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Abstract—This paper focuses on a public health policy-
adherence assessment (PHPA) application that aims to automati-
cally assess people’s public health policy adherence during emer-
gent global health crisis events (e.g., COVID-19, MonkeyPox) by
leveraging massive public health policy adherence imagery data
from the social media. In particular, we study an optimal Al
model design problem in the PHPA application, where the goal
is to leverage the crowdsourced human intelligence to accurately
identify the optimal AI model design (i.e., network architecture
and hyperparameter configuration combination) without the
need of AI experts. However, two critical challenges exist in
our problem: 1) it is challenging to effectively optimize the
Al model design given the interdependence between network
architecture and hyperparameter configuration; 2) it is non-
trivial to leverage the human intelligence queried from ordinary
crowd workers to identify the optimal AI model design in
the PHPA application. To address these challenges, we develop
CrowdDesign, a subjective logic-driven human-AI collaborative
learning framework that explores the complementary strength of
AI and human intelligence to jointly identify the optimal network
architecture and hyperparameter configuration of an AI model
in the PHPA application. The experimental results from two
real-world PHPA applications demonstrate that CrowdDesign
consistently outperforms the state-of-the-art baseline methods by
achieving the best PHPA performance.

I. INTRODUCTION

MERGENT global health crises like COVID-19 have
Erevealed the need for rapid, effective assessments of
public health policy adherence [1]. It is critical for government
authorities to obtain accurate and timely information about
the public health policy adherence so that necessary policy
adjustments and precautions can be made to protect vulnerable
populations and ensure people’s health and well-being [2].
Meanwhile, social media platforms emerge as a pervasive
paradigm to acquire an unprecedented amount of timely ob-
servations of the public health policy adherence by exploring
the imagery data contributed by the common citizens [3].
This paper develops a human-AI collaborative framework that
leverages collective intelligence to optimize Al model design
for public health policy-adherence assessment (PHPA).

Recent progress in Al and deep learning have developed
advanced deep neural network models (e.g., ResNet, VGG,
Transformer) that can be applied to automatically analyze the

massive amount of PHPA data on social media (e.g., images re-
lated to public smoking bans and urban environmental hygiene
posted by social media users) [2]. Those deep neural network
models often include a complex set of network architectures
(e.g., network layers, convolutional blocks, activation func-
tions) and hyperparameter configurations (e.g., learning rate,
weight decay, training epochs) to capture complex and diverse
visual features in the studied images [4]. The combination of a
specific network architecture and a particular hyperparameter
configuration in an Al model is often referred to as an Al model
design instance [5]. We note that selecting the appropriate Al
model design instance plays a decisive role in the performance
of the Al model [6]. Figure 1 shows a PHPA application that
assesses whether people follow the mask wearing policy or
not. This task is challenging due to multiple reasons. Motivated
by the above observations, this paper studies an optimal Al
model design (OAMD) problem where the goal is to accurately
identify the optimal AI model design (i.e., optimal network
architecture and hyperparameter configuration combination)
that can achieve the desirable PHPA performance.
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Figure 1. Mask Wearing Policy Adherence Assessment of three Different
Al Model Designs. Three Al model design instances have different network
architectures and network configurations. A small change in AI model design
leads to an incorrect assessment.

Our objective is to develop a novel Al model design
framework that can effectively harness both Al and crowd-
sourced human intelligence without requiring the involvement
of AI experts. This approach aims to optimize the network
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architecture and hyperparameter configurations that are critical
to the performance of AI models in public health applications.
Our framework is inspired by the observation that humans
often can provide more consistent and reliable estimations on
the public health policy adherence practice than AI models.
For example, human perception can accurately identify that
all people follow the mask-wearing policy in Figure 1 while
Al models with several design options fail to do that. Such
human intelligence can help infer the likelihood of an Al
model design in providing the correct PHPA assessment and
identify the optimal AI model design instance. We observe
that crowdsourcing offers a scalable, cost-effective alternative
to enlisting public health specialists in identifying optimal
Al model design [7]. Therefore, our framework leverages the
timely and scalable human intelligence from crowdsourcing
platforms (e.g., Amazon MTurk) that provide pervasive and
economic access to a massive amount of freelance crowd
workers. However, two technical challenges exist in designing
our framework, which we elaborate below.

The first challenge is how to concurrently identify the opti-
mal network architecture and hyperparameter configuration of
an Al model given the interdependence between them. There
exists a “chicken-and-egg” issue in the OAMD problem. In
particular, current neural architecture search (NAS) methods
are designed to identify the optimal neural network archi-
tecture with a pre-defined hyperparameter configuration [8].
Meanwhile, the recent hyperparameter optimization (HPO)
frameworks focus on searching for the optimal hyperparameter
configuration of a given neural network architecture [9], [10].
A straightforward solution to address such a problem is to
perform the two tasks successively. However, such an approach
largely ignores the interdependence between NAS and HPO,
which often leads to a suboptimal application performance [6].
There also exist efforts that jointly optimize the network archi-
tecture and hyperparameter configuration of an Al model [6],
[11]. However, those solutions often require a large amount
of training data with high-quality labels (e.g., 1M+ images
from ImageNet dataset) to train their Al models to explore
the massive NAS + HPO search space [12]. However, there
is often a very limited amount of high-quality training data
available in PHPA applications due to the emergent nature of
the events (e.g., unfolding public health crisis) [13], and the
learned AI model design could face an overfitting issue on
the validation data set and lead to a non-trivial performance
degradation on the unseen data samples in the testing set. Thus,
it is challenging to effectively optimize the Al model design
given the interdependence between NAS and HPO.

The second challenge is how to effectively transform the
complex OAMD problem to a simplified problem that does not
require extensive Al expertise and can be solved by ordinary
crowd workers. Unlike the Al experts who can directly provide
insights on the AI model design (e.g,. configuring network
architectures, selecting hyperparameters), crowd workers are
usually only capable of providing annotations of assigned
labeling tasks [8]. In addition, crowd workers are often unable
to diagnose and troubleshoot the Al model when it fails. A
key question in designing our crowdsourcing-driven Al model
design framework is how to transfer the crowdsourced human

intelligence to an effective strategy in identifying the optimal
Al model design in a PHPA application. We observe that recent
efforts on crowd-Al collaboration systems mainly focus on
leveraging crowdsourced human intelligence to retrain the Al
models to boost the overall application performance [14], [15].
However, those existing solutions are not developed to address
the OAMD problem and the Al models they employ are man-
ually selected and configured by Al experts. Such a manual
Al model design process is known to be error-prone and
time-consuming [16]. Some initial attempts have been made
to utilize crowdsourced human intelligence for optimizing
network architecture [8] or hyperparameter configuration [10]
individually. However, these solutions are unable to solve the
OAMD problem due to the intricate interdependence between
neural architecture and hyperparameter configuration, which
could lead to suboptimal performance in the studied applica-
tions. Therefore, it remains a challenging task to integrate the
Al and human intelligence under a principled framework to
optimize the overall performance of the studied application.

This paper develops CrowdDesign, a crowdsourcing-driven
Al model design framework to solve the OAMD problem in
PHPA applications. Utilizing subjective logic, CrowdDesign
integrates the strengths of Al and human insights to identify
the most effective model designs for assessing public health
policy adherence from social media image. In particular,
CrowdDesign first designs a joint network architecture and
hyperparameter space reduction scheme that effectively re-
duces the Al model design search space while maintaining
a high likelihood of including the optimal AI model design
instance in the reduced search space. The CrowdDesign then
develops a probabilistic reasoning-based AI model design
scheme that leverages the crowdsourced human intelligence
to learn the probability of each Al model design instance
from the reduced search space in providing correct PHPA
labels through subjective logic-based probabilistic reasoning.
The learned probability is then used to identify the opti-
mal Al model design instance for the studied PHPA ap-
plication. To the best of our knowledge, CrowdDesign is
the first crowdsourcing-driven AI model design framework
to address the OAMD problem in PHPA applications. This
paper focuses on the PHPA application as an illustrative
example and use case to demonstrate the effectiveness of the
CrowdDesign. We envision that CrowdDesign can also be
applied to address the OAMD problem in a much broader
set of real-world applications (e.g., intelligent transportation,
smart health, online recommender systems) that also rely on
advanced Al models (e.g., ResNet, VGG, and Transformer)
where the application performance is highly sensitive to the Al
model design. We evaluate CrowdDesign via two real-world
PHPA applications (i.e., mask wearing policy adherence and
social distancing policy adherence). The results demonstrate
CrowdDesign achieves the best PHPA performance compared
to a rich set of state-of-the-art deep neural networks, human-Al
models, and AI model optimization baselines. The significance
of this research lies in its potential to revolutionize how
public health compliance is monitored and evaluated, offering
a new tool to quickly facilitate the adjustment of strategies in
response to ongoing or emerging health crises.
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CrowdDesign is designed to address the challenge of limited
high-quality data in emergent public health crises, where agile
and adaptive models are critical. For instance, during a public
health emergency, such as a disease outbreak, CrowdDesign
can be effectively adapted to perform the corresponding PHPA
tasks by leveraging labeled social media images, crowdsourced
from health professionals, for Al-driven PHPA model opti-
mization. This crowdsourced data helps identify the optimized
model design for assessing public health policy adherence by
jointly modeling the subjective logic of Al systems and crowd
workers. Note that on platforms like Amazon MTurk, we can
specifically target and recruit health professionals by setting
tasks with required qualifications, such as certifications or
related experience. This adaptability is critical for maintaining
the relevance and effectiveness of PHPA applications when
dealing with rapidly changing health norms and practices.

