
The brain prioritizes the basic level 
of object category abstraction
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The same object can be described at multiple levels of abstraction (“parka”, “coat”, “clothing”), yet 
human observers consistently name objects at a mid-level of specificity known as the basic level. Little 
is known about the temporal dynamics involved in retrieving neural representations that prioritize 
the basic level, nor how these dynamics change with evolving task demands. In this study, observers 
viewed 1080 objects arranged in a three-tier category taxonomy while 64-channel EEG was recorded. 
Observers performed a categorical one-back task in different recording sessions on the basic or 
subordinate levels. We used time-resolved multiple regression to assess the utility of superordinate-, 
basic-, and subordinate-level categories across the scalp. We found robust use of basic-level category 
information starting at about 50 ms after stimulus onset and moving from posterior electrodes 
(149 ms) through lateral (261 ms) to anterior sites (332 ms). Task differences were not evident in 
the first 200 ms of processing but were observed between 200–300 ms after stimulus presentation. 
Together, this work demonstrates that the object category representations prioritize the basic level 
and do so relatively early, congruent with results that show that basic-level categorization is an 
automatic and obligatory process.

Keywords  Object categorization, Temporal dynamics, Task demands, EEG

Object recognition is a ubiquitous human activity that we find fast and effortless1. Every act of object recognition 
is also an act of categorization2. For example, to recognize the coffee cup on one’s desk, one places it into the class 
of coffee cups, thus linking it to the knowledge we have about the concept as a whole (holds hot liquid, often has a 
handle, is smaller than a breadbox, etc.) Thus, categorization is also an act of cognitive information compression 
that enables us to act efficiently and intelligibly3.

Each object can be categorized with multiple valid labels because the human conceptual structure is 
hierarchical4. For example, the same coffee cup could be a “cup”, a “dish”, an “object”, or an “entity” with increasing 
levels of abstraction, or a “black coffee cup from a 2017 conference” at a more specific level. Yet, observers tend 
to use some labels more often than others5. Specifically, most objects are spontaneously named at a mid-level 
of specificity known as the “basic”6or “entry”7level. The salience of this category level has been established with 
developmental, cognitive, and cognitive neuroscience studies. Children’s language is composed primarily of 
basic-level names6,8,9. For adults, objects are categorized fastest at the basic level6,10,11. Basic-level words also 
tend to be shorter5,6, highlighting how using basic-level terms provides efficient communication.

While the salience of the basic level is well-established in cognitive literature, comparatively few studies have 
examined the neural correlates of this effect. Object recognition is believed to involve a series of regions in the 
ventral visual processing stream12. Of particular note is the lateral occipital complex (LOC), an area with higher 
selectivity to intact objects than scrambled objects, faces, or scene13. However, studies employing multivoxel 
pattern analysis (MVPA) have demonstrated that object identities and categories can be decoded throughout 
the occipitotemporal cortex14–18, suggesting that the neural code for object categories is broadly distributed 
across the cortex. Critically, many of the objects selected for these studies were chosen to widely sample objects 
as a natural class, with little respect to their hierarchical relationships. One counterexample16 examined object 
decoding at three levels of specificity: superordinate (domain level), basic, and subordinate (the most specific 
level). This study found that although early visual cortex showed the best category clustering at the subordinate 
level (perhaps reflecting the higher low-level similarities among exemplars at this level), basic-level grouping 
increased across the ventral visual stream, with an observed maximum in LOC. An open question concerns 
the temporal dynamics of the basic level superiority effect. By knowing when the brain prioritizes basic-level 
categories, we can begin to infer how this prioritization occurs.

The temporal dynamics of object categorization are particularly critical, as this task is effortless1,19–21and may 
even be automatic, as we engage in categorization even when it is task-irrelevant22,23. Previous studies on the 
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neural time course of object categorization have included a wide array of objects without a specific hierarchical 
relationship to one another24–26, examined category relationships at a superordinate level, such as animate versus 
inanimate27–30or examined hierarchical relationships among objects in a post-hoc manner31,32. These previous 
studies on the temporal dynamics of object decoding have found that object exemplars can begin to be decoded 
around 60 ms after stimulus onset27,33–35. However, this performance may be enabled by differences in the low-
level visual features associated with the images rather than the categories per se. Supporting evidence for this 
view is that decodable M/EEG signals of object exemplars correlate with behavioral assessments of similarity 
or reaction times later (150–250  ms after stimulus onset21,25,36–38). Furthermore, position and size-invariant 
decoding only occur after 135  ms35,39. Finally, studies that have examined abstract, category-level decoding 
versus exemplar-level decoding have found that neural signals do not contain object category information until 
around 250 ms after stimulus onset28,33.

