

1 **Muscle-tendon unit properties in mice bred for high levels of voluntary running: novel**  
2 **physiologies, coadaptation, trade-offs, and multiple solutions in the evolution of endurance**  
3 **running**

4 Alberto A. Castro<sup>1</sup>, Allyn Nguyen<sup>1</sup>, Saad Ahmed<sup>1</sup>, Theodore Garland, Jr. <sup>1</sup>, Natalie C. Holt<sup>1\*</sup>

5 <sup>1</sup>Department of Evolution, Ecology and Organismal Biology, UC Riverside, Riverside, CA

6 \*Corresponding author

7

8 **Running page head:** Adaptation of the muscle-tendon unit for endurance running

9

10 **Keywords:** artificial selection, locomotion, speed, running economy, cost of transport

11

12 **Acknowledgements**

13 This work was funded by NSF grant IOS-2038528 to T.G. and N.C.H. We thank other members of  
14 the Garland lab for helping to obtain the animals used here.

15

16

17

18

19

20

21

22

23

24 **What is already known:** Coadaptation, trade-offs and multiple solutions are known to complicate  
25 our understanding of relationship between underlying traits, performance, and fitness. Changes to  
26 muscle morphology, muscle physiology and tendon stiffness have been correlated with endurance  
27 running performance, variable evidence for trade-offs between muscle speed and endurance has  
28 been presented, and novel physiologies that circumvent this trade-off have been reported.

29  
30 **What this study adds:** This study leverages an artificial selection experiment to directly  
31 demonstrate adaptation in muscle and tendon properties for endurance running and allow for the  
32 exploration of coadaptation, trade-offs and multiple solutions. We show that selection results in  
33 longer tendons and shorter muscles and has variable effects on muscle speed and endurance. These  
34 results provide the first direct evidence for the evolution of long distal tendons as an adaptation for  
35 endurance running, suggest a novel coadaptation of muscle and tendon properties, show that there  
36 are multiple combinations of muscle subordinate traits that increase endurance performance, and  
37 highlight that selection results in a speed-endurance trade-off that can sometimes be circumvented  
38 by novel physiologies.

39  
40  
41  
42  
43  
44  
45  
46

47 **Abstract**

48 Muscle-tendon unit (MTU) morphology and physiology are likely major determinants of locomotor  
49 performance, and therefore Darwinian fitness. However, the relationships between underlying traits,  
50 performance, and fitness are complicated by phenomena such as coadaptation, multiple solutions,  
51 and trade-offs. Here we leverage a long-running artificial selection experiment in which mice have  
52 been selected for high levels of voluntary running to explore MTU adaptation, and the role of  
53 coadaptation, multiple solutions, and trade-offs, in the evolution of endurance running. We  
54 compared the morphological and contractile properties of a major locomotor MTU, the triceps surae  
55 complex, in 4 replicate selected lines to those in 4 replicate control lines. All selected lines have  
56 lighter and shorter muscles, longer tendons, and faster muscle twitch times than all control lines.  
57 Absolute and normalized maximum muscle shortening velocities, and contractile endurance, vary  
58 across selected lines. Absolute velocities are similar or lower, and endurance higher, in selected than  
59 control lines. However, normalized shortening velocities are both higher and lower in selected than  
60 control lines. These findings potentially show an interesting co-adaption between muscle and tendon  
61 morphology and muscle physiology, highlight multiple solutions for increasing endurance running  
62 performance, demonstrate that a trade-off between muscle speed and endurance can arise in  
63 response to selection, and suggest that a novel physiology may sometimes allow this trade-off to be  
64 circumvented.

