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Abstract
Multiscale geographically weighted regression (MGWR) extends geographically 
weighted regression (GWR) by allowing process heterogeneity to be modeled at 
different spatial scales. While MGWR improves parameter estimates compared to 
GWR, the relationship between spatial scale and correlations within and among 
covariates—specifically spatial autocorrelation and collinearity—has not been sys-
tematically explored. This study investigates these relationships through controlled 
simulation experiments. Results indicate that spatial autocorrelation and collinear-
ity affect specific model components rather than the entire model. Their impacts 
are cumulative but remain minimal unless they become very strong. MGWR effec-
tively mitigates local multicollinearity issues by applying varying bandwidths across 
parameter surfaces. However, high levels of spatial autocorrelation and collinear-
ity can lead to bandwidth underestimation for global processes, potentially produc-
ing false local effects. Additionally, strong collinearity may cause bandwidths to be 
overestimated for some processes, which helps mitigate collinearity but may obscure 
local effects. These findings suggest that while MGWR offers greater robustness 
against multicollinearity compared to GWR, bandwidth estimates should be inter-
preted with caution, as they can be influenced by strong spatial autocorrelation and 
collinearity. These results have important implications for empirical applications of 
MGWR.
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1  Introduction

Spatially heterogeneous processes may vary from location to location in their mag-
nitude and nature. Several strategies have been proposed to capture this spatial non-
stationarity using local models because traditional global models are likely to pro-
duce misleading results when processes are not stationary. Previous efforts placed 
these strategies into two categories (Wolf et al. 2018). The first category includes 
those that typically capture heterogeneity using predefined scales and a relatively 
small number of discrete areal units or groups at different scales, such as spatial 
regimes models and hierarchical multilevel models (Banerjee et  al. 2014; Anselin 
1988). In contrast, the second category includes geographically weighted regression 
(GWR), eigenvector spatial filter regression, and Bayesian spatially varying coef-
ficients models, which typically capture continuous spatial heterogeneity across a 
larger number of locations and allow for scales to be selected as part of model fit-
ting (Fotheringham et al. 1998; Gelfand et al. 2003; Griffith et al. 2019). However, 
it should be noted that this dichotomy is becoming blurred with recent innovations 
to endogenously select spatially grouped clusters that can express heterogeneity and 
efforts to combine or blend models from each category (Anselin and Amaral 2023; 
Sugasawa and Murakami 2021; Hu et al. 2022). This signals a growing acceptance 
of the notion that spatially heterogeneous processes may come in many different 
forms and that data-driven techniques can help capture the often multiscale and 
complex spatial structure that characterizes these processes.

Of the now numerous local modeling methods, GWR and its multiscale exten-
sion, multiscale GWR (MGWR), have emerged as one of the most widely used 
approaches, perhaps due to its relative conceptual and technical simplicity, as well 
as a suite of accompanying diagnostic tools and accessible software (Fotheringham 
et al. 2017; Yu et al. 2020a;  Fotheringham et al. 2003). Using a spatial kernel func-
tion, observations are weighted based on their relative proximity to a set of cali-
bration locations to create local samples and estimate an ensemble of local models. 
The simplicity of this mechanism has also led to critiques. For example, D. Wheeler 
and Tiefelsdorf (2005) suggest that GWR is highly susceptible to multicollinearity 
issues. In response, additional experiments by Páez et al. (2011) and Fotheringham 
and Oshan (2016) demonstrated that collinearity is less of an issue in GWR when 
sample sizes are relatively larger. In retrospect, these results are not surprising, and 
it is clear that small samples (i.e., less than several hundred) are inappropriate for a 
GWR analysis. Compared to the overall sample, any geographically weighted local 
sample will necessarily have less variation and smaller effective sample size, a trend 
that will be exacerbated by the use of increasingly smaller bandwidth values (narrow 
adaptive kernel). It is easy to quickly run into ‘micronumerosity’ (Goldberger 1964; 
1991). Increasing the overall sample size can increase the initial variation in the data 
before weighting and may also increase the relative bandwidth size.1This generally 

1  This discussion is especially relevant in the context of the adaptive kernel, the most commonly 
employed kernel in the GWR family. The adaptive kernel is characterized by the number of nearest 
neighbors utilized for local calibration around each focal observation. Similar principles apply to the 
fixed kernel scenario, where the bandwidth is determined by the distance to each focal observation. 
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produces less correlated local samples and reduces the likelihood of selecting very 
small bandwidths, making each local regression more robust to any potential issues; 
however, it may not be possible to increase the sample size without extending the 
study area and reframing the underlying process being modeled, such as when sam-
ples are attached to administrative units or grid cells.

Nevertheless, this does not mean that multicollinearity may never be problem-
atic in GWR, and it is certainly possible to find higher or lower levels in the local 
samples compared to the total sample of observations. Many of the same tools 
exploited in traditional global regression modeling have been proposed to diagnose 
and deal with excessive collinearity. Diagnostics such as the condition number, vari-
ation inflation factors, correlation coefficients, and variance decomposition propor-
tions have all been extended to examine local collinearity in GWR (Wheeler and 
Tiefelsdorf 2005; Wheeler 2010). These should be used as part of standard prac-
tice, keeping in mind that decisions based on them, such as removing variables, are 
themselves based on rules-of-thumb rather hard-and-fast cutoffs and each applica-
tion still requires judgment calls based on acceptable levels of uncertainty, sample 
size, number of covariates, and prior knowledge of the processes being modeled. 
Another approach that has been proposed is to extend penalized regression tech-
niques, such as ridge, LASSO, or elastic net to the case of GWR (Wheeler 2009, 
2006; Li and Lam 2018). However, these techniques are more complex and compu-
tationally intensive when combined with GWR and may have their own challenges 
for interpreting parameter estimates. In contrast, Fotheringham et al. (2016) suggest 
using a GWR-specific correction for multiple dependent hypothesis tests and mask-
ing cases where the null cannot be rejected to avoid mistakenly interpreting them 
as part of any potential spatial patterns in the surfaces of parameter estimates. They 
demonstrate that overall, the risk from collinearity is an elevated number of false 
positive tests rather than false negative tests.