Despite the consistency of these findings, many questions about object category representation remain. 
Specifically, none of these previous decoding studies have examined categorization at the basic- or entry-level 
in comparison to other levels of abstraction. Furthermore, we have little insight into how the observer’s task 
influences these temporal dynamics. Accordingly, this study was designed to examine hierarchical relationships 
among objects at three different levels of specificity. Moreover, as some superordinate-level distinctions such 
as animacy40or real-world size41 may engage distinct neural pathways, we have chosen this stimulus set from a 
small number of superordinate-level categories that, as best as possible, are inanimate and large in size.

Our approach is illustrated in Fig.  1. We examined how three levels of object category information are 
reflected in time-resolved EEG responses when observers engaged in two different categorization tasks, a basic-
level task, and a subordinate-level task. We focused on these two levels because the superordinate is the least 
important. Superordinate-level terms are used with the least frequency42, and children learn superordinate-level 
terms last6,43. Furthermore, behavioral evidence has suggested that category membership at the superordinate 
level is inferred from the basic level, which is perceived directly6,22,44. Last, although expertise can shift the 
entry-level of an object from basic- to subordinate11, there are no analogous experiences that shift the entry level 
to the superordinate within cognitively healthy individuals. Objects were selected from large, inanimate objects 
and pasted on an abstract background to avoid confounds from correlated natural backgrounds and previously 
established category distinctions. Multiple competing predictions can be made. If object categorization proceeds 
from low-level features to more abstract categories, as shown by28,33, we expect the earliest neural responses 
to correspond to the subordinate-level category, followed by the basic and then the superordinate. However, if 
categorization proceeds in a top-down manner, we may expect the degree of shared semantic features24,31,45to 
be processed first. As superordinate-level categories would require the fewest number of semantic features to be 
verified to determine category membership, this would predict that superordinate-level categories would be read 
out first. Finally, given the behavioral importance of the basic level for categorization6, the most rapid and robust 
neural responses may be at this level.

Results
Behavioral
In two sessions, observers detected category repeats at either the basic or subordinate levels. Overall, performance 
on the repeat detection task was high (mean: 94%, range: 86%−97%). We computed d’ for both tasks and found that 
although performance was numerically higher on the basic-level task (mean: 2.67) than on the subordinate-level 
task (mean: 1.90), this difference was not statistically significant (t(13) = 1.65, p = 0.12). Therefore, participants 
were similarly successful on both tasks. We examined the detection rate across subordinate-level categories. We 
found it very high (mean: 94%, range: 91%−100%), indicating that observers could easily distinguish between 
all subordinate-level categories.

We also compared the reaction times for the hits of both tasks. We found that participants were faster at 
detecting basic-level repeats (mean: 798 ms) compared to subordinate-level repeats (mean: 846 ms, t(13) = −3.56, 
p = 0.003).

Whole-brain multiple regression
At each time point, we fit a multiple linear regression model using the lower triangle of the three orthogonalized 
model RDMs in Fig. 1B as predictors for the representational dissimilarity matrix of EEG responses across the 64 
electrodes and 1080 trials. We stored the regression coefficients (β) and the coefficient of determination for the 
model (R2). The results of the time-resolved R2 analysis are shown in Fig. 2A. Overall, both basic-level (green) 
and subordinate-level (purple) detection tasks had very similar onsets (both 72 ms, t(13) < 1). Similarly, both 
tasks had identical maximum R2 values (0.00012, t(13) < 1) and similar latencies of maximum R2 (basic: 149 ms, 
subordinate: 153 ms, t(13) < 1). For each participant, we subtracted the R2 for the subordinate task from the R2 
in the basic task. We confirmed that no significant task differences were observed at any time point (see Fig. 2B). 
Therefore, both tasks seem to engage category information similarly.

Next, we examined the regression coefficients for each of the three category models across both tasks. The 
results are shown in Fig.  2C. To examine the earliest use of category information, we performed a repeated 
measures ANOVA on the onset values with task and category models as within-subject variables. We found no 
significant effect of task (basic: 64 ms; subordinate: 49 ms, F(1,13) < 1). Although we found a numerical trend 
toward later onsets for the subordinate-level model (68 ms) compared to the basic (52 ms) and superordinate 
(50  ms) models, this difference did not achieve statistical significance (F(2,26) < 1). Finally, there was no 
significant interaction between task and category model (F(2,26) < 1) on the onset of regression coefficients.