65

66 **Introduction**

67 Skeletal geometry (Jenkins and Camazine 1977; Garland and Janis 1993), muscle morphology  
68 (Foster and Lucia 2007; Rubenson et al. 2011) and physiology (Gleeson and Harrison 1988; Rivero  
69 et al. 1993; Bonine et al. 2005), and tendon properties (Alexander et al. 1979; Pollock and Shadwick  
70 1994; Arampatzis 2006) are major determinants of locomotor performance abilities, and therefore  
71 Darwinian fitness (e.g., escaping predators, foraging for food/territories) (Lappin and Husak 2005;  
72 Husak 2006). Understanding these relationships between underlying (subordinate) traits, organismal  
73 performance, and fitness is a primary goal of evolutionary physiology (Bartholomew 1964; Arnold  
74 1983; Garland and Carter 1994). However, these relationships are complicated by phenomena such  
75 as coadaptation, where coordinated changes in multiple traits are required for increased performance  
76 (Mayr 1963; Huey and Bennett 1987; Foster et al. 2018); multiple solutions, where more than one  
77 combination of trait values can result in the same level of performance (Garland 2003; Wainwright  
78 et al. 2005; Garland et al. 2011; Moen 2019); and trade-offs, where increases in one facet of  
79 performance necessarily decrease another (Lindstedt et al. 1998; Wilson et al. 2002; Castro et al.,  
80 2022; Garland et al. 2022). For example, among species of skinks, fore and hindlimb lengths are  
81 coadapted in a way that appears to facilitate climbing behavior (Foster et al. 2018), several  
82 combinations of hindlimb bone lengths and muscle masses result in the same jump performance  
83 across frog ecomorphs (Moen 2019), and space constraints in skeletal muscle fibers means that  
84 volume allocated to the calcium stores required for high frequency contractions trades off against  
85 that allocated to the contractile proteins required for high power outputs (Lindstedt et al. 1998).  
86 Here, we examine adaptation in a major locomotor muscle-tendon unit (MTU) in response to  
87 artificial selection for endurance running in mice. Our results provide interesting examples of  
88 coadaptation, multiple solutions, and trade-offs.

89

90 The muscle-tendon unit is a highly organized, multi-scale, structure (Williams and Holt 2018; Holt  
91 2019). Contractile protein filaments, actin and myosin, are arranged into sarcomeres. These  
92 sarcomeres are then organized in series along myofibrils and packaged in parallel, along with  
93 calcium stores and metabolic enzymes, into muscle cells or fibers. Muscle fibers are organized with  
94 a parallel or pennate geometry to form the muscle belly, which is then connected to the skeleton via  
95 aponeuroses and a tendon. Muscle consumes metabolic energy to generate the mechanical output  
96 required for locomotion through the calcium-activated interactions between actin and myosin.  
97 Tendons transmit muscle output to the skeleton and often store and return elastic strain energy.

98

99 Various aspects of muscle and tendon morphology and physiology determine muscle and locomotor  
100 performance. Potential for elastic strain energy storage is largely determined by tendon length and  
101 cross-sectional area (Pollock and Shadwick 1994; Ettema 1996; Holt and Mayfield 2023). Peak  
102 muscle force is determined by muscle cross-sectional area (CSA) and pennation angle (Powell et al.  
103 1984; Wilson and Lichtwark 2011). Rate of muscle activation is determined by the calcium  
104 response, myosin isoform, and tendon elasticity (Hill 1951; Young and Josephson 1983; Rome et  
105 al. 1996; Lindstedt et al. 1998; Mayfield et al. 2016). Maximum muscle shortening velocity is  
106 determined by fiber length (Wilson and Lichtwark 2011) and myosin isoform (Schiaffino and  
107 Reggiani 2011). Metabolic energy consumption is determined by myosin isoform (He et al. 2000),  
108 muscle volume (Biewener and Roberts 2000), muscle shortening (Barclay 2023), and tendon  
109 elasticity (Roberts et al. 1997; Biewener and Roberts 2000; Holt et al. 2014). Finally, endurance is  
110 determined by the metabolic cost incurred (Hoogkamer et al. 2016; Fletcher and MacIntosh 2017)  
111 and the metabolic profile of muscle fibers (Rivero et al. 1999; Schiaffino and Reggiani 2011).