Another lesson in hindsight is the importance of considering multiple scales. 
In GWR, each explanatory variable is typically weighted using a kernel function 
parameterized by the same bandwidth parameter (i.e., the spread of the kernel func-
tion). When the bandwidth parameter is selected using a bias-variance trade-off, it 
can be interpreted as the scale of the modeled process (Fotheringham et al. 2022). 
Furthermore, the single bandwidth in GWR is selected to optimize this trade-off 
across all covariates and will tend toward smaller bandwidths when one or more 
local processes are detected to minimize bias (Yu et al. 2020b). The result is that 
more smoothing is applied than is necessary for some covariates in the model and 
this may contribute to the level of collinearity found in local samples. MGWR 
can alleviate this by allowing a separate bandwidth to be selected for each covari-
ate. Without the need to use one ‘compromise’ bandwidth, each bandwidth is less 
restricted in characterizing the spatial scale at which its corresponding process is 
operating, which means that some bandwidths may be global (i.e., little-to-no 

Although increasing the sample size should not affect the bandwidth, it does result in a larger sample size 
for each local regression.

Footnote 1 (continued)
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smoothing), some are regional, and others remain small. In this context, Oshan 
et al. (2020) report a decrease in the local condition number for MGWR compared 
to GWR in an empirical application. These results, along with others, are giving 
way to conventional wisdom regarding the judicious application of GWR, which 
includes using a global model and then MGWR as a starting point rather than GWR 
and using local collinearity diagnostics (Fotheringham 2023; Oshan 2023; Fother-
ingham et  al. 2023). Nevertheless, it is still not clear how scale, as measured by 
bandwidth, impacts collinearity and vice versa. While it is understood that multiple 
scales can reduce local collinearity, it is important to also understand if collinearity 
can affect bandwidth selection since the latter is a key model output with practical 
implications for the measurement of process scale.

Additionally, in contrast to classic regression models that ignore the spatial clus-
tering of processes, spatial models such as MGWR anticipate and leverage such 
structure. In practice, most spatial variables demonstrate some level of positive spa-
tial autocorrelation with similar values clustering in space. This creates the opportu-
nity for local models to obtain local samples that are pockets of very similar values 
with little variation even though the overall sample might display substantial varia-
tions. If two variables are both spatially autocorrelated and globally collinear (i.e., 
overall pattern), their local samples are more likely to be very similar, leading to 
exacerbated collinearity in those local samples. Though the role of spatially cor-
related covariates has been previously investigated in GWR in the context of local 
parameter estimates (Murakami et al. 2017; Geniaux and Martinetti 2018), it is not 
understood how this type of correlation may or may not interact with multicollinear-
ity and scale in MGWR.

This paper therefore studies the relationships between (M)GWR model accuracy, 
spatial scale, and two types of correlation—collinearity between covariates and 
spatial autocorrelation in covariates—which has yet to be investigated systemati-
cally. The results suggest that both types of correlations have a negligible effect on 
MGWR performance until they become very strong, and their impacts are cumu-
lative. Overall, MGWR is better at alleviating any potential local multicollinearity 
issues than GWR due to the varying scales estimated for different parameter sur-
faces. Two additional insights were obtained regarding scale. First, very high lev-
els of spatial autocorrelation and collinearity may potentially contribute toward 
the underestimation of scale for certain processes, typically those with the lowest 
level of spatial heterogeneity (including the intercept), potentially falsely identifying 
local effects. Second, high levels of collinearity may contribute to the misidentifica-
tion of anticipated scales. In some cases, when the true process is spatially varying, 
collinearity may lead the bandwidth to be overestimated, which can help mitigate 
issues associated with high collinearity but may also lead to difficulty identifying 
local effects. In other cases, when the true process is constant, collinearity may lead 
the bandwidth to be underestimated but is not problematic for accurately estimating 
coefficients unless collinearity becomes high.

The remaining sections of the paper are organized as follows. Section  2 intro-
duces the GWR and MGWR models. Section 3 describes the design of the two sets 
of simulation experiments for a systematic investigation of the interplay between 
collinearity, spatial autocorrelation in covariates, and spatial scales in MGWR and 
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GWR. Results from the simulation experiments are given in Sect.  4, and finally, 
implications of the results and conclusions are discussed in Sect. 5.

2 � Local spatial modeling: GWR and MGWR​

GWR and MGWR are extensions of the classic multiple linear regression model 
where the expectation of the outcome or response variable is a linear combination 
of covariates. These two local spatial models explicitly address process spatial het-
erogeneity and allow the parameters to be spatially varying by exploiting the spatial 
dependence structure across observations. They can be formalized as

where a total of m explanatory variables are used in the regression model, yi is the 
response variable, and �i is the random noise at location i , xij is the value of the j th 
explanatory variable at location i and βij is the associated coefficient (i.e., j th coef-
ficient at location i ) free to vary geographically. For GWR, the spatial heterogeneity 
of the regression coefficients is achieved by calibrating a weighted ordinary least 
square (OLS) model for each location using spatial weights determined by a spatial 
kernel and with a bandwidth optimized using cross-validation or the minimization 
of a model fit statistic (e.g., AICc) during the model calibration process. One of the 
most widely used kernels, the adaptive bisquare kernel, which is also used here, is 
defined as

This kernel operationalizes the bandwidth ( b ) as the number of nearest neighbors 
used for calibration for each location. Gi is the distance from the location i to its 
b th nearest neighbors and the spatial weight between locations i and h is negatively 
associated with the distance between these two locations. In GWR, the same band-
width ( b ) is used for constructing the spatial weights for all the covariates, therefore 
assuming that all the modeled relationships operate at the same spatial scale.