We then considered the maximum coefficient values for each category model and task. We found a significant 
main effect of category model (F(2,26) = 21.4, p < 0.001, ges = 0.99). Post-hoc analyses revealed that this was 
driven by higher coefficient values for the basic-level category model than the subordinate (0.77 versus 0.27, 
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Fig. 1.  (A) Example images of each of the 27 subordinate-level object categories. There were 40 exemplars in 
each of these categories. Please note that the names are written here for convenience and were not presented 
to the participants. (B) Representational dissimilarity matrices (RDMs) depict orthogonalized subordinate-, 
basic-, and superordinate-level models. (C) Illustration of multiple regression methods. The scalp map shows 
the three regions of interest (ROIs). The top pathway illustrates whole-brain regression while the bottom 
illustrates the electrode-wise approach. In both cases, the resulting neural representational dissimilarity 
matrices (RDMs) were predicted by the three model RDMs from panel B.
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t(13) = 4.45, p = 0.0003), as well as the superordinate (0.77 versus 0.21, t(13) = 4.92, p = 0.0001). There was no 
significant difference between subordinate and superordinate models t(13) = 1.98, p < 0.05, ns after Bonferroni.

correction). We found no significant effect of task (F(1,13) < 1) nor any interaction between task and category 
model (F(2,26) < 1).

When considering the latency of maximum coefficient values, we found no significant effects of task (basic: 
169 ms; subordinate: 195 ms, F(1,13) < 1), category model (superordinate: 196 ms; basic: 151 ms; subordinate: 
199 ms, F(2,26) < 1), nor an interaction between these variables (F(2,26) < 1).

To assess task-related information usage in a finer manner, we subtracted the coefficients from the subordinate 
task from those in the basic-level task. For this analysis, we considered only the subordinate- and basic-level 
coefficients as we did not have a superordinate task. As shown in Fig. 2D, we observed significant task-related 
differences between 216–318 ms post-image onset, indicating that the neural activity reflected the task-relevant 
category level during this time period.

Altogether, this analysis demonstrates a neural correlate of the basic-level advantage. However, it does not 
directly shed light on the genesis of this advantage. To gain better insight, we repeated the same analysis at each 
electrode.

Electrode-wise multiple regression
We conducted similar regression analyses at each electrode using a 41-ms sliding window (see Methods). 
Similar to the whole-brain analysis, we examined both the coefficient of determination (R2) and the regression 
coefficients for each of the three category models. We also examined the effects in three regions of interest (ROI, 
see Fig. 1C).

Fig. 2.  (A) R2 values for basic- and subordinate-level tasks over time. (B) Average differences in R2 between 
basic- and subordinate-level tasks. (C) Regression coefficients for each of the three orthogonalized category-
level models for each of the two tasks. (D) Regression coefficient differences between tasks for basic- and 
subordinate-level coefficients. For each plot, the shaded area indicates 95% confidence intervals, and markers 
indicate time points that are statistically above baseline (A-C) or pairwise differences (D).

 

Scientific Reports |           (2025) 15:31 4| https://doi.org/10.1038/s41598-024-80546-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Time-resolved R2 values for each task and ROI are shown in Fig. 3A and topographically in Fig. 3B. As before, 
we conducted analyses on the onset, maximum, and latency of maxima. A repeated measures ANOVA on onset 
with task and ROI as within-subject factors revealed a significant main effect of ROI (F(2,26) = 3.88, p < 0.05, 
ges = 0.95). Follow-up analysis revealed that anterior onsets (86  ms) were significantly later than posterior 
(59  ms, t(13) = 2.59, p = 0.01) and lateral (61  ms, t(13) = 1.98, p = 0.03) onsets. We observed no significant 
difference between posterior and lateral (t(13) < 1). We observed no main effect of task (F(1,13) < 1) nor an 
interaction between task and ROI (F(2,26) < 1). Therefore, category information for all models had a strikingly 
early onset, this was particularly true over the posterior and lateral scalp electrodes and does not depend on the 
observer’s task.

