𝑡∕𝛾𝜀), (81)

d seek to find sufficient conditions such that Û
𝑛+1∕2,𝜀
𝑲

∈ R. We proceed in a fashion similar to that in Section 5.1.1, and define

Γ𝜀[Uℎ](𝒙) =
1|𝐾𝜀|
[
∫
𝐾𝜀

Uℎ 𝜀
2𝑑𝜀−Δ𝑡𝜀

(
𝜀3 F̂ 𝜀

(
Uℎ,𝒗ℎ

)|𝜀H − 𝜀3 F̂ 𝜀
(
Uℎ,𝒗ℎ

)|𝜀L )] (82)

 that

Û
𝑛+1∕2,𝜀
𝑲

= 1|𝑲𝒙| ∫
𝑲𝒙

Γ𝜀[Uℎ](𝒙)𝑑𝒙. (83)
16

aluating the integrals in the energy dimension using the same 𝑘̂-point LGL quadrature rule leads to
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Γ𝜀[Uℎ](𝒙) =
𝑘̂−1∑
𝑞=2

𝑤̂𝑞 𝜀̂
2
𝑞Uℎ(𝜀̂𝑞) + 𝑤̂1 𝜀

2
L
Φ𝜀1
[
Uℎ(𝜀−L ),Uℎ(𝜀+L ),𝒗ℎ

]
+ 𝑤̂𝑘̂ 𝜀

2
H
Φ𝜀
𝑘̂

[
Uℎ(𝜀−H),Uℎ(𝜀+H),𝒗ℎ

]
, (84)

here the integral of the moments is exact when 𝑘̂ ≥ 𝑘+5
2 , i.e.,

∫
𝐾𝜀

Uℎ(𝜀)𝜀2𝑑𝜀 = 𝑄̂𝜀
[
Uℎ

]
= |𝐾𝜀| 𝑘̂∑

𝑞=1
𝑤̂𝑞Uℎ(𝜀̂𝑞) 𝜀̂2𝑞 . (85)

nce Γ𝜀[Uℎ](𝒙) is written as a convex combination in Eq. (84), the realizability of each term on the right-hand side gives the 
alizability of Γ𝜀[Uℎ](𝒙). Since Uℎ(𝜀̂𝑞) ∈ R for each 𝜀̂𝑞 under the assumption that Uℎ ∈ R on 𝑆𝑲

⊗ for all 𝑲 ∈ T , we focus on 
oving realizability of Φ𝜀1 and Φ

𝜀
𝑘̂
, which are defined as

Φ𝜀1
[
U𝑎,U𝑏,𝒗ℎ

]
=U𝑏 + 𝜆𝜀Lℱ

𝜀
LF

(
U𝑎,U𝑏,𝒗ℎ

)
(86)

= (1 − 𝛼𝜀𝜆𝜀
L
)Θ𝜀0,L(U𝑏,𝒗ℎ) +

1
2
𝛼𝜀𝜆𝜀

L
Θ𝜀+(U𝑎,𝒗ℎ) +

1
2
𝛼𝜀𝜆𝜀

L
Θ𝜀+(U𝑏,𝒗ℎ),

Φ𝜀
𝑘̂

[
U𝑎,U𝑏,𝒗ℎ

]
=U𝑎 − 𝜆𝜀Hℱ

𝜀
LF

(
U𝑎,U𝑏,𝒗ℎ

)
(87)

= (1 − 𝛼𝜀𝜆𝜀
H
)Θ𝜀0,H(U𝑎,𝒗ℎ) +

1
2
𝛼𝜀𝜆𝜀

H
Θ𝜀−(U𝑎,𝒗ℎ) +

1
2
𝛼𝜀𝜆𝜀

H
Θ𝜀−(U𝑏,𝒗ℎ),

here we used the definition of ℱ𝜀
LF
given in Eq. (46) and defined 𝜆𝜀

L∕H = 𝜀L∕HΔ𝑡𝜀∕(𝑤̂𝑘̂ |𝐾𝜀|),
Θ𝜀0,L∕H(U,𝒗ℎ) =

U[𝒗ℎ] − 𝛼𝜀𝜆𝜀L∕HM

1 − 𝛼𝜀𝜆𝜀
L∕H

, and Θ𝜀±(U,𝒗ℎ) =M± 1
𝛼𝜀
F 𝜀(U,𝒗ℎ) . (88)

Similar to the approach in Section 5.1.1, the following two lemmas show realizability of Θ𝜀± and Θ
𝜀
0,L∕H.

mma 3. Let Θ𝜀±(U, 𝒗ℎ) be given as in Eq. (88). Assume that U ∈ R. Then Θ𝜀± ∈ R.

oof. The first component of Θ𝜀± can be written as

1
4𝜋 ∫

𝕊2

𝖿±[𝒗ℎ, 𝛼𝜀](𝜔)𝑑𝜔, where 𝖿±[𝒗ℎ, 𝛼𝜀](𝜔) =
(
1 ±𝑄(𝒗ℎ)∕𝛼𝜀

)
𝑓 (𝜔), (89)

d where 𝑄(𝒗ℎ) is the quadratic form in Eq. (47). Similarly, the remaining components of Θ𝜀± can be written as

1
4𝜋 ∫

𝕊2

𝖿±[𝒗ℎ, 𝛼𝜀](𝜔)𝓵(𝜔)𝑑𝜔. (90)

nce |𝑄(𝒗ℎ)|∕𝛼𝜀 ≤ 1, it follows that 𝖿±[𝒗ℎ, 𝛼𝜀](𝜔) ∈R and Θ𝜀± ∈ R. □

mma 4. Consider Θ𝜀0,L∕H(U, 𝒗ℎ) as defined in Eq. (88). Assume that U, M ∈ R, 𝑣ℎ = |𝒗ℎ| < 1, and 𝜂𝜀
L∕H ∶= 𝛼𝜀𝜆𝜀

L∕H < (1 − 𝑣ℎ). Then, 
𝜀
0,L∕H(U, 𝒗ℎ) ∈ R.

oof. The first component of Θ𝜀0,L∕H(U, 𝒗ℎ) can be written as

1
4𝜋 ∫

𝕊2

𝖿 [𝒗ℎ, 𝜂𝜀L∕H](𝜔)𝑑𝜔, where 𝖿 [𝒗ℎ, 𝜂𝜀L∕H](𝜔) =
(1 − 𝒗ℎ ⋅ 𝓵 − 𝜂𝜀

L∕H)

(1 − 𝜂𝜀
L∕H)

𝑓 (𝜔). (91)

e remaining components of Θ𝜀0,L∕H(U, 𝒗ℎ) can be written as

1
4𝜋 ∫

𝕊2

𝖿 [𝒗ℎ, 𝜂𝜀L∕H](𝜔)𝓵(𝜔)𝑑𝜔. (92)

nce 𝑣ℎ < 1 and 𝜂𝜀
L∕H < 1 −𝑣, we have (1 −𝒗ℎ ⋅𝓵−𝜂𝜀

L∕H) ≥ (1 −𝑣ℎ) −𝜂𝜀L∕H > 0. This, together with 𝑓 ∈R, implies that 𝖿 [𝒗ℎ, 𝜂𝜀L∕H](𝜔) ∈R

d Θ𝜀0,L∕H(U, 𝒗ℎ) ∈ R. □

Analogous to the spatial advection case, the assumptions in Lemma 4 are fulfilled for all 𝑲 ∈ T under assumptions of Proposition 3, 
hen
17

𝐶𝜀 ∶= 𝛾𝜀𝛼𝜀𝑤̂𝑘̂ (93)
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used in the time-step restriction (63). Under these assumptions, 𝜂𝜀
L∕H ∶= 𝛼𝜀𝜆𝜀

L∕H < (1 − 𝑣ℎ) ≤ 1. Therefore Φ𝜀1 and Φ
𝜀
𝑘̂
are convex 

mbinations of realizable terms, and are thus realizable. We have shown that, under the assumptions of Proposition 3, Û
𝑛+1∕2,𝜀
𝑲

∈ R
r all 𝑲 ∈ T .

1.3. Sources
The last part of the explicit update involves the source term in the number flux equation. We define

Û
𝑛+1∕2,S
𝑲

=U𝑛
𝑲
+

Δ𝑡S|𝑲| (S(U𝑛
ℎ,𝒗ℎ)

)
𝑲

(Δ𝑡S =Δ𝑡∕𝛾S)

= 1|𝑲| ∫
𝑲

[
U𝑛
ℎ +Δ𝑡S S(U𝑛

ℎ,𝒗ℎ)
]
𝜏 𝑑𝒛. (94)

om the definition of the source term S in Eq. (17), the number density is not affected in the source update. Thus we have N̂𝑛+
1∕2,S

𝑲
=

𝑛
𝑲
> 0, which, together with the results obtained in Sections 5.1.1 and 5.1.2, concludes the proof of the first claim in Proposition 3.

Ideally, one would expect to show that Û
𝑛+1∕2,S
𝑲

∈ R under time-step restrictions similar to the ones in Sections 5.1.1 and 5.1.2. 
fortunately, this is not true in the three-dimensional case considered in this paper. In the rest of this section, we will show that (i) 
alizability of Û

𝑛+1∕2,S
𝑲

is preserved by the semi-discrete equation, i.e., without time discretization, and (ii) with the forward Euler 
scretization in Eq. (62a), Û

𝑛+1∕2,S
𝑲

∈ R in a reduced, one-dimensional planar geometry.

oposition 7 (Semi-discrete source update). Given a quadrature rule 𝑸 ∶ 𝐶0(𝑲) →ℝ with positive weights and points given by the set 𝑺𝑲
⊗ , 

 show that, for all 𝒛 ∈ 𝑺𝑲
⊗ ⊂𝑲 , the solution Uℎ(𝒛, 𝑡) to the semi-discrete equation

𝜕𝑡Uℎ(𝒛, 𝑡) =S(Uℎ(𝒛, 𝑡),𝒗ℎ(𝒛)) (95)

mains in the realizable set R for all 𝑡 ≥ 𝑡0, provided that Uℎ(𝒛, 𝑡0) is realizable.

This semi-discrete equation is consistent with the source update portion in Eq. (18) and results in Eq. (94) after applying forward 
ler discretization and cell-averaging.

oof. To show that Uℎ(𝒛, 𝑡) ∈ R for 𝑡 ≥ 𝑡0, we first observe that since the first component of S(U, 𝒗) is zero (see Eq. (17)), the source 
date does not affect Nℎ. Thus, showing Uℎ(𝒛, 𝑡) ∈ R is equivalent to proving that Gℎ(𝒛, 𝑡) ≤Nℎ(𝒛), where Gℎ(𝒛, 𝑡) = |Gℎ(𝒛, 𝑡)| with 
ℎ the number flux governed by Eq. (95). Due to the continuity of Gℎ(𝒛, 𝑡) in time, it suffices to show that if Gℎ(𝒛, ̂𝑡) =Nℎ(𝒛) for some 
𝑡0, then Gℎ(𝒛, 𝑡) = Nℎ(𝒛) for all 𝑡 ≥ 𝑡, i.e., the number flux magnitude does not exceed the number density. Indeed, the number 
x portion of Eq. (95) is given by

𝜕𝑡Gℎ,𝑗 = Q𝑖𝑘𝑗 (𝜕𝑖𝑣
𝑘)ℎ − I𝑖(𝜕𝑖𝑣𝑗 )ℎ =

1
4𝜋 ∫

𝕊2

(
𝓁𝑖(𝜔)𝓁𝑘(𝜔)𝓁𝑗 (𝜔)(𝜕𝑖𝑣𝑘)ℎ − 𝓁𝑖(𝜔)(𝜕𝑖𝑣𝑗 )ℎ

)
𝑓 (𝜔, 𝑡)𝑑𝜔. (96)

ppose Gℎ(𝒛, ̂𝑡) =Nℎ(𝒛) for some 𝑡 ≥ 𝑡0, it is known [51] that the distribution function 𝑓 (𝜔) takes the form of a Dirac delta function, 
., 𝑓 (𝜔) = 𝑐 𝛿(𝜔̂) for some 𝑐 > 0, 𝜔̂∈ 𝕊2. Therefore, at 𝑡 = 𝑡, we have G𝑗

ℎ
= 𝑐
(
1 + 𝑣𝑘𝓁𝑘(𝜔̂) 

)
𝓁𝑗 (𝜔̂) and

𝜕𝑡Gℎ,𝑗 =
𝑐
4𝜋
(
𝓁𝑖(𝜔̂)𝓁𝑘(𝜔̂)𝓁𝑗 (𝜔̂)(𝜕𝑖𝑣𝑘)ℎ − 𝓁𝑖(𝜔̂)(𝜕𝑖𝑣𝑗 )ℎ

)
. (97)

us,

1
2
𝜕𝑡(Gℎ)2 = G

𝑗
ℎ
𝜕𝑡Gℎ,𝑗

= 𝑐2

4𝜋
(
1 + 𝑣𝑘𝓁𝑘(𝜔̂)

)
𝓁𝑗 (𝜔̂)

(
𝓁𝑖(𝜔̂)𝓁𝑘(𝜔̂)𝓁𝑗 (𝜔̂)(𝜕𝑖𝑣𝑘)ℎ − 𝓁𝑖(𝜔̂)(𝜕𝑖𝑣𝑗 )ℎ

)
= 0 ,

(98)

here the fact 𝓁𝑖𝓁𝑖 = 1 is used in the last equality. Eq. (98) indicates that the number flux magnitude does not change once Gℎ(𝒛, ̂𝑡) =
ℎ(𝒛) for some 𝑡 ≥ 𝑡0 and implies that Uℎ(𝒛, 𝑡) ∈ R for 𝑡 ≥ 𝑡0. □

mark 6. The result in Eq. (98) also explains why the discretized source update (94) cannot guarantee realizability of the updated 
oments. Specifically, Eq. (98) suggests that, for moments on the realizable boundary (Gℎ =Nℎ), the continuous source update (95)
oves the moments tangentially with the boundary of the realizable set. Once explicit discretization is applied, e.g., Eq. (94), the 
date may result in unrealizable moments, regardless of the time-step size.