Beyond PHPA, the CrowdDesign framework’s adaptability
and its strategy for harnessing crowdsourced data make it
a potent tool for a variety of other domains requiring real-
time data interpretation and model optimization. For exam-
ple, in intelligent transportation systems, CrowdDesign could
enhance Al models that predict traffic patterns and manage
flows by incorporating real-time crowd-sourced data from
mobile devices and sensors, adjusting to unexpected condi-
tions such as accidents or road closures instantly. Similarly,
in smart health applications, the CrowdDesign could utilize
inputs from healthcare workers and patients to continuously
improve diagnostic algorithms, particularly in response to
emerging medical conditions or in the management of chronic
diseases where patient feedback can provide critical insights
for treatment adjustments. These application scenarios demon-
strate the CrowdDesign framework’s capability to not only
address specific data scarcity and quality issues inherent in
PHPA application but also to leverage the power of crowd
intelligence to enhance Al development and applications in
dynamic environments across sectors. This unique integration
of Al with crowdsourced data input stands out as a significant
innovation, positioning CrowdDesign as a versatile, scalable
solution for the broader field of Al-driven applications, where
real-time adaptability and data enhancement are crucial.

The main contributions of this paper are summarized as
follows:

o We develop CrowdDesign, which explores the comple-
mentary strengths of Al and crowdsourced human intel-
ligence to solve the OAMD problem.

e We address two important technical challenges, namely
the complex interdependence between NAS and HPO,
and the crowd-driven Al model design, in our solution
by developing a principle-based subjective logic-driven
human-Al collaborative learning framework.

o We perform extensive experiments to evaluate our solu-
tion through two real-world PHPA applications. Evalu-
ation results demonstrate significant performance gains
of our CrowdDesign scheme compared to state-of-the-art
baselines.

e CrowdDesign is the first crowdsourcing-driven Al model
design framework to address the OAMD problem in
PHPA applications, which can be potentially applied to

other Al-based real-world applications where the appli-
cation performance is highly sensitive to the design of
the AI model.

II. RELATED WORK
A. Social Media Sensing in Public Health

The use of social media for sensing in public health has
rapidly expanded over the last decade, providing unprece-
dented opportunities for real-time health monitoring and crisis
response [3]. However, the application of this data source in
PHPA presents unique challenges and questions that merit
thorough discussion [17]. Several studies have highlighted
the potential of social media data to improve public health
surveillance. For instance, research by Xue ef al. demonstrated
that Twitter data could be used to effectively track disease
outbreaks and public sentiment towards health policies [18].
Similarly, Bonnevie et al. utilized social media analysis to
monitor public reactions to flu vaccinations, illustrating how
social platforms can offer real-time insights into public health
compliance and attitudes [19]. These methodologies generally
employ natural language processing and image recognition
technologies to analyze text and visual content from social
platforms, identifying trends and patterns related to health
behaviors and policy adherence. For example, Al models like
those developed by Negri ef al. can classify images and
posts according to their adherence to health guidelines, such
as mask-wearing and social distancing during the COVID-
19 pandemic [2]. While promising, the use of social media
data for PHPA is not without significant limitations. One
major challenge is the reliability and accuracy of the data.
Social media platforms often contain biased self-reported data
and misinformation, which can skew perceptions of public
health compliance. This challenge was explored by Afful
et al., who found significant discrepancies between actual
virus transmission rates and those inferred from social media
trends [20]. Another challenge is the ethical concern related
to privacy and consent in the use of social media data.
Social media users may not anticipate that their posts will be
used for public health surveillance, raising ethical questions
about informed consent and data anonymization. Studies by
Bender et al. have called for stringent guidelines to ensure that
social media data used in public health research respects user
privacy and data security [21]. In light of these challenges,
our CrowdDesign framework is positioned to enhance the
reliability and ethical use of social media data for PHPA. By
leveraging crowdsourced human intelligence, CrowdDesign
addresses the accuracy issue by enabling the verification
and enhancement of Al-generated insights, ensuring that data
used for policy adherence assessment is both accurate and
representative. Moreover, CrowdDesign incorporates rigorous
data anonymization processes and adheres to ethical guidelines
that respect user privacy, thus addressing the ethical concerns
prevalent in the current literature. The literature suggests a
need for more robust Al models and ethical frameworks to
better utilize social media for public health monitoring. Future
research should focus on developing advanced machine learn-
ing algorithms that can more effectively filter misinformation
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and biased data. Additionally, establishing global standards for
the ethical use of social media data in health research is crucial
to address privacy concerns and enhance public trust in health
assessment technologies.

B. Al Model Design

Al model design is a critical task in developing robust
and effective Al models to address complex real-world prob-
lems [5]. Recent advances in Al model design have shown
substantial improvements in automatically selecting network
architectures and hyperparameter configurations for AI mod-
els [22]-[26]. For example, Awad et al. designed an Al model
design framework that leverages a non-stochastic infinite-
armed bandit-based scheme to ensure an effective search of
the Al model design space [22]. Chen designed a meta-
learning hyperparameter optimization strategy that leverages
deep uncertainty estimation to identify the optimal Al model
design instance from a large-scale Al model search space [24].
Hirose et al. developed an Al model design search framework
that jointly searches the optimal Al model design and prunes
the search space for efficient AI model optimization [25]. Tan
et al. introduced a lightweight Al model design approach that
includes a factorized hierarchical Al model design searching
mechanism to ensure a fast AI model search process via a
multi-objective reinforcement learning scheme [26]. However,
those approaches often need a large number of high-quality
annotated samples to train their AI models to explore the
huge AI model design search space, which is not always
available in real-world applications (e.g., unfolding public
health crises, emerging disaster events, early misinformation
detection) [10]. In contrast, our CrowdDesign explicitly lever-
ages the complementary nature of Al and human intelligence
to effectively identify the optimal AI model design instance
without requiring a significant amount of training data in
PHPA applications.

C. Crowd-Al Hybrid Learning

Our work is also relevant to crowd-Al hybrid learning,
where complementary strengths of crowdsourced human in-
telligence and Al are jointly explored to tackle challenging
computational problems [14]-[16], [27]-[30]. For example,
Hong et al. developed an interactive crowdsourcing inter-
face to effectively incorporate real-time crowd annotations
to build Al-infused object detection models [27]. Guo et
al. designed a crowd-Al camera-based sensing scheme that
collects diverse questions and answers from crowd workers to
boost the performance of automatic question and answering
on images captured by surveillance cameras [28]. Lin et al.
introduced a hybrid crowd-Al system that leverages the crowd-
annotated medical imagery samples to troubleshoot the deep
image classification model for tropical disease diagnosis [29].
Yoo et al. introduced a task-agnostic collaborative learning
scheme that utilizes a crowdsourcing-based deep estimation
error inference design to identify and fix the Al failure cases
in nature scene classification [30]. Shukla et al. proposed a
crowd-Al collaborative method that utilizes a crowdsourcing
uncertainty-aware deep estimation model to identify and fix Al

failure cases in image classification. However, the Al models
in the current crowd-Al hybrid learning approaches are often
manually configured by AI experts, which is known to be
suboptimal [16]. More recently, a few initial efforts have
been made to explore the crowdsourced human intelligence
to enhance the performance of Al systems by optimizing net-
work architecture [8] and hyperparameter configuration [10],
respectively. However, these solutions overlook the intricate
interdependence between neural architecture search and hy-
perparameter configuration, which could result in nontrivial
performance degradation in the studied applications [11]. In
contrast, our CrowdDesign explicitly utilizes the crowdsourced
human intelligence to solve the OAMD problem in PHPA
applications without the inputs from Al experts.