MGWR relaxes the assumption of a single scale for all the modeled processes 
and allows each coefficient βj to have a separate bandwidth (i.e., b0, b1, b2,… , bm ). 
The bandwidths are estimated in the model calibration process and are interpreted as 
the spatial scale at which the conditional relationship (or spatial process) operates. 
The smaller the bandwidth, the more localized the spatial process and vice versa. 
MGWR model estimation is operationalized using a generalized additive model 
(GAM) and a backfitting algorithm to calibrate each relationship iteratively (Foth-
eringham et al. 2017). Inference about each surface of local parameter estimates can 
then be adjusted for multiple dependent hypothesis tests based on the associated 

(1)yi =

m∑
j=0

βijxij + εi
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bandwidth (Yu et al. 2020a) in order to more flexibly discern patterns from noise 
in the surfaces of local parameter estimates. It is also possible to conduct Monte 
Carlo tests on the significance of the spatial variability of each surface (Fothering-
ham et al. 2002) and construct 95% confidence intervals on the bandwidth estimates 
(Li et al. 2020).

3 � Experimental design

3.1 � Data generating process

The data generating process (DGP) utilized followed an MGWR-like regression 
specification that incorporates two covariates ( X1 and X2 ), one intercept parameter 
( β0 ), and two slope parameters ( �1 and �2 ). The three parameters are configured to 
potentially include varying levels of spatial heterogeneity. The DGP is formally 
defined as

where the error term follows a normal distribution centered at 0 
(
� ∼ N

(
0, �2I

))
.

The two covariates are spatially configured to exhibit varying levels of spatial 
autocorrelation and varying degrees of collinearity with one another. After describ-
ing two sets of known parameter surfaces, methods for generating collinear and spa-
tially autocorrelated covariates are outlined.

3.2 � True parameter surfaces

Two sets of parameter surfaces were employed, which differ in sample size and 
degree of spatial heterogeneity. The first is identical to the true surfaces used in the 
initial MGWR simulation experiments in Fotheringham et al. (2017) with the first 
two surfaces swapped to make sure second and third parameter surfaces exhibit 
a greater difference in the level of spatial heterogeneity (top row of Fig.  1). This 
adjustment allows the intercept to be more thoroughly investigated, which is impor-
tant due to the unique role it plays in a MGWR model. These surfaces are configured 
in a (25, 25) regular lattice and range in values from 1 to 5. Though the second sur-
face is constant across space and represents a global process, the other two surfaces 
vary across space at different scales, with �0 demonstrating a lower level of spatial 
heterogeneity (the rate of change over space is lower) and �2 demonstrating a higher 
level of spatial heterogeneity (the rate of change over space is higher). Additionally, 
the original scenario was considered in which the intercept surface is constant fol-
lowing Fotheringham et al. (2017) (Fig. S1), which serves as a point of comparison 
for the first simulation experiment.

The second set of parameter surfaces follows the design of Fotheringham 
and Oshan (2016) which was used to previously study multicollinearity and 
GWR. As shown in the bottom row of Fig. 1, these surfaces have a larger sam-
ple size and are based on a (50, 50) regular lattice. Though the intercept surface 

(3)yi = �i0 + �i1xi1 + �i2xi2 + �i
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possesses the lowest level of perceived spatial pattern heterogeneity, it actually 
has a much wider overall range of values, producing the highest relative level of 
spatial heterogeneity among the three surfaces.

3.3 � Spatially autocorrelated covariates

To simulate realistic covariates that follow Tobler’s first law of geography, “Eve-
rything is related to everything else, but near things are more related than distant 
things” (Tobler 1970), a first-order spatial autoregression specification was used 
and is defined as

which can be rewritten in reduced form as

where � ∈ (−1, 1) is the spatial autoregressive parameter representing the strength 
of spatial dependence, � is a white noise vector 

(
� ∼ N

(
0, σ2

1
I
))

 assumed to follow 
a normal distribution,  I is a (n, n) identity matrix with 1’s on the diagonal and 0’s 
elsewhere, and W is the (n, n) row-stochastic spatial weight matrix expressing inter-
actions across spatial units. Queen contiguity was used for W such that any polygons 
that share a common edge or vertex are considered neighbors.

(4)X = �WX + �

(5)X = (I − �W)−1�

Fig. 1   Two different sets of true parameter surfaces for the simulation experiment-based varying patterns 
and sample sizes



	 W. Kang, T. M. Oshan 

3.4 � Two types of correlation: spatial autocorrelation and collinearity

The two covariates used in the DGP are constructed to potentially have both spatial 
autocorrelation and collinearity. After simulating the first explanatory variable ( X1 ) 
using the spatial autoregressive model in Eq. (5), the same formula is also used to 
generate an intermediate variable Z . Then, the second explanatory variable ( X2 ) is 
simulated using Z so that both explanatory variables will be approximately corre-
lated with a set level denoted by a given Pearson’s r value, as well as spatially auto-
correlated at the same level ( ρ ). The complete process is formulated as

The two error terms �
1
 and �

2
 are independent and each follows a standard normal 

distribution ( N(0,1) ). Values of � for spatial dependence and r for bivariate correla-
tion were both allowed to take on values of {0, 0.5, 0.8, 0.85, 0.9, 0.95}.2 It should 
be noted that the spatial autoregressive coefficient � used in the DGP is not equiv-
alent to Moran’s I statistic though they are positively associated.3 The restriction 
of a consistent spatial autocorrelation level for the two covariates can be relaxed in 
the scenario where there is a lack of global collinearity between the two covariates, 
resulting in different values of � for X1 and X2 . This design helps disentangle the sole 
impact of spatial autocorrelation.

