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Abstract

Multiscale geographically weighted regression (MGWR) extends geographically
weighted regression (GWR) by allowing process heterogeneity to be modeled at
different spatial scales. While MGWR improves parameter estimates compared to
GWR, the relationship between spatial scale and correlations within and among
covariates—specifically spatial autocorrelation and collinearity—has not been sys-
tematically explored. This study investigates these relationships through controlled
simulation experiments. Results indicate that spatial autocorrelation and collinear-
ity affect specific model components rather than the entire model. Their impacts
are cumulative but remain minimal unless they become very strong. MGWR effec-
tively mitigates local multicollinearity issues by applying varying bandwidths across
parameter surfaces. However, high levels of spatial autocorrelation and collinear-
ity can lead to bandwidth underestimation for global processes, potentially produc-
ing false local effects. Additionally, strong collinearity may cause bandwidths to be
overestimated for some processes, which helps mitigate collinearity but may obscure
local effects. These findings suggest that while MGWR offers greater robustness
against multicollinearity compared to GWR, bandwidth estimates should be inter-
preted with caution, as they can be influenced by strong spatial autocorrelation and
collinearity. These results have important implications for empirical applications of
MGWR.
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1 Introduction

Spatially heterogeneous processes may vary from location to location in their mag-
nitude and nature. Several strategies have been proposed to capture this spatial non-
stationarity using local models because traditional global models are likely to pro-
duce misleading results when processes are not stationary. Previous efforts placed
these strategies into two categories (Wolf et al. 2018). The first category includes
those that typically capture heterogeneity using predefined scales and a relatively
small number of discrete areal units or groups at different scales, such as spatial
regimes models and hierarchical multilevel models (Banerjee et al. 2014; Anselin
1988). In contrast, the second category includes geographically weighted regression
(GWR), eigenvector spatial filter regression, and Bayesian spatially varying coef-
ficients models, which typically capture continuous spatial heterogeneity across a
larger number of locations and allow for scales to be selected as part of model fit-
ting (Fotheringham et al. 1998; Gelfand et al. 2003; Griffith et al. 2019). However,
it should be noted that this dichotomy is becoming blurred with recent innovations
to endogenously select spatially grouped clusters that can express heterogeneity and
efforts to combine or blend models from each category (Anselin and Amaral 2023;
Sugasawa and Murakami 2021; Hu et al. 2022). This signals a growing acceptance
of the notion that spatially heterogeneous processes may come in many different
forms and that data-driven techniques can help capture the often multiscale and
complex spatial structure that characterizes these processes.

Of the now numerous local modeling methods, GWR and its multiscale exten-
sion, multiscale GWR (MGWR), have emerged as one of the most widely used
approaches, perhaps due to its relative conceptual and technical simplicity, as well
as a suite of accompanying diagnostic tools and accessible software (Fotheringham
et al. 2017; Yu et al. 2020a; Fotheringham et al. 2003). Using a spatial kernel func-
tion, observations are weighted based on their relative proximity to a set of cali-
bration locations to create local samples and estimate an ensemble of local models.
The simplicity of this mechanism has also led to critiques. For example, D. Wheeler
and Tiefelsdorf (2005) suggest that GWR is highly susceptible to multicollinearity
issues. In response, additional experiments by Péez et al. (2011) and Fotheringham
and Oshan (2016) demonstrated that collinearity is less of an issue in GWR when
sample sizes are relatively larger. In retrospect, these results are not surprising, and
it is clear that small samples (i.e., less than several hundred) are inappropriate for a
GWR analysis. Compared to the overall sample, any geographically weighted local
sample will necessarily have less variation and smaller effective sample size, a trend
that will be exacerbated by the use of increasingly smaller bandwidth values (narrow
adaptive kernel). It is easy to quickly run into ‘micronumerosity’ (Goldberger 1964;
1991). Increasing the overall sample size can increase the initial variation in the data
before weighting and may also increase the relative bandwidth size.'This generally

! This discussion is especially relevant in the context of the adaptive kernel, the most commonly
employed kernel in the GWR family. The adaptive kernel is characterized by the number of nearest
neighbors utilized for local calibration around each focal observation. Similar principles apply to the
fixed kernel scenario, where the bandwidth is determined by the distance to each focal observation.
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produces less correlated local samples and reduces the likelihood of selecting very
small bandwidths, making each local regression more robust to any potential issues;
however, it may not be possible to increase the sample size without extending the
study area and reframing the underlying process being modeled, such as when sam-
ples are attached to administrative units or grid cells.

Nevertheless, this does not mean that multicollinearity may never be problem-
atic in GWR, and it is certainly possible to find higher or lower levels in the local
samples compared to the total sample of observations. Many of the same tools
exploited in traditional global regression modeling have been proposed to diagnose
and deal with excessive collinearity. Diagnostics such as the condition number, vari-
ation inflation factors, correlation coefficients, and variance decomposition propor-
tions have all been extended to examine local collinearity in GWR (Wheeler and
Tiefelsdorf 2005; Wheeler 2010). These should be used as part of standard prac-
tice, keeping in mind that decisions based on them, such as removing variables, are
themselves based on rules-of-thumb rather hard-and-fast cutoffs and each applica-
tion still requires judgment calls based on acceptable levels of uncertainty, sample
size, number of covariates, and prior knowledge of the processes being modeled.
Another approach that has been proposed is to extend penalized regression tech-
niques, such as ridge, LASSO, or elastic net to the case of GWR (Wheeler 2009,
2006; Li and Lam 2018). However, these techniques are more complex and compu-
tationally intensive when combined with GWR and may have their own challenges
for interpreting parameter estimates. In contrast, Fotheringham et al. (2016) suggest
using a GWR-specific correction for multiple dependent hypothesis tests and mask-
ing cases where the null cannot be rejected to avoid mistakenly interpreting them
as part of any potential spatial patterns in the surfaces of parameter estimates. They
demonstrate that overall, the risk from collinearity is an elevated number of false
positive tests rather than false negative tests.