112 The relationships between underlying traits and muscle performance are relatively well understood.  
113 However, they are neither simple nor independent. Locomotor performance is determined by the  
114 interaction of many muscle and tendon properties; for example, strain energy storage in tendons  
115 depends on the tight integration of muscle force and length change capacity and tendon stiffness  
116 (Mendoza and Azizi 2021; Holt and Mayfield 2023). Many facets of performance are affected by  
117 multiple underlying traits; for example, velocity may be increased both by increasing muscle fiber  
118 length and the presence of a faster myosin isoform (Schiaffino and Reggiani 2011; Wilson and  
119 Lichtwark 2011). These underlying traits do not always vary independently; for example, the  
120 covariation of myosin isoform and metabolic enzymes results in stereotyped “fiber types,” ranging  
121 from slow fatigue resistant fibers to fast fatigable fibers (Rivero et al. 1999; Schiaffino and Reggiani  
122 2011). Hence, adaptation in MTUs offers the opportunity to study a range of key phenomena in both  
123 functional and evolutionary biology, including coadaptation, multiple solutions, and trade-offs.

124

125 Here we use the long-term “high runner” artificial selection experiment (Garland 2003; Garland and  
126 Rose 2009) in which 4 replicate lines of high runner (HR) mice (lab designations HR3, HR6, HR7,  
127 HR8) that have been bred for high levels of voluntary wheel running for nearly a hundred  
128 generations are compared with 4 replicate control (C) lines (lab designations C1, C2, C4, C5) that  
129 have been bred without regard to running (Swallow et al. 1998), to investigate adaptation for  
130 endurance running in an MTU (Garland 2003; Houle-Leroy et al. 2003; Guderley et al. 2006;  
131 Garland et al. 2011). This artificial selection approach allows for known, single-factor, selection and  
132 so simplifies interpretation of evolutionary responses, and replicate lines allow for the identification  
133 of multiple solutions and trade-offs.

134

135 The HR lines evolved rapidly and reached selection limits after ~17-27 generations (Careau et al.  
136 2013), at which point mice from all 4 HR lines ran approximately three-fold more than those from  
137 the 4 C lines, largely due to an increase in speed (Girard et al. 2001; Garland et al. 2011). This  
138 increase in running distance is accompanied by changes in many underlying traits, including an  
139 increased maximal rate of oxygen consumption during forced exercise ( $VO_{2\max}$ ) and changes to  
140 running kinematics (Kolb et al. 2010; Claghorn et al. 2017; Schwartz et al. 2023). Most notably for  
141 this study, two lines of HR mice have evolved with the “mini-muscle” phenotype, a polymorphism  
142 caused by an autosomal recessive allele that appears to be under strong positive selection (Garland  
143 et al. 2002) and has reached fixation in HR3 (Garland et al. 2002; Syme et al. 2005) but remains  
144 polymorphic in HR6 (Hiramatsu et al. 2017). The mini-muscle phenotype results in a 50% loss of  
145 hindlimb muscle mass, a loss of fast type IIb muscle fibers, slower contractile properties, and altered  
146 efficiency of some muscles (Garland et al. 2002; Syme et al. 2005; Guderley et al. 2006; McGillivray  
147 et al. 2009; Talmadge et al. 2014). Hence, we distinguish between mini-muscle and normal-muscle  
148 mice and divide line HR6 into two groups (mini and normal) based on mini-muscle status (HR3M,  
149 HR6M, HR6N) and collectively distinguish between mini-muscle HR lines (HR<sub>mini</sub>) and normal-  
150 muscle HR lines (HR<sub>norm</sub>). Variation in contractile speed and endurance, and trade-off between  
151 these, has previously been observed across the replicate lines of HR mice (Castro et al., 2022). Here  
152 we perform *in situ* muscle physiology experiments on the triceps surae (calf muscle) MTU, a distal  
153 limb muscle complex with a significant tendon that is a major contributor to locomotion, and  
154 compare its morphological and contractile properties across mice from all 4 HR and C lines to  
155 determine the effects of selection, and the potential for variation in the response to selection, on  
156 underlying traits.