Next, we show that, in a one-dimensional planar geometry [2, Section 6.5], the discretized source update Eq. (94) preserves 
alizability of the moments when a time-step restriction is satisfied. In the planar geometry, the spatial fluxes are zero in two of the 
18

ree spatial dimensions (e.g., 𝜕𝑥2𝑓 = 𝜕𝑥3𝑓 = 0) with the angular direction reduced from 𝜔 = (𝜗, 𝜑) ∈ 𝕊2 to 𝜇 = cos 𝜗 ∈ [−1, 1]. In the 
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mainder of this subsection, we use 𝑥(= 𝑥1) to denote the only spatial dimension that has nonzero fluxes, and use a scalar function 
to denote the velocity which varies only in the 𝑥 direction. Moreover, the primitive moments in the planar geometry are given by

{
D, I, K , Q

}
(𝜀, 𝑥, 𝑡) = 1

2

1

∫
−1

𝑓 (𝜔,𝜀, 𝑥, 𝑡)
{
1, 𝜇, 𝜇2, 𝜇3

}
𝑑𝜇, (99)

d the conserved moments are N =D + 𝑣 I and G = I + 𝑣 K . In this case, the semi-discrete source update Eq. (95) reduces to

𝜕𝑡N = 0 , and 𝜕𝑡G = 1
2

1

∫
−1

𝜇(𝜇2 − 1)(𝜕𝑥𝑣)ℎ 𝑓 (𝜇)𝑑𝜇 . (100)

e following proposition shows that the discretized version of this source update preserves moment realizability under a time step 
striction.

oposition 8. In the planar geometry, suppose Assumption 1 holds, 𝑣ℎ < 1, and the time step satisfies

Δ𝑡 ≤ 1
2
𝛾S

1 − 𝑣ℎ|(𝜕𝑥𝑣)ℎ| ,
(
i.e., Δ𝑡S ≤ 1

2
1 − 𝑣ℎ|(𝜕𝑥𝑣)ℎ|

)
. (101)

en the discretized source update Eq. (94) gives a realizable cell-averaged moment Û
𝑛+1∕2,S
𝑲

for all 𝑲 ∈ T , provided U𝑛
ℎ
∈ R on all 𝑲 ∈ T .

oof. In this proof, we show the realizability of Û
𝑛+1∕2,S
ℎ ∶=U𝑛

ℎ
+Δ𝑡S S(U𝑛

ℎ
, 𝒗ℎ), which leads to the realizability of Û

𝑛+1∕2,S
𝑲

when 
e element integral in Eq. (94) is evaluated using quadrature rules with positive weights in both the spatial and energy dimensions.
We start with denoting Û

𝑛+1∕2,S
ℎ =∶ (N̂𝑛+

1∕2,S
ℎ

, Ĝ𝑛+
1∕2,S

ℎ
). In the planar geometry, the number density N̂𝑛+

1∕2,S
ℎ

and number flux 
+1∕2,S

are both scalar-valued. From Assumption 1 and the definition of the source terms S in Eq. (17), we can write

N̂𝑛+
1∕2,S

ℎ
= 1

2

1

∫
−1

(
1 + 𝑣ℎ𝜇

)
𝑓 (𝜇)𝑑𝜇, (102)

Ĝ𝑛+
1∕2,S

ℎ
= 1

2

1

∫
−1

[ (
1 + 𝑣ℎ𝜇

)
𝜇 +Δ𝑡S

(
𝜇3(𝜕𝑥𝑣)ℎ − 𝜇(𝜕𝑥𝑣)ℎ

) ]
𝑓 (𝜇)𝑑𝜇 (103)

= 1
2

1

∫
−1

(
1 + 𝑣ℎ𝜇

)
𝑓 (𝜇)

[
𝜇 −Δ𝑡S (𝜕𝑥𝑣)ℎ𝜇

1 − 𝜇2

1 + 𝑣ℎ𝜇
]
𝑑𝜇,

here 𝑓 ∈ R. Since 𝑣ℎ < 1 and 𝜇 ∈ [−1, 1], it is clear that N̂𝑛+
1∕2,S

ℎ
> 0. We next prove N̂𝑛+

1∕2,S
ℎ

− |Ĝ𝑛+1∕2,S
ℎ

| ≥ 0 when Δ𝑡S satisfies 
. (101). By Cauchy-Schwartz inequality,

|Ĝ𝑛+1∕2,S
ℎ

|2 ≤ 1
4

1

∫
−1

(1 + 𝑣ℎ𝜇)𝑓 (𝜇)𝑑𝜇

1

∫
−1

(1 + 𝑣ℎ𝜇)𝑓 (𝜇)
[
𝜇 −Δ𝑡S (𝜕𝑥𝑣)ℎ𝜇

1 − 𝜇2

1 + 𝑣ℎ𝜇
]2
𝑑𝜇. (104)

e then show that, under Eq. (101), 
[
𝜇 − Δ𝑡S (𝜕𝑥𝑣)ℎ𝜇

1−𝜇2
1+𝑣ℎ𝜇

]2 ≤ 1 for 𝜇 ∈ [−1, 1]. This inequality clearly holds when 𝜇 = ±1 and 

= 0. We thus focus on the case when 𝜇 ∈ (−1, 1) and 𝜇 ≠ 0. Since Δ𝑡S > 0 and 1−𝜇2
1+𝑣ℎ𝜇

≥ 0, the inequality holds when

Δ𝑡S ≤ 1 + 𝑣ℎ𝜇
(𝜕𝑥𝑣)ℎ𝜇 (1 − 𝜇)

if (𝜕𝑥𝑣)ℎ 𝜇 > 0, and Δ𝑡S ≤ 1 + 𝑣ℎ𝜇
(−(𝜕𝑥𝑣)ℎ𝜇)(1 + 𝜇)

if (𝜕𝑥𝑣)ℎ 𝜇 < 0. (105)

is straightforward to verify that Eq. (101) gives a sufficient condition to the two time-step restrictions above. □

2. Realizability-enforcing limiter

It has been shown in Proposition 3 that, when starting from realizable moments U𝑛
ℎ
, the explicit update in Eq. (62a) is guaranteed 

 provide updated cell-averaged moments Û
𝑛+1∕2
𝑲

with number density N̂𝑛+
1∕2

𝑲
> 0 for every 𝑲 under a reasonable time-step restriction. 

 this section, we discuss how the realizability-enforcing limiter proposed in [35] is used here in Eq. (62b) to enforce realizability 
 moments Uℎ at a point set 𝑆𝑲

⊗ defined in Eq. (52), which covers all DG nodal points as well as the auxiliary points in element 𝑲 .
In [35], the realizability-enforcing limiter was formulated following the approach considered in [55,56] for constructing bound-
19

eserving limiters for high-order DG schemes. The limiter enforces moment realizability at each quadrature point in a DG element by 
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laxing unrealizable moments towards the realizable cell-averaged moments. Specifically, this limiter replaces unrealizable moments 
ith their convex combinations with the cell-averaged moment, which preserves the Eulerian-frame particle number in each element 
ut not the energy; see Section 6.2 for further discussions) when the same convex combination factor (𝜃N

𝑲
and 𝜃U

𝑲
) is applied to all 

oments within the element. For completeness, the steps taken in this realizability-enforcing limiter are summarized in Algorithm 1. 
e refer to [35] and references therein for detailed discussions.

lgorithm 1: Uℎ = RealizabilityLimiter(Ûℎ).
Inputs: Discretized moments Ûℎ with N̂𝑲 > 0 for all 𝑲 ∈ T .
Parameter: 0 < 𝛿 ≪ 1.
for each element 𝑲 do

if Û𝑲 ∈ R then
/* limit number density */

Ñℎ ← 𝜃N
𝑲
N̂ℎ + (1 − 𝜃N

𝑲
)N̂𝑲 with 𝜃N

𝑲
←min{ N̂𝑲

N̂𝑲−min
𝒛∈𝑆𝑲⊗

N̂ℎ (𝒛)
, 1};

/* build intermediate moments */

Ũℎ ← (Ñℎ, ̂Gℎ);
/* limit full moments */

Uℎ ← 𝜃U
𝑲
Ũℎ + (1 − 𝜃U

𝑲
) ̂U𝑲 where

𝜃U
𝑲
← argmin𝜃{𝜃 ∈ [0, 1]∶ 𝛾(𝜃 Ũℎ(𝒛) + (1 − 𝜃) ̂U𝑲 ) ≥ 0, ∀𝒛 ∈ 𝑆𝑲

⊗ } with 𝛾 defined in Eq. (22).
else

/* replace number densities with the cell average and shrink number fluxes accordingly */

Uℎ ← (Nℎ, Gℎ) with Nℎ = N̂𝑲 and Gℎ = (1 − 𝛿) ̂N𝑲

Ĝℎ|Ĝℎ | ;

As seen in Algorithm 1, starting from discretized moment Ûℎ with positive cell-averaged number density N̂𝑲 , the limiter enforces 
alizability of the resulting moments Uℎ in the point set 𝑆𝑲

⊗ by limiting toward the cell-averaged moments. The limiter is guaranteed 
 provide realizable outputs at the point set when the starting moment has a positive cell-averaged number density, thus Proposition 4
lds.

We note that, when approximate closures are considered, the explicit update may not result in moments with positive cell-averaged 
mber density (since Assumption 1 does not hold). If a negative cell-averaged number density is observed in element 𝑲 , we set 
e moments in 𝑲 to be an isotropic moment with close to zero but positive number density and zero number flux. This safeguard 
ects the conservation property of the scheme, however, we do not observe a negative cell-averaged number density in any of the 
merical experiments presented in Section 8.

3. Conversion between conserved and primitive moments

In this section, we prove Proposition 5 by showing that, under Assumption 1 and assuming 𝑣ℎ < 1, (i) the conversion between 
nserved and primitive moments preserves realizability and (ii) the iterative solver in Eq. (57) is guaranteed to converge to a unique 
∈ R that satisfies Eq. (19) given U ∈ R.
In the following two lemmas, we show that the realizability is preserved in the conversion between conserved and primitive 
oments.

mma 5. Suppose Assumption 1 holds and 𝑣 < 1. Let U be given as in Eq. (19) with M ∈ R, then U ∈ R.

oof. Let 𝑓 ∈R be the underlying distribution for M ∈ R. Then, from Eq. (19), the components of U can be written as(
N ,G𝑗

)⊺ = 1
4𝜋 ∫

𝕊2

(
1 + 𝑣𝑖 𝓁𝑖(𝜔)

)
𝑓 (𝜔)

(
1,𝓁𝑗 (𝜔)

)⊺
𝑑𝜔 ∶= 1

4𝜋 ∫
𝕊2

𝖿 (𝜔)
(
1,𝓁𝑗 (𝜔)

)⊺
𝑑𝜔. (106)

nce 𝑓 ∈R and 𝑣𝑖 𝓁𝑖 ∈ (−1, 1), it follows that 𝖿 (𝜔) ∶=
(
1 + 𝑣𝑖 𝓁𝑖(𝜔) 

)
𝑓 (𝜔) ∈R and thus U ∈ R. □

mma 6. Suppose Assumption 1 holds, 𝑣 < 1, and U ∈ R. Then there exists some M∈ R that satisfies Eq. (19).

oof. Let 𝖿 ∈R denote the underlying distribution for U ∈ R. Then the components of U can be written as(
N ,G𝑗

)⊺ = 1
4𝜋 ∫

𝕊2

𝖿 (𝜔)
(
1,𝓁𝑗 (𝜔)

)⊺
𝑑𝜔. (107)

nce 𝖿 ∈R and 𝑣𝑖 𝓁𝑖 ∈ (−1, 1), it follows that 𝑓 (𝜔) ∶=
(
1 + 𝑣𝑖 𝓁𝑖(𝜔) 

)−1
𝖿 (𝜔) ∈R. Taking the moments of 𝑓 leads to M ∈ R. Using 
20

e relation between 𝑓 and 𝖿 it is then straightforward to verify that M satisfies Eq. (19). □
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Lemma 6 shows the existence of realizable primitive moments corresponding to given conserved moments. However, it does 
t provide guarantees on the convergence of the iterative solver we use to find the primitive moments. In the remainder of this 
bsection, we prove that the iterative solver in Eq. (57) guarantees the convergence to a realizable moment M. To start, in the 
llowing lemma we show that realizability is guaranteed at each iteration of the solver in Eq. (57).

mma 7. Let U ∈ R and 𝜆 ≤ 1
1+𝑣 in Eq. (56). Then, the solver in Eq. (57) guarantees that M

[𝑘+1] = (D[𝑘+1], I [𝑘+1])⊺ ∈ R, provided that 
[𝑘] = (D[𝑘], I [𝑘])⊺ ∈ R.

oof. We write the iterative update in Eq. (57) as

M[𝑘+1] =

(
D[𝑘+1]

I[𝑘+1]𝑗

)
= (1 − 𝜆)

(
D[𝑘] − 𝜆

1−𝜆 𝑣
𝑖I[𝑘]𝑖

I[𝑘]𝑗 − 𝜆
1−𝜆 𝑣

𝑖𝗄[𝑘]𝑖𝑗 D
[𝑘]

)
+ 𝜆
(
N
G𝑗

)
=∶ (1 − 𝜆)M̃

[𝑘]
+ 𝜆U.

(108)

nce the realizable set R is convex and M[𝑘+1] is a convex combination of M̃
[𝑘]
and U ∈ R, it suffices to show that M̃

[𝑘]
∈ R. We 

serve that the entries in M̃
[𝑘]
take the exact same form as the ones on the right-hand side of Eq. (19), except with 𝒗 replaced by 

𝜆
1−𝜆𝒗. It then follows from Lemma 5 that M̃

[𝑘]
∈ R if 𝜆

1−𝜆 𝑣 ≤ 1, i.e., 𝜆 ≤ 1
1+𝑣 . □

It is well-known that, when solving a fixed-point problem defined by a contraction operator, the Picard iteration converges to 
e unique fixed point (see, e.g., [54]). We show below in Proposition 9 that the fixed-point operator HU defined in Eq. (56) is a 
ntraction under mild assumptions on 𝑣ℎ, which thus guarantees the convergence of the iterative solver in Eq. (57). The proof of 
oposition 9 uses results from the following two technical lemmas.

mma 8. For any M∈ R, ‖𝜕D(𝑣𝑖𝗄𝑖𝑗D)‖ ≤ 𝑣.
oof. See Appendix B.2 for the proof. □

mma 9. For any M∈ R, ‖∇I (𝑣𝑖𝗄𝑖𝑗D)‖ ≤ 2𝑣.

oof. See Appendix B.3 for the proof. □

We now state and prove Proposition 9.

oposition 9. Suppose 𝑣 <
√
2 − 1 and 𝜆 ∈ (0, 1]. Then, HU defined in Eq. (56) is a contraction operator, i.e., there exists some 𝐿 < 1

ch that

‖HU(M(1)) −HU(M(2))‖ ≤𝐿‖M(1) −M(2)‖ , ∀M(1),M(2) ∈ R . (109)

oof. First, for convenience, we denote ΔD =D(1) −D(2) and ΔI𝑗 = I
(1)
𝑗 − I(2)𝑗 . It then follows from the definition of HU and the 

angle inequality that

‖HU(M(1)) −HU(M(2))‖ ≤ (1 − 𝜆)
‖‖‖‖‖
(
ΔD
ΔI𝑗

)‖‖‖‖‖+ 𝜆
‖‖‖‖‖‖
(

𝑣𝑖ΔI𝑖
𝑣𝑖(𝗄(1)𝑖𝑗 D

(1) − 𝗄(2)𝑖𝑗 D
(2))

)‖‖‖‖‖‖ (110)

us, it suffices to show that, there exists some 𝐿̃ < 1 such that‖‖‖‖‖‖
(

𝑣𝑖ΔI𝑖
𝑣𝑖(𝗄(1)𝑖𝑗 D

(1) − 𝗄(2)𝑖𝑗 D
(2))

)‖‖‖‖‖‖ ≤ 𝐿̃
‖‖‖‖‖
(
ΔD
ΔI𝑗

)‖‖‖‖‖ , ∀M(1),M(2) ∈ R. (111)

mmas 8 and 9 imply that the gradients of 𝑣𝑖𝗄𝑖𝑗D in the D and I directions are bounded. Thus, we have

‖𝑣𝑖(𝗄(1)𝑖𝑗 D(1) − 𝗄(2)𝑖𝑗 D
(2))‖ ≤ ‖𝜕D(𝑣𝑖𝗄𝑖𝑗D)‖‖ΔD‖+ ‖∇I (𝑣𝑖𝗄𝑖𝑗D)‖‖ΔI𝑗‖

≤ 𝑣‖ΔD‖+ 2𝑣‖ΔI𝑗‖ , (112)

hich leads to‖𝑣𝑖(𝗄(1)𝑖𝑗 D(1) − 𝗄(2)𝑖𝑗 D
(2))‖2 ≤ 𝑣2‖ΔD‖2 + 4𝑣2‖ΔD‖‖ΔI𝑗‖+ 4𝑣2‖ΔI𝑗‖2√ √ (113)
21

≤ (3 + 2 2)𝑣2‖ΔD‖2 + (2 + 2 2)𝑣2‖ΔI𝑗‖2 ,
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here the second inequality follows from the inequality, 2𝑎𝑏 ≤ (
√
2 + 1)𝑎2 + (

√
2 − 1)𝑏2, with 𝑎 =

√
2𝑣‖ΔD‖ and 𝑏 =√2𝑣‖ΔI𝑗‖. 

king the square of the left-hand side in Eq. (111) and applying the inequality in Eq. (113) gives

‖‖‖‖‖‖
(

𝑣𝑖ΔI𝑖
𝑣𝑖(𝗄(1)𝑖𝑗 D

(1) − 𝗄(2)𝑖𝑗 D
(2))

)‖‖‖‖‖‖
2

= 𝑣2‖ΔI𝑗‖2 + ‖𝑣𝑖(𝗄(1)𝑖𝑗 D(1) − 𝗄(2)𝑖𝑗 D
(2))‖2

≤ (3 + 2
√
2)𝑣2(‖ΔD‖2 + ‖ΔI𝑗‖2) .

(114)

t 𝐿̃ ∶=
√

3 + 2
√
2𝑣, the claim then holds when 𝑣 <

(√
3 + 2

√
2
)−1 =√2 − 1. □

eorem 2. Suppose 𝑣 <
√
2 − 1 and 𝜆 ≤ 1

1+𝑣 in Eq. (56). Then, for any given conserved moment U = (N , G)⊺ ∈ R and initial primitive 
oment M[0] ∈ R, the iterative solver in Eq. (57) converges to the unique realizable primitive moment M that satisfies Eq. (19) as 𝑘 →∞.

oof. This theorem is a direct consequence from the realizability-preserving property of the solver shown in Lemma 7 and the 
ntraction property of HU proved in Proposition 9. □

The results in Theorem 2 lead to the following corollary on the uniqueness of realizable primitive moments associated with 
alizable conserved moments.

rollary 1. Suppose 𝑣 <
√
2 − 1. For any conserved moment U ∈ R, there exists a unique realizable primitive moment M that satisfies 

. (19).