Another lesson in hindsight is the importance of considering multiple scales.
In GWR, each explanatory variable is typically weighted using a kernel function
parameterized by the same bandwidth parameter (i.e., the spread of the kernel func-
tion). When the bandwidth parameter is selected using a bias-variance trade-off, it
can be interpreted as the scale of the modeled process (Fotheringham et al. 2022).
Furthermore, the single bandwidth in GWR is selected to optimize this trade-off
across all covariates and will tend toward smaller bandwidths when one or more
local processes are detected to minimize bias (Yu et al. 2020b). The result is that
more smoothing is applied than is necessary for some covariates in the model and
this may contribute to the level of collinearity found in local samples. MGWR
can alleviate this by allowing a separate bandwidth to be selected for each covari-
ate. Without the need to use one ‘compromise’ bandwidth, each bandwidth is less
restricted in characterizing the spatial scale at which its corresponding process is
operating, which means that some bandwidths may be global (i.e., little-to-no

Footnote 1 (continued)
Although increasing the sample size should not affect the bandwidth, it does result in a larger sample size
for each local regression.
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smoothing), some are regional, and others remain small. In this context, Oshan
et al. (2020) report a decrease in the local condition number for MGWR compared
to GWR in an empirical application. These results, along with others, are giving
way to conventional wisdom regarding the judicious application of GWR, which
includes using a global model and then MGWR as a starting point rather than GWR
and using local collinearity diagnostics (Fotheringham 2023; Oshan 2023; Fother-
ingham et al. 2023). Nevertheless, it is still not clear how scale, as measured by
bandwidth, impacts collinearity and vice versa. While it is understood that multiple
scales can reduce local collinearity, it is important to also understand if collinearity
can affect bandwidth selection since the latter is a key model output with practical
implications for the measurement of process scale.

Additionally, in contrast to classic regression models that ignore the spatial clus-
tering of processes, spatial models such as MGWR anticipate and leverage such
structure. In practice, most spatial variables demonstrate some level of positive spa-
tial autocorrelation with similar values clustering in space. This creates the opportu-
nity for local models to obtain local samples that are pockets of very similar values
with little variation even though the overall sample might display substantial varia-
tions. If two variables are both spatially autocorrelated and globally collinear (i.e.,
overall pattern), their local samples are more likely to be very similar, leading to
exacerbated collinearity in those local samples. Though the role of spatially cor-
related covariates has been previously investigated in GWR in the context of local
parameter estimates (Murakami et al. 2017; Geniaux and Martinetti 2018), it is not
understood how this type of correlation may or may not interact with multicollinear-
ity and scale in MGWR.

This paper therefore studies the relationships between (M)GWR model accuracy,
spatial scale, and two types of correlation—collinearity between covariates and
spatial autocorrelation in covariates—which has yet to be investigated systemati-
cally. The results suggest that both types of correlations have a negligible effect on
MGWR performance until they become very strong, and their impacts are cumu-
lative. Overall, MGWR is better at alleviating any potential local multicollinearity
issues than GWR due to the varying scales estimated for different parameter sur-
faces. Two additional insights were obtained regarding scale. First, very high lev-
els of spatial autocorrelation and collinearity may potentially contribute toward
the underestimation of scale for certain processes, typically those with the lowest
level of spatial heterogeneity (including the intercept), potentially falsely identifying
local effects. Second, high levels of collinearity may contribute to the misidentifica-
tion of anticipated scales. In some cases, when the true process is spatially varying,
collinearity may lead the bandwidth to be overestimated, which can help mitigate
issues associated with high collinearity but may also lead to difficulty identifying
local effects. In other cases, when the true process is constant, collinearity may lead
the bandwidth to be underestimated but is not problematic for accurately estimating
coefficients unless collinearity becomes high.

The remaining sections of the paper are organized as follows. Section 2 intro-
duces the GWR and MGWR models. Section 3 describes the design of the two sets
of simulation experiments for a systematic investigation of the interplay between
collinearity, spatial autocorrelation in covariates, and spatial scales in MGWR and
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GWR. Results from the simulation experiments are given in Sect. 4, and finally,
implications of the results and conclusions are discussed in Sect. 5.

2 Local spatial modeling: GWR and MGWR

GWR and MGWR are extensions of the classic multiple linear regression model
where the expectation of the outcome or response variable is a linear combination
of covariates. These two local spatial models explicitly address process spatial het-
erogeneity and allow the parameters to be spatially varying by exploiting the spatial
dependence structure across observations. They can be formalized as

yi= Zﬁijxgj"‘si ¢))
=0

where a total of m explanatory variables are used in the regression model, y; is the
response variable, and ¢; is the random noise at location i, X is the value of the jth
explanatory variable at location i/ and B; is the associated coefficient (i.e., jth coef-
ficient at location i) free to vary geographically. For GWR, the spatial heterogeneity
of the regression coefficients is achieved by calibrating a weighted ordinary least
square (OLS) model for each location using spatial weights determined by a spatial
kernel and with a bandwidth optimized using cross-validation or the minimization
of a model fit statistic (e.g., AICc) during the model calibration process. One of the
most widely used kernels, the adaptive bisquare kernel, which is also used here, is
defined as

4, 1? :
_ | % . ,
Wih [1 |:Gl' ] ] ’ lfdlh < Gl (2)
0, Otherwise

This kernel operationalizes the bandwidth (b) as the number of nearest neighbors
used for calibration for each location. G; is the distance from the location i to its
bth nearest neighbors and the spatial weight between locations i and / is negatively
associated with the distance between these two locations. In GWR, the same band-
width (b) is used for constructing the spatial weights for all the covariates, therefore
assuming that all the modeled relationships operate at the same spatial scale.