157

158 Based on previous studies of increased endurance performance in individuals with exercise training,  
159 across individuals in a population, and among species, we might expect several possible changes to  
160 the MTU in response to the selection experienced by HR lines. Increased endurance performance,  
161 and the increased running economy that often underpins it (Joyner and Coyle 2008; Hoogkamer et  
162 al. 2016), has been associated with a decreased mass and length of distal limb muscles, increased  
163 distal limb tendon length, and increased proportion of slower muscle fiber types. Reduced distal  
164 limb muscle mass reduces limb swing costs (Myers and Steudel 1985; Rubenson et al. 2011).  
165 Endurance training decreases muscle mass in humans (Trappe et al. 2006; Aagaard et al. 2011),  
166 human populations with higher running economy have smaller distal limb muscles (Foster and Lucia  
167 2007), and species assumed to be adapted for economical distance running have reduced distal limb  
168 muscles (Alexander et al. 1979; Picasso 2010; Rubenson et al. 2011). Increased tendon length allows  
169 for greater storage and return of elastic strain energy during running, which can reduce muscle work  
170 during running and allow for short muscles that produce force cheaply (Pollock and Shadwick 1994;  
171 Ettema 1996; Roberts et al. 1997; Holt et al. 2014; Labonte and Holt 2022; Holt and Mayfield 2023).  
172 Increased potential for elastic strain energy storage with training improves running economy in  
173 humans (Aramatzis 2006; Fletcher and MacIntosh 2017) and, across a diverse range of taxa,  
174 species presumed to be adapted for economical distance running often have shorter muscle fibers  
175 and longer tendons in distal MTUs (Alexander et al. 1979; Alexander 1991; Pollock and Shadwick  
176 1994; Biewener and Roberts 2000; Picasso 2010; Rubenson et al. 2011). An increased proportion  
177 of slower, oxidative fibers reduces metabolic cost and confers fatigue resistance. Endurance training  
178 increases the proportion of slower fiber types in humans (Andersen and Henriksson 1977) and  
179 muscle oxidative enzymes in rodents (Green et al. 1983; Houle-Leroy et al. 2000), competitive  
180 endurance horses with excellent performance records have a higher proportion of oxidative fiber

181 types than less successful individuals (Rivero et al. 1993) and higher levels of oxidative enzymes  
182 correlate with endurance capacity among individual lizards within a single lizard species (Garland  
183 and Else 1987). Among species of lizards, variation in muscle fiber type appears to explain some of  
184 the variation in running endurance (Bonine et al. 2005; Albuquerque et al. 2015; Scales and Butler  
185 2016), and selection for endurance running increase oxidative metabolic enzyme activity (Houle-  
186 Leroy et al. 2000). Considering these various lines of evidence from both human and non-human  
187 vertebrates, we predicted that mice from HR lines would have smaller muscles and longer tendons  
188 than those from C lines, and that their muscles would be slower and have higher endurance,  
189 reflecting a shift in fiber type composition towards a slower, more oxidative fiber type. However,  
190 given the required integration between traits, the many traits affecting performance, and the  
191 stereotyped covariation of aspects of muscle fibers, we also expected to observe coadaptation  
192 between tissues, multiple solutions that enable increased endurance running performance, and trade-  
193 offs between speed and endurance.

194

195 It should be noted that a subset of these data, the contractile properties of HR lines, have been  
196 published previously, and a trade-off demonstrated between contractile speed and endurance across  
197 the replicate HR lines (Castro et al. 2022). However, the inclusion of morphological data and  
198 unselected C lines in the present study expands on this published data by allowing us to directly test  
199 the effects of selection on MTU morphological and contractile properties, to examine the effects of  
200 selection on the coadaptation of muscle and tendon, and to explore whether the observed trade-offs  
201 and multiple solutions arise only in response to selection.

202

203 **Methods**

204 The morphological and *in situ* contractile properties of the triceps surae MTU of HR and C mice  
205 were quantified. The triceps surae MTU is composed of 4 muscles: the soleus, plantaris and medial  
206 and lateral gastrocnemii. These muscles originate from the femur and the tibia (soleus) and insert  
207 onto the calcaneus via long tendons, most notably the large Achilles tendon (Charles et al., 2016).  
208 Isometric twitch and tetanic contractions, isotonic shortening contractions, and repeated isometric  
209 tetanic contractions were performed, and muscle belly length, tendon length, whole MTU length,  
210 muscle complex mass, and body mass were measured. This study of the entire triceps surae MTU  
211 *in situ* provides the best estimates of muscle performance in the context of locomotion as it allows  
212 for the determination of the emergent properties of these synergistic muscles while connected to a  
213 functioning circulatory system. These factors are particularly crucial in the HR mouse system and  
214 for the questions to be addressed here as selection has previously been demonstrated to have  
215 different effects on the various muscles in the triceps surae complex (Houle-Leroy et al. 2003; Syme  
216 et al. 2005; Castro et al., 2022), and measurements of endurance are complicated by diffusion  
217 limitations in *in vitro* preparations where the muscle is isolated from the circulatory system (Barclay  
218 2005; Castro et al., 2022).