When considering the maximum R2 values across ROI and task, we observed a significant main effect of 
ROI (F(2,26) = 27.5, p = 3.8e-7, ges = 0.99). Follow-up analysis revealed that maximum R2 values were larger 
over posterior electrodes than lateral (t(13) = 4.8, p = 0.0002) and anterior (t(13) = 5.66, p = 3.9e-5) and that 
lateral values were higher than anterior (t(13) = 4.33, p = 0.0004). We observed no significant effect of task 
(F(1,13) < 1) or a significant interaction between task and ROI (F(2,26) < 1). Thus, category information at each 
of the hierarchical levels is maximal over posterior electrodes and is reduced as one moves across the scalp 
in the anterior direction. Finally, we examined the latency of maximum R2 values across ROI and task. We 
found no significant effects of either ROI (anterior: 332 ms; lateral: 261 ms; posterior: 149 ms, F(2,26) < 1) or 
task (basic: 260 ms; subordinate: 276 ms, F(1,13) < 1), nor a significant interaction between them (F(2,26) < 1). 
Altogether, this analysis has revealed that category information first emerged in posterior electrodes, that there 
was a gradient of category information that increased over the posterior portion of the scalp, but that the task 
did not significantly modulate these effects.

Fig. 3.  (A) R2 values over time for basic- and subordinate-level tasks in each of the three regions of interest. 
Shaded regions indicate 95% confidence intervals, and markers indicate statistical significance. (B) Scalp 
topography of R2 values. (C) Regression coefficients for each of the three orthogonalized category-level models 
for each of the two tasks in each of the three regions of interest. Shaded regions indicate 95% confidence 
intervals, and markers indicate statistical significance. (D) Scalp topography of regression coefficient 
differences across tasks.
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We will now turn our attention to the regression coefficients. The results are shown in Fig. 3C. As with R2, 
we conducted analyses on the onset, maximum, and latency of maxima. We conducted a repeated-measures 
ANOVA on onset with task, ROI, and category model as within-subjects factors. We found no significant main 
effects or interactions. Considering the maximum coefficient values, we observed a significant main effect of 
ROI (F(2,26) = 50.0, p = 1.2e-9, ges = 0.99). Follow-up analysis revealed that coefficient values were higher 
over posterior electrodes than anterior (0.83 versus 0.27, t(13) = 7.87, p = 1.3e-6) or lateral (0.83 versus 0.36, 
t(13) = 6.86, p = 5.7e-6). Finally, coefficient values were higher over lateral electrodes than anterior (t(13) = 2.74, 
p = 0.008). Furthermore, we observed a significant main effect of category model (F(2,26) = 60.06, p = 1.8e-10, 
ges = 0.99). This effect was driven by larger coefficients for the basic-level model compared to the subordinate 
(0.77 versus 0.30, t(13) = 6.71, p = 7.2e-6) and superordinate (0.77 versus 0.21, t(13) = 8.15, p = 9.1e-7), as well as 
larger coefficients for the subordinate level compared to superordinate (t(13) = 5.87, p = 2.8e-5). We observed no 
significant main effect of task (F(1,13) < 1), nor an interaction between task and category model (F(2,26) < 1), 
or between task and ROI (F(2,26) < 1). However, the ROI and category model interaction was significant 
(F(4,52) = 22.05, p = 1.1e-10, ges = 0.98). As shown in Table 1 and Fig. 3C, this was driven by higher basic-level 
coefficients over posterior electrodes. Table 1lists the maximum coefficient values for each ROI and category 
model. The values for the superordinate category level were relatively stable across ROIs, while the values for 
the basic- and subordinate category levels were markedly higher in the posterior and lateral ROIs, consistent 
with previous EEG work using decoding methods36and evocative of the flow of category information across the 
ventral visual stream, as illustrated by MEG-fMRI fusion46. The three-way interaction between task, ROI, and 
category model was not significant (F(4,52) < 1).

We examined the latency of the maximum coefficient values in a similar way. We observed a significant 
main effect of ROI (F(2,26) = 11.28, p = 0.0003, ges = 0.95). Post-hoc analysis revealed that this effect was 
driven by earlier latency over the posterior electrodes (149 ms) than lateral (261 ms, t(13) = 3.32, p = 0.003) or 
anterior electrodes (332 ms, t(13) = 3.82, p = 0.001). The difference between lateral and anterior latencies was not 
statistically significant after correcting for multiple comparisons (t(13) = 2.14, p = 0.03). No other main effects or 
interactions were statistically significant. Therefore, regression coefficients were largest for the basic-level model 
and larger and earlier over more posterior electrodes.