MGWR relaxes the assumption of a single scale for all the modeled processes
and allows each coefficient f}; to have a separate bandwidth (i.e., by, by, b,, ..., b,,).
The bandwidths are estimated in the model calibration process and are interpreted as
the spatial scale at which the conditional relationship (or spatial process) operates.
The smaller the bandwidth, the more localized the spatial process and vice versa.
MGWR model estimation is operationalized using a generalized additive model
(GAM) and a backfitting algorithm to calibrate each relationship iteratively (Foth-
eringham et al. 2017). Inference about each surface of local parameter estimates can
then be adjusted for multiple dependent hypothesis tests based on the associated
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bandwidth (Yu et al. 2020a) in order to more flexibly discern patterns from noise
in the surfaces of local parameter estimates. It is also possible to conduct Monte
Carlo tests on the significance of the spatial variability of each surface (Fothering-
ham et al. 2002) and construct 95% confidence intervals on the bandwidth estimates
(Li et al. 2020).

3 Experimental design
3.1 Data generating process

The data generating process (DGP) utilized followed an MGWR-like regression
specification that incorporates two covariates (X; and X,), one intercept parameter
(By), and two slope parameters (f, and f,). The three parameters are configured to
potentially include varying levels of spatial heterogeneity. The DGP is formally
defined as

Vi = B+ BuXi + Ppxp + ¢ 3

where the error term follows a normal distribution centered at 0 (e ~ N (0, 6%I)).

The two covariates are spatially configured to exhibit varying levels of spatial
autocorrelation and varying degrees of collinearity with one another. After describ-
ing two sets of known parameter surfaces, methods for generating collinear and spa-
tially autocorrelated covariates are outlined.

3.2 True parameter surfaces

Two sets of parameter surfaces were employed, which differ in sample size and
degree of spatial heterogeneity. The first is identical to the true surfaces used in the
initial MGWR simulation experiments in Fotheringham et al. (2017) with the first
two surfaces swapped to make sure second and third parameter surfaces exhibit
a greater difference in the level of spatial heterogeneity (top row of Fig. 1). This
adjustment allows the intercept to be more thoroughly investigated, which is impor-
tant due to the unique role it plays in a MGWR model. These surfaces are configured
in a (25, 25) regular lattice and range in values from 1 to 5. Though the second sur-
face is constant across space and represents a global process, the other two surfaces
vary across space at different scales, with f§, demonstrating a lower level of spatial
heterogeneity (the rate of change over space is lower) and f, demonstrating a higher
level of spatial heterogeneity (the rate of change over space is higher). Additionally,
the original scenario was considered in which the intercept surface is constant fol-
lowing Fotheringham et al. (2017) (Fig. S1), which serves as a point of comparison
for the first simulation experiment.

The second set of parameter surfaces follows the design of Fotheringham
and Oshan (2016) which was used to previously study multicollinearity and
GWR. As shown in the bottom row of Fig. 1, these surfaces have a larger sam-
ple size and are based on a (50, 50) regular lattice. Though the intercept surface
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Bo-low heterogeneity B1-zero heterogeneity B,-high heterogeneity
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Fig. 1 Two different sets of true parameter surfaces for the simulation experiment-based varying patterns
and sample sizes

possesses the lowest level of perceived spatial pattern heterogeneity, it actually
has a much wider overall range of values, producing the highest relative level of
spatial heterogeneity among the three surfaces.

3.3 Spatially autocorrelated covariates

To simulate realistic covariates that follow Tobler’s first law of geography, “Eve-
rything is related to everything else, but near things are more related than distant
things” (Tobler 1970), a first-order spatial autoregression specification was used
and is defined as

X=pWX+e “4)
which can be rewritten in reduced form as
X=0UI-pW)le )

where p € (—1, 1) is the spatial autoregressive parameter representing the strength
of spatial dependence, € is a white noise vector (& ~ N(0,0%1)) assumed to follow
a normal distribution, [ is a (n,n) identity matrix with 1’s on the diagonal and 0’s
elsewhere, and W is the (n, n) row-stochastic spatial weight matrix expressing inter-
actions across spatial units. Queen contiguity was used for W such that any polygons
that share a common edge or vertex are considered neighbors.
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3.4 Two types of correlation: spatial autocorrelation and collinearity

The two covariates used in the DGP are constructed to potentially have both spatial
autocorrelation and collinearity. After simulating the first explanatory variable (X;)
using the spatial autoregressive model in Eq. (5), the same formula is also used to
generate an intermediate variable Z. Then, the second explanatory variable (X,) is
simulated using Z so that both explanatory variables will be approximately corre-
lated with a set level denoted by a given Pearson’s r value, as well as spatially auto-
correlated at the same level (p). The complete process is formulated as

X, = —-pW) ¢
Z=(U-pW) e, (6)
X2 = er + 1 - r2Z

The two error terms ¢, and €, are independent and each follows a standard normal
distribution (N(0,1)). Values of p for spatial dependence and r for bivariate correla-
tion were both allowed to take on values of {0, 0.5, 0.8, 0.85, 0.9, 0.95 }.2 It should
be noted that the spatial autoregressive coefficient p used in the DGP is not equiv-
alent to Moran’s T statistic though they are positively associated.® The restriction
of a consistent spatial autocorrelation level for the two covariates can be relaxed in
the scenario where there is a lack of global collinearity between the two covariates,
resulting in different values of p for X, and X,. This design helps disentangle the sole
impact of spatial autocorrelation.