219

220 *Study animals*

221 The founding population of the HR model consisted of 224 laboratory house mice (*Mus domesticus*)  
222 of the outbred, genetically variable Hsd:ICR strain (Harlan-Sprague-Dawley, Indianapolis, Indiana,  
223 USA). Mice were randomly bred for two generations and then separated into 8 closed lines, 4 HR  
224 (HR3, HR6, HR7, and HR8) and 4 C (C1, C2, C4, and C5). Each line contained 10 breeding pairs.  
225 Since then, each generation of mice are weaned at 21 days old and housed in same-sex groups of 4  
226 until 6-8 weeks old. Mice are then housed individually in their respective home cage with a

227 computer-monitored wheel for 6 days. In the HR lines, the highest-running male and female from  
228 each family are chosen as breeders. In control lines, breeders are chosen without regard to their  
229 running ability (sibling mating is not allowed) (Swallow et al. 1998; Careau et al. 2013; Hiramatsu  
230 et al. 2017; Cadney et al. 2021).

231  
232 For this experiment, female mice from generations 91 (HR; N=31) and 94 (C; N=23) of the selection  
233 experiment were used. Due to the large number of mice and surgical nature of the experiment, it  
234 was not possible to complete all measurements within a single generation. Hence, C and HR mice  
235 are from different generations, and some variation in age occurred within generations (mice ranged  
236 from 46-171 days old). For graphing and statistical analyses, line HR6 was split into 2 (HR6N and  
237 HR6M) and line 3 designated as HR3M to indicate the presence of the mini-muscle phenotype. All  
238 HR3 mice, and 6/13 HR6 mice had the mini-muscle phenotype. The latter were assigned to the  
239 HR6M group. Sample sizes for each of the C lines were 7, 6, 6 and 4 for C1, C2, C4 and C5,  
240 respectively, and for the HR lines they were 6, 5, 6, 8 and 6 for HR3M, HR6M, HR6, HR7 and HR8,  
241 respectively. Mice were housed at room temperature with food and water ad libitum, 4 per cage,  
242 beginning at weaning. All experiments were approved by the University of California, Riverside  
243 Institutional Animal Care and Use Committee.

244  
245 *In situ muscle preparation*  
246 Mice were anaesthetized (SomnoSuite Low-flow Anesthesia System, Kent Scientific, Torrington,  
247 CT, USA), and an adequate plane of anesthesia maintained throughout the experiment. The sciatic  
248 nerve was surgically exposed, and a bipolar nerve cuff placed around it to allow for electrical  
249 stimulation of the triceps surae muscle complex. The proximal end of the femur was exposed and

250 clamped into a custom-made stereotaxic frame. The distal portion of the MTU was exposed and the  
251 calcaneus cut, tied with inextensible Kevlar thread, and connected to the lever arm of a servomotor  
252 (305C-LR Dual-Mode Lever System, Aurora Scientific, Aurora, ON, CA) to allow for  
253 measurements of MTU force and length (Holt et al. 2016).

254

255 Muscle contractions were elicited using supramaximal square wave pulses of amplitude 1-2 mA and  
256 pulse duration 0.1 ms (IgorPro 7, WaveMetric, Lake Oswego, OR, US; CompactDAQ, National  
257 Instruments, Austin, TX, US; High-Power, Biphase Stimulator, Aurora Scientific, Aurora, ON,  
258 CA). Stimulus pulses were delivered and MTU force and length data logged at 10,000 Hz (IgorPro  
259 7, WaveMetric, Lake Oswego, OR, US; CompactDAQ, National Instruments, Austin, TX, US).  
260 Single stimulus pulses were used to elicit twitch contractions at a range of lengths. The length  
261 yielding maximum twitch force was designated as optimum length ( $L_0$ ), and all subsequent  
262 contractions were performed, and morphological measurements made, at this length. An additional  
263 twitch contraction was performed at optimum length to allow for determination of force rise and  
264 relaxation times. Repeated stimulus pulses were applied at 80 Hz for 350ms to elicit an isometric  
265 tetanic contraction from which peak isometric force (corrected for passive force) could be  
266 determined. This isometric contraction was repeated at ~3 contraction intervals to monitor muscle  
267 performance. If force had dropped below 90% of its initial value by the first control isometric tetani,  
268 the experiment was terminated as it was assumed that the muscle or nerve had been damaged during  
269 surgery. The experiment continued if force dropped after this point to avoid biasing our sample  
270 against muscles with low endurance.