We conducted an exploratory analysis of task differences by subtracting regression coefficient values from 
the subordinate-level task from those from the basic-level task. The scalp topographies are shown in Fig. 3D. 
Interestingly, we found adjacent electrodes with different patterns of basic-level regression coefficients over 
occipitotemporal electrodes between 120–200 ms after stimulus onset. This suggests that the different tasks may 
engage different neural populations over a similar time course.

Discussion
In most circumstances, human observers spontaneously classify objects at a mid-level of specificity, known as 
the basic-6or entry-level7. Despite the robust nature of this effect, little has been known about how the brain 
organizes itself around this cognitive preference. This work aimed to establish the time course and scalp 
topography of the basic-level effect for objects, controlling for previously confounding variables.

Although observers were similarly accurate in detecting category repeats at both the basic- and subordinate 
levels, we found that the basic-level model dominated the multiple regression analyses regarding earlier onset 
(whole brain partial R2) and magnitude of effects (regression coefficients). These results agree with what is 
known about the behavioral6and neural16 precedence of the basic level for categorization.

In this experiment, observers engaged with basic-level and subordinate-level classification in different 
recording sessions. Task-related differences were not evident in the first 200  ms of post-stimulus processing 
but rather emerged between 200–300 ms after stimulus onset. This result aligns with previous results that link 
abstract categorization to this time window25,28,33, and the correlation time course with reaction times37. This 
may also align with hierarchical models of visual processing that posit low-level feature analysis (invariant to 
task) is followed by task-specific feature analysis47

.
When examining the onset and magnitude of R2across ROI, we found earlier effects across posterior electrodes 

than other ROIs, and a progression from posterior to anterior across the scalp. We also found larger regression 
coefficients in the posterior ROI. These could imply a feedforward mechanism of category formation48. However, 
a strict feedforward account does not necessarily explain the stronger and earlier basic-level grouping compared 
to subordinate. Previous fMRI work has demonstrated that subordinate-level grouping was observed in this 
stimulus set in early visual cortex16, but we did not observe earlier subordinate-level grouping. Instead, the early 
usage of basic-level information, even when observers engaged in the subordinate-level task, suggests automatic 
processing at the basic level22. This possibility is strengthened by the exploratory observation that basic-level 
information was present simultaneously with subordinate-level in different neural populations when observers 
engaged in the subordinate-level task (see Fig. 3D).

Posterior Lateral Anterior

Superordinate 0.35 0.19 0.14

Basic 1.54 0.64 0.47

Subordinate 0.60 0.24 0.19

Table 1.  Maximum regression coefficient values for each category model and ROI.
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Our study exclusively examined large, inanimate objects. While there is real-world size variability across 
objects in our dataset (a cargo ship is larger than a piano), all objects were chosen to require at least two 
human hands for interaction. Furthermore, the objects in the current study were removed from the naturalistic 
backgrounds and placed on non-meaningful 1/f noise backgrounds. This removed any low-level features 
potentially correlated with an object’s presence, such as the blue sky behind an airplane. Some of the stronger 
subordinate- and exemplar-level grouping observed in previous studies49may be attributed to including these 
backgrounds because scenes and objects share strong contextual correlations50–52. Finally, many extant studies 
include few exemplars per category27,28,49. By including 40 exemplars per subordinate-level category, we better 
reflect each subordinate-level category’s natural variability, allowing us to better generalize the category concept. 
Any of the above factors could have resulted in the unexpectedly small effects of subordinate-level grouping 
compared to previous studies.

Taken together, these results clearly show the saliency of the basic level for categorization, starting very 
early after image onset and even when observers were asked to categorize images at the subordinate level. As 
categorization is a task that grounds high-level conceptual systems with the sensory systems that support them, 
these results align with intellectual traditions that see categorization as inexorably linked to perception2rather 
than encapsulated from it53. Further, these results align with previous research showing that object categorization 
is automatic and obligatory22.