The generated covariates (X, and X,) were standardized before being used within
the DGP in Eq. (3) to make sure the optimal bandwidths estimated from MGWR
reflect only the spatial scale at which each process is operating. For each combina-
tion of parameters, 100 simulations were generated using a normally distributed ran-
dom error with a mean of 0 and a standard deviation (¢) of 1.5 for the smaller sam-
ple and 0.5 for the larger sample scenarios. This gives rise to two different average
levels of signal-to-noise ratio (SNR) resembling a pseudo-R? (defined as 1 minus
the ratio of noise variance (¢?) to signal variance (Var(Xp)), which are 0.87 and
0.221, respectively. An MGWR model and a GWR model were calibrated for each
simulated realization. For the smaller sample size case, an additional simulation
experiment was carried out with a larger standard deviation of the error term (i.e.,
2.5) to incorporate a higher level of random noise and thus a smaller level of SNR

2 Smaller values, such as 0.1, 0.2, 0.3, and 0.4, were tested for both the spatial autoregressive param-
eter and the bivariate correlation. Since these small values had a negligible effect on the performance of
GWR and MGWR, only results for larger values were reported. Additionally, an extreme value of 0.99
was included in the initial experiments. However, these cases resulted in highly pathological scenarios
unsuitable for any realistic application and indeed lead to numerous local optima, making convergence of
the MGWR calibration algorithm unlikely. As a result, this value was excluded from the paper.

3 While the spatial autoregressive term p in the DGP and Moran’s I on the generated spatial patterns is
positively associated (Pearson’s correlation coefficient=0.93), the latter is smaller (Moran’s I is about
67% of p). As shown in Fig. S2, 0.8 is correspondent to a 0.5 estimate of Moran’s I for the scenario of
(25,25) regular lattice and queen contiguity weights.
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(i-e., 0.636). Model calibration and inference were carried out using the open-source
Python package—PySAL/mgwr version 2.2.1 (Oshan et al. 2019).

3.5 Evaluation criteria

One of the primary objectives of this study is to understand the link between the
estimation of spatial process scale and the two types of correlations (spatial autocor-
relation and bivariate collinearity). Therefore, an examination of the optimal band-
widths estimated from MGWR (i.e., by, b;, and b,) and GWR (i.e., b) will first be
conducted and compared with the levels of spatial heterogeneity observed in the true
parameter surfaces.

The ability of GWR and MGWR to recover the true parameter surfaces is meas-
ured with two relative metrics. The first metric relies on the root-mean-squared error
(RMSE), which compare the estimates with the known parameters for each realiza-
tion. For each parameter (f;) and realization (s), RMSE_; is calculated as follows:

RMSE; = 1 Z (ﬂij - ﬁxij)z @)

A

where n is the number of observations and f; is the estimate of parameter f; for
the ith observation in the sth realization. The relative metric tRMSE is defined in
Eq. (8) as the ratio of the average RMSE for the scenario under investigation (e.g.,
p=0.9, r=0.8) to the average RMSE obtained for the reference scenario (i.e.,
p =0, r=0) for MGWR and GWR, respectively. This metric yields a value of 1
for the reference scenario and is expected to increase as either correlation grows.
Assessing how well GWR and MGWR can produce lower magnitudes of this metric
provides insight into their ability to address increasing correlation.

11 2 100

3706 ijo Y. RMSE

ARMSE = SR
szj=02s=l xj(p— ,r=0)

®)

The other relative metric, the mean absolute percentage error (MAPE), measures
the accuracy of a model’s parameter estimations in percentage terms and is defined
in Eq. (9):

. ﬁi' - ﬁsi'
MAPE, = 100+ ¥ d ©
n

i=1 ij

This metric ranges from O to 100, and a smaller value indicates a more accurate
prediction/recovery of the parameter surface and vice versa.

A local multicollinearity diagnostic, namely, the local condition number, is
used to detect potential local multicollinearity issues in GWR and MGWR (D. C.
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Wheeler 2006)*. This diagnostic relies on the singular-value decomposition (SVD)
of the design matrix X for each location i. For each location 7, the SVD is defined as
follows

1
WX = UDV' (10)

where U and V are orthogonal (n,m+ 1) and (m+ 1,m + 1) matrices, D is a

1
(m+ 1,m+ 1) matrix with a diagonal of decreasing singular values, Wé) is the
square root of the diagonal spatial weight matrix for location i obtained from the
adaptive bisquare kernel function in Eq. (2). The local condition index (LCI) for the
Jjth explanatory variable at location i is defined as

dmax(i)

LCL; = — (11)

0j
where d;; is the j th singular value in D and d,,,, is the largest singular value.
The largest LCI for this location is defined as the local condition number (LCN;).
The larger the LCN, the stronger the local collinearity among the covariates and the
intercept. A critical value of 30 is often used to determine major issues, while 10 is a

more conservative threshold to suggest little-to-no collinearity issues. Thresholds of
10, 20, and 30 are considered here.

4 Results
4.1 Simulation experiment one

In the first simulation experiment, which has a smaller sample size (n=625), the
true surface associated with the first covariate is spatially homogeneous, and the
intercept and the other true parameter surface have a similar numerical scale but
different levels of spatial heterogeneity. When the covariates are neither spatially
autocorrelated nor collinear, the estimated optimal bandwidths for all three param-
eter surfaces correctly reflect the different levels of spatial heterogeneity in the true
parameter surfaces, with the bandwidth estimated for the second parameter surface
tending toward the maximum global value and the other two being much more local.
The absolute magnitudes of the spatial scales, as measured by the optimal num-
ber of nearest neighbors used for local model calibration, increased with stronger
noise (Table 1). On the other hand, both types of association tend to have little-to-no
impact on the performance of MGWR or GWR until either becomes very strong
(Figs. 2 and 3), at which point some additional patterns emerge.