4. Implicit collision update

In this section, we prove Proposition 6, which states that, under Assumption 1, the implicit update in Eq. (62c) preserves real-
ability when the iterative solver in Eq. (61) is used. We first show in the following lemma that realizability is preserved in each 
ration when starting from a realizable moment.

mma 10. Let U(∗) = (N (∗), G(∗))⊺ ∈ R, 𝜆 ≤ 1
1+𝑣 , and 𝜅 ≥ 𝜒 ≥ 0 in Eq. (60). Then, the solver in Eq. (61) guarantees that M[𝑘+1] =

[𝑘+1], I [𝑘+1])⊺ ∈ R, provided that M[𝑘] = (D[𝑘], I [𝑘])⊺ ∈ R.

oof. We follow the approach in the proof of Lemma 7 and write Eq. (61) as

M[𝑘+1] = (1 − 𝜆)Λ

(
D[𝑘] − 𝜆

1−𝜆 𝑣
𝑖I[𝑘]𝑖

I[𝑘]𝑗 − 𝜆
1−𝜆 𝑣

𝑖𝗄[𝑘]𝑖𝑗 D
[𝑘]

)
+ 𝜆Λ

(
N (∗) + Δ𝑡𝜒D0

G(∗)𝑗

)
=∶ (1 − 𝜆)ΛM̃[𝑘] + 𝜆ΛŨ(∗)

.

(115)

 the proof of Lemma 7, we have shown that M̃[𝑘] ∈ R when 𝜆 ≤ 1
1+𝑣 . Also, it is clear that Ũ

(∗) ∈ R because U(∗) ∈ R, 𝜒 ≥ 0 and 
0 ≥ 0. Since 𝜅 ≥ 𝜒 ≥ 0, we have 𝜇𝜒 ≥ 𝜇𝜅 ≥ 0, implying that Λ M ∈ R for all M ∈ R based on the definition of R in Eq. (22). 
erefore, Λ M̃[𝑘]

and Λ Ũ(∗)
are both realizable, which, together with the convexity of R, completes the proof. □

Similar to the moment conversion problem considered in Section 5.3, we next show in the following proposition that the operator 
in Eq. (60) is a contraction, which implies convergence of the Picard iteration method in Eq. (61).

oposition 10. Suppose 𝑣 <
√
2 − 1, 𝜆 ∈ (0, 1], and 𝜅 ≥ 𝜒 ≥ 0. Then, Q is a contraction operator, i.e., there exists some 𝐿 < 1 such that

‖Q(M(1)) −Q(M(2))‖ ≤𝐿‖M(1) −M(2)‖ , ∀M(1),M(2) ∈ R . (116)

oof. From the definitions of HU and Q in Eqs. (56) and (60), we observe that

‖Q(M(1)) −Q(M(2))‖ = ‖Λ(HU(M(1)) −HU(M(2)))‖
≤ ‖Λ‖‖HU(M(1)) −HU(M(2))‖ (117)

r all M(1), M(2) ∈ R. Since 𝜅 ≥ 𝜒 ≥ 0 and 𝜆 > 0, we have 0 ≤ 𝜇𝜅 ≤ 𝜇𝜒 ≤ 1, i.e., ‖Λ‖ ≤ 1. The claim is thus a direct consequence of 
22

oposition 9. □
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eorem 3. Suppose 𝑣 <
√
2− 1, 𝜆 ≤ 1

1+𝑣 , and 𝜅 ≥ 𝜒 ≥ 0 in Eq. (60). Then, for any given conserved moment U(∗) = (N (∗), G(∗))⊺ ∈ R and 
itial primitive moment M[0] ∈ R, the iterative solver in Eq. (61) converges to a unique realizable primitive moment M as 𝑘 →∞. Further, 
e conserved moment U associated to M via Eq. (19) is also realizable and solves the implicit system in Eq. (58).

oof. The convergence to a unique M ∈ R is given by the realizability-preserving property in Lemma 10 and the contraction 
operty in Proposition 10. Realizability of U follows from Lemma 5, and the formulation of the fixed-point problem in Eq. (60)
arantees that U solves the implicit system in Eq. (58). □

5. Extension to approximate moment closures

In the earlier sections, we have shown the realizability-preserving property of the numerical scheme (62a)–(62c) under Assump-
n 1, in which the use of exact moment closures is assumed. As discussed in Sections 2 and 3, the approximate Minerbo closure is 
ten used in practice to reduce the computational cost, where the approximate Eddington factor 𝜓𝖺 and heat-flux factor 𝜁𝖺, defined 
spectively in Eqs. (27) and (28), are considered. In this section, we show that the realizability-preserving and convergence analyses 
r the conserved-to-primitive moment conversion (Eq. (19)) and the implicit update (Eq. (62c)) given in Sections 5.3 and 5.4 can be 
tended to the case when the approximate Minerbo closure is used.
When the approximate Eddington factor 𝜓𝖺 in Eq. (27) is used, we replace Lemma 5 with the following lemma.

mma 11. Suppose 𝑣 < 1. Let U be given as in Eq. (19) with M ∈ R, then U ∈ R.

oof. Since M =
(
D, I

)⊺ ∈ R, we know that D > 0 and D − I ≥ 0. To show U =
(
N , G

)⊺ ∈ R, we first prove N > 0. By definition,

N =D+ 𝑣𝑖I𝑖 ≥D− 𝑣I >D− I ≥ 0 , (118)

here the Cauchy-Schwartz inequality and the assumption that 𝑣 < 1 are used. We next prove that N2 −G2 ≥ 0 with G ∶= |G|, which 
plies N −G ≥ 0. Writing N2 and G2 in terms of the primitive moments leads to

N2 =D2 + 2(𝑣𝑖I𝑖)D+ (𝑣𝑖I𝑖)2 ,

=D2(1 + 2𝑣𝑖 𝑛̂𝑖ℎ+ (𝑣𝑖 𝑛̂𝑖)2ℎ2
)
,

G2 = I2 + 2I𝑗 (𝑣𝑖 𝗄𝑖𝑗 )D+ (𝑣𝓁 𝗄𝓁𝑗 )(𝑣𝑖 𝗄𝑖𝑗 )D2 .

=D2(ℎ2 + 2 𝑛̂𝑗 𝑣𝑖 𝗄𝑖𝑗ℎ+ 𝑣𝓁 𝗄𝓁𝑗 𝑣𝑖 𝗄𝑖𝑗
)
.

(119)

ing the definition of 𝗄𝑖𝑗 in Eq. (10) we obtain

𝑛̂𝑗 𝑣𝑖 𝗄𝑖𝑗 = 𝑛̂𝑗 𝑣𝑖
1
2
(
(1 −𝜓𝖺)𝛿𝑖𝑗 + (3𝜓𝖺 − 1)𝑛̂𝑖𝑛̂𝑗

)
= 𝜓𝖺 𝑣

𝑖 𝑛̂𝑖 , (120)

𝑣𝓁 𝗄
𝓁𝑗 𝑣𝑖 𝗄𝑖𝑗 =

1
4
(
(1 −𝜓𝖺)2𝑣2 + (1 +𝜓𝖺)(3𝜓𝖺 − 1)(𝑣𝑖 𝑛̂𝑖)2

)
. (121)

ugging these terms into Eq. (119), denoting 𝑠 ∶= 𝑣𝑖𝑛̂𝑖, and using the assumption that 𝑣 < 1 leads to a sufficient condition for 
2 −G2 ≥ 0: ∀𝑠 ∈ [−1, 1] and ∀ℎ ∈ [0, 1],(

1 − ℎ2 − 1
4
(1 −𝜓𝖺)2

)
+ 2(1 −𝜓𝖺)𝑠ℎ+

(
ℎ2 − 1

4
(1 +𝜓𝖺)(3𝜓𝖺 − 1)

)
𝑠2 ≥ 0 . (122)

om Lemma 12 (e), we have 1 − 𝜓𝖺 ≥ 0. Thus, by applying the inequality 2𝑠ℎ ≥ −1 − 𝑠2ℎ2 to the second term above, it suffices to 
ow that[

𝜓𝖺 − ℎ2 −
1
4
(1 −𝜓𝖺)2

]
+
[
𝜓𝖺ℎ

2 − 1
4
(1 +𝜓𝖺)(3𝜓𝖺 − 1)

]
𝑠2 ≥ 0 . (123)

nce 𝜓𝖺 − ℎ2 −
1
4 (1 −𝜓𝖺)2 ≥ 0 (Lemma 12 (f)) and 𝑠2 ∈ [0, 1],[

𝜓𝖺 − ℎ2 −
1
4
(1 −𝜓𝖺)2 +𝜓𝖺ℎ

2 − 1
4
(1 +𝜓𝖺)(3𝜓𝖺 − 1)

]
𝑠2 ≥ 0 , (124)

hich then becomes

(𝜓𝖺 − ℎ2)(1 −𝜓𝖺)𝑠2 ≥ 0 . (125)

ith ℎ2 ≤ 𝜓𝖺 ≤ 1 from Lemma 12 (e), the proof is complete. □

Lemma 11 extends Lemma 5 by showing that the mapping from primitive moments to conserved moments via Eq. (19) preserves 
alizability even when the approximate Minerbo closure is used. However, there is not an analogous extension of Lemma 6 to 
23

e case of approximate closures. To show that the map from conserved to primitive moments is realizability-preserving with the 
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proximate closure, we verify that the analysis from Lemma 7 to Corollary 1 is still valid when the approximate closure is considered. 
ecifically, when 𝜓 is replaced by 𝜓𝖺, the result of Lemma 7 can be obtained by invoking Lemma 11 rather than Lemma 5 in the 
oof, the results of Lemmas 8 and 9 hold since it is shown in Appendix B.1 that 𝜓𝖺 also satisfies the required properties of 𝜓 , and the 
mainder of the analysis stays identical to the exact closure case considered in Section 5.3. Therefore, we have shown that, when 𝜓
replaced by 𝜓𝖺, the iterative solver in Eq. (57) converges to the unique, realizable primitive moment that satisfies Eq. (19) for the 
ven conserved moment, which implies that the conserved to primitive moment map from Eq. (19) still preserves realizability when 
<
√
2 − 1. Further, we also verified that the convergence and realizability-preserving properties of the iterative solver in Eq. (61)

r the implicit system in Eq. (60) given in Theorem 3 also hold in the approximate closure case by applying the same arguments to 
e analysis in Section 5.4.

 Conservation property

1. Simultaneous number and energy conservation of the DG scheme

It has been shown in Proposition 1 that the two-moment model in Eqs. (2)–(3) conserves the Eulerian-frame energy up to O(𝑣). In 
is section, we discuss the simultaneous Eulerian-frame number and energy conservation properties of the two-moment model with 
e discontinuous Galerkin phase-space discretization presented in Section 4.1. We are primarily concerned with consistency with 
e Eulerian-frame energy equation for the phase-space advection problem. For this reason, we consider the collisionless case.
Eulerian-frame number conservation follows from the first component of the semi-discrete DG scheme in Eq. (36) (treating the 
neral case with 𝑑𝒙 = 3),

(
𝜕𝑡Nℎ,𝜑ℎ

)
𝑲
= −

3∑
𝑖=1

∫̃
𝑲
𝑖

[
F̂ 𝑖N
(
Uℎ,𝒗ℎ

)
𝜑ℎ|𝑥𝑖

H
− F̂ 𝑖N

(
Uℎ,𝒗ℎ

)
𝜑ℎ|𝑥𝑖

L

]
𝜏 𝑑𝒛̃𝑖 +

3∑
𝑖=1

(
F 𝑖N (Uℎ,𝒗ℎ), 𝜕𝑖𝜑ℎ

)
𝑲

− ∫
𝑲𝒙

[
𝜀3 F̂ 𝜀N

(
Uℎ,𝒗ℎ

)
𝜑ℎ|𝜀H − 𝜀3 F̂ 𝜀N

(
Uℎ,𝒗ℎ

)
𝜑ℎ|𝜀L ]𝑑𝒙+

(
𝜀F 𝜀N (Uℎ,𝒗ℎ), 𝜕𝜀𝜑ℎ

)
𝑲
, (126)

here F 𝑖N and F 𝜀N , respectively, are the first component of the position and energy space fluxes, defined in Eq. (16), and F̂
𝑖
N and 

𝜀 are the corresponding numerical fluxes, defined in Eqs. (41) and (45). Setting 𝜑ℎ = 1 as the test function in Eq. (126) results in 
e equation for the element-integrated Eulerian-frame number density. Note that the volume terms (the second and fourth terms) 
 the right-hand side of Eq. (126) vanish when 𝜑ℎ = 1. Then, because the numerical fluxes F̂ 𝑖N and F̂ 𝜀N are continuous on element 
terfaces, summation over all phase-space elements 𝑲 ∈ 𝐷 results in cancellation of all interior fluxes, and the resulting rate of 
ange in the total Eulerian-frame particle number is only due to the flow of particles though the boundary of the domain 𝐷. That 
 the DG scheme for the Eulerian-frame particle number is conservative by construction.
As for Eulerian-frame energy conservation, similar to Eq. (7) in Proposition 1, the element-integrated Eulerian-frame energy 
uation can be derived by adding the Eulerian-frame number equation in Eq. (126), with 𝜑ℎ = 𝜀, and the sum of the three number 
x equations in Eq. (36) with test functions 𝜑ℎ = 𝜀𝑣

𝑗
ℎ
. To accommodate this choice of test functions, the approximation space 𝕍 𝑘

ℎ

ust include the piecewise linear function in the energy dimension, i.e., 𝑘 ≥ 1. Let Eℎ ∶= 𝜀 (Nℎ + 𝑣
𝑗
ℎ
Gℎ,𝑗 ) denote the discretized 

lerian-frame energy density. Then, the resulting equation for the element-integrated Eulerian-frame energy takes the form(
𝜕𝑡Eℎ

)
𝑲
∶=
(
𝜕𝑡Nℎ, 𝜀

)
𝑲
+
(
𝜕𝑡G𝑗,ℎ, 𝜀𝑣

𝑗
ℎ

)
𝑲

= −
3∑
𝑖=1

∫̃
𝑲
𝑖

[
F̂ 𝑖E
(
Uℎ,𝒗ℎ

)|𝑥𝑖
H
− F̂ 𝑖E

(
Uℎ,𝒗ℎ

)|𝑥𝑖
L

]
𝜏 𝑑𝒛̃𝑖 − ∫

𝑲𝒙

[
𝜀3 F̂ 𝜀E

(
Uℎ,𝒗ℎ

)|𝜀H − 𝜀3 F̂ 𝜀E
(
Uℎ,𝒗ℎ

)|𝜀L ]𝑑𝒙
+
(
𝜀F 𝜀N (Uℎ,𝒗ℎ)

)
𝑲
+

3∑
𝑖=1

(
F 𝑖G𝑗 (Uℎ,𝒗ℎ), 𝜀𝜕𝑖𝑣

𝑗
ℎ

)
𝑲
+O(𝑣2ℎ), (127)

here we have defined the position space numerical fluxes,

F̂ 𝑖E
(
Uℎ,𝒗ℎ

)|𝑥𝑖
H∕L

= 𝜀
[
F̂ 𝑖N
(
Uℎ,𝒗ℎ

)
+ 𝑣𝑗

ℎ
F̂ 𝑖G𝑗
(
Uℎ,𝒗ℎ

) ]|𝑥𝑖
H∕L
, (128)

e energy space numerical fluxes,

F̂ 𝜀E
(
Uℎ,𝒗ℎ

)|𝜀H∕L
= 𝜀 F̂ 𝜀N

(
Uℎ,𝒗ℎ

)|𝜀H∕L
, (129)

d 𝑣2
ℎ
∶= |𝒗ℎ|2. Here, F 𝑖G𝑗 and ̂F 𝑖G𝑗 represent the fluxes and the corresponding numerical fluxes for the number flux equation, defined 

 Eqs. (16) and (41), respectively. The third and fourth term on the right-hand side of Eq. (127), which emanate from the energy 
24

rivative term of the number equation and the spatial derivative of the number flux equations, respectively, can be written as
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(
𝜀F 𝜀N (Uℎ,𝒗ℎ)

)
𝑲
+

3∑
𝑖=1

(
F 𝑖G𝑗 (Uℎ,𝒗ℎ), 𝜀𝜕𝑖𝑣

𝑗
ℎ

)
𝑲
= ∫

𝑲

𝜀K 𝑖𝑗
[
𝜕𝑖𝑣

𝑗
ℎ
− (𝜕𝑖𝑣𝑗 )ℎ

]
𝜏𝑑𝒛+O(𝑣2ℎ), (130)

here (𝜕𝑖𝑣𝑗 )ℎ is the discretized velocity derivative that satisfies Eq. (44).
Provided (i) the numerical flux in Eq. (128) is uniquely defined on element interfaces and (ii) the first term on the right-hand 
e of Eq. (130) vanishes, Eq. (127) is, to O(𝑣2

ℎ
), a phase-space conservation law for the element-integrated Eulerian-frame energy, 

 accordance with Proposition 1. These requirements — which generally require the discrete velocity 𝒗ℎ to be continuous across 
e elements — are not satisfied exactly by the DG scheme proposed here. Since the components of 𝒗ℎ are represented by piecewise 
lynomials, which are discontinuous on element boundaries, the violation in Eulerian-frame energy conservation may be larger 
an what would be expected from O(𝑣2

ℎ
) contributions alone. We will investigate the simultaneous conservation of Eulerian-frame 

mber and energy numerically in Section 8.