271

272 Isotonic tetanic contractions were performed at a range of relative forces (0.1-0.9  $F_0$ ), and the  
273 muscle-tendon complex allowed to shorten to maintain these forces. Force produced and peak  
274 shortening velocity were determined at each of these force levels. For each muscle, we performed  
275 13 total contractions, including isotonic shortening contractions and isometric controls. The MTU  
276 was given 4 minutes rest between each contraction to allow for recovery. Following these isolated  
277 isometric and isotonic contractions, repeated isometric tetanic contractions (one contraction every  
278 5 secs) were performed until force dropped below 50% of its initial value, or for a maximum of 500  
279 contractions (whichever came first), to allow for determination of endurance. Following completion  
280 of the endurance protocol, an overdose of isoflurane anesthesia was administered and the triceps  
281 surae MTU fully exposed. The lengths of the Achilles tendon (the start of the common tendon  
282 proximally to the calcaneus distally), triceps surae muscle belly (muscle origin on the femur  
283 proximally to the start of the common Achilles tendon distally), and entire triceps surae MTU  
284 (muscle origin on the femur proximally to the calcaneus distally) were measured while the mouse  
285 was still in the stereotaxic frame and the MTU was at  $L_0$ . Mice were then removed from the frame  
286 and decapitated. The triceps surae muscle-tendon complex was dissected out and body and muscle  
287 belly mass determined. Muscle fiber lengths for the individual muscles in the triceps surae complex  
288 were not measured. A shorter muscle belly length is likely indicative of a shorter muscle fiber length  
289 (Powell et al., 1984). However, in pennate muscles such as those used here (Charles et al., 2016),  
290 muscle belly length is likely also affected by pennation angle.

291  
292 *Data analysis*  
293 Peak muscle force ( $F_0$ ) was determined as the peak force produced during a maximum isometric  
294 tetanic contraction. A measurement of muscle cross-sectional area (CSA; not accounting for

295 pennation angle or fiber length as these are unknown) was determined from muscle mass and length  
296 assuming a density of 1.06 kg/m<sup>3</sup> (Mendez and Keys, 1960). A metric of peak tetanic stress ( $\sigma_0$ )  
297 was calculated as peak force normalized to cross-sectional areas ( $\sigma_0 = F_0/CSA$ ). Twitch time series  
298 data were used to calculate the time from onset of muscle activation to peak twitch force ( $TP_{tw}$ ) and  
299 time from peak twitch force to 50% relaxation ( $TR_{50}$ ). Tetanic isotonic time series data was used to  
300 determine force (F) and peak shortening velocity (V) during each contraction. Force-velocity curves  
301 were constructed for each mouse, the data were fit with a second-order polynomials (see Castro et  
302 al. 2022 for Marsh-Bennet and Hill curve-fits):  $V = Ax^2+Bx+C$  (Castro et al. 2022) and maximum  
303 shortening velocity ( $V_{max}$ ) was calculated. Force was normalized by peak isometric force ( $F/F_0$ ),  
304 velocity was normalized by muscle belly length ( $V_{norm}$ ) and maximum normalized shortening  
305 velocity ( $V_{normmax}$ ) was determined. This use of muscle belly length rather than fiber length should  
306 be noted as, although these are likely to be related, muscle belly length does not directly reflect the  
307 number of sarcomeres in series. For the endurance protocol, peak force was determined in every  
308 contraction and plotted against contraction number (~200-500 contractions). Endurance was  
309 quantified as the linear fit (slope) of the decline in force over the first 90 tetanic contractions ( $Endur_0$ -  
310 90) and the force that could be sustained over a series of tetanic contractions was determined and  
311 normalized to peak isometric tetanic force (Sustained  $F/F_0$ ) (Castro et al. 2022).