D. Few-shot and Zero-shot Learning

In recent years, advancements in Al model design, partic-
ularly in computer vision, have introduced robust techniques
such as few-shot and zero-shot learning, which are incredibly
valuable in scenarios marked by data limitations [31]. Few-
shot and zero-shot learning enable models to understand new
tasks or recognize new objects with very few or zero training
examples, effectively mitigating the challenge of data scarcity
often encountered in emergent public health scenarios [32].
For example, Hu et al. introduce a transformer-based few-
shot learning pipeline that achieves accurate and robust classi-
fication by incorporating pre-training on external data, meta-
training with few-shot tasks, and task-specific fine-tuning [33].
Schlarmann et al. develops an unsupervised adversarial fine-
tuning approach to enhance the robustness of the CLIP vision
encoder, which yields robustness on various zero-shot vision
classification tasks [34]. Chen er al. design a novel approach
to zero-shot learning that employs meta-learning techniques
to adapt to new tasks without additional data, aiming to
generalize well across diverse unseen classes [35]. Zhao et al.
integrate few-shot learning strategies with domain adaptation,
enabling models to quickly adjust to new data with minimal
examples, enhancing performance in dynamic image classifi-
cation [36]. While powerful for generalizing to new classes
without a significant amount of examples, the effectiveness
of few-shot and zero-shot learning is often constrained by the
precision of the descriptions and the model’s capacity to inter-
pret these attributes correctly [32]. In contrast, CrowdDesign
focuses on leveraging crowd input to systematically identify
and refine the optimal Al model design. This approach not
only addresses the inherent limitations of few-shot and zero-
shot learning by incorporating a wide range of human insights
into the training process but also enhances model adaptability
and accuracy through continuous real-world feedback. This
dynamic integration allows CrowdDesign to surpass the static
nature of predefined data models, offering a more robust solu-
tion that evolves with emerging data and real-time scenarios.

III. PROBLEM DESCRIPTION

We first present a few key definitions to define the optimal
Al model design problem in PHPA applications.
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Definition 1: PHPA Image (D). We define D =
{D1,Ds,....,Ds} as a set of public health-crisis related im-
ages collected from social media that are used to assess the
public health policy-adherence (e.g., the mask wearing policy
adherence in Figure 1). In particular, D; represents the i
collected image. I is the number of images in the studied
PHPA application.

Definition 2: PHPA Label (L): Our paper focuses on
the classification-based PHPA application, where the status
of the public health policy adherence can be classified into
K different categories. For instance, in a PHPA application
that focuses on estimating whether people follow the mask
wearing policy or not, the PHPA labels of this application are
binary: adhering mask wearing policy and not adhering mask
wearing policy. In particular, we define L = {Ly, L, ..., L;}
as the ground-truth PHPA labels of all studied PHPA images,
where L; represents the PHPA label for D;.

Definition 3: Al-based PHPA Model (£2): We define (2
as a deep neural network model for PHPA tasks. {2 contains
two key attributes: network architecture and hyperparameter
configuration, where the selection of the two attributes of ()
will directly affect the its performance as shown in Figure 1.

Definition 4: Network Architecture Search Space (A):
In our paper, we define A = {Ay, As,...,Ap} as the set of
different network architectures from a network architecture
search space for €. A, is a network architecture in A, and P
is the number of different network architectures in A. In this
paper, the network architectures we focus on include the types
of the convolutional block (residual block or dense block),
the number of convolutional layers per block, the width of
convolutional block, the growth rate, and the size of input
features [6].

Definition 5: Hyperparameter Configuration Space (B):
We define B = {B1, By, ..., Bg} as the set of different hyper-
parameter configurations from a hyperparameter configuration
space for ). B, represents a hyperparameter configuration in
B, and @ represents the number of different hyperparameter
configurations in B. In this paper, the hyperparameter configu-
rations we study include learning rate, optimizer, weight decay,
and conditional parameters of the optimizer (e.g., RMSprop
alpha, SDG momentum, Adam betal, Adam beta2) [9].

Definition 6: Al model design Instance (P, ;): We define
®,, 4 as an Al model design instance that includes a particular
network architecture A, and a specific hyperparameter config-
uration B, which is used to configure €2 for PHPA tasks. Our
CrowdDesign is developed to identify the optimal AI model
design instance ®* for {2 that generates the estimated PHPA
labels for all studied images with the highest accuracy among
all candidate AI model design instances.

Definition 7: PHPA Label Estimated by an Al model
design Instance (L®at): We define L®ab to be the PHPA
labels estimated by a particular AI model design instance ®
for all images in the studied PHPA application. In particular,

L?“”’ represents the estimated PHPA label for D; by ®, ;.
This paper focuses on utilizing the crowdsourced human

intelligence to infer the likelihood of each AI model design
instance in providing accurate labels in PHPA applications.

Therefore, we further present a key definition of the crowd-
sourcing tasks, which are designed to acquire human intelli-
gence from crowdsourcing platforms.

Definition 8: Crowdsourcing Query (V): We define ¥
as a crowdsourcing task to collect the human intelligence
from freelance workers in crowdsourcing platforms. We note
that labeling all studied images through crowd workers is
impractical due to budget and time limitations, particularly
given the large number of social media images in PHPA
applications. In the crowdsourcing tasks, each image from the
selected subset is labeled by a group of C' crowd workers
W = {W, Wy, ..., Wc}, where W, represents the ! crowd
worker and C' represents the number of participating crowd

workers. We define LYVC to be the PHPA label from a crowd
worker W, for an image D, if D, is selected in W. The
selection process of images for ¥ will be discussed in the
solution section.

The goal of our optimal Al model design problem in PHPA
applications is to utilize the collaborative intelligence of Al
and humans to identify the optimal Al model design instance
that achieves the best PHPA performance as follows:

argmaX(Pr(I/,;I;:Li|D,A,B,\II))7V1<Z‘<I (1)
(b*

This problem is challenging because it is not a trivial task
to translate the highly complex AI model design problem
to a simplified task for crowd workers given the interde-
pendence between network architecture and hyperparameter
configuration in the Al model design. We present our solution
CrowdDesign to address such a challenge in the next section.

IV. SOLUTION

Our CrowdDesign is a crowdsourcing-driven Al model
design framework that utilizes the complementary Al and
human intelligence to address the QAMD problem in PHPA
applications. An overview of CrowdDesign is shown in Fig-
ure 2. The CrowdDesign includes two key modules:

e Joint Architecture-Hyperparameter Space Reduction
(JASR): it designs a joint network architecture and hy-
perparameter space reduction scheme that explicitly re-
duces the AI model design search space while main-
taining a high likelihood of including the optimal Al
model design instance in the reduced search space via a
principled budget-constraint multi-armed bandit learning
framework.

o Probabilistic Reasoning-driven Optimal Model Design
(POMD): it designs a probabilistic reasoning-driven Al
model design framework that models the AI model design
instances from the reduced search space obtained by
JASR module and the crowd workers as “estimators” to
collaboratively infer the probability of each AI model
design instance in providing correct PHPA labels. The
inferred probability is used to identify the optimal Al
model design instance for the studied PHPA application.

A. Joint Architecture-Hyperparameter Space Reduction

In the first subsection, we discuss our joint architecture
hyperparameter space reduction design. Our objective is to
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Figure 2. Overview of CrowdDesign Framework

explicitly reduce the AI model design search space and ensure
the reduced search space maintains a high likelihood of includ-
ing the optimal AI model design instance. The JASR achieves
this objective by optimizing the search space using PHPA
images with ground truth labels from the training dataset,
which were labeled by public health professionals prior to the
Al model design search process. We first formally define the
reduced AI design search space as follows.

Definition 9: Reduced AI Model Design Search Space (A):
We define A to be a reduced AI model search space which
is significantly smaller compared to the original AI model
design search space ® while maintaining a high likelihood
of including the optimal AI model design instance ®*. In
particular, we have:

ANe®,J=|®|,J << P x Q,argmax (Pr(®* € A)) (2)
@*

where J represents the number of AI model design instances in
A and P represents the size of the network architecture search
space A and () represents the size of the hyperparameter
configuration space B. Our JASR is designed to learn such a
reduced Al design space.