2. Spectral redistribution

In addition to the potential violations of Eulerian-frame energy conservation, beyond the O(𝑣2) violations inherent to the model, 
m discontinuous 𝒗ℎ as discussed in Section 6.1, the realizability-enforcing limiter introduced in Section 5.2 can also affect the 
nservation of energy. In fact, for small velocities (including 𝑣 = 0, when the total energy should be preserved to machine precision) 
e realizability-enforcing limiter is the dominant source of non-conservation of the Eulerian-frame energy. To improve Eulerian-frame 
ergy conservation, we propose a “spectral redistribution” scheme that corrects the change of energy induced by the realizability-
forcing limiter via a redistribution of particles between energy elements through a sweeping procedure. This approach maintains 
lerian-frame number and energy conservation across all energy elements for a given spatial element, at the expense of local number 
nservation in each energy element. The spectral redistribution does not correct for Eulerian-frame energy conservation violations 
herent to the O(𝑣) two-moment model or due to discontinuous 𝒗ℎ (see Section 6.1).
To facilitate the discussion, we denote the element integrated Eulerian-frame number and energy by N and E, respectively. Given 
olved moments Uℎ = (Nℎ, Gℎ) on element 𝑲 , the element-integrated number and energy can be computed by

N𝑲 = ∫
𝑲

Nℎ𝜀2𝑑𝒛 ∶= |𝑲| |𝑆
𝑲
⊗ |∑

𝒌=1
𝑤(2)

𝒌
N𝒌, and (131)

E𝑲 = ∫
𝑲

(Nℎ + 𝑣𝑗Gℎ,𝑗 )𝜀3𝑑𝒛 ∶= |𝑲| |𝑆
𝑲
⊗ |∑

𝒌=1
𝑤(3)

𝒌
(N𝒌 + 𝑣𝑗G𝒌,𝑗 ), (132)

here 𝑆𝑲
⊗ denote the set of local DG nodes as defined in Eq. (48), N𝒌 and G𝒌 denotes the nodal values at points in 𝑆𝑲

⊗ , and the weights 
(2)
𝒌
and 𝑤(3)

𝒌
are given by the tensor product of the (𝑘 + 1)-point one-dimensional LG quadrature rules introduced in Section 4.1, 

eighted by 𝜀2 and 𝜀3, respectively. Let Ũℎ ∶= RealizabilityLimiter(Ûℎ) be the output of the realizability-enforcing limiter 
ven a potentially non-realizable solution Ûℎ, and let (Ñ𝑲 , ̃E𝑲 ) and (N̂𝑲 , ̂E𝑲 ) denote the element-integrated number and energy, 
fined in Eqs. (131) and (132), for Ũℎ and Ûℎ, respectively. As discussed in Section 5.2, the realizability-enforcing limiter gives 
solution Ũℎ that is realizable on 𝑆𝑲

⊗ while maintaining number conservation in each element; i.e., Ñ𝑲 = N̂𝑲 . However, in part 
cause of the additional factor of 𝜀 in the definition of the element-integrated energy in Eq. (132), the limiter results in energy 
anges (i.e., Ẽ𝑲 ≠ Ê𝑲 ), which can lead to 

∑
𝑲∈T Ẽ𝑲 ≠∑𝑲∈T Ê𝑲 ; i.e., a change in the global Eulerian-frame energy.

The proposed spectral redistribution corrects Eulerian-frame energy conservation violations by redistributing particles via a sweep-
g procedure in the energy dimension to produce Uℎ ∶= SpectralRedistribution(Ũℎ), as detailed in Algorithm 2. Here we 
t T𝒙 denote the collection of all spatial elements 𝑲𝒙 and let T𝜀 = {𝐾𝜀,𝑛}

𝑁𝜀
𝑛=1 denote the collection of all energy elements 𝐾𝜀 that 

ver the energy domain 𝐷𝜀. For a given spatial element 𝑲𝒙 ∈ T𝒙, the proposed spectral redistribution scheme sweeps through 
ements 𝑲 =𝐾𝜀 ×𝑲𝒙 for all 𝐾𝜀 ∈ T𝜀 in a user-prescribed order to redistribute particles in a way that the number and energy are 
th conserved for the given spatial element 𝑲𝒙 ∈ T𝒙, i.e.,∑

𝐾𝜀∈T𝜀

N𝐾𝜀×𝑲𝒙
=
∑
𝐾𝜀∈T𝜀

N̂𝐾𝜀×𝑲𝒙
and

∑
𝐾𝜀∈T𝜀

Ẽ𝐾𝜀×𝑲𝒙
=
∑
𝐾𝜀∈T𝜀

Ê𝐾𝜀×𝑲𝒙
, (133)

hich then leads to global number and energy conservation, 
∑

𝑲∈T N𝑲 =
∑

𝑲∈T N̂𝑲 and 
∑

𝑲∈T E𝑲 =
∑

𝑲∈T Ê𝑲 , by summing over 
l spatial elements.
The details of the sweeping procedure and the spectral redistribution strategy are given in Algorithm 2. Specifically, when the 
lerian-frame energy conservation violation 𝛿E is nonzero, the spectral redistribution scheme redistributes particles between ele-
ents in a pairwise manner to correct 𝛿E. The pairwise redistribution strategy is detailed in Algorithm 3, where a pair of scaling 
efficients (𝜃1, 𝜃2) is computed by solving a linear system that requires the sum of scaled energies to correct 𝛿E while preserving 
e sum of particles (see Line 3). When at least one of the coefficients (𝜃1 and 𝜃2) is less than a prescribed threshold 𝜃min > −1, a 
mping factor 𝛾 is applied so that 𝜃1 > 𝜃min and 𝜃2 > 𝜃min, which preserves moment realizability. (The moment realizability property 
25

invariant to scaling by a positive scalar.) When the linear system does not have a solution, or when min(𝜃1, 𝜃2) < 𝜃min, the output 
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 Algorithm 3 does not fully correct 𝛿E, and the remainder is propagated to the next pair of elements in the sweeping procedure. As 
own in Algorithm 2, beginning on Line 18, a backward sweep will be launched after the forward sweep when |𝛿E| > 𝛿; i.e., when 
e energy conservation violation is not fully corrected. Here 𝛿 > 0 is a user-specified tolerance on the energy conservation violation. 
 the implementation, we choose to omit the condition in Line 19 and perform the full backward sweep in order to improve the 
mputational efficiency on GPUs. Moreover, to avoid numerical issues, we restrict the damping factor 𝛾 in Algorithm 3 such that 
e resulting redistributed moment Uℎ remains a strictly positive number density; i.e., Nℎ > 0. In the numerical results reported in 
ction 8, we choose 𝜃min = −0.5 and permute the energy elements in an ascending order based on the associated energy values. We 
serve that the forward and backward sweeping procedure is sufficient for correcting the energy conservation violations introduced 
 the realizability-enforcing limiter — i.e., 𝛿E → 0 during the sweeping procedure — and that the additional scaling introduced in 
is energy correction process has no noticeable adverse impact on the solution to the two-moment system.

lgorithm 2: Uℎ = SpectralRedistribution(Ũℎ).
Inputs: Discretized moments before and after the realizability-enforcing limiter, i.e., Ûℎ and Ũℎ ; a permutation of the energy elements, denoted as 𝐾𝜀,𝑛, 
𝑛 = 1, … , 𝑁𝜀 .

Parameter: 𝛿 (Energy conservation violation tolerance)
Uℎ ← Ũℎ ; // Initialize the output moment
for each spatial element 𝑲𝒙 ∈ T𝒙 do

for 𝑛 = 1, … , 𝑁𝜀 do

Compute (N𝐾𝜀,𝑛×𝑲𝒙
, E𝐾𝜀,𝑛×𝑲𝒙

) from Uℎ using Eqs. (131) and (132);
Compute ̂E𝐾𝜀,𝑛×𝑲𝒙

from Ûℎ using Eq. (132);
N𝑛 ← N𝐾𝜀,𝑛×𝑲𝒙

, E𝑛 ← E𝐾𝜀,𝑛×𝑲𝒙
, Ê𝑛 ← Ê𝐾𝜀,𝑛×𝑲𝒙

;

if
∑𝑁𝜀

𝑛=1 E𝑛 ≠∑𝑁𝜀

𝑛=1 Ê𝑛 then

𝛿E ← E1 − Ê1 ;

/* Forward sweep */

for 𝑛 = 1, … , 𝑁𝜀 − 1 do
𝛿E ← 𝛿E + E𝑛+1 − Ê𝑛+1 ;
if |𝛿E| > 𝛿 then

4 (𝜃𝑛, 𝜃𝑛+1) = ComputeCorrection(N𝑛, E𝑛, N𝑛+1, E𝑛+1, 𝛿E);
/* Update corrected moments, numbers, and energies */

5 Uℎ ← (1 + 𝜃𝑛) Uℎ on 𝐾𝜀,𝑛 ×𝑲𝒙 , and Uℎ ← (1 + 𝜃𝑛+1) Uℎ on 𝐾𝜀,𝑛+1 ×𝑲𝒙 ;

6 (N𝑛, E𝑛) ← (1 + 𝜃𝑛) (N𝑛, E𝑛), and (N𝑛+1, E𝑛+1) ← (1 + 𝜃𝑛+1) (N𝑛+1, E𝑛+1);
7 𝛿E ← E𝑛 + E𝑛+1 + 𝛿E;

/* Backward sweep */

for 𝑛 =𝑁𝜀 − 1, … , 2 do
if |𝛿E| > 𝛿 then

0 (𝜃𝑛, 𝜃𝑛−1) = ComputeCorrection(N𝑛, E𝑛, N𝑛−1, E𝑛−1, 𝛿E);
/* Update corrected moments, numbers, and energies */

1 Uℎ ← (1 + 𝜃𝑛) Uℎ on 𝐾𝜀,𝑛 ×𝑲𝒙 , and Uℎ ← (1 + 𝜃𝑛−1) Uℎ on 𝐾𝜀,𝑛−1 ×𝑲𝒙 ;

2 (N𝑛, E𝑛) ← (1 + 𝜃𝑛) (N𝑛, E𝑛), and (N𝑛−1, E𝑛−1) ← (1 + 𝜃𝑛−1) (N𝑛−1, E𝑛−1);
3 𝛿E ← E𝑛 + E𝑛−1 + 𝛿E;

else

5 break;

lgorithm 3: (𝜃1, 𝜃2) = ComputeCorrection(N1, E1, N2, E2, 𝛿E).
Inputs: N1, E1, N2, E2, 𝛿E
Parameter: 𝜃min > −1

Compute (𝜃1 , 𝜃2) by solving 
{
𝜃1N1 + 𝜃2N2 = 0
𝜃1E1 + 𝜃2E2 = −𝛿E

;

if no solution then
(𝜃1, 𝜃2) ← (0, 0);

if min(𝜃1, 𝜃2) < 𝜃min then

𝛾 ← 𝜃min
min(𝜃1 ,𝜃2)

;

(𝜃1, 𝜃2) ← (𝛾𝜃1, 𝛾𝜃2) ; // Limit for realizability

 Implementation, programming models, and portability

The DG-IMEX method proposed here has been implemented in the toolkit for high-order neutrino radiation hydrodynamics 
26

hornado). Here we briefly discuss some considerations in this process.
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Neutrino transport is only one component (along with, e.g., hydrodynamics, nuclear reaction kinetics, and gravity) of a broader, 
ultiphysics simulation framework needed to model multiscale astrophysical systems, e.g., core-collapse supernova explosions. 
wever, the number of evolved degrees of freedom is relatively high compared to other components. For example, simulations 
corporating a two-moment model (four moments), evolving three independent neutrino flavors (six species), with 16 linear ele-
ents (k=1) to discretize the energy dimension evolve 4 × 6 × 16 × (𝑘 + 1) = 768 degrees of freedom per spatial point. As such, 
ectral neutrino radiation transport represents the bulk of the computational load in such scientific applications. With this in mind, 
de-level performance and portability for heterogeneous computing systems are prioritized in thornado development as a collec-
n of modular physics components that can be incorporated into distributed multiphysics simulation codes (e.g., Flash-X [57]), 
hich are equipped with native infrastructure for distributed parallelism. In particular, we target frameworks that utilize adaptive 
esh refinement, where simulation data is mapped to smaller grid blocks of relatively even size.
thornado uses a combination of compiler directives and optimized linear algebra libraries to accelerate all components of the 
-IMEX method. All of the solver components — e.g., the computation of numerical fluxes, evaluation of phase-space divergences, 
d limiters — are reduced to small, discrete kernels that can be executed either as collapsible, tightly-nested loops over phase-space 
mensions or basic linear algebra operations. In addition to optimizing many key metrics for GPU performance (e.g., occupancy, 
gister pressure, and memory coalescence), this strategy naturally exposes vector-level parallelism which also benefits performance 
 modern, multicore CPUs. This is especially important when invoking iterative solvers, such as those described in Sections 4.3.1
d 4.3.2, across many independent phase-space points. Since iteration counts can vary, assigning an even number of phase-space 
ints to each thread can lead to severe load imbalance among GPU threads. We address this problem by tracking the convergence 
 each point independently, removing them from calculations in each kernel until all points have converged.
Our portability strategy focuses on maintaining a single code-base that can efficiently execute on different hardware architectures 
d software environments. thornado contains three distinct implementations of compiler directives that are managed with C 
eprocessor macros: traditional OpenMP (CPU multi-core), OpenMP offload (GPU), and OpenACC (GPU). We refer to code listings 
 [58] for specific examples.
Interfaces to optimized linear algebra routines are also written in a generic way for portability across different libraries. Currently,
ornado has linear algebra interfaces supporting several LAPACK and BLAS [59] routines with GPU implementations from NVIDIA, 
D, Intel, and MAGMA [60]. This approach hides the complexities of managing different interfaces in a single thornado module 
at can be easily used throughout the code. In addition to the individual routine interfaces, each linear algebra package requires 
ecific attention to interoperability with the compiler directives to ensure correct synchronization when using multiple execution 
eams per device. This is managed during initialization with compiler directives and C preprocessor macros.
We provide timing results and a breakdown of the computational cost associated with key solver components for one of the 
merical examples in Section 8.

 Numerical tests

In this section, we demonstrate the performance of our implementation of the DG-IMEX method to solve the O(𝑣) two-moment 
odel. We consider problems with and without collisions. For problems with collisions, we use the IMEX scheme proposed in [35] (see 
so [36] for details). For problems without collisions, we use the optimal second- and third-order accurate strong stability-preserving 
nge–Kutta methods from [61], referred to as SSPRK2 and SSPRK3, respectively. For the tests in Sections 8.2 and 8.3, unless stated 
herwise, we set the time step to Δ𝑡 = 0.3 × |𝐾1

𝒙
|∕(𝑘 + 1), where 𝑘 is the polynomial degree. For the tests in Sections 8.4-8.6, we 

force the time step restriction given in Theorem 1.

Collisions tend to drive the distribution towards isotropy in the angular dimensions of momentum space (i.e., |I | → 0), which 
aces the comoving-frame moments M safely inside the realizable domain. Therefore, to emphasize the improved robustness resulting 
m our analysis, our main focus is on phase-space advection problems without collisions, where the moments evolve close to the 
undary of the realizable domain.