The generated covariates ( X1 and X2 ) were standardized before being used within 
the DGP in Eq.  (3) to make sure the optimal bandwidths estimated from MGWR 
reflect only the spatial scale at which each process is operating. For each combina-
tion of parameters, 100 simulations were generated using a normally distributed ran-
dom error with a mean of 0 and a standard deviation ( � ) of 1.5 for the smaller sam-
ple and 0.5 for the larger sample scenarios. This gives rise to two different average 
levels of signal-to-noise ratio (SNR) resembling a pseudo-R2 (defined as 1 minus 
the ratio of noise variance ( �2 ) to signal variance ( Var(X�) ), which are 0.87 and 
0.221, respectively. An MGWR model and a GWR model were calibrated for each 
simulated realization. For the smaller sample size case, an additional simulation 
experiment was carried out with a larger standard deviation of the error term (i.e., 
2.5) to incorporate a higher level of random noise and thus a smaller level of SNR 

(6)

X
1
= (I − �W)−1�

1

Z = (I − �W)−1�
2

X
2
= rX

1
+
√
1 − r2Z

2  Smaller values, such as 0.1, 0.2, 0.3, and 0.4, were tested for both the spatial autoregressive param-
eter and the bivariate correlation. Since these small values had a negligible effect on the performance of 
GWR and MGWR, only results for larger values were reported. Additionally, an extreme value of 0.99 
was included in the initial experiments. However, these cases resulted in highly pathological scenarios 
unsuitable for any realistic application and indeed lead to numerous local optima, making convergence of 
the MGWR calibration algorithm unlikely. As a result, this value was excluded from the paper.
3  While the spatial autoregressive term ρ in the DGP and Moran’s I on the generated spatial patterns is 
positively associated (Pearson’s correlation coefficient = 0.93), the latter is smaller (Moran’s I is about 
67% of ρ). As shown in Fig. S2, 0.8 is correspondent to a 0.5 estimate of Moran’s I for the scenario of 
(25,25) regular lattice and queen contiguity weights.
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(i.e., 0.636). Model calibration and inference were carried out using the open-source 
Python package—PySAL/mgwr version 2.2.1 (Oshan et al. 2019).

3.5 � Evaluation criteria

One of the primary objectives of this study is to understand the link between the 
estimation of spatial process scale and the two types of correlations (spatial autocor-
relation and bivariate collinearity). Therefore, an examination of the optimal band-
widths estimated from MGWR (i.e., b0, b1 , and b2 ) and GWR (i.e., b ) will first be 
conducted and compared with the levels of spatial heterogeneity observed in the true 
parameter surfaces.

The ability of GWR and MGWR to recover the true parameter surfaces is meas-
ured with two relative metrics. The first metric relies on the root-mean-squared error 
(RMSE), which compare the estimates with the known parameters for each realiza-
tion. For each parameter ( βj) and realization ( s ), RMSEsj is calculated as follows:

where n is the number of observations and 𝛽sij is the estimate of parameter �j for 
the ith observation in the s th realization. The relative metric rRMSE is defined in 
Eq. (8) as the ratio of the average RMSE for the scenario under investigation (e.g., 
� = 0.9, r = 0.8) to the average RMSE obtained for the reference scenario (i.e., 
� = 0, r = 0) for MGWR and GWR, respectively. This metric yields a value of 1 
for the reference scenario and is expected to increase as either correlation grows. 
Assessing how well GWR and MGWR can produce lower magnitudes of this metric 
provides insight into their ability to address increasing correlation.

The other relative metric, the mean absolute percentage error (MAPE), measures 
the accuracy of a model’s parameter estimations in percentage terms and is defined 
in Eq. (9):

This metric ranges from 0 to 100, and a smaller value indicates a more accurate 
prediction/recovery of the parameter surface and vice versa.

A local multicollinearity diagnostic, namely, the local condition number, is 
used to detect potential local multicollinearity issues in GWR and MGWR (D. C. 

(7)RMSEsj =

√√√√1

n

n∑
i=1

(
𝛽ij − 𝛽sij

)2

(8)rRMSE =

1

3

1

100

∑2

j=0

∑100

s=1
RMSEsj

1

3

1

100

∑2

j=0

∑100

s=1
RMSEsj(� = 0, r = 0)

(9)MAPEsj = 100
1

n

n∑
i=1

||||||
𝛽ij − 𝛽sij

𝛽ij

||||||
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Wheeler 2006)4. This diagnostic relies on the singular-value decomposition (SVD) 
of the design matrix X for each location i . For each location i , the SVD is defined as 
follows

where U and V  are orthogonal (n,m + 1) and (m + 1,m + 1) matrices, D is a 

(m + 1,m + 1) matrix with a diagonal of decreasing singular values, W
1

2

(i)
 is the 

square root of the diagonal spatial weight matrix for location i obtained from the 
adaptive bisquare kernel function in Eq. (2). The local condition index (LCI) for the 
j th explanatory variable at location i is defined as

where d(i)j is the j th singular value in D and dmax(i) is the largest singular value. 
The largest LCI for this location is defined as the local condition number ( LCNi ). 
The larger the LCN, the stronger the local collinearity among the covariates and the 
intercept. A critical value of 30 is often used to determine major issues, while 10 is a 
more conservative threshold to suggest little-to-no collinearity issues. Thresholds of 
10, 20, and 30 are considered here.

4 � Results

4.1 � Simulation experiment one

In the first simulation experiment, which has a smaller sample size (n = 625), the 
true surface associated with  the first covariate is spatially homogeneous, and the 
intercept and the  other true parameter surface have a similar numerical scale but 
different levels of spatial heterogeneity. When the covariates are neither spatially 
autocorrelated nor collinear, the estimated optimal bandwidths for all three param-
eter surfaces correctly reflect the different levels of spatial heterogeneity in the true 
parameter surfaces, with the bandwidth estimated for the second parameter surface 
tending toward the maximum global value and the other two being much more local. 
The absolute magnitudes of the spatial scales, as measured by the optimal num-
ber of nearest neighbors used for local model calibration, increased with stronger 
noise (Table 1). On the other hand, both types of association tend to have little-to-no 
impact on the performance of MGWR or GWR until either becomes very strong 
(Figs. 2 and 3), at which point some additional patterns emerge.