To learn the reduced AI design space A, our JASR module
explicitly models the AI design space reduction problem as
a budget-constant non-stochastic multi-armed bandit (BNMB)
problem. In particular, in the BNMB problem, a player plays
a large number of different bandit machines under a limited
budget. The objective is to identify a reduced set of bandit
machines that have the highest winning rates. On the one
hand, the player tries to keep playing the bandit machines
that yield a good winning rate (i.e., exploitation) to maximize
the overall reward. On the other hand, the player also tries to
explore other bandit machines (i.e., exploration) in order to
avoid missing the bandit machines with higher winning rates.
Similarly, in our JASR framework, our goal is to identify a set
of best-performing Al model design instances given the limited
budget on computational time. On the one hand, our JASR
framework focuses on keeping allocating computational time
to further train the AI model with designs that yield a good
PHPA performance. On the other hand, our JASR framework
also keeps exploring the Al model search space by allocat-
ing computational time to other alternative Al model design

instances that have not yielded the best PHPA performance.
In particular, we first introduce several key definitions in our
BNMB problem to learn the reduced Al model design search
space.

Definition 10: Budget: We define the budget in JASR
module as the computational time required to identify the
optimal AI model design instance. The JASR module can
explore all possible AI model design instances from the entire
search space if the computational time is unlimited. However,
the amount of computational time available in a real-world
PHPA application is always finite.

Definition 11: Action: Similar to the BNMB problem where
a player can take actions to play different bandit machines, the
action in our JASR module is to allocate computational time
to train the Al model with different designs.

Definition 12: Reward: The player in the BNMB problem
can get different rewards after playing different bandit ma-
chines, which help the player identify the bandit machine with
the highest winning rate. We define the reward in the JASR
module as the performance of the Al model design instance
on the validation set of the studied PHPA application, which is
used to learn the probability of each Al model design instance
in providing correct PHPA labels.

Definition 13: Goal: Like the BNMB problem that aims at
identifying a reduced set of machines with the highest rewards,
we define the goal of JASR to be identifying a set of best-
performing Al model design instances as the reduced design
search space A.

We achieve the goal of our JASR module by effectively
balancing the trade-off between exploration and exploitation in
the BNMB problem [4]. Specifically, following the discussion
in [37], this trade-off is managed using an Upper Confidence
Bound (UCB) method. The UCB for each Al model design
®, at time ¢ is given by:

2logT

3)
where 7 (®) is the average reward and n;(®) is the number of
times ® has been selected. This approach allows us to exploit
model designs with high rewards while simultaneously encour-
aging exploration of lesser-known designs, thus optimizing the
search for the best model design instance ®*. In particular, our
JASR module exploits the Al model design instances that yield
high PHPA performance on the validation set by keeping allo-
cating computational time to further train the AI model with
those designs. In addition, our JASR module also consistently
explores other alternative Al model design instances to prevent
our JASR module from keeping allocating all computational
time to train the AI model with a suboptimal design. The joint
design of exploitation and exploration makes JASR capable
of exploring the entire Al model design search space and
identifying the reduced AI model search space effectively.
We also observe that the Al model design instances in the
reduced search spaces could be overfitted to the validation set
and resulting in non-negligible performance loss in the testing
set. In the next subsection, we will discuss how to effectively
leverage the crowdsourced human intelligence to identify the
best Al model design instance on the testing set.
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B. Probabilistic Reasoning-driven Optimal Model Design

In the POMD module, we present a probabilistic reasoning-
driven optimal model design framework to leverage the crowd-
sourced human intelligence (i.e., queried annotations from
crowd workers through the crowdsourcing query defined in
Definition 8) to identify the optimal Al model design instance
from the reduced Al model design search space generated by
the JASR module.

We first discuss how to perform crowdsourcing query W in
the POMD module. We note that it is not practical to query
the crowd workers to label all studied images given the budget
and time constraints in the presence of a significant amount
of social media images in PHPA applications. Therefore, our
POMD module samples a subset of images for U where
different Al model design instances in the reduced search
space cannot reach a consensus. In particular, our POMD
module first calculates the consensus of the PHPA labels
estimated by all Al model instances in A for each image D;
using Shannon entropy. The consensus indicates the degree
of agreement among different AI model design instances on
the estimated PHPA labels for D,;. We then select the images
with § x I lowest consensus scores for W. Here, § represents
the percentage of studied PHPA images that are sampled for
W. The value of § is determined by the trade-off between
the accuracy performance and the crowdsourcing cost in the
studied PHPA application. I represents the total number of
studied PHPA images. Our next step is to leverage the crowd
labels returned by W to identify the optimal AI module design.
In particular, we first introduce a key definition in our POMD
module.

Definition 14: Hybrid Estimation Commiittee (H ): We de-
fine H = {H;, H3, ..., Hx} as a hybrid estimation committee
which includes all J different AI model design instances in
A generated by the JASR module and all C different crowd
workers who participate in the crowdsourcing query W. A unit
H,, can be a PHPA model design instance ®; or a crowd
worker W,, which estimates the PHPA label for a studied
PHPA image.

Our CrowdDesign framework models different units in H
as estimators that can collaboratively estimate the labels for
all studied PHPA images. Our goal is to infer the probability
of each estimator in generating correct PHPA labels of all
studied images, which is used to identify the optimal Al model
design instance that achieves the best PHPA performance.
To that end, we first model the probability of each unit of
H in generating correct PHPA labels for all studied images
through probabilistic reasoning, which models the reliability
and epistemic uncertainty of multiple sources when fusing the
inputs from different sources. In particular, we define Rﬁ as the
belief of an estimator H,, on the PHPA label of a studied image
to be k. In particular, R¥ represents the degree of confidence
that an estimator H,, estimates the PHPA label of a studied
image to be k. We further define 7% as the uncertainty of H,
on the PHPA label of a studied image to be k. In particular,
Tk represents the inability of an estimator H,, to determine

n

whether the PHPA label of a studied image is k or not.

Our next step is to fuse the belief and uncertainty of all
estimators in H to jointly identify the optimal AI model
design instance of the studied PHPA application. To that end,
we integrate the belief and uncertainty of all estimators in
an iterative manner through the belief fusion function, which
is a key function in probabilistic reasoning that is used to
determine the combined belief and uncertainty of two sources
by fusing the individual belief and uncertainty of each source.
In particular, we have:

k k k k
Rn1 X Tn2 + an X Tn1

k _ —
Rm,nz - B(Hnl’Hm) Tk 4Tk Tk x Tk
ny na ni naz (4)
T . = F(Hn,, H,) = Ly, < T,
mamg = e Hne) TPk R TR S TR
where H,,, and H,, are any two estimators in H. belm
is the combined belief for H,, and H,,, and Tr’fl,nz is the

combined uncertainty for H,, and H,,. We then fuse the
belief and uncertainty from all estimators in H by iteratively
utilizing the above belief fusion function to generate the
combined belief RY; and combined uncertainty 74, for all
estimators in H as follows:

Ry = B(Hyn,B(Hy-1, ..., B(H3, B(Hs, H1))))

5
Thy = FHy, F(Hy 1, .. F(Hy, F(H, 1))

Given the combined belief qu and uncertainty 7' IIEI we then
set the class label estimated by our CrowdDesign framework
to be the one that has the highest belief value R%; among all
possible class labels & for each studied image D,.

We observe that one key challenge to derive the optimal
Al model design instance using the above approach is that
the belief and uncertainty of each estimator is unknown a
priori. To address this challenge, we design a novel iterative
learning scheme to infer the belief R¥ and uncertainty 7.
of each estimator H,, in H. In particular, we define U =
{U1,Us,...,Un} as the set of PHPA estimation reliability for
all estimators in H, where each U,, = {U}, U? ..., UK}. In
particular, UF is the probability that an estimator H,, correctly
infers the PHPA label of a studied image when its ground-
truth label is k. We further define V' = {V;,V5,...,V;} as
PHPA Ilabel probability for all studied images, where each
V; = {V;}, V2, ..., VE}. In particular, we define V;* to be the
probability that the PHPA label of a studied image to be k.

Given the two definitions above, we first optimize the PHPA
label probability V' using the PHPA estimation reliability
U. We observe that if different estimators in H with high
reliability agree with each other on the estimated PHPA label
of an image to be k, then the PHPA label of the image is likely
to be k. Therefore, We calculate the PHPA label probability

V as follows:
* *
g UF " x Uk ™ x
i " ok Uag,
Hnl 7Hn2 EH”’“ (6)

/Y. Uk xuk;

Hnl aHn2 EH%k

k k
ok o, Moy,
VT = Py ol

where * and ** represent two consecutive iterations. H®¥
represents the set of estimators in H that infer the PHPA

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3496835

label for a studied image D; to be k. af and aF  represent
the set of images whose PHPA labels are estimated as k& by
H,,, and H,,, respectively. In addition, the value of Vik is 0
when no estimators share an agreement on the PHPA label of
D; to be k.