1. Moment conversion solver

The solution of the conserved-to-primitive moment conversion problem in Eq. (19) and the implicit system in Eq. (58) contribute 
e majority of the computational cost of the realizability-preserving scheme. In this section, we test the iterative solver for solving 
e moment conversion problem Eq. (19) with various solver configurations, and the results reported provide guidance for selecting 
rative solver configurations for this critical part of the algorithm.
As discussed in Section 4.3.1, we formulate the moment conversion problem in Eq. (19) as a fixed-point problem on the primitive 
oments M = (D, I )⊺ of the form stated in Eq. (56). In Lemma 7, we have shown that the moment realizability is preserved in the 
rative procedure when Eq. (56) is solved with the Picard iteration method in Eq. (57) and 𝜆 ≤ (1 +𝑣)−1 in Eq. (56). The convergence 
 Picard iteration is guaranteed in Theorem 2 with the additional assumption that 𝑣 <

√
2 − 1.

We first compare the iteration counts required for convergence of the Picard iteration solver and an Anderson acceleration (AA) 
lver, using two different choices for 𝜆. The AA technique was first proposed in [62] to accelerate the convergence of fixed-point 
rations by accounting for the past iteration history to compute new iterates. Here we follow the formulation and implementation in 
3,36] and apply the AA solver to the moment conversion problem Eq. (56). In Fig. 5, the iteration counts are reported for the two 
27

rative solvers applied to solve Eq. (56) at varying fluid speed 𝑣 ∶= |𝒗| and flux factor ℎ = |I |∕D, with 𝜆 chosen to be the largest 
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. 5. Iteration counts for the Picard iteration (top panels) and AA (bottom panels) solvers with modified Richardson iteration parameter 𝜆 = (1 + 𝑣)−1 and 𝜆 = 0.5
ght and left columns, respectively), applied to the moment conversion problems with various velocity 𝑣 and flux factor ℎ. The reported iteration counts are the 
erage over 100 randomly generated moment conversion problems at each (𝑣, ℎ), where the randomness is applied to the directions of 𝒗 and I∕D. In each panel, 
 red vertical line indicates the upper velocity bound for guaranteed convergence, 𝑣 =

√
2 − 1.

lowable value, i.e., 𝜆 = (1 + 𝑣)−1 and a more conservative value 𝜆 = 0.5. The AA solver uses the memory parameter 𝑚 = 1 (defined 
 [36]), so that only information from the previous and current iterate is used. The stopping criteria for both solvers are given as

‖M[𝑘] −M[𝑘−1]‖ ≤ tol‖U‖, (134)

here we consider the norms in the 𝐿2 sense and the tolerance tol = 10−8. For each choice of (𝑣, ℎ) in Fig. 5, the fixed-point 
oblem is solved for 100 randomly generated U ∈ R (varying the direction of 𝒗 and I∕D randomly), and the averaged iteration 
unts over these 100 problems are recorded. In each test, the initial guess takes the form M[0] =U. The results in Fig. 5 illustrate 
at, for both the Picard iteration and the AA solvers, choosing the parameter 𝜆 to be the largest allowable value (1 + 𝑣)−1 indeed 
duces the iteration counts from the more conservative choice 𝜆 = 0.5, particularly in the low velocity regime. In addition, it can be 
und from Fig. 5 that AA solver consistently outperforms the Picard iteration method, and the advantage of using AA grows as the 
locity increases. We note that the realizability-preserving and convergence properties analyzed in Section 5.3 are only applicable 
 the Picard iteration solver, and not to the AA solver.4 However, in the numerical results reported in Fig. 5, we have not observed 
nvergence failure by any of the solvers, even when the velocity is larger than the upper bound (𝑣 =

√
2−1; plotted as a red vertical 

e in each panel in Fig. 5) required in the convergence analysis in Theorem 2.

In Fig. 6, we show results from experimenting with two choices for the initial guess, M[0] = (N , 𝟎)⊺ and M[0] =U = (N , G)⊺, for 
e AA solver with 𝜆 = (1 + 𝑣)−1, which is the best performing configuration shown in Fig. 5. As shown in Fig. 6, initializing with the 
nserved moment U generally outperforms the isotropic initial condition (N , 𝟎), except for the case when the flux factor ℎ = 0, for 
hich the isotropic initial condition is exactly the primitive moment. Since we expect moments with ℎ = 0 to be rarely encountered 
 numerical simulations, adopting the AA solver with 𝜆 = (1 + 𝑣)−1 and initial guess M[0] =U appears to be the best choice. This 
njecture is confirmed in the performance comparison reported in Section 8.7, where we observe a considerable improvement in 
rms of computational time by using the initial guess M[0] =U.

The realizability-preserving and convergence properties of the AA solver require additional conditions such as boundedness of extrapolation coefficients, which 
28

 do not enforce in the implementation.
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. 6. Iteration counts for the AA solver with modified Richardson iteration parameters 𝜆 = (1 +𝑣)−1 applied to the moment conversion problems with various velocity 
nd flux factor ℎ for two different initial guesses. The reported iteration counts are the average over 100 randomly generated moment conversion problems at each 
 ℎ).

. 7. Error in the 𝐿2 norm versus number of spatial elements 𝑁 for the Sine Wave Streaming test. Results obtained with second- and third-order schemes (using 𝑘 = 1
lynomials and SSPRK2 time stepping and 𝑘 = 2 polynomials and SSPRK3 time stepping, respectively), along with dotted reference lines proportional to 1∕𝑁𝑘+1, are 
tted using black and red lines, respectively.

2. Sine wave streaming

The first test we consider that evolves the two-moment system models free-streaming radiation through a background with a 
atially (and temporally) constant velocity field in the 𝑥1-direction. That is, we set 𝜒 = 𝜎 = 0, while 𝒗 = [𝑣, 0, 0]⊺, with 𝑣 = 0.1. The 
rpose of this test is to verify (i) the correct radiation propagation speed in this idealized setting, and (ii) the expected order of 
curacy of the implemented method. We consider a periodic one-dimensional unit spatial domain 𝐷𝑥1 = [0, 1]. The initial number 
nsity and flux are set to D(𝑥1, 0) =D0(𝑥1) = 0.5 +0.49 ×sin(2𝜋𝑥1) and I1(𝑥1, 0) =D0(𝑥1), respectively. Then, the flux factor is ℎ = 1, 
d the analytic solution is given by D(𝑥1, 𝑡) = I1(𝑥1, 𝑡) =D0(𝑥1 − 𝑡); i.e., the initial profile propagates with unit speed, independent
 𝑣. (As noted by [1], dropping the velocity-dependent terms in the time derivatives of Eqs. (2) and (3), as is done in [4,5], the 
opagation speed becomes 1 + 𝑣 for this test, which is unphysical.) Since the background velocity is constant, there is no coupling 
 the energy dimension. Therefore, this test is performed with a single energy. We run this test until 𝑡 = 1, when the initial profile 
s crossed the grid once before returning to its initial position.
In Fig. 7, we plot the error in the 𝐿2 norm versus the number of spatial elements for the second-order scheme, using linear 
lynomials (𝑘 = 1) and SSPRK2 time stepping, and the third-order scheme, using quadratic polynomials (𝑘 = 2) and SSPRK3 time 
pping. The results confirm the expected convergence rate to the exact solution.

3. Gaussian diffusion

The next test we consider, adopted from [4], models the diffusion of particles through a medium moving with constant velocity 
 the 𝑥1-direction. We consider a purely scattering medium and set 𝜎 = 3.2 × 103 and 𝜒 = 0, and let 𝒗 = [𝑣, 0, 0]⊺, with 𝑣 = 0.1. We 
t the spatial domain be periodic, 𝐷𝑥1 = [0, 3], with initial conditions D0(𝑥1) = exp[−(𝑥1 − 𝑥10)

2∕(4𝑡0𝜅𝖣)] and I10(𝑥
1) = −𝜅𝖣𝜕𝑥1D0, 

here 𝜅𝖣 = (3𝜎)−1, and we set 𝑥10 = 1 and 𝑡0 = 5. Then, the evolution of the number density is approximately governed by the 
vection-diffusion equation

𝜕𝑡D+ 𝜕𝑥1
(
D𝑣− 𝜅𝖣𝜕𝑥1D

)
= 0, (135)
29

hose analytical solution is given by [4]
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. 8. Results for the Gaussian diffusion test. The left panel shows the numerical solution (open circles) versus the shifted coordinate 𝑥1 − 𝑣𝑡 for various times, 
mpared with the analytic solution (solid lines) to the advection-diffusion equation in Eq. (135). The right panel shows the error in the 𝐿2 norm versus the number 
elements 𝑁 . The error is computed with respect to a high-resolution reference run with 𝑁 = 8192. Convergence results are shown for standard and reduced CFL 
mber, using the first-order SSP-IMEX scheme from [35] (solid black and red, respectively; see text for details), and a second-order IMEX scheme from [64] with 
ndard CFL number (dotted blue). The dotted and dashed black reference lines are proportional to 𝑁−1 and 𝑁−3 , respectively.

D(𝑥1, 𝑡) =

√
𝑡0
𝑡0 + 𝑡

exp
{

−
((𝑥1 − 𝑣𝑡) − 𝑥10)

2

4(𝑡0 + 𝑡)𝜅𝖣

}
. (136)

nce there is no coupling in the energy dimension (𝑣 is constant), we perform this test with a single energy. We use quadratic 
ements (𝑘 = 2) and the IMEX time stepping scheme from [35], integrating the collision term implicitly. For this test, the time step 
set to Δ𝑡 = 𝐶CFL × |𝐾1

𝒙
|, where 𝐶CFL is specified below. The purpose of this test is to investigate the performance of the DG-IMEX 

heme in a regime where both advection and diffusion contribute to the evolution of the number density. For 𝑡 > 0, the Gaussian 
ofile is advected with the flow, while the amplitude decreases and the width increases due to diffusion.
The left panel in Fig. 8 shows the number density versus 𝑥1 − 𝑣𝑡 for various times as the Gaussian profile propagates once across 
e periodic domain and returns to its initial position at 𝑡 = 30. At this time the amplitude is reduced by a factor 

√
5∕35 ≈ 0.378. For 

is simulation, the spatial domain is discretized using 96 elements, so that the radio of the element width to the mean-free path is 
1
𝒙
|𝜎 = 102. The numerical solution (open circles) agrees well with the expression in Eq. (136) (solid lines).
The right panel in Fig. 8 shows the error in the 𝐿2 norm at 𝑡 = 5 versus the number of spatial elements 𝑁 . Since the expression 
ven by Eq. (136) is not an exact solution to the O(𝑣) two-moment model in the limit of high scattering opacity, we compare the 
merical results to a high-resolution reference solution, computed with 8192 elements. (We have confirmed that for fixed 𝑁 and 
and varying 𝑣, the difference between the numerical solution and the expression in Eq. (136) increases as O(𝑣2).) The solid black 
rve with squares shows the error obtained with the standard CFL number 𝐶CFL ∶= 𝐶0

CFL = 0.3∕(𝑘 + 1). For smaller 𝑁 , the error 
lls off as 𝑁−3 (see dashed black reference line), consistent with a third-order convergence rate, while for larger 𝑁 the convergence 
te transitions to first-order (see dotted black reference line). The reason for this change in convergence rate is because the IMEX 
heme, taken from [35], is formally only first-order accurate. Spatial discretization errors dominate for small 𝑁 , but since these 
rors decrease with the third-order rate, temporal errors become dominant for large 𝑁 . To verify this, we also plot convergence 
sults obtained after reducing the time step by a factor of 25, 𝐶CFL ∶= 𝐶0

CFL∕25; see solid red curve with squares. For this case, the 
ror decreases with the third-order rate for all 𝑁 . We also show the error obtained with a second-order IMEX scheme (IMEXRKCB2 
m [64]), using the standard CFL number. Due to better temporal accuracy, the error decreases with the third-order rate, but the 
heme does not satisfy the convex-invariant conditions delineated in [35], and can therefore not be guaranteed to maintain moment 
alizability by our analysis.

4. Streaming Doppler shift

This test, adopted from [25] (see also [4,5]), models the propagation of free-streaming radiation along the 𝑥1 -direction through a 
ckground with a spatially varying velocity field. Because the two-moment model adopts momentum-space coordinates associated 
ith a comoving observer, the radiation energy spectra will be Doppler shifted. We consider a one-dimensional spatial domain 
𝑥1 = [0, 10]. Again, we set 𝜒 = 𝜎 = 0, while the velocity field is set to 𝒗 = (𝑣, 0, 0)⊺, where

𝑣(𝑥1) =

⎧⎪⎪⎪⎨⎪⎪

0, 𝑥1 ∈ [0,2)
𝑣max × sin2[2𝜋(𝑥1 − 2)∕6], 𝑥1 ∈ [2,3.5)
𝑣max, 𝑥1 ∈ [3.5,6.5)
𝑣max × sin2[2𝜋(𝑥1 − 2)∕6], 𝑥1 ∈ [6.5,8)

, (137)
30

⎪⎩ 0, 𝑥1 ∈ [8,10]
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. 9. Steady state solutions (𝑡 = 20) for the streaming Doppler shift problem for various 𝑣max ∈ {0.0, 0.1, 0.2, 0.4}. In the top panels, we plot spectra at 𝑥1 = 5 (D𝜀2
rsus 𝜀; left) and the RMS energy, as defined in Eq. (139), versus position 𝑥1 (right). In these panels, solid lines represent the analytic (A) solution from special 
ativistic considerations, given by Eq. (138), while dotted lines represent the numerical (N) results. In all panels, black, red, blue, and magenta curves represent runs 
th 𝑣max set to 0.0, 0.1, 0.2, and 0.4, respectively. In the bottom left panel, the Eulerian-frame (solid lines) and comoving-frame (dotted lines) number densities are 
tted versus position. In the bottom right panel, the Eulerian-frame (solid lines) and comoving-frame (dotted lines) energy densities are plotted versus position.

d where we will vary 𝑣max. We set the energy domain to 𝐷𝜀 = [0, 50]. In this test, we discretize the spatial and energy domains 
to 128 and 32 elements, respectively, and use quadratic elements (𝑘 = 2) and SSPRK3 time stepping. In the computational domain, 
e moments are initially set to D = 1 × 10−40 and I1 = 0 for all (𝑥1, 𝜀) ∈ 𝐷𝑥1 ×𝐷𝜀. At the inner spatial boundary, we impose an 
coming, forward-peaked radiation field with a Fermi-Dirac spectrum; i.e., we set D(𝜀, 𝑥1 = 0) = 1∕[exp(𝜀∕3 −3) +1] and I1(𝜀, 𝑥1 =
 = 0.999 ×D(𝜀, 𝑥1 = 0), so that the flux factor ℎ ≈ 1. (We impose outflow boundary conditions at 𝑥1 = 10.) Then, for 𝑡 > 0, a radiation 
nt propagates through the computational domain, and a steady state is established for 𝑡 ≳ 10, where the spectrum is Doppler-shifted 
cording to the velocity field. From special relativistic considerations, similar to [4], the analytical spectral number density in the 
ady state can be written as

DA = 𝑠2

exp(𝑠𝜀∕3 − 3) + 1
, (138)

here 𝑠 =
√
(1 + 𝑣)∕(1 − 𝑣). The purpose of this test is to (i) compare steady state numerical solutions with the prediction from special 

lativity given by Eq. (138), and (ii) investigate the simultaneous Eulerian-frame number and energy conservation properties of the 
ethod as the initial conditions are evolved to steady state. To reach an approximate steady state, we run all models until 𝑡 = 20.

4.1. General solution characteristics
Fig. 9 displays steady state solution characteristics for models where we have varied 𝑣max ∈ {0.0, 0.1, 0.2, 0.4}. From the top left 
nel, we see that the O(𝑣) spectra (dotted) — which for 𝑣max > 0 are red-shifted relative to the case with 𝑣max = 0 — agree well 
ith the analytic, special relativistic results (solid) for the lower values of 𝑣max , while the difference between the O(𝑣) and the special 
lativistic results are larger when 𝑣max = 0.4, which is to be expected since O(𝑣2) terms are no longer negligible. The top right panel 
ows the RMS energy, defined as

𝜀RMS =
√√√√∫
𝐷𝜀

D𝜀5𝑑𝜀∕∫
𝐷𝜀

D𝜀3𝑑𝜀, (139)

rsus position, computed from the numerical, O(𝑣) solution and the analytic, special relativistic solution in Eq. (138). Indeed, at 
31

= 5, the relative difference in 𝜀RMS between the O(𝑣) and the special relativistic result for 𝑣max = 0.1 is 4.8 × 10−3, while it is 
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0 × 10−2 and 9.1 × 10−2 for 𝑣max = 0.2 and 𝑣max = 0.4, respectively. That is, the relative error in the RMS energy increases roughly 
 O(𝑣2).
The bottom panels of Fig. 9 show the Eulerian- and comoving-frame number densities (𝑁 and 𝐷, respectively; left), and the 
lerian- and comoving-frame energy densities (𝐸 and 𝐽 , respectively; right) versus position. Here,{

𝑁, 𝐷, 𝐸, 𝐽
}
= 4𝜋 ∫

𝐷𝜀

{
N , D, E, D𝜀

}
𝜀2𝑑𝜀, (140)

here N and E are defined in Eqs. (4) and (5), respectively. Relative to where 𝑣 = 0, both 𝐷 and 𝐽 are lower in the region where 
> 0, which is expected from the redshifted spectra displayed in the top left panel in Fig. 9. The Eulerian-frame quantities, 𝑁 and 
, are practically unaffected by the velocity field, and remain relatively constant throughout the spatial domain.