* The local variance inflation factor (VIF) is another multicollinearity diagnostics available for GWR but
not MGWR and cannot be used for assessing local collinearity with the intercept term.
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Fig.2 MAPEs for GWR and MGWR when both covariates are exempt from spatial autocorrelation
(n=625,0=1.5)
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Fig.3 Optimal bandwidths for GWR (b) and MGWR (b, b,, b,) when two covariates are spatially auto-
correlated but are not linearly associated (n=625, ¢ = 1.5)

Table 1 Median optimal

bandwidth esti Constant SNR o MGWR bandwidth GWR
andwidth estimates parameter estimates bandwidth
from MGWR and GWR surface estimate
for different SNR levels _—
(n=625,p=0,r=0) by b b, b
Bo 0.874 1.5 623 148 50 90
bo 0.655 2.5 624 227 71 139
b 0.87 1.5 147 623 50 90
b 0.636 2.5 197 623 73 130
bo by b
600
g 400 , ' ! '
H
S 300
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Fig.4 Optimal bandwidths for GWR (b) and MGWR (b, b,, b,) when both covariates are exempt from
spatial autocorrelation (n = 625,06 = 1.5)
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Fig.6 An example of parameter estimates for scenarios where both covariates are exempt from spatial
autocorrelation (n = 625, 0 = 1.5) (statistically insignificant estimates filtered)

4.1.1 Impact of collinearity

To isolate the potential impact of collinearity on (M)GWR, the DGP was controlled
so that the covariates were not spatially autocorrelated. Collinearity has essentially
no impact on the estimation of the parameter surface that is uncorrelated (i.e., inter-
cept) and its spatial scale (Fig. 2 and 4). In contrast, for the two collinear covari-
ates, while the bandwidth estimates for the associated parameters are affected to a
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Table 2 Average percentage
of locations that have a local

condition number > 10 using 0.00 050 0.80 0.85 090 0.95
GWR (n=625)

Collinearity (r)

Spatial autore- 000 00 00 00 00 00 098
gressive param-
eter (p)

050 00 00 0.0 0.0 001 26

0.8 00 00 006 036 197 17.73
085 00 0.0 023 1.06 449 25.05
090 00 001 129 301 9.28 3219
095 043 1.02 841 14.11 2472 51.33

minimal degree (Fig. 4), the parameters for these two covariates have increasing
estimation error as collinearity increases and the impact is stronger for GWR than
MGWR (Fig. 2 and 5). However, this does not lead to a poorer recovery of the true
parameter surfaces except in the most extreme scenarios (i.e., r = 0.95) and even
then, the distortion is moderate for MGWR (Fig. 6)°. Avoiding such high levels of
collinearity is a nearly universal guideline for any regression exercise, and these
results reinforce previous results that that collinearity alone is not inherently prob-
lematic (Fotheringham and Oshan 2016).

4.1.2 Impact of spatial autocorrelation

In contrast, when there is no collinearity between the two covariates, spatial auto-
correlation in covariates has spillover effects on the estimation accuracy of the inter-
cept and the associated bandwidth. There are increased levels of estimation error for
all three parameters as the spatial autocorrelation increases (Fig. 7). Although the
bandwidth estimates for the intercept slightly increase as the spatial autocorrelation
grows, the bandwidth estimates for the other two parameters seem to be robust to the
increasing spatial autocorrelation (Fig. 3). Despite the increased estimation error,
MGWR still produces slope parameter surfaces that preserve their distinct spatial
patterns under high levels of spatial autocorrelation (Fig. S3). The scenario where
one covariate was controlled to be spatially random, while the second covariate was
controlled to be spatially autocorrelated was also explored, which produced similar
results in regard to the intercept and autocorrelated covariate, while the parameter
estimates and associated bandwidth for the random covariate remained essentially
unaffected. Similar patterns were observed for the experiments where the true inter-
cept is spatially constant; the bandwidth estimation is robust to the level of spatial
autocorrelation (Fig. S4).

3 For all results, statistically insignificant estimates at the 5% significance level are not displayed and
multiple testing is adjusted for using methods from Yu, Fotheringham, Li, Oshan, Kang, et al. (2020).
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4.1.3 Spatial autocorrelation and collinearity

The combined effects of both types of correlation have never previously been exam-
ined for (M)GWR, and there appears to be a cumulative impact on the results com-
pared to each individual factor. As both types of correlation get stronger, it takes
many more iterations for MGWR to converge. Tables 2 and 3 describe the average
percentage of local condition numbers (LCNs) greater than 10 across simulations

Table 3 Average percentage
of locations that have a local

Collinearity (r)

condition number > 10 using 0.00 0.50 0.80 0.85 0.90 0.95
MGWR (n=625)
Spatial autoregres- 0.00 0.0 0.0 00 00 00 0.06
sive parameter (p)
050 00 00 00 00 00 008
080 00 0.0 0.01 0.01 0.06 057
08 00 00 00 0.02 016 177
090 00 0.0 0.04 02 063 282
095 0.01 0.01 063 061 18 4.69
20.0 4 1754 model 35 . o
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Fig.7 MAPEs for GWR and MGWR when two covariates are spatially autocorrelated but are not lin-

early associated (=625, 6 = 1.5)
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Fig.8 MAPEs for GWR and MGWR for increasing collinearity when both covariates are spatially auto-
correlated (p = 0.9, n=625,0 = 1.5)
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for GWR and MGWR, respectively. In general, as either collinearity is increased
(across columns) or autocorrelation is increased (across rows), the occurrence of
local collinearity increases and is most pronounced when both types of correla-
tion are high. However, the overall presence of local collinearity is always lesser for
MGWR than for GWR for all scenarios and this is likely due to different bandwidths
for different covariates leading to lower levels in some locations (Fig. 7).