Next, we infer the PHPA estimation reliability U using
the updated PHPA label probability V. We observe that an
estimator H,, has a high value of U* when the estimator can
correctly estimate the PHPA label of an image with a high
probability of being k. We then update the PHPA estimation
reliability U as follows:

ExE N LX* |Oén1 n Oéﬁ| o **
U= X X VT x g/ 2 Y
n

D;eD™* ni#n
(7

where D™ is the set of images where an estimator H,, infers
the PHPA label to be k.

Using the above two equations, we iteratively compute U
and V until the values of U and V' remain the same between
two consecutive iterations. We refer to the converged values
of U and V as U? and V°. We then leverage the U° and
V® to derive the belief R*” and uncertainty T*° as follows:

Ry =0( >, vM)xuy
vieAr™

T —1-0( Y V)

VieAT™

®)

where €)(-) is a normalization function to normalize the input
between 0 and 1. 3. AHn V;** indicates the likelihood that
G, is certain about estimated labels for the images of class k.

Finally, the optimized belief R*” and uncertainty 7% for
each estimator in H is plugged into Equation (5) to derive
the combined belief RH ? and identify the optimal AI model
design instance. In addition, we summarize the CrowdDesign
framework in Algorithm 1. We also provide an example to
illustrate the usage of subjective logic in CrowdDesign. In
particular, Subjective logic serves as a foundational element
in the CrowdDesign framework, providing a robust mathe-
matical approach to managing the uncertainty and variability
inherent in crowdsourced data. This probabilistic reasoning
framework extends beyond traditional binary assessments by
incorporating degrees of belief, disbelief, and uncertainty, thus
allowing for more nuanced decision-making in complex Al
model design scenarios. In CrowdDesign, each participant’s
feedback is converted into a structured opinion represented as
a triplet: belief (b) that quantifies the supportive evidence for a
hypothesis; disbelief (d) that quantifies the counter-evidence;
and uncertainty (u) that captures the ambiguity or lack of
evidence. For instance, a participant confident in a particular
Al model’s efficacy might provide feedback represented as
b = 08,d = 0.1,u = 0.1, indicating strong belief and
minimal uncertainty. These individual opinions are aggregated
using Dempster-Shafer theory, a robust method for synthesiz-
ing evidence from diverse sources. This aggregation process
results in a collective opinion that includes consolidated belief,

disbelief, and uncertainty scores for each Al model under
consideration, emphasizing contributions that are more certain
and minimizing the impact of those with significant doubt.
For example, as shown in Figure 3, consider a scenario
where 3 participants evaluate a new Al model: Worker 1 is
highly confident (b = 0.9,d = 0.05,uv = 0.05), Worker 2
is uncertain (b = 0.3,d = 0.1,u = 0.6), and Worker 3
is moderately skeptical (b = 0.4,d = 0.4,u = 0.2). The
aggregated opinion might show moderate belief (b = 0.53),
some disbelief (d = 0.18), and notable uncertainty (u = 0.29),
indicating that while there is some optimism about the model,
further investigation or evidence is necessary due to the mixed
beliefs and high uncertainty. The decision-making process
in CrowdDesign leverages this aggregated opinion to guide
the final decision on adopting, modifying, or rejecting a
model design. This ensures that decisions are informed by
a comprehensive synthesis of crowd intelligence, balancing
optimism with skepticism and reducing uncertainty where
possible. The use of subjective logic not only democratizes
the decision-making process but also ensures that it is robust,
well-considered, and substantiated by detailed evidence, thus
enhancing the reliability and effectiveness of crowd-Al model
in our design.

Algorithm 1 CrowdDesign

: initialize 2 (Definition 3)

: obtain A (Definition 4)

: obtain B (Definition 5)

: generate A (Definition 9) using JASR (Section IV-A)

. generate H (Definition 14)

: for each H, in H do

for each k in [1,2,..., K] do
initialize each R
initialize each T

end for

: end for

. while any U¥ and V;* not coverage do

0N U AW~

_-— =
[N A

13:  for each H,, k, i do

14: update Uk (Equation (6))
15: update \ & (Equation (7))
16:  end for

17: end while

18: for each H,, k, i do

generate U*® and V/*°

: end for

: for each H,, k, i do

generate Rflo and TF ° (Equation (8))
: end for

: generate Y}; (Equation (5))

: output k™ for each D;

R N R
MEON—~S©

V. EVALUATION
A. Datasets and Crowdsourcing Settings

1) Two Real-world PHPA Applications: In our experiments,
we evaluate CrowdDesign through two real-world PHPA
applications: 1) Mask Wearing Policy Adherence (MWPA)
application and Social Distancing Policy Adherence (SDPA)
application. Both MWPA and SDPA are crucial for under-
standing their effectiveness in mitigating disease spread, in-
forming tailored strategies, identifying high-risk areas, and
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Figure 3. Illustration of Subjective Logic in CrowdDesign

refining public messaging during the emergent health crisis
like COVID-19 [2]. In particular, both applications contain
a set of public health-crisis related images collected from a
widely used online social media platform (i.e., Twitter) during
the COVID-19 pandemic. Following the standard practice in
PHPA [2], we categorize the PHPA label in MWPA application
into two classes: adhering (i.e., all people in the image wear
the face mask properly based on the CDC’s mask wearing
guidelines ') and not adhering (i.e., not all people in the
image wear the face mask properly). Similarly, in the SDPA
application, we also categorize the PHPA label into two
classes: adhering (i.e., all people in the image practice social
distance based on the CDC’s social distancing guidelines 2)
and not adhering (i.e., not all people in the image practice
social distance). In both MWPA and SDPA, we ask three
domain experts to annotate the PHPA label of each studied
image and apply the majority voting to obtain the ground
truth label of the image. The summary of the two datasets
is presented in Table I. In addition, each dataset is split into
training, validation, and testing sets using a ratio of 6:2:2.
Specifically, we utilize the training and validation sets to train
CrowdDesign and compared baselines for PHPA tasks. We
use the testing set to evaluate the PHPA performance for
CrowdDesign and compared baselines. Note that we used
only 1,299 labeled images for the MWPA application and 616
labeled images for the SDPA application to train our model,
which represents a data-scarce scenario compared to the vast

Thttps://www.cdc.gov/coronavirus/2019-ncov/prevent- getting-sick/masks.
html)

Zhttps://www.cdc.gov/coronavirus/2019-ncov/community/tribal/
social-distancing.html

amount of social media images generated during public health
crises.

Table 1
STATISTICS OF TWO PHPA APPLICATIONS
Application MWPA SDPA
Data Collection Time May, 2020 | May, 2020
# of Images 2,165 1,027
percentage of Adhering 75.4% 41.0%
percentage of Not Adhering 24.6% 59.0%

2) Crowdsourcing Settings: We utilize the widely used
crowdsourcing platform Amazon Mechanical Turk (AMT) 3 to
recruit crowd workers in our experiments. To ensure the anno-
tation quality, we set two requirements for the crowd workers
to participate in our task: 1) the crowd worker has finished at
least 1000 approved tasks, and 2) the overall approval rate of
the worker is greater than 95%. In our experiment, we recruit
479 crowd workers for MWPA application and 232 crowd
workers for the SDPA application. The average annotation
accuracy of the recruited crowd workers are 92.8% and 80.9%
on the MWPA and SDPA applications, respectively. We pay
a crowd worker $0.05 for each annotation task of an image.
The IRB approval has been granted for all protocols in this
project.

B. Baselines and Experimental Settings

We compare CrowdDesign with a rich set of state-of-the-art

baselines for PHPA tasks, which include:

1) Deep Neural Network (DNN):

e ResNet [38]: a convolutional network framework that
imposes residual block architecture to improve the overall
performance of image classification.

o DenseNet [39]: a densely connected convolutional neural
network that leverages cross-layer connections to boost
visual feature representation in image classification.

e« VGG [40]: a popular neural network that leverages
stacked deep convolutional network layers to ensure de-
sirable network complexity for image classification tasks.

e P>M>F [33]: a transformer-based few-shot learning
pipeline that achieves accurate and robust classification
by incorporating pre-training on external data, meta-
training with few-shot tasks, and task-specific fine-tuning.

o Robust CLIP [34]: an unsupervised adversarial fine-
tuning approach to enhance the robustness of the CLIP
vision encoder, which yields robustness on various zero-
shot vision classification tasks.

2) Crowd-Al Hybrid Learning:

o Deep Active [14]: an active learning method that selects
a subset of data samples for crowd labeling and leverages
the crowd labels to retrain the Al model to improve the
overall PHPA classification performance.