(10)W
1

2

(i)
X = UDV

T

(11)LCIij =
dmax(i)

d(i)j

4  The local variance inflation factor (VIF) is another multicollinearity diagnostics available for GWR but 
not MGWR and cannot be used for assessing local collinearity with the intercept term.
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Fig. 2   MAPEs for GWR and MGWR when both covariates are exempt from spatial autocorrelation 
( n = 625, σ = 1.5)

Fig. 3   Optimal bandwidths for GWR ( b ) and MGWR ( b
0
, b

1
, b

2
 ) when two covariates are spatially auto-

correlated but are not linearly associated (n = 625, σ = 1.5)

Table 1   Median optimal 
bandwidth estimates 
from MGWR and GWR 
for different SNR levels 
( n = 625, ρ = 0, r = 0)

Constant 
parameter 
surface

SNR σ MGWR bandwidth 
estimates

GWR 
bandwidth 
estimate

b
0

b
1

b
2

b

�
0

0.874 1.5 623 148 50 90
�
0

0.655 2.5 624 227 71 139
�
1

0.87 1.5 147 623 50 90
�
1

0.636 2.5 197 623 73 130

Fig. 4   Optimal bandwidths for GWR ( b ) and MGWR ( b
0
, b

1
, b

2
 ) when both covariates are exempt from 

spatial autocorrelation ( n = 625, � = 1.5)
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4.1.1 � Impact of collinearity

To isolate the potential impact of collinearity on (M)GWR, the DGP was controlled 
so that the covariates were not spatially autocorrelated. Collinearity has essentially 
no impact on the estimation of the parameter surface that is uncorrelated (i.e., inter-
cept) and its spatial scale (Fig. 2 and 4). In contrast, for the two collinear covari-
ates, while the bandwidth estimates for the associated parameters are affected to a 

Fig. 5   rRMSEs for GWR and MGWR ( n = 625, � = 1.5)

Fig. 6   An example of parameter estimates for scenarios where both covariates are exempt from spatial 
autocorrelation ( n = 625, � = 1.5 ) (statistically insignificant estimates filtered)
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minimal degree (Fig.  4), the parameters for these two covariates have increasing 
estimation error as collinearity increases and the impact is stronger for GWR than 
MGWR (Fig. 2 and 5). However, this does not lead to a poorer recovery of the true 
parameter surfaces except in the most extreme scenarios (i.e., r = 0.95 ) and even 
then, the distortion is moderate for MGWR (Fig. 6)5. Avoiding such high levels of 
collinearity is a nearly universal guideline for any regression exercise, and these 
results reinforce previous results that that collinearity alone is not inherently prob-
lematic (Fotheringham and Oshan 2016).

4.1.2 � Impact of spatial autocorrelation

In contrast, when there is no collinearity between the two covariates, spatial auto-
correlation in covariates has spillover effects on the estimation accuracy of the inter-
cept and the associated bandwidth. There are increased levels of estimation error for 
all three parameters as the spatial autocorrelation increases (Fig. 7). Although the 
bandwidth estimates for the intercept slightly increase as the spatial autocorrelation 
grows, the bandwidth estimates for the other two parameters seem to be robust to the 
increasing spatial autocorrelation (Fig.  3). Despite the increased estimation error, 
MGWR still produces slope parameter surfaces that preserve their distinct spatial 
patterns under high levels of spatial autocorrelation (Fig. S3). The scenario where 
one covariate was controlled to be spatially random, while the second covariate was 
controlled to be spatially autocorrelated was also explored, which produced similar 
results in regard to the intercept and autocorrelated covariate, while the parameter 
estimates and associated bandwidth for the random covariate remained essentially 
unaffected. Similar patterns were observed for the experiments where the true inter-
cept is spatially constant; the bandwidth estimation is robust to the level of spatial 
autocorrelation (Fig. S4).

Table 2   Average percentage 
of locations that have a local 
condition number > 10 using 
GWR (n = 625)

Collinearity ( r)

0.00 0.50 0.80 0.85 0.90 0.95

Spatial autore-
gressive param-
eter ( �)

0.00 0.0 0.0 0.0 0.0 0.0 0.98

0.50 0.0 0.0 0.0 0.0 0.01 2.6
0.80 0.0 0.0 0.06 0.36 1.97 17.73
0.85 0.0 0.0 0.23 1.06 4.49 25.05
0.90 0.0 0.01 1.29 3.01 9.28 32.19
0.95 0.43 1.02 8.41 14.11 24.72 51.33

5  For all results, statistically insignificant estimates at the 5% significance level are not displayed and 
multiple testing is adjusted for using methods from Yu, Fotheringham, Li, Oshan, Kang, et al. (2020).
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4.1.3 � Spatial autocorrelation and collinearity

The combined effects of both types of correlation have never previously been exam-
ined for (M)GWR, and there appears to be a cumulative impact on the results com-
pared to each individual factor. As both types of correlation get stronger, it takes 
many more iterations for MGWR to converge. Tables 2 and 3 describe the average 
percentage of local condition numbers (LCNs) greater than 10 across simulations 

Table 3   Average percentage 
of locations that have a local 
condition number > 10 using 
MGWR (n = 625)

Collinearity ( r)

0.00 0.50 0.80 0.85 0.90 0.95

Spatial autoregres-
sive parameter ( �)

0.00 0.0 0.0 0.0 0.0 0.0 0.06

0.50 0.0 0.0 0.0 0.0 0.0 0.08
0.80 0.0 0.0 0.01 0.01 0.06 0.57
0.85 0.0 0.0 0.0 0.02 0.16 1.77
0.90 0.0 0.0 0.04 0.2 0.63 2.82
0.95 0.01 0.01 0.63 0.61 1.8 4.69

Fig. 7   MAPEs for GWR and MGWR when two covariates are spatially autocorrelated but are not lin-
early associated (n = 625, σ = 1.5)

Fig. 8   MAPEs for GWR and MGWR for increasing collinearity when both covariates are spatially auto-
correlated ( � = 0.9 , n = 625, σ = 1.5)
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for GWR and MGWR, respectively. In general, as either collinearity is increased 
(across columns) or autocorrelation is increased (across rows), the occurrence of 
local collinearity increases and is most pronounced when both types of correla-
tion are high. However, the overall presence of local collinearity is always lesser for 
MGWR than for GWR for all scenarios and this is likely due to different bandwidths 
for different covariates leading to lower levels in some locations (Fig. 7).