In this study, we found little contribution of the superordinate level of categorization (transportation, musical 
instruments, and furniture). At first glance, this contradicts some reaction time results showing rapid responses 
at the superordinate level54. However, superordinate category verification may be easy because members of 
different superordinate categories differ on many features, and affirming just one of these differences may be 
diagnostic for the task55. It has also been argued that the superordinate-level detection advantage disappears 
when low-level feature similarity is accounted for, as we have done here56. Furthermore, behavioral evidence 
demonstrates that while basic-level categorization is automatic, superordinate-level categorization seems to be 
inferred from the basic levels6,22,44. Developmental evidence supports this view: children learn superordinate-
level categories last and use them least frequently6,43, and the acquisition of superordinate-level concepts is more 
closely tied to language acquisition than perceptual development57. Finally, neural evidence also demonstrates 
that superordinate-level categories group less coherently within object-selective cortex16, and are distributed 
along a broader spatial extent of cortex compared with basic-level categories58. Finally, although expertise can 
shift language use to the subordinate11, we no studies report increased superordinate label use as a function 
of learning or other experience in healthy populations. Given the consistency of these findings against the 
importance of the superordinate level category, we opted not to include a superordinate-level task in the design. 
However, it may be the case that engaging with the superordinate level would increase the utility of superordinate 
features, so future work should examine the extent to which attending to superordinate-level membership may 
change neural processing.

There are multiple theoretical accounts of the basic-level superiority effect. Most theorists agree that this 
mid-level specificity best achieves the competing aims of maximizing within-category similarity and minimizing 
between-category similarity6,59,60. However, there is less consensus on the origin of this grouping. Early theories 
indicated that items in the same basic-level category might cluster in terms of their physical features61. However, 
this fell out of favor when object classification turned out to be a non-trivial problem for computer vision 
(Chihuahuas and Dalmatians are both dogs, despite their physical dissimilarities). Others have noted that basic-
level categories might increase the efficiency of using and communicating about categories62, for example, by 
assigning shorter words for basic-level concepts. Alternatively, basic-level concepts might be the most efficient to 
search in memory63 because they minimize the feature overlap between categories while maximizing the feature 
overlap within categories. All theories agree that the basic level is a tradeoff between detail and diagnosticity. 
That said, there are very few predictions that these accounts would make that are directly testable with the data 
from the current experiment.

We observed very few differences in the latency of effects across conditions. In part, the temporal smearing 
resulting from the sliding window in the electrode-wise analyses may have blurred any possible small effect. 
In contrast, the whole brain analysis might not have been sensitive to small representational differences across 
electrodes. A study using fMRI-M/EEG fusion methods64 may be better able to adjudicate the question of the 
relative timing of the three category levels.

Finally, categorical perception is predicted by both prototype65and boundary-based models66. In a prototype 
account, object representations are compared to a central tendency or prototype. Category boundary effects 
emerge because items on different sides of a category boundary have a shorter representational distance to one 
prototype than another. By contrast, boundary accounts emphasize the features that would include an item in 
the category, irrespective of its position to a central category tendency. While we cannot comment on these two 
accounts with the present data, a future experiment might examine basic-level supremacy in objects nearer and 
farther from a central category tendency. A prototype account would predict stronger effects in the near items, 
while a boundary account would predict stronger effects in the far items.

The present experiment demonstrates a temporal neural correlate of the basic-level supremacy effect. Namely, 
it is the first and most robust category representation to emerge, and it is only subtly modulated by task demands. 
These results emphasize the primacy of the basic level for object categorization and provide additional evidence 
for its automatic nature.

Materials and methods
Participants
Ethical approval was obtained from the Bates College Internal Review Board, written informed consent 
was obtained from all participants, and the experiment was conducted per the guidelines of this board. 16 
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participants (ages 18–22, mean age: 19.54, 9 female) from the Bates College community volunteered for this 
experiment. This sample size was chosen based on previous fMRI work with this image set16and is similar to 
other work that employs regression analysis on EEG36. Due to recording errors in two sessions, two participants 
were excluded from the analysis. Each participant was compensated for their time with a $60 gift card or course 
credit. Participants provided informed consent and were screened for overall acuity via a standard ETCRS eye 
chart and for color vision via the Ishihara test. Each participant completed two recording sessions with a median 
of seven days of separation (range: 4 to 48).

Stimuli
The object stimuli in this experiment consisted of 1080 photographs from a previous study16. This image set 
consists of a three-tiered taxonomy with three superordinate-level categories (conveyances, musical instruments, 
and furniture). We selected three basic-level categories for each of the superordinate-level categories. For example, 
cars, airplanes, and shipswere the three basic categories of conveyances. These were chosen as non-animate 
categories with relatively large real-world sizes to avoid known neural differences across these dimensions40,41. 
Finally, three subordinate-level categories were chosen within each of the nine basic-level categories (e.g., sedan, 
sports car, and station wagonas types of cars). Thus, the set consists of 27 subordinate-level categories with 40 
image exemplars per category for 1080 total images. Each object was segmented from its natural background 
and placed on a colorful 1/f noise background. This noise emulates the spectral properties of natural scenes67to 
ensure that EEG response differences were due to the object rather than its contextually related background51,52. 
Further, as objects differed in aspect ratio, the noise background ensured a constant spatial extent of retinal 
stimulation in each trial. For more information about dataset creation, see16. See example images in Fig. 1A and 
Supplementary Materials for all category names.