¢ CrowdLearn [15]: a crowd-Al hybrid framework that
leverages crowdsourced human intelligence to trou-
bleshoot AI models and improve the overall application
performance.

3https://www.mturk.com/
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e LL4AL [16]: a crowd-AlI collaborative method that uti-
lizes a crowdsourcing uncertainty-aware deep estimation
model to identify and fix Al failure cases in image
classification.

e CrowdOptim [10]: A crowd-Al hybrid framework lever-
ages crowdsourced human intelligence to optimize the
hyperparameter configuration of a pre-selected network
architecture.

e CrowdNAS [8]: A crowd-guided neural architecture
searching framework utilizes crowd intelligence to iden-
tify the optimal neural architecture with pre-configured
hyperparameters through the maximum likelihood esti-
mation.

3) AI Model Design:

« DEHB [22]: a widely used Al model design framework
that introduces a non-stochastic infinite-armed bandit-
based strategy to improve the convergence speed of the
Al model optimization process.

« BOHB [41]: a representative Al model design scheme
that leverages the Bayesian optimization scheme to opti-
mize Al model design.

o MnasNet [26]: a lightweight Al model design approach
that introduces a factorized hierarchical AI model design
searching process through a multi-objective reinforce-
ment learning scheme.

To ensure a fair comparison, we use the same input to all
compared baselines: 1) the images collected from the PHPA
applications; 2) the ground-truth labels for the PHPA images in
the training and validation sets; 3) the labeled PHPA images
from crowdsourcing query. Specifically, we use the queried
crowd labels to fine-tune the DNN and AI model design
baselines so that all compared schemes have the same inputs
and the performance of compared baselines is optimized. In
the experiments, our CrowdDesign framework and compared
baselines are implemented using PyTorch 1.1.0 libraries and
trained on NVIDIA Quadro RTX 6000 GPUs. For DNN and
crowd-Al baselines, we leverage widely used pre-configured
Al model designs and further optimize the parameters of each
compared scheme on the training and validation datasets. For
Al model design baselines, we follow the standard practice in
Al model optimization to optimize the AI model design using
the training and validation datasets [4].

Following a standard AI model design process [6], [9], we
set network architecture search space in our experiments to
include 1) the types of the convolutional block to be residual
block or dense block, 2) the number of convolutional layers per
block to be between 1 and 36, 3) the width of the convolutional
block to be between 2! and 27, 4) the growth rate to be
between 32 and 48, and 5) the size of input features to be
between 64 and 96. We also consider the hyperparameter
configuration search space in the experiments to include 1)
the learning rate to be between 1076 and 1073, 2) the weight
decay to be between 0 and 103, 3) three candidate optimizers
inclining SGD, RMSprop, and ADAM, 4) the conditional
parameters of SDG momentum, RMSprop alpha, Adam betal,
and Adam beta2 to be between 0.8 and 1.0, and 5) the number
of epochs to be between 30 and 150 in our experiments.

In our evaluation, we leverage four evaluation metrics that
are widely used in image classification tasks with imbalanced
data: 1) Accuracy (Acc), 2) Fi-Score, 3) Kappa Score (K-
Score), and 4) Matthews Correlation Coefficient (MCC). We
include KC-Score and MCC because both MWPA and SDPA
datasets are imbalanced, and K-Score and MCC are shown to
be reliable in evaluating the imbalanced classification perfor-
mance. Higher values on these metrics represent better PHPA
classification results.

C. Experimental Results

1) Classification Performance on Mask Wearing Policy Ad-
herence: We first evaluate the classification performance of
all compared schemes on assessing the mask wearing policy
adherence. In particular, we set the query ratio of human
intelligence to be 10% and the number of crowd workers per
task in the crowdsourcing query to be 5. We will investigate the
impact of different crowdsourcing query ratios and the num-
bers of crowd workers of our CrowdDesign in Section V-C3.
We summarize the evaluation results in Table II. We observe
that CrowdDesign clearly outperforms all compared baselines
on all evaluation metrics. For example, the performance gains
of CrowdDesign compared to the best-performing baseline
(i.e., CrowdNAS) on Accuracy, F1-Score, K-Score, and MCC
are 3.93%, 2.78%, 9.14%, and 9.26%, respectively. Such per-
formance improvements are mainly achieved by our principled
subject logic-based AI model design framework that jointly
utilizes the Al and human intelligence to identify the optimal
Al model design instance that can accurately assess mask
wearing policy adherence in PHPA.

Table 11
PERFORMANCE ON MASK WEARING POLICY ADHERENCE

I Evaluation Metrics

Algorithm ‘ ‘ Acc Sl;l);e KC-Score MCC
ResNet ‘ ‘ 0.7875 0.8563 0.4497 0.4509
DenseNet || 0.7737 0.8444 04310 0.4346
VGG || 0.7552 0.8127 0.4820 0.5311
P>M>F H 0.8199 0.8863 0.4580 0.4714
Robust CLIP || 0.8037 0.8522 0.5751 0.6231
Deep Active || 0.8106 0.8735 0.4974 0.4975
CrowdLearn || 0.8083 0.8693 0.5109 0.5135
LL4AL || 0.7945 0.8548 0.5079 0.5201
CrowdNAS ‘ ‘ 0.8637 0.9088 0.6395 0.6398
CrowdOptim || 0.8591 0.9051 0.6318 0.6327
DEHB || 0.8406 0.8885 0.6119 0.6228
BOHB || 0.8476 0.8918 0.6381 0.6557
MnasNet || 0.7829 0.8454 0.4874 0.5020
CrowdDesign || 0.9030 0.9366 0.7309 0.7324
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2) Classification Performance on Social Distancing Policy
Adherence: Secondly, we evaluate the classification perfor-
mance of all compared methods in assessing social distancing
policy adherence. Compared to the MWPA application, we
have a different application objective in SDPA that focuses
on identifying whether people in an image maintain social
distance or not in public areas. In particular, we also set the
crowdsourcing query ratio to be 10% and the number of crowd
workers per task in the crowdsourcing query to be 5. We
summarize the evaluation results in Table III. We note that
CrowdDesign consistently surpasses all compared methods in
terms of the performance on accurately assessing the social
distancing policy adherence. The consistent performance gains
achieved by CrowdDesign over two diversified PHPA applica-
tions (i.e., MDPA and SDPA) demonstrate the adaptability of
CrowdDesign to identify optimal Al model design instance in
PHPA applications with different objectives.

Table III
PERFORMANCE ON SOCIAL DISTANCING POLICY ADHERENCE

[ Evaluation Metrics

Algorithm ‘ ‘ Acc Sl;l);e K-Score ~ MCC
ResNet ‘ ‘ 0.6829 0.6524 0.3664 0.3729
DenseNet ‘ ‘ 0.7220 0.6545 0.4220 0.4222
VGG ‘ ‘ 0.6439 0.6605 0.3218 0.3577
P>M>F ‘ ‘ 0.6829 0.6632 0.3730 0.3844
Robust CLIP ‘ ‘ 0.7317 0.7027 0.4620 0.4685
Deep Active H 0.7122 0.6424 0.4017 0.4019
CrowdLearn ‘ ‘ 0.6878 0.6559 0.3751 0.3810
LL4AL ‘ ‘ 0.6780 0.6916 0.3858 0.4269
CrowdNAS ‘ ‘ 0.7512 0.6222 0.4528 0.4842
CrowdOptim H 0.7115 0.6015 0.4291 0.4633
DEHB ‘ ‘ 0.6683 0.6822 0.3672 0.4063
BOHB ‘ ‘ 0.7317 0.6746 0.4464 0.4464
MnasNet ‘ ‘ 0.6927 0.6631 0.3859 0.3927
CrowdDesign || 0.7854 0.7660 0.5719 0.5830

3) Robustness of CrowdDesign on Different Crowdsourcing
Settings: Third, we perform the robustness study to evaluate
the performance of CrowdDesign on both MWPA and SDPA
applications across different crowdsourcing settings. In partic-
ular, we change the crowdsourcing query (CQ) ratio J in both
applications from 5% to 25% and change the number of crowd
workers per task C' from 3 to 7. We compare the performance
of CrowdDesign with the best-performing baselines in each
category of compared baselines (i.e., ResNet, CrowdNAS, and
BOHB for MWPA application, DenseNet, CrowdNAS, and
BOHB for SDPA application). We summarize the evaluation
results in Figure 4. We note that the performance of Crowd-
Design is stable and clearly outperforms the best-performing
baselines in both applications when the crowdsourcing query
ratio ¢ and the number of crowd workers per task C' change.