4.2. Simultaneous number and energy conservation
Next, we investigate the simultaneous number and energy conservation properties of the scheme as a function of time for 𝑡 ∈ [0, 20]. 
re, a main challenge stems from the fact that, since the flux factor ℎ ≈ 1, the moments evolve close to the boundary of the 
alizable set R. With high-order polynomials (𝑘 ≥ 1), the solution can become non-realizable in one or more quadrature points in 
me elements, which then triggers the realizability-enforcing limiter discussed in Section 5.2. The realizability-enforcing limiter 
eserves the Eulerian-frame particle number, but not the Eulerian-frame energy, which is the reason for introducing the “spectral 
distribution” scheme in Section 6.2. Here, we demonstrate the performance of the spectral redistribution, and its effect on the 
ultaneous number and energy conservation properties of the method. Recall from Proposition 1 that the O(𝑣) two-moment model 
conservative for the Eulerian-frame energy only to O(𝑣2).
In the context of the current test, the Eulerian-frame number density satisfies a conservation law of the form

𝜕𝑡𝑁 + 𝜕1𝐹 1
𝑁 = 0. (141)

tegration over space 𝐷𝑥1 and time [𝑡0, 𝑡] gives

∫
𝐷
𝑥1

[𝑁(𝑥1, 𝑡) −𝑁(𝑥1,0)]𝑑𝑥1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Δ𝑁int (𝑡)

+

𝑡

∫
0

[𝐹 1
𝑁 |𝑥1=10 − 𝐹 1

𝑁 |𝑥1=0]𝑑𝜏
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Δ𝑁ext (𝑡)

= 0, (142)

here Δ𝑁int (𝑡) and Δ𝑁ext (𝑡) represent the change in the total number of particles, from 𝑡0 to 𝑡, interior and exterior to the domain 
𝑥1 , respectively. Since there is no creation or destruction of particles, the sum vanishes. We can obtain a similar expression for the 
lerian-frame energy (with 𝐸 replacing 𝑁 in Eq. (142)), but for the O(𝑣) two-moment model considered here, by Proposition 1, one 
ould in general expect

Δ𝐸int + Δ𝐸ext = O(𝑣2), (143)

 the continuous level. At the discrete level, with consistent discretization of the left-hand side of the two-moment model, Eulerian-
me energy violations of O(𝑣2) should be considered optimal. (Recall the discussion on this issue specific to the DG scheme from 
ction 6.1.) For this test, given our chosen spatial resolution and use of quadratic elements, velocity jumps across elements are small, 
d we expect to observe near optimal Eulerian-frame energy conservation properties. However, the acceptable level of Eulerian-
me energy nonconservation is application dependent, and should be considered on a case-by-case basis.
Fig. 10 plots the number and energy balance versus time for a run with 𝑣max = 0.2. Initially, there are essentially no particles in 
e computational domain 𝐷𝑥1 , and the flux at the outer boundary is zero. For 𝑡 > 0, particles enter the domain through the inner 
undary, and Δ𝑁int begins to increase linearly with time, while Δ𝑁ext decreases at the same rate, and the sum Δ𝑁int + Δ𝑁ext
mains zero to machine precision (see also Fig. 11). Around 𝑡 = 10, the particles that entered the domain at 𝑡 = 0 reach the outer 
undary, establishing a balance between particles entering and leaving the domain, and the system reaches a steady state where 
th Δ𝑁int and Δ𝑁ext remain unchanged. The evolution observed for the Eulerian-frame energy quantities (Δ𝐸ext and Δ𝐸ext ) is 
ilar to that for the particle number, and, on the scale of the ordinate on the right panel in Fig. 10, the sum Δ𝐸ext +Δ𝐸ext remains 

ose to zero.
Fig. 11 shows select results from runs with 𝑣max ∈ {0.05, 0.1, 0.2, 0.3, 0.4} and provides further details on the simultaneous number 
d energy conservation properties of the scheme when applied to the streaming Doppler shift problem. For comparison, we have 
so run all the models with the spectral redistribution turned off. The relative change in the total number of particles (top left panel) 
at the level of machine precision for all values of 𝑣max (with and without the spectral redistribution), which is expected since the 
o-moment model is formulated in number conservative form.
As mentioned earlier, the moments evolve close to the boundary of the realizable set in this test, and the realizability-enforcing 
iter is frequently invoked to enforce pointwise realizability in all elements. From the lower left panel in Fig. 11, we observe that the 
inimum value of the limiter parameter 𝜃U

𝑲
(solid lines) varies between 0 and 0.1 for 𝑡 ≲ 10, while the average value of 𝜃U

𝑲
(dashed 

es) grows from about 0.8 to 1 during this time. For 𝑡 ≤ 10, a discontinuity in the moments, driven by the inner boundary condition, 
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opagates through the domain and is mainly responsible for triggering the realizability-enforcing limiter. Recall that 𝜃U
𝑲

= 0 implies 
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. 10. Plot of Eulerian-frame number (left) and energy (right) balance versus time for the streaming Doppler shift problem for a run with 𝑣max = 0.2. In the left 
nel, Δ𝑁int (solid), Δ𝑁ext (dash-dotted), and Δ𝑁int +Δ𝑁ext (dotted), see Eq. (142), are plotted. Similarly, in the right panel, Δ𝐸int (solid), Δ𝐸ext (dash-dotted), and 
int + Δ𝐸ext (dotted), see Eq. (143), are plotted.

. 11. Results from the streaming Doppler shift problem for models with various values of 𝑣max . In the upper left panel the relative change in the Eulerian-frame 
rticle number, defined as (Δ𝑁int +Δ𝑁ext )∕Δ𝑁int (𝑡 = 20), is plotted versus time. Similarly, in the upper right panel, the relative change in the Eulerian-frame energy, 
fined as (Δ𝐸int + Δ𝐸ext )∕Δ𝐸int (𝑡 = 20), is plotted. In these panels, solid lines represent results obtained with the fiducial algorithm with the spectral redistribution 
, while dotted lines represent results obtained with the spectral redistribution turned off. In the lower left panel, the minimum (solid) and mean (dashed) value of 
 limiter parameter 𝜃U

𝑲
(see Algorithm 1) are plotted versus time for the fiducial models with the spectral redistribution on. Results with 𝑣max set to 0.1, 0.2, and 

are plotted with red, blue, and magenta curves, respectively. In the lower right panel, the relative change in the Eulerian-frame energy at 𝑡 = 20 is plotted versus 
ax for models where the spectral redistribution is on (solid lines) and off (dotted lines) (the dashed black reference line is proportional to 𝑣2max).

ll limiting where all the moments within an element are set to their respective cell average, while 𝜃U
𝑲

= 1 implies no limiting. After 
10, the average 𝜃U

𝑲
value hovers around unity, but a few elements still require significant limiting when 𝑡 > 10, especially for the 

ax = 0.4 model, with the minimum 𝜃U
𝑲
still dropping down close to zero. Closer inspection reveals that a few elements around the 

cation of the velocity gradients (𝑥1 ∈ [2, 3.5) and 𝑥1 ∈ [6.5, 8)) require limiting beyond 𝑡 = 10.
The relative change in the Eulerian-frame energy is plotted in the top right panel of Fig. 11, which reveals a significant improvement 

 conservation for the fiducial models with the spectral redistribution turned on (solid lines), when compared to models without the 
33

ectral redistribution (dotted lines). (We compute the relative change in number and energy by normalizing by interior values at 
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. 12. Results from the transparent shock problem for 𝑣max = −0.1 and various values of the shock width parameter 𝐻 , defined in Eq. (144). In the left panel, velocity 
ofiles are plotted versus position for 𝐻 = 3 × 10−2 , 10−2 , and 10−3 (black, red, and blue curves, respectively). In the right panel, the numerical and analytic (special 
ativistic) comoving-frame number densities (solid lines with markers and dashed lines, respectively), and the numerical Eulerian-frame number densities (dotted 
es with markers) are plotted versus position. For the results displayed in the right panel, the line colors correspond to the velocity profile with the matching color 
tted in the left panel.

20, when the system is in steady state, because the initial interior values are close to zero.) For the models without the spectral 
distribution, the relative change in total energy immediately jumps to about 1 ×10−5 , and continues to grow for later times, while it 
mains relatively constant for the fiducial models. This implies that the realizability-enforcing limiter is the main driver of Eulerian-
me energy nonconservation for this test, and not the inherent nonconservation properties of the continuum O(𝑣) two-moment 
odel. (Velocity jumps across elements are small, and we infer from our results that their contribution to energy nonconservation is 
gligible.) The relative change in the Eulerian-frame energy at 𝑡 = 20 is plotted versus 𝑣max in the lower right panel of Fig. 11. For the 
odels with the spectral redistribution turned off, the relative change is essentially independent of 𝑣max , while Eulerian-frame energy 
olations grow as 𝑣2max for the fiducial models. Note that the spectral redistribution only recovers energy conservation violations 
used by the realizability-enforcing limiter. Energy conservation violations caused by the use of the O(𝑣) two-moment model are 
affected by the spectral redistribution. Since we observe the 𝑣2max scaling when using the spectral redistribution, we posit that the 
 discretization maintains consistency with the continuum model on this aspect.

5. Transparent shock

In this test, we investigate the performance of the method when the background velocity gradient is varied. We consider a one-
mensional spatial domain 𝐷𝑥1 = [0, 2], set the opacities 𝜒 = 𝜎 = 0, and the velocity field 𝒗 = (𝑣, 0, 0)⊺, where

𝑣(𝑥1) = 1
2
𝑣max ×

[
1 + tanh

(
(𝑥1 − 1)∕𝐻

) ]
. (144)

e will vary both the velocity magnitude 𝑣max and gradient, parameterized by the length scale 𝐻 . The energy domain is again 
𝜀 = [0, 50]. We discretize the spatial and energy domains using 80 and 32 elements, respectively, and use quadratic elements (𝑘 = 2) 
d SSPRK3 time stepping. Then, Δ𝑥1 = 0.025, and Δ𝑥1∕𝐻 = 5∕6, 2.5, and 25, for 𝐻 = 3 × 10−2, 10−2, and 10−3, respectively. We 
e the same boundary conditions as in the Doppler shift test, and the moments are initially set to D = 1 × 10−8 and I1 = 0 for all 
1, 𝜀) ∈ 𝐷𝑥1 ×𝐷𝜀. With the given initial and boundary conditions, the equations are integrated until 𝑡 = 3, when an approximate 
ady state has been established.
Fig. 12 shows velocity profiles and comoving-frame and Eulerian-frame number densities versus position around the ‘shock’ 

1 ∈ [0.9, 1.1]) for the different values of 𝐻 for the case with 𝑣max = −0.1. (The markers indicate locations of LG quadrature points 
 each spatial element.) For 𝐻 = 3 × 10−2, the shock is resolved by the spatial grid, for 𝐻 = 10−2 it is under-resolved, while for 
= 10−3, the velocity profile is discontinuous.
The comoving-frame number densities increase across the velocity gradient because of the Doppler effect, increasing the particle 
ergy measured by the comoving observer, who is moving towards the inner boundary. Beyond the shock, the values for the 
mputed comoving-frame number densities (solid lines) are about 0.5% higher than the analytic values obtained using Eq. (138)
ashed lines), and this fact is independent of the value of 𝐻 . The Eulerian-frame number densities, which should remain unaffected 
 the presence of the background velocity, are essentially constant across the shock. These results indicate that the method is able 
 capture Doppler shifts correctly, even when velocity gradients are large.
In Fig. 13, the left panel displays the relative change in the Eulerian-frame energy, defined by the left-hand side of Eq. (143), 
rsus |𝑣max| at 𝑡 = 3, for various values of 𝐻 . The right panel displays the relative error in 𝜀RMS . Both panels display results obtained 
ith and without the spectral redistribution. (The relative change in the Eulerian-frame particle number, not shown, is at the level 
 machine precision for all models.) Considering the results obtained with the spectral redistribution active, in the left panel we 
serve that, for a given value of 𝐻 , the relative change in the total energy increases with increasing |𝑣max|, roughly proportional to 
max|2. Also, for a given value of |𝑣max|, the relative change in total energy increases with decreasing shock width 𝐻 . For the models 
34

ith the spectral redistribution turned off, the behavior is different in a large region of the (𝑣max, 𝐻)-space. With 𝐻 = 3 × 10−2
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. 13. Results for the transparent shock problem, plotted versus |𝑣max|. The left panel displays the relative change in the Eulerian-frame energy at 𝑡 = 3 for models 
ere the spectral redistribution is on (solid lines) and off (dotted lines). The right panel displays the absolute relative difference in 𝜀RMS with respect to the exact 
lution from special relativity at 𝑥1 = 2. In both panels, black, red, and blue curves correspond to 𝐻 = 3 ×10−2 , 10−2 , and 10−3 , respectively, and the dashed references 
e are proportional to |𝑣max|2 .
otted black line), the relative change in the Eulerian-frame energy at 𝑡 = 3 is around 2 × 10−5; independent of 𝑣max. This can 
 attributed to the realizability-enforcing limiter. For the models with 𝐻 = 10−2 (dotted red line), the energy change is roughly 
nstant until |𝑣max| = 0.1, when the relative energy change begins to increase with |𝑣max| in a manner similar to the models with 
e spectral redistribution activated (solid red line). The models with the steepest velocity gradient (𝐻 = 10−3; dotted blue line) 
llow the corresponding models with active spectral redistribution, and the relative change in the Eulerian-frame energy increases 
 |𝑣max|2 for all |𝑣max|. From this we conclude that the spectral redistribution can help to recover the O(𝑣2) Eulerian-frame energy 
nservation property of the O(𝑣) two-moment model for small velocities and velocity gradients. The relative error in 𝜀RMS , which 
creases as |𝑣max|2 for all models, is essentially unaffected by the spectral redistribution.
6. Transparent vortex

The final test, inspired by the test in Section 4.2.3 of [4], considers evolution in a two-dimensional spatial domain 𝐷𝑥1 ×𝐷𝑥2 =
5, 5] × [−5, 5]. We set the opacities 𝜒 = 𝜎 = 0, and the velocity field is given by 𝒗 = [𝑣1, 𝑣2, 0]⊺, where

𝑣1(𝑥1, 𝑥2) = −𝑣max 𝑥
2 exp

[
(1 − 𝑟2)∕2

]
, (145a)