Design
Participants completed two recording sessions. In each, they were instructed to perform a categorical one-back 
task, pressing a key when images from the same category were repeated consecutively. For example, a biplane 
followed by an airliner would be a valid repeat at the basic level, while subordinate-level category repeats required 
the repetition of two different exemplars of (for example) biplanes. In this way, the tasks forced observers to 
classify objects at a certain level of specificity and maintain this category representation in working memory 
across repeats. Participants attended to the subordinate-level category in one recording session and the basic-
level category in the other. The task of each recording session was counterbalanced across participants. To equate 
the difficulty and attentional demands across both tasks, both sessions had an equal number of repeats (N = 108). 
In both cases, participants completed 27 blocks of 40 trials.

Procedure
The experiment was conducted in a dimly lit recording chamber. Participants were seated approximately 60 cm 
from a 27″ LCD monitor (ASUS VG248Q, resolution: 1920 × 1080 at 100 Hz). While the EEG electrodes were 
placed on the participant’s scalp, the participant viewed a slideshow presentation that explained the hierarchical 
category structure of the experiment and showed visual examples of members of each subordinate-level category. 
This ensured that participants understood some of the sometimes subtle differences between subordinate-level 
categories within each basic-level category. These sample exemplars were not shown in the main experiment.

The experiment consisted of 27 runs of 40 images each. In each run, a black fixation square (approximately 
0.3° of visual angle) appeared for a variable duration (sampled from N(300 ms, 30 ms)), followed by an image 
for 250 ms. Participants were instructed to press the space bar if two consecutive images belonged to the same 
category as the session’s target category level (basic or subordinate). For example, two successive guitars when 
performing the basic-level task or two consecutive Stratocaster guitars when performing the subordinate-level 
task. Participants were given up to 950  ms to record their responses. When participants correctly identified 
category repeats, they received positive feedback (“Correct!” printed on the screen for 500  ms). Negative 
feedback was provided if a participant missed a repeat or falsely identified a repeat (“Incorrect” printed on screen 
for 500 ms). No feedback was provided for correct rejections. Thus, this experiment’s approximate interstimulus 
interval (ISI) was 1750 ms, and the intertrial interval was ~ 2000 ms. Participants were allowed to take a self-
paced break at the end of each run. They were otherwise asked to remain as still as possible and to minimize 
movement during the runs.

EEG recording
EEG was recorded with 64 Ag–AgCl active electrodes based on the international 10–20 system. EEG signals were 
amplified with Brain Products’ ActiCHamp system and digitized at 1000 Hz using PyCorder v1.0.9. Impedance 
levels for each electrode were at or below 15 kΩ before data collection. EEG was referenced online to electrode 
Fpz and then re-referenced offline to the average of all electrodes. Two electrodes were placed at the bottom 
and outer canthi of the right eye to detect eye movements and blinks. These were linked to a reference on the 
right mastoid bone. We time-locked EEG signals to stimulus presentation through a photodiode attached to the 
bottom left corner of the monitor and obscured from the participant’s view.

EEG preprocessing
EEG data were pre-processed with EEGLAB68. Raw EEG data were bandpass filtered with a finite impulse 
response filter with a half-amplitude cutoff of 0.1 Hz and 50 Hz and a 12 dB/octave roll-off. Data were epoched 
to preserve signals 100 ms before each trial, including 500 ms of stimulus-driven response. Eyeblink artifacts 
were identified and corrected via independent components analysis. We examined each trial and electrode for 
artifacts (values larger than 100 μV or smaller than −100 μV). For trials with three or fewer artifactual electrodes, 

Scientific Reports |           (2025) 15:31 8| https://doi.org/10.1038/s41598-024-80546-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


we re-defined each bad electrode’s voltage as its neighbors’ average voltage. We omitted trials with more than 
three bad electrodes from further analysis (median: 7.3 trials omitted, range: 1–61 trials).