As shown in Fig. 8 and 9, when either (a) the spatial autocorrelation level in both
covariates is high (p = 0.9) and collinearity is increased or (b) the collinearity is
high (r = 0.9) and the spatial autocorrelation level in both covariates is increased,
there are higher levels of estimation error for the parameters compared to Figs. 2
and 3 when there are only increased levels of one or the other. As both types of cor-
relation get very strong (e.g., r > 0.9 and p > 0.9), the two covariates exhibit very
similar spatial patterns, both globally and locally. This similarity could complicate
parameter estimation, leading to instances where spatial patterns of parameter sur-
faces with higher spatial heterogeneity are absorbed by those with lower heterogene-
ity (Fig. 10). This effect is further indicated by the significantly smaller bandwidth
estimated for the constant surface of g, (Fig. S5). Therefore, for this smaller sample
experimental design, there seems to be a link between joint levels of high collinear-
ity and autocorrelation, increased local collinearity, and increased estimation error.

4.1.4 Robustness check

Several additional simulation experiments were conducted as a robustness check
on the patterns observed with two explanatory variables. In the first additional
experiment, a third explanatory variable (X;) was introduced, generated inde-
pendent of the other two correlated and spatially autocorrelated variables (X, and
X,). The associated parameter surface (f;) exhibits a similar level of spatial het-
erogeneity to the intercept, and all the four “true” parameter surfaces are uncorre-
lated (Fig. 11). The experiment aimed to investigate whether the biases observed
in the coefficient estimates of the two spatially correlated and/or collinear covar-
iates affect the estimation of an independent variable. The results indicate that
spatial autocorrelation (p) in the other two explanatory variables (f; and f,) and

70
o
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Fig.9 MAPEs for GWR and MGWR for increasing spatial autocorrelation with fixed collinearity (r =
0.9,n=625,6 = 1.5)
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Fig. 10 An example of MGWR parameter estimates for scenarios where both covariates are highly spa-
tially autocorrelated (n = 625,06 = 1.5, p = 0.9) (statistically insignificant estimates filtered)
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Fig. 11 True parameter surfaces for the first additional simulation experiment
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their bivariate correlation (r) do not impact the bandwidth selection or parameter
estimation for the third explanatory variable (f5).

The second additional experiment follows the simulation experiment one in
terms of the DGP for the covariates. However, unlike the original design, where
the ‘true’ parameter surfaces associated with the two covariates were independ-
ent, this experiment introduces a high level of correlation between f, and f,.
Specifically, these two parameter surfaces were using the DPG in Eq. (6), where
p, and p, are both spatially autocorrelated to a similar extent (p; = p, = 0.95),
and they are positively associated (r;, = 0.8) (Fig. 12). The estimated Pear-
son’s correlation coefficients among the “true” f s are Corr(ﬁo,ﬁl) =-0.34,
Corr(py, p,) = —0.28, and Corr(p,, f,) = 0.7. The DGP of the explanatory vari-
ables (X, and X,) follows the structure of the original experiments, meaning that
X, and X, could be both spatially autocorrelated and linearly associated, with
p,r € {0,0.5,0.8,0.85,0.9,0.95}.

The overall conclusion regarding the impact of the two types of correlation
remains valid. Specifically, spatial autocorrelation in covariates increases estima-
tion errors for both the associated parameters and the intercept, whereas colline-
arity increases estimation errors only for the associated parameters. When collin-
earity and spatial autocorrelation in covariates are absent, both GWR and MGWR
successfully preserve the ‘true’ correlation among parameter surfaces. However,
as these correlations become stronger, MGWR is better positioned to generate
more accurate local estimates and maintain the correlation between parameter
surfaces (Fig. S6).

4.2 Simulation experiment two

For the second experiment, the sample size is larger (n=2500) and none of the
true surfaces is constant. The intercept exhibits distinct spatial patterns (gradu-
ally changes from the smallest value in the upper-left corner to the largest value
in the lower-right corner) and possesses a larger numerical scale than the other
two true parameter surfaces.
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Fig. 12 True parameter surfaces for the second additional simulation experiment
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Fig. 13 Optimal bandwidths for GWR (b) and MGWR (b, b,, b,) when both covariates are exempt from
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Fig. 14 MAPEs for GWR and MGWR when both covariates are exempt from spatial autocorrelation
(n=2500)

4.2.1 Impact of collinearity

Similar to the trend from the smaller sample experiment, when the two covari-
ates are randomly spatially distributed, increasing collinearity increases estima-
tion error for coefficients of the two covariates without much effect on the inter-
cept and the increase is much less pronounced for MGWR than for GWR; however,
there are some distinct differences regarding the estimated bandwidths (Fig. 13 and
14). Notably, the bandwidth estimates for coefficients of the two collinear covari-
ates that exhibit a lower level of spatial heterogeneity are inflated as the collinear-
ity increases and especially as it becomes very strong (e.g., ¥>0.9), which is also
observed in the additional smaller sample experiment where the intercept is spa-
tially homogeneous (Fig. S7). It suggests that MGWR may attempt to compensate
for the shrunken effective sample size due to correlation by increasing the number
of samples for each local estimation through the use of a larger bandwidth. This
could also be explained in terms of a trade-off between either information and mis-
information or bias and variance during bandwidth selection (Fotheringham et al.
2022). High collinearity suggests that more local samples may contain less informa-
tion, while more global samples may contain less misinformation. This decreases
the bias reduction and increases the variance inflation associated with smaller band-
widths (i.e., reduces the benefits and increases penalty) while potentially also intro-
ducing less bias but reducing some variance (i.e., reduces the penalty and increases
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Fig. 15 An example of parameter estimates for scenarios where both covariates are exempt from spatial
autocorrelation (n=2500) (statistically insignificant estimates filtered)