The results show the robustness of our CrowdDesign scheme
in addressing the optimal AI model design instance problem
in PHPA applications over different crowdsourcing settings,
especially when dealing with data-scarce scenarios with only
a limited amount of crowd annotation data.
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Figure 4. Robustness of CrowdDesign

4) Convergence of CrowdDesign: Fourth, we study the
convergence of CrowdDesign by tracking its performance over
different iterations during the iterative subjective logic learning
process (discussed in Section IV-B). The results are shown
in Figure 5. We observe that the performance of CrowdDe-
sign, measured by various evaluation metrics, converges to
optimized values quickly and remains stable afterward for
both MWPA and SDPA. Such performance indicates that our
principled subjective logic framework is effective in terms of
obtaining optimized AI model designs. Additionally, the fast
convergence rate demonstrates the efficiency and scalability of
our CrowdDesign scheme in real-world PHPA applications.

5) Performance Comparisons between OAMD Optimization
and Al Model Retraining: Finally, we conducted experiments
to compare the performance between our CrowdDesign that
leverages crowd-labeled data for OAMD optimization and the
version that leverages the crowd input data for model retrain-
ing (we refer to it as Crowd Retraining). In particular, we
compared the performance between CrowdDesign and Crowd
Retraining using the same set of crowd-labeled data from
crowdsourcing queries. In addition, to ensure a comprehensive
evaluation, we varied the crowdsourced query (CQ) ratio in
both applications from 5% to 25% and changed the number
of crowd workers per task (C) from 3 to 7, as we did in the
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Figure 5. Convergence of CrowdDesign

other evaluation comparisons. We show the evaluation results
in Figure 6. We note that our CrowdDesign, which effectively
utilizes the crowd labels to optimize the Al model, consistently
outputs the Crowd Retraining scheme that leverages the crowd
labels for retraining when the CQ ratio or crowd worker per
task varies. The evaluation results validate the assumption of
our paper that efficiently leveraging the crowd-labeled data for
OAMD optimization ensures desirable PHPA performance.
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Figure 6. Comparison between Crowd Retraining and Model Optimization

VI. DISCUSSIONS
A. Limitations and Challenges of CrowdDesign

In this subsection, we discuss a few limitations and chal-
lenges of CrowdDesign that could offer insights for fu-
ture research directions. First, the reliance on crowdsourced
human intelligence within CrowdDesign introduces inherent
challenges due to the variability in data quality from the
crowd, which can significantly affect the model’s accuracy and

reliability. The crowdsourced data quality can be influenced by
factors like the clarity of task descriptions, participant motiva-
tion, and the design of incentive structures. To mitigate these
risks, the framework includes a comprehensive onboarding
process for new contributors that features interactive tutorials
and example tasks, which clarify expectations and demonstrate
successful task completion strategies. Continuous engagement
strategies are also deployed, including a tiered reward system
where contributors can achieve different levels of certification
and bonuses for consistent high-quality submissions. Further-
more, CrowdDesign incorporates a robust anomaly detection
system that identifies and investigates any sudden changes in
data quality, which could indicate issues with task understand-
ing or engagement. This proactive approach not only maintains
the integrity of the input data but also enhances contributor
performance over time by aligning their efforts more closely
with the framework’s objectives.

Scalability is a critical aspect of CrowdDesign, especially
given the potential for exponential growth in data volume
and the complexity of Al model design spaces. CrowdDesign
can be engineered on a modular cloud-based architecture that
can elastically scale up or down according to real-time de-
mands, ensuring efficient handling of large-scale data without
sacrificing processing speed or system stability. To enhance
scalability, CrowdDesign can be integrated with Amazon EC2
for dynamic resource allocation and Google Kubernetes En-
gine (GKE) to orchestrate containerized Al models, promoting
seamless scalability and efficient resource management across
distributed environments. For managing the complexity of the
Al model design space, CrowdDesign employs a decompo-
sitional approach where the overall problem is segmented
into smaller and discrete components that can be solved
independently in parallel pipelines. In particular, the JASR
module in CrowdDesign can be further scaled up by utilizing
parallelized budget-constant non-stochastic multi-armed bandit
(BNMB) model. This ensures that the search space can be
segmented into a set of subspaces for parallel search of
the Al model design search space, enhancing the scalability
of CrowdDesign to large-scale datasets while ensuring that
individual segments of search spaces collectively contribute
to globally optimized AI model optimization results. This
approach not only facilitates more manageable processing
loads but also allows for specialized optimization techniques
to be applied to different segments of the design space. Each
segment incorporates machine learning algorithms optimized
for specific types of data and tasks, ensuring that the system
remains robust even as the complexity and size of the data
grow.

We are working on sequentially stacked convolutional
blocks because they are well-suited for analyzing social media
images in public health policy adherence assessments [42].
These blocks efficiently extract image features that capture
key patterns such as mask-wearing or social distancing be-
haviors in PHPA applications. Their low computational cost
and efficient implementation make them ideal for processing
diversified and complex image datasets from social media.
However, we also recognize the potential for improving model
performance by extending our approach to more advanced
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architectures, such as transformers, which are particularly
effective at capturing long-range dependencies and contex-
tual information in complex visual data. The CrowdDesign
framework, while initially focused on convolutional blocks,
can be extended to explore transformer architectures through
recent advances in neural architecture search (NAS). Current
research in NAS for transformers, such as the work on
AutoFormer and Evolved Transformer [43], demonstrates how
automated search methods can optimize the configuration of
multi-headed attention mechanisms, the number of layers, and
tokenization strategies in transformer models. By integrating
the transformer architecture search space introduced these
NAS techniques to our JASR module, we can build upon
the flexibility of the CrowdDesign framework to automati-
cally discover optimal transformer architectures tailored to the
public health policy adherence tasks. This would allow us to
explore the space of attention-based architectures systemati-
cally, while maintaining computational efficiency through our
budget-constrained multi-armed bandit learning framework,
enabling us to incorporate state-of-the-art transformers and
further enhance model performance for our target applications.

B. CrowdDesign’s Applicability in Al-driven Applications

The CrowdDesign framework, primarily developed for pub-
lic health policy adherence in our paper, has a broad ap-
plicability across diverse application domains. This versatile
approach integrates crowdsourced human intelligence with an
advanced Al model design framework, making it ideal for
domains requiring Al model optimization based on diversified
input data and user feedback. Below, we illustrate its potential
through applications in recommendation systems and intelli-
gent transportation systems (ITS), showcasing its adaptability
to other Al-driven applications. For example, in the domain
of recommendation systems, the CrowdDesign framework
integrates a sophisticated design that captures both quantitative
metrics such as purchase rate, viewing duration, and user
engagement level (e.g., likes, shares, and comments) as well
as qualitative user feedback to continuously refine Al models.
This process is vital across various platforms, such as e-
commerce or media streaming services, where user satisfaction
directly influences business outcomes. Data scientists employ
the framework to analyze algorithmic outputs using objective
performance metrics, including click-through rates, conversion
rates, and user retention statistics. Simultaneously, end-users
contribute subjective feedback reflecting their personal experi-
ences, satisfaction, and the relevance of the recommendations
they receive. Crowd input plays a critical role in adjusting the
Al models within the framework, ensuring that the models
evolve in response to user feedback, which directly impacts the
accuracy and relevancy of the models’ outputs. By integrating
this real-time, user-generated data, CrowdDesign effectively
tailors the AI’s learning process, optimizing recommendation
systems to better align with current consumer preferences and
behaviors. This dual-input approach enables CrowdDesign to
transform disparate data points into a structured format using
its subjective logic mechanism: belief (derived from positive
user feedback and/or enhanced performance in quantitative

metrics), disbelief (primarily stemming from suboptimal re-
sults in quantitative metrics and/or negative use feedback),
and uncertainty (highlighting areas with insufficient data or
conflicting feedback). For instance, an e-commerce platform
might use CrowdDesign to fine-tune its product recommenda-
tion algorithms by assigning greater weight to user feedback
on product relevance, especially during peak shopping seasons.
This strategic integration of crowd feedback allows the Al
models to adapt more dynamically to changing market condi-
tions and user preferences, enhancing both the personalization
and effectiveness of the recommendations. Such dynamic
adjustment ensures that the recommendation algorithms are
not only adaptive but also responsive to real-time user behavior
and feedback, thus enhancing personalization and improving
user satisfaction.