As shown in Fig. 8 and 9, when either (a) the spatial autocorrelation level in both 
covariates is high ( � = 0.9 ) and collinearity is increased or (b) the collinearity is 
high ( r = 0.9 ) and the spatial autocorrelation level in both covariates is increased, 
there are higher levels of estimation error for the parameters compared to Figs.  2 
and 3 when there are only increased levels of one or the other. As both types of cor-
relation get very strong (e.g., r > 0.9 and 𝜌 > 0.9 ), the two covariates exhibit very 
similar spatial patterns, both globally and locally. This similarity could complicate 
parameter estimation, leading to instances where spatial patterns of parameter sur-
faces with higher spatial heterogeneity are absorbed by those with lower heterogene-
ity (Fig. 10). This effect is further indicated by the significantly smaller bandwidth 
estimated for the constant surface of �1 (Fig. S5). Therefore, for this smaller sample 
experimental design, there seems to be a link between joint levels of high collinear-
ity and autocorrelation, increased local collinearity, and increased estimation error.

4.1.4 � Robustness check

Several additional simulation experiments were conducted as a robustness check 
on the patterns observed with two explanatory variables. In the first additional 
experiment, a third explanatory variable ( X3 ) was introduced, generated inde-
pendent of the other two correlated and spatially autocorrelated variables ( X1 and 
X2 ). The associated parameter surface ( �3 ) exhibits a similar level of spatial het-
erogeneity to the intercept, and all the four “true” parameter surfaces are uncorre-
lated (Fig. 11). The experiment aimed to investigate whether the biases observed 
in the coefficient estimates of the two spatially correlated and/or collinear covar-
iates affect the estimation of an independent variable. The results indicate that 
spatial autocorrelation ( � ) in the other two explanatory variables ( �1 and �2 ) and 

Fig. 9   MAPEs for GWR and MGWR for increasing spatial autocorrelation with fixed collinearity (r = 
0.9, n = 625, σ = 1.5)
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Fig. 10   An example of MGWR parameter estimates for scenarios where both covariates are highly spa-
tially autocorrelated ( n = 625, � = 1.5, � = 0.9 ) (statistically insignificant estimates filtered)

Fig. 11   True parameter surfaces for the first additional simulation experiment
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their bivariate correlation ( r ) do not impact the bandwidth selection or parameter 
estimation for the third explanatory variable ( �3).

The second additional experiment follows the simulation experiment one in 
terms of the DGP for the covariates. However, unlike the original design, where 
the ‘true’ parameter surfaces associated with the two covariates were independ-
ent, this experiment introduces a high level of correlation between �1 and �2 . 
Specifically, these two parameter surfaces were using the DPG in Eq. (6), where 
�1 and �2 are both spatially autocorrelated to a similar extent ( �1 = �2 = 0.95 ), 
and they are positively associated ( r12 = 0.8 ) (Fig.  12). The estimated Pear-
son’s correlation coefficients among the “true” � s are Corr

(
�0, �1

)
= −0.34 , 

Corr
(
�0, �2

)
= −0.28 , and Corr

(
�1, �2

)
= 0.7 . The DGP of the explanatory vari-

ables ( X1 and X2 ) follows the structure of the original experiments, meaning that 
X1 and X2 could be both spatially autocorrelated and linearly associated, with 
�, r ∈ {0,0.5,0.8,0.85,0.9,0.95}.

The overall conclusion regarding the impact of the two types of correlation 
remains valid. Specifically, spatial autocorrelation in covariates increases estima-
tion errors for both the associated parameters and the intercept, whereas colline-
arity increases estimation errors only for the associated parameters. When collin-
earity and spatial autocorrelation in covariates are absent, both GWR and MGWR 
successfully preserve the ‘true’ correlation among parameter surfaces. However, 
as these correlations become stronger, MGWR is better positioned to generate 
more accurate local estimates and maintain the correlation between parameter 
surfaces (Fig. S6).

4.2 � Simulation experiment two

For the second experiment, the sample size is larger (n = 2500) and none of  the 
true  surfaces is constant. The intercept exhibits distinct spatial patterns (gradu-
ally changes from the smallest value in the upper-left corner to the largest value 
in the lower-right corner) and possesses a larger numerical scale than the other 
two true parameter surfaces.

Fig. 12   True parameter surfaces for the second additional simulation experiment
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4.2.1 � Impact of collinearity

Similar to the trend from the smaller sample experiment, when the two covari-
ates are randomly spatially distributed, increasing collinearity increases estima-
tion error for coefficients of the two covariates without much effect on the inter-
cept and the increase is much less pronounced for MGWR than for GWR; however, 
there are some distinct differences regarding the estimated bandwidths (Fig. 13 and 
14). Notably, the bandwidth estimates for coefficients of the two collinear covari-
ates that exhibit a lower level of spatial heterogeneity are inflated as the collinear-
ity increases and especially as it becomes very strong (e.g., r > 0.9), which is also 
observed in the additional smaller sample experiment where the intercept is spa-
tially homogeneous (Fig. S7). It suggests that MGWR may attempt to compensate 
for the shrunken effective sample size due to correlation by increasing the number 
of samples for each local estimation through the use of a larger bandwidth. This 
could also be explained in terms of a trade-off between either information and mis-
information or bias and variance during bandwidth selection (Fotheringham et  al. 
2022). High collinearity suggests that more local samples may contain less informa-
tion, while more global samples may contain less misinformation. This decreases 
the bias reduction and increases the variance inflation associated with smaller band-
widths (i.e., reduces the benefits and increases penalty) while potentially also intro-
ducing less bias but reducing some variance (i.e., reduces the penalty and increases 

Fig. 13   Optimal bandwidths for GWR ( b ) and MGWR ( b
0
, b

1
, b

2
 ) when both covariates are exempt from 

spatial autocorrelation (n = 2500)