Table 4 Average percentage
of locations that have a local

condition number > 10 using 0.00 0.50 0.80 0.85 090 0.95
GWR (n=2500)

Collinearity (r)

Spatial autore- 0.00 0.0 00 00 00 0.0 1.12
gressive param-
eter (p)

050 00 00 00 00 005 427
080 00 00 015 063 3.09 21.15
085 0.0 0.01 075 22 722 3024
090 0.04 0.16 3.55 721 16.08 4241
095 1.81 3.45 15.02 21.94 33.85 58.98

benefits) when incorporating samples from further away. The outcome is that with
increasing collinearity (i.e., reduction in overall information), it becomes more
important to reduce variance than decrease bias and this is achieved by selecting a
larger bandwidth and increasing the sample size. As a result, MGWR can recover
some of the patterns in the true surfaces even for the most pathological case (e.g.,
r = 0.95) (Fig. 159, although the estimates for f, have little-to-no overall variation
compared to the true surface and are essentially an average. The trade-off is that in
return MGWR is much less prone than GWR to potential local collinearity issues

© The missing areas in Fig. 14 are statistically insignificant parameter estimates that have been filtered
and correspond to small true values with low signals.
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(Tables 3—4). In fact, for MGWR, collinearity has a negligible impact on potential
local collinearity issues except in the most extreme case (e.g., r = 0.95).

4.2.2 Impact of spatial autocorrelation

The general impact due solely to spatial autocorrelation in both covariates is similar
for both MGWR and GWR in that it still increases estimation error for all three sur-
faces, but there is no longer an issue with misestimation of the intercept bandwidth,
even for the most extreme scenario (p = 0.95) (see Fig. S8, S9, and S10). Instead,
there is some over- or under-estimation of the bandwidth for g, and g, similar to the
impact of collinearity but much more moderate. For both GWR and MGWR, there
are virtually no potential local collinearity issues (due solely to spatial autocorrela-
tion or global collinearity) except for GWR for the most extreme scenario.

4.2.3 Spatial autocorrelation and collinearity

The joint impact of spatial autocorrelation and global collinearity on GWR and
MGWR in terms of potential local collinearity issues are similar to what have
been observed for the smaller sample scenario (Tables 4 and 5). It is negligible for
MGWR even in the extreme scenario where both correlation is very strong (p = 0.95
and r = 0.95).

An examination of the scenario where both very strong spatial autocorrelation
(p = 0.95) and collinearity (r=0.9) exist shows that this leads to a situation where
the two covariate surfaces have similar spatial patterns (Fig. 16a). Figure 16b visu-
alizes the spatial patterns of LCNs for both GWR and MGWR with locations that
have an LCN larger than 30 highlighted with black boundaries, those with LCNs
between 20 and 30 highlighted with blue boundaries, and those with LCNs between
10 and 20 highlighted with yellow boundaries. GWR produces many locations with
high LCNs, especially where hot or cold spots coincide in the surfaces, due to the
single bandwidth that is used for local estimation. This results in predominantly
statistically insignificant parameter estimates and those that are not largely inflated
compared to the true values. In contrast, MGWR does not produce any large LCNs
(Fig. 16b), still recovers spatial patterns of true parameter surfaces, and produces

Table 5 Average percentage
of locations that have a local
condition number > 10 using 0.00 0.50 0.80 0.85 0.90 0.95
MGWR (n=2500)

Collinearity (r)

Spatial autoregres- 0.00 0.0 0.0 00 00 00 0.0
sive parameter (p)

050 00 00 00 00 00 00
08 00 00 00 00 00 002
08 00 00 00 00 00 0.16
090 00 00 00 00 00 044
095 0.01 00 001 003 022 24
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(a) Simulated Covariates

Local condition number Local condition number
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(d) MGWR parameter estimates

Fig. 16 Results for MGWR and GWR for realization 18 under the scenario p=0.95 and r=0.9
(n=2500)
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(e) “True” parameter surfaces

Fig. 16 (continued)

three unique optimal bandwidths (50, 2499, and 294 with 95% confidence intervals
[50, 501, [2141, 2499], and [264, 316], respectively). However, similar to Fig. 15,
the surface for g, in Fig. 16d has little-to-no overall variation compared to the true
surface (i.e., an average effect) and is statistically insignificant according to a Monte
Carlo test (p-value =1.0). This further highlights the trade-off between overestimat-
ing the bandwidth and avoiding potential local collinearity issues. The outcome is
that the true local effect is not identified, but in exchange, the overall model remains
robust.

5 Discussions and conclusions

Two experimental designs were adopted to systematically explore the relationship
between process scale (as measured by estimated optimal bandwidth values) and the
levels of two types of correlation among explanatory variables (i.e., covariates) in
(M)GWR, namely bivariate correlation (i.e., collinearity at a global level) and spa-
tial autocorrelation. Previous work investigated the role of either collinearity or spa-
tial autocorrelation but not their joint impact, and this was only carried out using the
single-scale framework of GWR. By investigating these two characteristics of model
input within the multiscale MGWR framework, it becomes possible to understand
their effect on the estimated bandwidths and how this may potentially relate to the
measured scale for each independent factor. The experiments covered a range of sce-
narios, including different sample sizes, noise levels, patterns of local processes (i.e.,
parameter surfaces), and levels of correlations. As a result, this work contributes
additional evidence toward previous findings and generates several novel insights.
In concordance with previous findings, collinearity alone does not generally pre-
sent any major issues until very high values. Taking reasonable precautions to only
include variables that are not highly collinear should remain standard practice, and
it is also important to use local extensions of diagnostics, such as LCNs, to iden-
tify any collinearity that could occur in local samples. Similarly, spatial autocor-
relation alone does not seem to be an issue until very high levels. However, collin-
earity and spatial autocorrelation appear to have a joint effect that is stronger than
either alone toward (a) generating local collinearity (as measured by the LCN) and
(b) causing estimation error. In addition, removing one or more covariates because
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they are highly collinear may result in fewer explanatory factors, but because there is
redundant information, the overall loss of explained variation should not be heavily
affected. In contrast, highly spatially autocorrelated covariates are often strong pre-
dictors within a model and removing them eliminates a unique contribution to the
model (unless there is also strong collinearity present). As a result, focusing more on
global and local collinearity is still likely a sufficient management strategy, though it
is useful to be aware that the general effect of collinearity can more quickly become
accentuated if there are many variables with high spatial autocorrelation.