𝑣2(𝑥1, 𝑥2) = 𝑣max 𝑥
1 exp

[
(1 − 𝑟2)∕2

]
, (145b)

d 𝑟 =
√
(𝑥1)2 + (𝑥2)2. The energy domain is 𝐷𝜀 = [0, 50], and we discretize the spatial and energy domains using 48 × 48 and 

elements, respectively. We use quadratic elements (𝑘 = 2) and SSPRK3 time stepping. The upper left panel in Fig. 14 shows the 
locity field for the case with 𝑣max = 0.1. The main purpose of this test is to investigate the robustness of the method in configurations 
here the radiation field propagates through a spatially variable velocity field with various relative angles between the radiation flux 
d velocity vectors. The moments are initially set to D = 1 ×10−8 and I1 = I2 = 0 for all (𝑥1, 𝑥2, 𝜀) ∈𝐷𝑥1 ×𝐷𝑥2 ×𝐷𝜀. At the inner 𝑥1
undary, we impose an incoming, radiation field with a Fermi-Dirac spectrum: We set D(𝜀, 𝑥1 = −5, 𝑥2) = 0.05∕[exp(𝜀∕3 − 3) + 1], 
(𝜀, 𝑥1 = −5, 𝑥2) = 0.95 × D(𝜀, 𝑥1 = −5, 𝑥2), and I2(𝜀, 𝑥1 = −5, 𝑥2) = 0, so that the flux factor is ℎ = 0.95. With these initial and 
undary conditions, the moment equations are integrated until a steady state is reached (𝑡 = 20).
In the upper right panel in Fig. 14, the solid lines represent numerical energy spectra at spatial locations indicated with solid 
arkers of matching color in upper left panel. At the location of the black marker the velocity is close to zero, and thus the black line 
presents the spectrum of the incoming radiation. The red and blue markers are located where 𝒗 = (𝑣max, 0, 0)⊺ and 𝒗 = (−𝑣max, 0, 0)⊺, 
spectively, and the spectra at these locations are, respectively, red- and blue-shifted relative to the spectrum sampled at the location 
 the black marker. Analytic spectra at the locations of the black, red, and blue markers are plotted with dotted lines, which indicate 
od agreement between numerical and analytical solutions across all energies. At the locations of the black, red, and blue markers, 
e find that 𝜀RMS is approximately 15.6, 14.2, and 17.2, respectively. At the location of the magenta marker, which is placed on the 
posite side of the vortex (relative to the black marker), the velocity is again close to zero, and it is expected that the spectrum at 
is location agrees with the spectrum at the location of the black marker. Comparing the solid black and magenta lines in the upper 
ht panel, we observe that the spectral number density is consistently higher at the location of the magenta marker (by a constant 
ctor of about 1.07). Comparing 𝜀RMS at the two locations, we find that the relative difference is less than 10−4 .
The lower left panel in Fig. 14 plots the relative change in the Eulerian-frame energy versus time for models with 𝑣max ∈
.01, 0.03, 0.1}. Results obtained with the spectral redistribution on are plotted with solid lines, while dotted lines correspond to 
sults with the spectral redistribution turned off. For all models, the relative change in the Eulerian-frame energy is less than 10−4 . 
r the models with 𝑣max = 0.1, the relative change reaches the largest amplitudes for 𝑡 ∈ [4, 7], when a radiation front, driven by the 
undary condition at 𝑥1 = −5, propagates through the vortex. The model with the spectral redistribution makes a better recovery 
an the corresponding model with the spectral redistribution turned off. For smaller 𝑣max , the relative change in the Eulerian-frame 
35

ergy is clearly much smaller when the spectral redistribution is active. These results demonstrate the contribution to Eulerian-frame 
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. 14. Results for the transparent vortex problem. In the upper left panel, the magnitude of the velocity, for the case with 𝑣max = 0.1, is displayed in grayscale 
th velocity vectors overlaid. The black, magenta, red, and blue markers indicate spatial positions for which we plot numerical energy spectra in solid lines in the 
per right panel, with line colors corresponding to the marker colors in the upper left panel. The dotted lines are analytic spectra obtained from special relativistic 
nsiderations using the local three-velocity. In the lower left panel, the relative change in Eulerian-frame energy is plotted versus time for models with 𝑣max in 
. (145) set to 0.01 (black lines), 0.03 (red lines), and 0.1 (blue lines). Results obtained with and without the spectral redistribution are plotted using solid and dotted 
es, respectively. The lower right panel plots the relative difference between the incoming and outgoing particle fluxes in the 𝑥1-direction.

ergy nonconservation caused by the realizability-enforcing limiter. For both suites of models (spectral redistribution on or off), the 
lative change in the Eulerian-frame number (not shown) is at the level of machine precision for all models.
The lower right panel in Fig. 14, similar to Figure 6 (b) in [4], shows, for 𝑡 = 20, the relative difference between the energy 
tegrated 𝑥1-component of the number flux densities evaluated at the inner and outer boundaries of 𝐷𝑥1 , defined as |𝐼1(5, 𝑥2) −
(−5, 𝑥2)|∕𝐼1(−5, 𝑥2). As discussed by Just et al. [4], this quantity should vanish for exact calculations, while errors of O(𝑣2) are to 
 expected for the O(𝑣) two-moment model. Comparing with their results, the curves plotted in our figure share similar features. 
oreover, for 𝑣max = 0.01, the maximum relative difference is 6.15 × 10−4, for 𝑣max = 0.03 it is 4.87 × 10−3, while it is 5.68 × 10−2 for 
ax = 0.1; i.e., the maximum error grows as 𝑣2max.
Despite the growing (with 𝑣max) relative difference between the number fluxes at the inner and outer boundaries in the 𝑥1-
rection, we point out that, due to number conservation, the integrated number fluxes through the inner and outer boundaries balance 
ch other. That is, in the steady state at 𝑡 = 20, ∫𝐷

𝑥2
𝐼1(−5, 𝑥2) 𝑑𝑥2 = ∫𝐷

𝑥2
𝐼1(5, 𝑥2) 𝑑𝑥2. However, the distribution of particles along 

e 𝑥2-direction becomes nonuniform in the wake of the vortex, while a uniform distribution is expected as |𝒗| → 0. We illustrate 
is further in Fig. 15. The left panel shows that, within the vortex (𝑟 ≲ 2), the comoving-frame number density is higher than the 
ference value 𝐷0 for 𝑥2 > 0, and lower than 𝐷0 for 𝑥2 < 0, which is consistent with the Doppler shift of the spectra in the respective 
gions. In the wake of the vortex, the comoving-frame number density is relatively higher in the region centered around 𝑥2 = 0, 
hile it is lower further away (compare red and blue regions for 𝑥1 ≳ 2 in the left panel in Fig. 15). The Eulerian-frame number 
nsity is relatively unaffected by the vortex for 𝑥1 < 0, but exhibits a spatial distribution similar to the comoving-frame number 
nsity in the wake. In contrast, the spatial distribution of the RMS energy is more consistent with expectations: Within the vortex, 
MS > 𝜀RMS,0 for 𝑥2 > 0, while 𝜀RMS < 𝜀RMS,0 for 𝑥2 < 0. Moreover, the RMS energy returns to the reference value in the wake of the 
rtex, with almost uniform distribution along the 𝑥2-direction. We do not have a complete theoretical explanation for the spatial 
36

stribution of the number densities in the wake of the vortex, but suspect that the two-moment approximation and the associated 
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. 15. Results for the transparent vortex problem at 𝑡 = 20 for a model with 𝑣max = 0.1. The left panel shows the relative deviation in comoving-frame number density 
m 𝐷0 =𝐷(𝑥1 = −5, 𝑥2), (𝐷 −𝐷0)∕𝐷0 , with vectors of the comoving-frame number flux (𝐼1 − 𝐼10 , 𝐼2)⊺ overlaid, where 𝐼10 = 𝐼1(𝑥1 = −5, 𝑥2) is the first component 
the comoving-frame number flux density at the inner boundary in the 𝑥1-direction, which is subtracted to better illustrate the flow, since |𝐼2| ≪ |𝐼1| generally 
lds. Similarly, the middle panel shows the corresponding relative deviation in the Eulerian-frame number density (𝑁 −𝑁0)∕𝑁0 , with vectors of the Eulerian-frame 
mber flux (𝐹 1

𝑁
− 𝐹 1

𝑁,0, 𝐹 2
𝑁
)⊺ . The right panel shows the relative deviation in the RMS energy, (𝜀RMS,0 − 𝜀RMS)∕𝜀RMS,0 , where 𝜀RMS,0 = 𝜀RMS(𝑥1 = −5, 𝑥2).

osure, which assumes that the radiation field is axisymmetric about a preferred direction in momentum space [49], is insufficient 
r capturing relativistic aberration effects.

7. Performance evaluation

To demonstrate the GPU functionality and performance characteristics of the DG-IMEX method as implemented in thornado, 
e consider the Streaming Doppler Shift test, described in Section 8.4, with 𝑣max = 0.1. To more accurately capture a production 
orkload, the tests are performed in three spatial dimensions, with the number of elements similar to what would be used for a 
gle process invoking thornado in a multiphysics simulation. The benchmark is run in two configurations, using tensor product 
lynomials of degree 𝑘 = 1 and 𝑘 = 2, respectively. The SSPRK2 time stepper is used for both configurations. For 𝑘 = 1, we use 16 
ergy elements and 96 × 3 × 3 spatial elements, while 12 energy elements and 64 × 2 × 2 spatial elements are used for 𝑘 = 2— thus 
eping the total number of spatial degrees of freedom the same. Our goal is to provide a high-level demonstration of performance 
aracteristics and the relative cost of main algorithmic components, while we defer a rigorous performance analysis to future work.
The tests are performed on a single node of the Summit computer at the Oak Ridge Leadership Computing Facility (OLCF). Each 
mmit node has 2 IBM POWER9 CPUs and 6 NVIDIA V100 GPUs, but here we limit our benchmarks to a single CPU or GPU. For 
e CPU runs, we use seven cores with one thread per core as this is the number of cores that would be available to one process if we 
vide the resources equally with one GPU per process. All runs use version 22.5 of the NVIDIA nvfortran compiler with standard
2 optimizations. Optimized linear algebra libraries are provided by IBM ESSL (v6.3.0) on the CPU and NVIDIA cuBLAS (v11.0.3) 
 the GPU. For the GPU runs, all computations are done on the GPU using OpenACC and libraries; the CPU process is only used to 
unch kernels and manage data transfer. In both cases, the salient metric is wall-time per time step (lower is better).
Fig. 16 shows a breakdown of the relative cost associated with evaluating the major components of the explicit phase-space 
vection operator. The polynomial degree has little effect on the absolute wall-time, especially for the GPU runs. For the CPU runs, 
e relative cost of linear algebra (MatMul) is somewhat higher when 𝑘 = 2. As can be seen comparing the right and left panels, 
e initial guess in the conserved-to-primitive calculation can have a non-trivial impact on the total wall-time by reducing the total 
mber of solver iterations. We measure a total speedup factor of 8–10 for the V100 relative to the multi-core CPU runs on the 
WER9. Notably, the relative cost for linear algebra and limiters becomes negligible when using the GPU, and the majority of the 
mputational cost is shifted to the iterative conserved-to-primitive calculations. We speculate that one approach to further improve 
e performance would be to combine the calculation of all of the primitive moments on the quadrature set 𝑆𝑲

⊗ , defined in Eq. (52), 
to a single kernel, rather than to calculate them separately for each evaluation of F 𝑖 and F 𝜀, defined in Eqs. (39)–(40), which 
sults in some duplicate evaluations. While these savings may be significant for the phase-space advection problem considered here, 
factoring will be considered in the context of a more physics-complete implementation. With more realistic collision terms included, 
e relative cost of the explicit phase-space advection part is expected to be small (see, e.g., [58,36]).

 Summary and conclusions

We have proposed and analyzed a realizability-preserving numerical method for evolving a spectral two-moment model for neutral 
rticles interacting with a moving background fluid. This number-conservative moment model is based on comoving-frame momen-
m coordinates, includes special relativistic corrections to O(𝑣), and, as a result, contains velocity-dependent terms accounting for 
atial advection, Doppler shift, and angular aberration. The nonlinear two-moment model solves for comoving-frame angular mo-
ents, representing number density and components of the number flux density, and is closed by expressing higher-order moments 
37

ank-two and rank-three tensors) in terms of the evolved moments using the maximum entropy closure (both exact and approximate) 
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. 16. Breakdown of normalized wall-time for components of the Streaming Doppler Shift test problem as implemented in thornado. The left panel uses an initial 
ess of M[0] = (N , 𝟎)⊺ in the conserved-to-primitive calculation, and the right panel uses M[0] =U = (N , G)⊺ . Absolute wall-clock times per time step are shown 
ove each bar. Flux captures the calculation of fluxes F 𝑖 and F 𝜀 in Eqs. (39)–(40). MatMul represents the matrix-matrix multiplications used throughout the explicit 
erator, e.g., to evaluate polynomials Uℎ in quadrature points on all elements. Primitive captures the iterative conserved-to-primitive calculation described in 
ction 4.3.1. Limiters includes the application of the realizability-enforcing limiter described Section 5.2 and the spectral redistribution described in Section 6.2.
her is used to capture all remaining wall-time spent in the explicit step.

e to Minerbo [21]. The two-moment model is closely related to that promoted in [1], predicts wave speeds bounded by the speed 
 light (Proposition 2), and is consistent, to O(𝑣), with Eulerian-frame energy and momentum conservation (Proposition 1).
The numerical method is based on the DG method to discretize phase-space, and IMEX time stepping, where the phase-space 
vection part is integrated with explicit methods, and the collision term is integrated with implicit methods. The discretized spatial 
d energy derivative terms in the moment equations have been equipped with tailored numerical fluxes, which in the case of exact 
oment closure (Assumption 1) allow us to derive explicit time-step restrictions that guarantee realizable cell-averaged moments due 
 these terms, and N > 0 overall. Unfortunately, a corresponding time-step restriction was not found for the source terms associated 
ith phase-space advection in the number flux equation to guarantee the second moment realizability condition, in the sense of cell 
erages, for the evolved moments (i.e., |G| ≤ N) in the general multidimensional case. However, an analysis in the semi-discrete 
tting revealed that the moments evolve tangentially to the boundary of the realizable domain when |G| = N , and we found a 
fficient time-step restriction to guarantee realizable cell averages in the one-dimensional, planar geometry case. Given a positive 
ll-averaged number density, a realizability-enforcing limiter is proposed to recover pointwise moment realizability in each element. 
ecific properties of the IMEX scheme (i.e., convex-invariance, as defined in [35]) extend the applicability of our results beyond the 
rward-backward Euler sequence analyzed in detail.
Retention of specific O(𝑣) terms in the time derivative of the two-moment system, motivated by the desire to maintain wave 
eeds bounded by the speed of light and consistency with Eulerian-frame energy and momentum conservation equations, results in 
creased computational complexity of the numerical scheme in two (related) ways. First, since the evolved moments are nonlinear 
nctions of the primitive moments used to close the moment equations, a nonlinear system must be solved to recover primitive 
oments from evolved moments. Second, because the collision operators are formulated in terms of primitive moments, the implicit 
llision update requires the solution of a similar nonlinear system. For both cases, solution methods have been formulated as fixed-
int problems, and we have proposed tailored fixed-point operators in Eqs. (56) and (60), for the primitive recovery and implicit 
llision solve, respectively. The fixed-point operators are designed to preserve moment realizability in each iteration (subject to 
ild conditions on the step size), and we have proven convergence for cases with exact and approximate moment closures, subject 
 the additional constraint |𝒗| ≤√2 − 1, which is mild when considering the applicability of the O(𝑣) model. Numerically, we did 
t observe convergence failures for the primitive recovery problem, even when violating the condition on the velocity, or when 
mbining the algorithm with Anderson acceleration, which our analysis here did not consider.
The proposed algorithm has been implemented and tested against a series of benchmark problems. Using two problems with a 
nstant background velocity — in the streaming and diffusion regimes, respectively — we demonstrate the expected rate of error 
nvergence in the 𝐿2 norm. Additional tests with spatially varying (smooth and discontinuous) background velocity fields — the 
reaming Doppler Shift, Transparent Shock, and Transparent Vortex tests — were used to document the robustness of the proposed 
gorithm, and qualitative accuracy with respect to special relativistic considerations (e.g., correct Doppler shifts) for sufficiently 
all background velocities. In these tests, the moments evolve close to the boundary of the realizable domain, and the realizability-
forcing limiter is frequently triggered to recover pointwise realizability from (guaranteed) realizable cell averages. Without this 
covery procedure, the algorithm fails invariably on these challenging problems.
We have analyzed the simultaneous Eulerian-frame number and energy conservation properties of the proposed method. While 
e DG method provides flexibility in the approximation spaces to capture conservation properties beyond those inherent to the model 
rmulation (i.e., number conservation in the present setting), the approximation of the background velocity by piecewise polynomials 
m the DG approximation space, which accommodates discontinuities, can result in Eulerian-frame energy conservation errors that 
38

ceed the O(𝑣2) scaling predicted by the continuum model. However, we found that the realizability-enforcing limiter is the main 
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ntributor to Eulerian-frame energy conservation violations when the background velocity field is smooth and its magnitude is within 
e range of applicability of an O(𝑣) model. For this reason, a spectral redistribution scheme is proposed to recover conservation 
olations introduced by the realizability-enforcing limiter. This redistribution scheme trades (spectrally) local number conservation 
r number and energy conservation after integration over the phase-space energy dimension, and has no observed negative impact 
 solution accuracy, while improving Eulerian-frame energy conservation properties of the method. With the spectral redistribution 
tive, we observe that energy conservation violations scale as O(𝑣2), in accordance with the continuum model. We emphasize that 
e spectral redistribution introduces a rescaling of the moments, which does not impact moment realizability. However, the proposed 
ategy to promote Eulerian-frame energy conservation is not feasible without the realizability-preserving property.
Our goal is to apply the proposed algorithm to model neutrino transport in core-collapse supernova simulations. Several extensions 
e needed to achieve this goal. First, the collision term must be extended to include a complete set of neutrino weak interactions, and 
e model extended to include coupling to dynamical equations for the background fluid. Second, because neutrinos are fermions, for 
hich the Pauli exclusion principle implies an upper bound on the phase-space density and associated bounds on the moments, the 
alysis should be extended to apply to moment closures based on Fermi-Dirac statistics. Third, because special and general relativistic 
ects contribute to the dynamics in nontrivial ways, further development and analysis is required to design realizability-preserving 
ethods for fully relativistic moment models. In the context of the relativistic number-conservative two-moment model, consistency 
ith the Eulerian-frame energy equation is exact at the continuum level, but it will be challenging to replicate this property at the 
screte level. Within the framework of our approach, the realizability-enforcing limiter will be necessary in some situations also in 
e relativistic case, and, since this limiter is not inherently energy conservative, we anticipate the need for a spectral redistribution 
heme in this case as well. We believe the methodologies developed in this paper can be helpful in these endeavors, and hope to 
esent progress on addressing these challenges in future work.
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pendix A. Boltzmann equation in the O(𝒗) limit