Fig. 14   MAPEs for GWR and MGWR when both covariates are exempt from spatial autocorrelation 
(n = 2500)
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benefits) when incorporating samples from further away. The outcome is that with 
increasing collinearity (i.e., reduction in overall information), it becomes more 
important to reduce variance than decrease bias and this is achieved by selecting a 
larger bandwidth and increasing the sample size. As a result, MGWR can recover 
some of the patterns in the true surfaces even for the most pathological case (e.g., 
r = 0.95) (Fig. 156), although the estimates for �1 have little-to-no overall variation 
compared to the true surface and are essentially an average. The trade-off is that in 
return MGWR is much less prone than GWR to potential local collinearity issues 

Fig. 15   An example of parameter estimates for scenarios where both covariates are exempt from spatial 
autocorrelation (n = 2500) (statistically insignificant estimates filtered)

Table 4   Average percentage 
of locations that have a local 
condition number > 10 using 
GWR (n = 2500)

Collinearity (r)

0.00 0.50 0.80 0.85 0.90 0.95

Spatial autore-
gressive param-
eter ( ρ)

0.00 0.0 0.0 0.0 0.0 0.0 1.12

0.50 0.0 0.0 0.0 0.0 0.05 4.27
0.80 0.0 0.0 0.15 0.63 3.09 21.15
0.85 0.0 0.01 0.75 2.2 7.22 30.24
0.90 0.04 0.16 3.55 7.21 16.08 42.41
0.95 1.81 3.45 15.02 21.94 33.85 58.98

6  The missing areas in Fig. 14 are statistically insignificant parameter estimates that have been filtered 
and correspond to small true values with low signals.
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(Tables 3–4). In fact, for MGWR, collinearity has a negligible impact on potential 
local collinearity issues except in the most extreme case (e.g., r = 0.95).

4.2.2 � Impact of spatial autocorrelation

The general impact due solely to spatial autocorrelation in both covariates is similar 
for both MGWR and GWR in that it still increases estimation error for all three sur-
faces, but there is no longer an issue with misestimation of the intercept bandwidth, 
even for the most extreme scenario ( � = 0.95 ) (see Fig. S8, S9, and S10). Instead, 
there is some over- or under-estimation of the bandwidth for �1 and �2 similar to the 
impact of collinearity but much more moderate. For both GWR and MGWR, there 
are virtually no potential local collinearity issues (due solely to spatial autocorrela-
tion or global collinearity) except for GWR for the most extreme scenario.

4.2.3 � Spatial autocorrelation and collinearity

The joint impact of spatial autocorrelation and global collinearity on GWR and 
MGWR in terms of potential local collinearity issues are similar to what have 
been observed for the smaller sample scenario (Tables 4 and 5). It is negligible for 
MGWR even in the extreme scenario where both correlation is very strong ( � = 0.95 
and r = 0.95).

An examination of the scenario where both very strong spatial autocorrelation 
(ρ = 0.95) and collinearity (r = 0.9) exist shows that this leads to a situation where 
the two covariate surfaces have similar spatial patterns (Fig. 16a). Figure 16b visu-
alizes the spatial patterns of LCNs for both GWR and MGWR with locations that 
have an LCN larger than 30 highlighted with black boundaries, those with LCNs 
between 20 and 30 highlighted with blue boundaries, and those with LCNs between 
10 and 20 highlighted with yellow boundaries. GWR produces many locations with 
high LCNs, especially where hot or cold spots coincide in the surfaces, due to the 
single bandwidth that is used for local estimation. This results in predominantly 
statistically insignificant parameter estimates and those that are not largely inflated 
compared to the true values. In contrast, MGWR does not produce any large LCNs 
(Fig.  16b), still recovers spatial patterns of true parameter surfaces, and produces 

Table 5   Average percentage 
of locations that have a local 
condition number > 10 using 
MGWR (n = 2500)

Collinearity (r)

0.00 0.50 0.80 0.85 0.90 0.95

Spatial autoregres-
sive parameter ( �)

0.00 0.0 0.0 0.0 0.0 0.0 0.0

0.50 0.0 0.0 0.0 0.0 0.0 0.0
0.80 0.0 0.0 0.0 0.0 0.0 0.02
0.85 0.0 0.0 0.0 0.0 0.0 0.16
0.90 0.0 0.0 0.0 0.0 0.0 0.44
0.95 0.01 0.0 0.01 0.03 0.22 2.4
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Fig. 16   Results for MGWR and GWR for realization 18 under the scenario ρ = 0.95 and r = 0.9 
(n = 2500)
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three unique optimal bandwidths (50, 2499, and 294 with 95% confidence intervals 
[50, 50], [2141, 2499], and [264, 316], respectively). However, similar to Fig. 15, 
the surface for �1 in Fig. 16d has little-to-no overall variation compared to the true 
surface (i.e., an average effect) and is statistically insignificant according to a Monte 
Carlo test (p-value = 1.0). This further highlights the trade-off between overestimat-
ing the bandwidth and avoiding potential local collinearity issues. The outcome is 
that the true local effect is not identified, but in exchange, the overall model remains 
robust.

5 � Discussions and conclusions

Two experimental designs were adopted to systematically explore the relationship 
between process scale (as measured by estimated optimal bandwidth values) and the 
levels of two types of correlation among explanatory variables (i.e., covariates) in 
(M)GWR, namely bivariate correlation (i.e., collinearity at a global level) and spa-
tial autocorrelation. Previous work investigated the role of either collinearity or spa-
tial autocorrelation but not their joint impact, and this was only carried out using the 
single-scale framework of GWR. By investigating these two characteristics of model 
input within the multiscale MGWR framework, it becomes possible to understand 
their effect on the estimated bandwidths and how this may potentially relate to the 
measured scale for each independent factor. The experiments covered a range of sce-
narios, including different sample sizes, noise levels, patterns of local processes (i.e., 
parameter surfaces), and levels of correlations. As a result, this work contributes 
additional evidence toward previous findings and generates several novel insights.