Furthermore, novel evidence was produced to support that MGWR provides sig-
nificant improvements over GWR in terms of avoiding potential issues that might
arise from collinearity and/or spatial autocorrelation. In fact, compared to GWR,
MGWR typically produces less estimation error (overall and pattern recovery) and
little-to-no potential local collinearity issues due to either collinearity, autocorrela-
tion, or both until extreme levels, which would be easily defended against using typ-
ical diagnostics. These results are encouraging, providing additional evidence of the
robustness of MGWR to potential collinearity issues (Oshan et al. 2020), highlight-
ing the benefits of allowing the measurement of scale to vary for each relationship,
and generally supporting the use of MGWR over GWR.

Moving to the multiscale paradigm provided the additional opportunity to inves-
tigate the role of collinearity and autocorrelation in measuring process scale. By
examining the optimally estimated bandwidth values across each simulation design,
three important trends emerged. First, the positive correlation between the noise
level and the optimal MGWR bandwidths, along with the preserved order of band-
width magnitudes, suggests that MGWR bandwidths should likely be interpreted in
a relative rather than absolute manner. Second, in the design with a smaller sam-
ple, where the true parameter surface was global (i.e., stationary) with no spatial
variation, the simultaneous presence of high spatial autocorrelation and collinearity
in covariates caused the bandwidth for parameters with the lowest level of spatial
heterogeneity (including the intercept) to be underestimated. This led to the detec-
tion of locally varying effects even when none existed, resulting in a form of false
positive. However, the patterning of these local effects was not very pronounced.
This finding serves as a cautionary note, particularly when interpreting the estimated
local intercept as the measurement of intrinsic contextual effects (Fotheringham
et al. 2021; Fotheringham and Li 2023). In such scenarios, identifying and manag-
ing covariate spatial autocorrelation and multicollinearity becomes even more criti-
cal. A third trend was that when collinearity becomes extreme (if it is allowed to do
s0), MGWR’s ability to use different bandwidths enables it to adapt by selecting a
larger bandwidth to increase the sample size, thereby mitigating the negative effects
of smoothing. This implies a trade-off between missing the local effect for one
covariate and keeping the model robust for other covariates—essentially a false neg-
ative, but the outcome is a near-stationary (i.e., global) estimate that approximates
an average of the true local parameters. The result is that MGWR enhances overall
model, while also suggesting that very large bandwidths may indicate either a global
process or the presence of multicollinearity if caution is not exercised. Future work
should further explore the extent to which pockets of local collinearity may trigger
this effect and its implications for multiscale modeling.
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The experiments here were simplified in the sense that there were only two
explanatory variables. A key finding from the supplementary experiments, which
introduced an additional independent covariate, is that spatial autocorrelation and
collinearity primarily affect only the associated parameter and bandwidth esti-
mation (and the intercept in the case of spatial autocorrelation), assuming all
relevant variables are included. This confirms the isolating effect of these cor-
relations on specific model components. However, in reality, covariates are more
likely than not to exhibit both spatial autocorrelation and associations with each
other. As the number of covariates increases, the effects of collinearity and spatial
autocorrelation are expected to compound more quickly, particularly at the local
level, where detection may require additional effort. Although using MGWR may
help mitigate some of these issues, caution is warranted regarding false positives
on the local intercept and false negatives on local slopes. The latter is not inher-
ently problematic for the rest of the model and is just an extension of the typical
problem with multicollinearity—a variable that is collinear might be removed to
avoid obfuscating other relationships in a regular regression, whereas in a local
regression, a variable might not need to be removed but cannot have a local
effect without obfuscating other relationships. As a result, a local effect might be
missed, but the remaining relationships may remain robust.

Including this current work, the notion of multicollinearity in GWR has been
studied now for approximately two decades (Wheeler and Tiefelsdorf 2005;
Wheeler 2006; Fotheringham and Oshan 2016). As more data availability expands
and methodologies continue to evolve, revisiting the matter offers an opportunity
to develop a more nuanced understanding. Specifically, with the advancement of
GWR to MGWR (Fotheringham et al. 2017; Yu et al. 2020a), the assumption of
a constant bandwidth is relaxed to provide insights into the spatial scale at which
each process operates. Larger bandwidths indicate global processes and less
smoothing of the data to create local samples, while smaller bandwidths indicate
local processes and more smoothing of the data. It is within this context that this
work was motivated to reprise the topic and consequently contribute to a more
comprehensive understanding of MGWR, highlighting considerations for effec-
tively using the method for empirical applications.

As with any simulation studies, this research has limitations. First, the simula-
tions only consider two collinear covariates, limiting the ability to assess more
complex correlations involving multiple covariates. Second, when collinearity is
present, both covariates are assumed to exhibit the same level of spatial autocor-
relation. Allowing them to have different spatial autocorrelation levels could pro-
vide additional and meaningful insights. Third, only regular spatial configuration
is examined, while empirical studies are often faced with irregular spatial config-
urations. Fourth, local spatial autocorrelation could exist even in the absence of
significant global spatial autocorrelation in the explanatory variables, an aspect
that remains unaddressed. Future research will aim to overcome these limitations.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10109-025-00468-1.
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