In the domain of ITS, the CrowdDesign framework can
be applied in developing Al models for accurately predict-
ing traffic accident rates. This application benefits from the
CrowdDesign approach that integrates crowdsourced human
intelligence and data-driven Al insights to optimize the Al
model, enhancing the accuracy and reliability of traffic ac-
cident predictions, which are crucial for public safety and
urban planning. In particular, using CrowdDesign, traffic data
scientists can leverage the training data collected from quanti-
tative traffic metrics (e.g., vehicle speeds, traffic volume, and
weather conditions) from traffic sensors to effectively train
the initial AI model for traffic predictions. Meanwhile, the
onsite qualitative inputs from local authorities and commuters
(e.g., reports of hazardous road conditions, experiences of
traffic incidents, and feedback on traffic signal efficacy) can
be further leveraged by CrowdDesign to continuously optimize
the AI models, ensuring desirable prediction accuracy. These
combined insights are particularly valuable in dynamic envi-
ronments like urban traffic systems, where standalone sensor
data may not fully capture the subtleties and complexities
of real-world conditions. For example, while sensors can
report rain, crowdsourced feedback from drivers via mobile
apps can provide additional context about the actual road
conditions, such as the effectiveness of drainage systems and
the presence of unexpected obstacles like fallen branches.
Such information allows the model to dynamically adjust
the architecture and hyperparameters of the AI model for
more accurate predictions, incorporating both sensor data and
human observations. This significantly enhances the model’s
adaptability to nuanced situational changes with an updated
network architecture.

C. Feasibility and Implications of Using Social Media Im-
agery for PHPA

The utilization of social media imagery in our paper pro-
vides an innovative approach to PHPA by leveraging the
immediacy and vast scale of such data sources. Social media
platforms offer real-time, pervasive, and large-scale visual
data that reflect public behaviors and social trends [3]. This
immediacy and breadth are crucial in rapidly evolving situa-
tions, such as public health emergencies, where timely data
are essential for responsive decision-making. The feasibility
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of using social media data for PHPA is supported by ex-
isting literature that demonstrates the effective use of these
platforms for gathering real-time public health-related data.
For example, studies have shown that social media can be a
valuable source for tracking disease outbreaks, public senti-
ment towards health campaigns, and compliance with health
guidelines [18], [19]. These studies provide a foundation for
believing that social media imagery, which often contains
visual evidence of compliance such as mask-wearing or social
distancing, can similarly serve as a reliable indicator for
PHPA. In terms of the implications, the use of social media
allows for rapid, cost-effective data collection across diverse
geographic locations and communities, potentially leading to
more agile and informed public health responses. Moreover,
it offers a means to assess policy adherence passively with-
out necessitating intrusive methods or extensive manual data
collection. This approach not only enhances the speed and
breadth of data collection but also supports more dynamic
and immediate adjustments to public health policies based
on observed behaviors. Traditional PHPA techniques typically
include direct observation by health officials or trained volun-
teers who manually monitor and record adherence behaviors
in public or healthcare settings, and surveys or interviews
where individuals report their own or others’ adherence behav-
iors [44]. These methods, while providing high accuracy and
reliability, suffer from several limitations. Direct observation is
labor-intensive and can be intrusive, often limited to smaller,
more controlled population samples. Surveys and interviews
are prone to biases such as self-reporting bias and the so-
cial desirability bias, where respondents might not always
provide accurate information [2]. Those approaches are also
time-consuming and costly, making them less effective and
scalable for rapid response scenarios during health crises. In
contrast, our CrowdDesign approach harnesses the widespread
availability of social media data to overcome these challenges
by enabling broader and more agile PHPA assessments. It
effectively identifies the optimized Al model design to provide
desirable PHPA label estimations for the vast amount of real-
time social media imagery data. This allows for real-time
monitoring and assessment of public health policy adherence,
providing public health officials with timely insights that are
crucial during rapidly evolving health crises.

However, utilizing social media imagery for PHPA via the
CrowdDesign framework introduces specific technical chal-
lenges and ethical concerns. One of the primary technical
challenges is ensuring the quality and reliability of the data
extracted from social media. Social media platforms often
contain a high volume of unstructured and heterogeneous data,
which can vary significantly in quality and context. To address
this, CrowdDesign develops advanced image processing and
machine learning algorithms to filter and preprocess imagery
data effectively. These algorithms enhance data quality by
identifying and discarding irrelevant or low-quality images and
by normalizing the data to reduce variability introduced by
different user-generated content. Moreover, the representative-
ness of social media samples is another critical issue, as the
demographic distribution of social media users does not typ-
ically mirror that of the general population. This discrepancy

can introduce sample bias [45], potentially skewing the PHPA
outcomes. In CrowdDesign, we mitigate this bias through a
hybrid model that integrates data from multiple social media
platforms e.g., Twitter/X, Instagram, and Facebook/Meta, and,
when possible, combines this with traditional data sources
(e.g., healthcare surveys, official public health records, and
in-person observations at public venues). This integrated ap-
proach broadens the demographic coverage and enhances the
generalizability of the findings.

Ethical considerations in CrowdDesign are important, par-
ticularly regarding privacy and consent. Social media images
often contain personally identifiable information, posing sig-
nificant privacy concerns. To navigate these ethical waters,
CrowdDesign applies rigorous data anonymization techniques
(e.g., pixelation, blurring, and hashing of direct identifiers) and
advanced computer vision algorithms that include facial recog-
nition tools to detect and obscure faces or other identifiable
markers in images before they are processed. Additionally,
the framework adheres to strict data governance protocols
(e.g., the General Data Protection Regulation (GDPR) and the
California Consumer Privacy Act (CCPA)) that comply with
both ethical standards and legal requirements concerning user
data. CrowdDesign also addresses the ethical issue of consent
by deploying mechanisms that ensure only publicly available
images, where users have consented to broader visibility, are
harvested and utilized for analysis. Furthermore, the frame-
work features an ethical oversight module that continuously
reviews adherence to privacy standards and consent norms,
adjusting data collection and processing practices as needed
to align with evolving ethical guidelines and user preferences.

D. The potential of Using Labeled data for both OAMD
Optimization and Retraining

The potential of using labeled data for both OAMD opti-
mization and Al model retraining is vast and can be harnessed
to enhance the effectiveness and efficiency of Al systems.
OAMD optimization focuses on refining the configuration
of network architecture and hyperparameters. This approach
allows for quick adaptation of models without the need for ex-
tensive retraining, thereby conserving computational resources
and time. In contrast, retraining Al models with new, crowd-
sourced labeled data addresses different challenges, such as
adapting to concept drift in dynamic environments. This
continuous retraining helps improve the model’s accuracy and
robustness, as it learns from the most recent and diverse data,
which may introduce previously unseen features or classes. It
also helps in reducing overfitting by ensuring that the model
does not overly specialize to the noise or biases of a specific
dataset. Integrating these two approaches can synergistically
enhance Al system performance. For example, one could
employ a sequential integration where OAMD optimization
is used for immediate model refinement, followed by periodic
retraining to adapt to new data trends over time. Alternatively,
parallel integration could be applied where optimization and
retraining are conducted concurrently to ensure that the model
architecture and parameters are continuously fine-tuned while
its weights are adapted to the changing data landscape. Ad-
ditionally, a feedback mechanism could be beneficial, where
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insights from retraining sessions inform future OAMD pro-
cesses, creating a cycle that continuously refines and adapts the
model. However, integrating both strategies requires careful
consideration of challenges such as ensuring data quality and
diversity, managing increased computational demands, and
balancing the model’s specificity and generalization capabil-
ities. The integration of OAMD optimization and model re-
training, if properly implemented, can lead to the development
of robust, efficient, and adaptable Al systems that are better
suited to meet the evolving demands and complexities of real-
world applications. The key lies in finding the right balance
and integration strategy that satisfies the specific needs and
constraints of the operational environment.

VII. CONCLUSION

The paper introduces a CrowdDesign framework to solve
the optimal AI model design problem in PHPA applications.
In particular, our CrowdDesign develops a crowdsourcing-
driven AI model design scheme that leverages crowdsourced
human intelligence to identify the optimal Al model design
instance for a PHPA application. Our CrowdDesign effectively
translates the highly complex AI model design problem into
a simplified problem that can be solved by crowd workers
while considering the interdependence between the network
architecture and hyperparameter configuration in the Al model
design. Our CrowdDesign is shown to achieve the highest
PHPA accuracy compared to a broad set of baselines in two
real-world PHPA applications. We believe CrowdDesgin pro-
vides useful insights to develop novel crowdsourcing-driven Al
model design frameworks in addressing the optimal AI model
design problem in Al-driven applications beyond PHPA.
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