In this appendix we provide the kinetic equation from which the moment equations presented in Section 2 can be derived in 
straightforward manner. A derivation from first principles, which leverages the framework of relativistic kinetic theory, is too 
aborate to include here. We refer the interested reader to, e.g., [45,2,46,47,65–67], and references therein. For our purpose, we 
39

nsider the comprehensive work of Munier & Weaver [46,47], which provides an explicit listing of the kinetic equation for neutral 
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rticle transport in the O(𝑣) limit.5 Specifically, assuming Cartesian spatial coordinates and a time independent three-velocity, 
. (142) in [47] for the distribution function 𝑓 (𝜔, 𝜀, 𝒙, 𝑡) takes the form

( 1 + 𝑣𝑖𝓁𝑖 )𝜕𝑡𝑓 + (𝓁𝑖 + 𝑣𝑖 )𝜕𝑖𝑓 +
[
3𝑓 − 1

𝜀2
𝜕
𝜕𝜀

(
𝜀3 𝑓

)]
𝓁𝑖𝓁𝑘 𝜕𝑖𝑣𝑘 +

𝜕𝑓

𝜕𝓁𝑖

[
𝓁𝑖𝓁𝑗𝓁𝑘 𝜕𝑗𝑣𝑘 − 𝓁𝑗𝜕𝑗𝑣

𝑖
]
= C(𝑓 ), (A.1)

here {𝑥𝑖} and 𝑡 are Eulerian space and time coordinates, respectively, while 𝜀 and 𝜔 = {𝜗, 𝜑} are spherical-polar momentum 
ordinates associated with the inertial frame whose Eulerian-frame three-velocity instantaneously coincides with the fluid three-
locity with components 𝑣𝑖. In Eq. (A.1) the Cartesian components of the propagation direction vector in the comoving frame, 
1, 𝓁2, 𝓁3}, can be parameterized in terms of spherical-polar momentum space angles as {cos𝜗, sin𝜗 cos𝜑, sin𝜗 sin𝜑}.
On the right-hand side of Eq. (A.1), we adopt the simplified collision term

C(𝑓 ) = 𝜒
(
𝑓0 − 𝑓

)
+ 𝜎
(
D− 𝑓

)
, (A.2)

here 𝑓0, 𝜒 , and 𝜎 are the equilibrium distribution, absorption opacity, and scattering opacity, respectively (all assumed to be 
dependent of 𝜗 and 𝜑), and D is the zeroth moment defined in Eq. (1).
Straightforward manipulations, noting that, to O(𝑣), {𝓁𝑖} are independent of {𝑥𝑖} and 𝜕𝓁𝑖∕𝜕𝓁𝑗 = 𝛿𝑖𝑗 , brings Eq. (A.1) into con-
rvative form

𝜕𝑡
(
(1 + 𝑣𝑖𝓁𝑖)𝑓

)
+ 𝜕𝑖
(
(𝓁𝑖 + 𝑣𝑖)𝑓

)
− 1
𝜀2

𝜕
𝜕𝜀

(
𝜀3 𝑓 𝓁𝑖𝓁𝑘 𝜕𝑖𝑣

𝑘
)
+ 𝜕
𝜕𝓁𝑖

(
𝑓
(
𝓁𝑖𝓁𝑘𝓁𝑙 𝜕𝑘𝑣

𝑙 − 𝓁𝑗 𝜕𝑗𝑣
𝑖
))

= C(𝑓 ). (A.3)

Eq. (A.3) provides an easy path to the angular moment equations presented in Section 2. Taking the zeroth moment of Eq. (A.3), 
ting that 1

4𝜋 ∫𝕊2 𝜕
[
… 
]
∕𝜕𝓁𝑖𝑑𝜔 = 0 [47], results in Eq. (2). Similarly, multiplying Eq. (A.3) by 𝓁𝑗 and integrating over angles results 

 Eq. (3).
Alternatively, the moment equations can be derived from the general relativistic, number-conservative two-moment model pre-
nted in Section 4.7.3 in [7], after taking the limit of flat spacetime and specializing to Cartesian spatial coordinates (i.e., setting 
e lapse function 𝛼 → 1, the shift vector components 𝛽𝑖 → 0, and the components of the spatial metric 𝛾𝑖𝑗 → 𝛿𝑖𝑗 ), and retaining 
locity-dependent terms to O(𝑣).

pendix B. Technical proofs

1. Various bounds for the exact and approximate Eddington factors

In the following lemma, we list several bounds on functions dependent on the exact or approximate Eddington factors (𝜓 or 𝜓𝖺). 
ese bounds are used in the proofs of Lemmas 8 and 9 in Appendix B.2 and Appendix B.3, respectively, as well of the proof of 
mma 11 in Section 5.5.

mma 12. Let 𝜓 be the Eddington factor in the exact Minerbo closure as given in Eq. (26) and let

𝜙1 ∶= 3𝜓 − 1 − 3𝜓 ′ℎ and 𝜙2 ∶= (3𝜓 − 1)ℎ−1 . (B.1)

en, the following bounds hold when ℎ ∈ [0, 1].

) −4 ≤ 𝜙1 ≤ 0,
) 𝜙22 −𝜓

′𝜙2 ≥ 0,
(c) 3(𝜓 ′)2 − 3𝜓 ′𝜙2 + 𝜙22 ≥ 0,
(d) 𝜕ℎ(𝜙2

2 −𝜓
′𝜙2 + (𝜓 ′)2) > 0.

Moreover, let 𝜓𝖺 be the approximate Eddington factor defined in Eq. (27) and let

𝜙𝖺,1 ∶= 3𝜓𝖺 − 1 − 3𝜓 ′
𝖺ℎ and 𝜙𝖺,2 ∶= (3𝜓𝖺 − 1)ℎ−1 . (B.2)

en the bounds (a)–(d) hold when (𝜓, 𝜙1, 𝜙2) are replaced by (𝜓𝖺, 𝜙𝖺,1, 𝜙𝖺,2). In addition, the following two bounds hold for the approximate 
dington factor when ℎ ∈ [0, 1).

) 𝜓𝖺 − ℎ2 −
1
4 (1 −𝜓𝖺)2 ≥ 0, (f) ℎ2 ≤ 𝜓𝖺 ≤ 1.

Since both 𝜓 and 𝜓𝖺 are one-dimensional functions defined between 0 and 1, the proof of the bounds are straightforward but 
e rather tedious. Instead of giving rigorous proofs for these bounds, we plot the functions of interest in Fig. B.17, from which the 
unds can be visually verified.
40

Note that Munier & Weaver list their equation in terms of the specific intensity 𝐼 ∝ 𝜀3𝑓 , while we prefer to work with the distribution function 𝑓 .
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Fig. B.17. Verification of the bounds (a)–(f) in Lemma 12 in the cases when the exact Eddington factor 𝜓 and approximate 𝜓𝖺 are considered.

2. Proof of Lemma 8

oof of Lemma 8. Using the definition of the closure terms 𝗄𝑖𝑗 in Eq. (10), we have from chain rule that

𝑣𝑖𝜕D(𝗄𝑖𝑗D) = 𝑣𝑖
(
1
2
[
3𝑛̂𝑖𝑛̂𝑗 − 𝛿𝑖𝑗

] 𝜕𝜓
𝜕ℎ

𝜕ℎ
𝜕D
D+ 1

2
[
(1 −𝜓)𝛿𝑖𝑗 + (3𝜓 − 1)𝑛̂𝑖𝑛̂𝑗

])
= 𝑣𝑖
(
−1
2
[
3𝑛̂𝑖𝑛̂𝑗 − 𝛿𝑖𝑗

]
𝜓 ′ℎ+ 1

2
[
(1 −𝜓)𝛿𝑖𝑗 + (3𝜓 − 1)𝑛̂𝑖𝑛̂𝑗

])
(B.3)

= 1
2
(3𝜓 − 1 − 3𝜓 ′ℎ)

(
𝑣𝑖𝑛̂𝑖𝑛̂𝑗 −

1
3
𝑣𝑗
)
+ 1

3
𝑣𝑗 =

1
2
𝜙1
(
𝑣𝑖𝑛̂𝑖𝑛̂𝑗 −

1
3
𝑣𝑗
)
+ 1

3
𝑣𝑗 ,

here 𝜙1 ∶= (3𝜓 − 1 − 3𝜓 ′ℎ) as defined in Eq. (B.1). Since ‖𝜕D(𝑣𝑖𝗄𝑖𝑗D)‖2 =∑𝑗

(
𝑣𝑖𝜕D(𝗄𝑖𝑗D)

)2
, summing up the squares leads to

‖𝜕D(𝑣𝑖𝗄𝑖𝑗D)‖2 = 1
4
𝜙2
1

∑
𝑗

(
𝑣𝑖𝑛̂𝑖𝑛̂𝑗 −

1
3
𝑣𝑗

)2
+ 1

3
𝜙1𝑣

𝑗
(
𝑣𝑖𝑛̂𝑖𝑛̂𝑗 −

1
3
𝑣𝑗

)
+ 1

9
𝑣𝑗𝑣𝑗

=

(
𝜙21
12

+
𝜙1
3

)
(𝑣𝑖𝑛̂𝑖)2 +

(
𝜙21
36

−
𝜙1
9

+ 1
9

)
𝑣𝑖𝑣𝑖 . (B.4)

follows from Lemma 12 (a) that 𝜙1(ℎ) ∈ [−4, 0] for ℎ ∈ [0, 1]. Therefore, 
(
𝜙21
12 + 𝜙1

3

)
= 𝜙1

12

(
𝜙1 + 4

) ≥ 0 and we have

‖𝜕D(𝑣𝑖𝗄𝑖𝑗D)‖2 ≤((𝜙2112 +
𝜙1
3
)
+
(𝜙21
36

−
𝜙1
9

+ 1
9
))
𝑣𝑖𝑣𝑖 =

1
9
(
𝜙1 + 1

)2
𝑣𝑖𝑣𝑖 . (B.5)

nce 𝜙1 ∈ [−4, 0], 19
(
𝜙1 + 1

)2 ≤ 1, which concludes the proof. □

3. Proof of Lemma 9

oof of Lemma 9. Using the definition of the closure terms 𝗄𝑖𝑗 in Eq. (10), we have from chain rule that

𝑣𝑖𝜕I𝑘 (𝗄𝑖𝑗D) =
1
2
𝜓 ′
[
3 𝑠 𝑛̂𝑗 − 𝑣𝑗

]
𝑛̂𝑘 +

(3𝜓 − 1)
2ℎ

[
𝑣𝑘 𝑛̂𝑗 + 𝑠𝛿𝑗𝑘 − 2 𝑠 𝑛̂𝑗 𝑛̂𝑘

]
. (B.6)

 show ‖∇I (𝑣𝑖𝗄𝑖𝑗D)‖ ≤ 2𝑣, we prove in the following that( )

41

‖∇I (𝑣𝑖𝗄𝑖𝑗D)𝒚‖ ≤ 2𝑣𝑦 , ∀𝒚 = 𝑦1, 𝑦2, 𝑦3
⊺
, (B.7)
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here 𝑦 ∶=
√
𝑦𝑖𝑦𝑖. Let 𝜙2 ∶= (3𝜓 − 1)ℎ−1 as defined in Eq. (B.1). Then,

𝑣𝑖𝜕I𝑘 (𝗄𝑖𝑗D)𝑦
𝑘 = 1

2
𝜓 ′
[
3 𝑠 𝑛̂𝑗 − 𝑣𝑗

]
(𝑦𝑘𝑛̂𝑘) +

1
2
𝜙2

[
𝑛̂𝑗 (𝑦𝑘𝑣𝑘) + 𝑠𝑦𝑗 − 2 𝑠 𝑛̂𝑗 (𝑦𝑘𝑛̂𝑘)

]
. (B.8)

mming up the squares leads to

‖∇I (𝑣𝑖𝗄𝑖𝑗D)𝒚‖2 =∑
𝑗

(
𝑣𝑖𝜕I𝑘 (𝗄𝑖𝑗D)𝑦

𝑘
)2

= 1
4
𝜙2
2𝑠

2𝑦2 + 1
4
𝜙2
2(𝑦

𝑘𝑣𝑘)2 +
1
4
(𝜓 ′)2𝑣2(𝑦𝑘𝑛̂𝑘)2

+ 1
4

[
3(𝜓 ′)2 − 2𝜓 ′𝜙2

]
𝑠2(𝑦𝑘𝑛̂𝑘)2 +

1
2

[
𝜓 ′𝜙2 − 𝜙22

]
𝑠(𝑦𝑘𝑣𝑘)(𝑦𝑘𝑛̂𝑘) .

(B.9)

nce 𝜙22 −𝜓
′𝜙2 ≥ 0 (Lemma 12 (b)), we apply the inequality −2𝑎𝑏 ≤ 𝑎2 + 𝑏2 and obtain

1
2

[
𝜓 ′𝜙2 − 𝜙22

]
𝑠(𝑦𝑘𝑣𝑘)(𝑦𝑘𝑛̂𝑘) ≤ 1

4

[
𝜙2
2 −𝜓

′𝜙2

]
(𝑦𝑘𝑣𝑘)2 +

1
4

[
𝜙2
2 −𝜓

′𝜙2

]
𝑠2(𝑦𝑘𝑛̂𝑘)2 . (B.10)

erefore,

‖∇I (𝑣𝑖𝗄𝑖𝑗D)𝒚‖2 ≤ 1
4
𝜙2
2𝑠

2𝑦2 + 1
4

[
2𝜙22 −𝜓

′𝜙2

]
(𝑦𝑘𝑣𝑘)2 +

1
4
(𝜓 ′)2𝑣2(𝑦𝑘𝑛̂𝑘)2

+ 1
4

[
3(𝜓 ′)2 − 3𝜓 ′𝜙2 +𝜙22

]
𝑠2(𝑦𝑘𝑛̂𝑘)2 .

(B.11)

rther, since 𝜙22 ≥ 0, (𝜓 ′)2 ≥ 0, 2𝜙22 −𝜓
′𝜙2 ≥ 0 (Lemma 12 (b)), and 3(𝜓 ′)2 − 3𝜓 ′𝜙2 +𝜙2

2 ≥ 0 (Lemma 12 (c)), we can take the upper 
unds 𝑠2 ≤ 𝑣2, (𝑦𝑘𝑣𝑘)2 ≤ (𝑣𝑦)2, and (𝑦𝑘𝑛̂𝑘)2 ≤ 𝑦2 to obtain
‖∇I (𝑣𝑖𝗄𝑖𝑗D)𝒚‖2 ≤ [𝜙2

2 −𝜓
′𝜙2 + (𝜓 ′)2

]
(𝑣𝑦)2 . (B.12)

follows from Lemma 12 (d) that 𝜕ℎ(𝜙2
2 − 𝜓

′𝜙2 + (𝜓 ′)2) > 0, which implies maxℎ∈[0,1]
[
𝜙2
2 − 𝜓

′𝜙2 + (𝜓 ′)2
]
= 𝜙22(1) − 𝜓

′(1)𝜙2(1) +
′(1))2 = 4. Thus,

‖∇I (𝑣𝑖𝗄𝑖𝑗D)𝒚‖2 ≤ 4(𝑣𝑦)2 , ∀𝒚 =
(
𝑦1, 𝑦2, 𝑦3

)⊺
, (B.13)

hich proves the claim. □
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