In concordance with previous findings, collinearity alone does not generally pre-
sent any major issues until very high values. Taking reasonable precautions to only 
include variables that are not highly collinear should remain standard practice, and 
it is also important to use local extensions of diagnostics, such as LCNs, to iden-
tify any collinearity that could occur in local samples. Similarly, spatial autocor-
relation alone does not seem to be an issue until very high levels. However, collin-
earity and spatial autocorrelation appear to have a joint effect that is stronger than 
either alone toward (a) generating local collinearity (as measured by the LCN) and 
(b) causing estimation error. In addition, removing one or more covariates because 

Fig. 16   (continued)
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they are highly collinear may result in fewer explanatory factors, but because there is 
redundant information, the overall loss of explained variation should not be heavily 
affected. In contrast, highly spatially autocorrelated covariates are often strong pre-
dictors within a model and removing them eliminates a unique contribution to the 
model (unless there is also strong collinearity present). As a result, focusing more on 
global and local collinearity is still likely a sufficient management strategy, though it 
is useful to be aware that the general effect of collinearity can more quickly become 
accentuated if there are many variables with high spatial autocorrelation.

Furthermore, novel evidence was produced to support that MGWR provides sig-
nificant improvements over GWR in terms of avoiding potential issues that might 
arise from collinearity and/or spatial autocorrelation. In fact, compared to GWR, 
MGWR typically produces less estimation error (overall and pattern recovery) and 
little-to-no potential local collinearity issues due to either collinearity, autocorrela-
tion, or both until extreme levels, which would be easily defended against using typ-
ical diagnostics. These results are encouraging, providing additional evidence of the 
robustness of MGWR to potential collinearity issues (Oshan et al. 2020), highlight-
ing the benefits of allowing the measurement of scale to vary for each relationship, 
and generally supporting the use of MGWR over GWR.

Moving to the multiscale paradigm provided the additional opportunity to inves-
tigate the role of collinearity and autocorrelation in measuring process scale. By 
examining the optimally estimated bandwidth values across each simulation design, 
three important trends emerged. First, the positive correlation between the noise 
level and the optimal MGWR bandwidths, along with the preserved order of band-
width magnitudes, suggests that MGWR bandwidths should likely be interpreted in 
a relative rather than absolute manner. Second, in the design with a smaller sam-
ple, where the true parameter surface was global (i.e., stationary) with no spatial 
variation, the simultaneous presence of high spatial autocorrelation and collinearity 
in covariates caused the bandwidth for parameters with the lowest level of spatial 
heterogeneity (including the intercept) to be underestimated. This led to the detec-
tion of locally varying effects even when none existed, resulting in a form of false 
positive. However, the patterning of these local effects was not very pronounced. 
This finding serves as a cautionary note, particularly when interpreting the estimated 
local intercept as the measurement of intrinsic contextual effects (Fotheringham 
et al. 2021; Fotheringham and Li 2023). In such scenarios, identifying and manag-
ing covariate spatial autocorrelation and multicollinearity becomes even more criti-
cal. A third trend was that when collinearity becomes extreme (if it is allowed to do 
so), MGWR’s ability to use different bandwidths enables it to adapt by selecting a 
larger bandwidth to increase the sample size, thereby mitigating the negative effects 
of smoothing. This implies a trade-off between missing the local effect for one 
covariate and keeping the model robust for other covariates—essentially a false neg-
ative, but the outcome is a near-stationary (i.e., global) estimate that approximates 
an average of the true local parameters. The result is that MGWR enhances overall 
model, while also suggesting that very large bandwidths may indicate either a global 
process or the presence of multicollinearity if caution is not exercised. Future work 
should further explore the extent to which pockets of local collinearity may trigger 
this effect and its implications for multiscale modeling.
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The experiments here were simplified in the sense that there were only two 
explanatory variables. A key finding from the supplementary experiments, which 
introduced an additional independent covariate, is that spatial autocorrelation and 
collinearity primarily affect only the associated parameter and bandwidth esti-
mation (and the intercept in the case of spatial autocorrelation), assuming all 
relevant variables are included. This confirms the isolating effect of these cor-
relations on specific model components. However, in reality, covariates are more 
likely than not to exhibit both spatial autocorrelation and associations with each 
other. As the number of covariates increases, the effects of collinearity and spatial 
autocorrelation are expected to compound more quickly, particularly at the local 
level, where detection may require additional effort. Although using MGWR may 
help mitigate some of these issues, caution is warranted regarding false positives 
on the local intercept and false negatives on local slopes. The latter is not inher-
ently problematic for the rest of the model and is just an extension of the typical 
problem with multicollinearity—a variable that is collinear might be removed to 
avoid obfuscating other relationships in a regular regression, whereas in a local 
regression, a variable might not need to be removed but cannot have a local 
effect without obfuscating other relationships. As a result, a local effect might be 
missed, but the remaining relationships may remain robust.

Including this current work, the notion of multicollinearity in GWR has been 
studied now for approximately two decades (Wheeler and Tiefelsdorf 2005; 
Wheeler 2006; Fotheringham and Oshan 2016). As more data availability expands 
and methodologies continue to evolve, revisiting the matter offers an opportunity 
to develop a more nuanced understanding. Specifically, with the advancement of 
GWR to MGWR (Fotheringham et al. 2017; Yu et al. 2020a), the assumption of 
a constant bandwidth is relaxed to provide insights into the spatial scale at which 
each process operates. Larger bandwidths indicate global processes and less 
smoothing of the data to create local samples, while smaller bandwidths indicate 
local processes and more smoothing of the data. It is within this context that this 
work was motivated to reprise the topic and consequently contribute to a more 
comprehensive understanding of MGWR, highlighting considerations for effec-
tively using the method for empirical applications.

As with any simulation studies, this research has limitations. First, the simula-
tions only consider two collinear covariates, limiting the ability to assess more 
complex correlations involving multiple covariates. Second, when collinearity is 
present, both covariates are assumed to exhibit the same level of spatial autocor-
relation. Allowing them to have different spatial autocorrelation levels could pro-
vide additional and meaningful insights. Third, only regular spatial configuration 
is examined, while empirical studies are often faced with irregular spatial config-
urations. Fourth, local spatial autocorrelation could exist even in the absence of 
significant global spatial autocorrelation in the explanatory variables, an aspect 
that remains unaddressed. Future research will aim to overcome these limitations.
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