Regression methods
To estimate the amount of category information available in the EEG signals at each of the three category levels 
at each point in time, we adopted a multiple regression approach. Here, we used representational dissimilarity 
matrices (RDMs69,) that defined category membership at each level to predict an RDM reflecting neural 
variability across the experiment. Both whole-brain and electrode-wise regression analyses are explained below 
and visually in Fig. 1C. Regression analyses were conducted on each participant individually and then averaged.

Model RDMs
We created three 1080 × 1080 model RDMs, reflecting superordinate, basic, and subordinate-level category 
membership. Due to the hierarchical nature of category membership (images within the same subordinate 
category also share basic- and superordinate-level membership), we orthogonalized the RDMs to avoid 
multicollinearity issues. To orthogonalize the representational spaces, we employed linear regression analyses 
wherein the subordinate RDM was regressed against both the superordinate and basic RDMs, and the basic 
RDM was regressed against the superordinate RDM. The residuals from these regressions were reshaped back 
into matrix form to yield orthogonalized RDMs for the basic and subordinate levels. The residuals represent the 
variance in the lower-level RDMs not explained by the higher-level RDMs. For example, the orthogonalized 
subordinate RDM represents subordinate-level category information not shared with the basic- or superordinate 
level. As shown in Fig. 1B, the orthogonalized RDMs emphasize contrasts between a given level and its “parent” 
level by assigning very low distances within the given level and the highest distances for categories within the 
next higher level.

Neural RDMs
To employ the model RDMs to predict neural activity, we created two different types of neural RDMs: whole-
brain RDMs that reflected the overall patterns of voltage across the scalp and electrode-wise RDMs that 
examined patterns of voltage at each electrode during a small sliding window of time. To create whole-brain 
RDMs, we extracted the voltage values for all electrodes across all 1080 trials at each time point. We created 
a 1080 × 1080 RDM from this array using the Euclidean distance metric. To create RDMs at each electrode, at 
each time point from 80 ms before stimulus onset to 480 ms after, and at each of the 64 electrodes, we used a 
41-ms sliding window (20 ms before through 20 ms after each time point) to extract a 1080-trial by a 41-ms 
array. The temporal window size was chosen from previous experiments36,70,71. This array was transformed into 
a 1080 × 1080 RDM using the Euclidean distance metric. Thus, separate regression analyses were performed at 
each electrode and at each time point between 80 ms prior to stimulus onset and 480 ms after stimulus onset. 
From the set of 64 electrodes, we defined three regions of interest: posterior (Oz, PO7, PO3, POz, PO8, PO4, Iz), 
lateral (P1, P3, P5, P7, CP1, CP3, CP5, TP7, TP9 P2, P4, P6, P8, CP2, CP4, CP6, TP8, TP10), and anterior (Fp2, 
AF7. AF3, AFz, AF4, AF8, F1, F3, F5. F7, Fz, F2, F4, F6, F8), see Fig. 1C for a visual map of these ROIs.

Statistical analysis
In each regression analysis, we collated the lower triangles of the three vectorized model RDMs into a 3 × 582,660 
matrix of predictors. Then, in each time point (whole brain) or time point and electrode (electrode-wise), we 
extracted a neural RDM (lower triangle). We used multiple regression to predict the neural RDM with the model 
RDMs. We saved both regression coefficients (β) and R2 in each analysis.

We examined three primary dependent measures for both coefficients (β) and R2 for each time-resolved 
multiple regression analysis: the maximum value in each condition (establishing the amount of category 
information), the latency when this maximum was reached (establishing when the brain had peak information), 
and the onset time (establishing the start of category-specific processing), defined as the latency when values 
exceeded the group 95% confidence interval established during the pre-stimulus baseline. To increase the 
signal-to-noise ratio of these measures, we employed a jackknife approach, iteratively computing the mean in 
13 of the 14 participants. Accordingly, all t- and F- values have been corrected by dividing by (n-1) and (n-1)2, 
respectively72.

To assess the statistical significance of a given time point while controlling for multiple comparisons, we 
employed permutation-based cluster statistics across adjacent time points, as suggested by73. Specifically, we 
generated empirical null distributions from 10,000 permutations. Each permutation consisted of randomly 
sampled time points within the pre-stimulus baseline. We employed cluster-based correction for multiple 
comparisons, wherein clusters of temporally contiguous significant points were identified. The sum of t-statistics 
within each cluster served as the cluster-level statistic, with significance determined based on a threshold set at 
the 95th percentile of the permutation-derived null distribution.

Data availability
The datasets generated during and/or analyzed during the current study are available in the OSF repository, 
https://osf.io/x3yvd/.
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