312

313 *Statistical Analysis*

314 The Mixed procedure in SAS (SAS Institute, Cary, NC, USA) was used to analyze morphological  
315 and isometric contractile properties (including endurance). Body mass and age were included as  
316 covariates for morphological, but not contractile data (preliminary analyses revealed that the effect  
317 of body mass was not significant). The effect of linetype (HR vs. C lines) included replicate line

318 nested within linetype as a random effect and was tested with 1 and 6 degrees of freedom. A main  
319 effect of the mini-muscle phenotype (Garland et al. 2002; Houle-Leroy et al. 2003) was also  
320 included and tested relative to the residual variance with 1 and ~43 d.f. (or fewer in the case of  
321 missing values). In all analyses, outliers were removed when the standardized residual exceeded  
322 ~3.0 and/or a value was >1 S.D. from the next residual, and we used an  $\alpha$  of  $\leq 0.05$  for inferring  
323 statistical significance. All of these analyses had a sample size of N=54 for each trait, except for  
324 endurance metrics which had missing values (N=53 for Endur<sub>0-90</sub> and N=43 for Sustained F/F<sub>0</sub>  
325 respectively) and twitch time series data which had some high outliers (N=53 for TP<sub>tw</sub> and N= 53  
326 for TR<sub>50</sub> respectively). The greater number of missing Sustained F/F<sub>0</sub> values is due to the experiment  
327 occasionally being prematurely terminated before a constant force level was reached during early  
328 experiments.

329

330 Given the nature of the force-velocity data points (Castro et al. 2022), we used repeated-measures  
331 models in SAS Procedure Mixed to test for effects of linetype and the mini-muscle phenotype for  
332 both V<sub>max</sub> and V<sub>normmax</sub>. Replicate line nested within linetype was a random effect, and the effect of  
333 linetype was again tested with 1 and 6 degrees of freedom. The main effect of the mini-muscle  
334 phenotype was again tested relative to the residual variance with 1 and ~351 d.f. (individual data  
335 points). Covariates were age, relative force (F/F<sub>0</sub>), and z-transformed relative force squared  
336 (orthogonal polynomial). Furthermore, we included the interaction between force (F/F<sub>0</sub>) and group  
337 (F/F<sub>0</sub>\*line) to test for differences in slopes. Finally, we also included the interaction between  
338 (Zfnorm2) and group (Zfnorm2\*line) to test for differences in curvature in the F-V plots. Least  
339 squares means generated from the repeated-measures analyses were calculated at F/F<sub>0</sub> = 0 to  
340 estimate maximal shortening velocity from the 2<sup>nd</sup> degree polynomials for both absolute (V<sub>max</sub>) and

341 normalized velocity ( $V_{normmax}$ ). We used a formal outlier test (Cook and Sanford 1999) to make  
342 decisions about removing outliers (individual data points). For both absolute and normalized  
343 velocity, we removed all data from 4 mice due to poor force-velocity fits, one irregular data point  
344 with a normalized force of  $\sim 0.75 F_0$  for one mouse, and all data from one mouse which was a high  
345 outlier for normalized velocity.

346

347 We also performed analyses that compared all eight lines, in addition to splitting line HR6 into two  
348 groups, one for mini-muscle individuals (HR6M) and the other for those with normal muscles  
349 (HR6N). We again used SAS Procedure Mixed, but "line" (N=9) was treated as a fixed effect.  
350 Covariates were as noted above. The nine "lines" were compared statistically using the differences  
351 of least squares means. We used the least squares means to make bar graphs and also to examine  
352 covariation of muscle performance metrics across the nine "lines" with bivariate scatterplots and  
353 pairwise Pearson correlation coefficients for  $\sigma_0$ ,  $TP_{tw}$ ,  $TR_{50}$ ,  $V_{max}$ ,  $V_{normmax}$ ,  $Enduro_{0-90}$ , and Sustained  
354  $F/F_0$ . Correlations calculated separately for the five HR "lines" and for the four C lines were  
355 compared with a 2-tailed test in the cocor R package.

356

## 357 **Results**

### 358 *Morphology*

359 Body mass did not vary significantly with either linetype (HR vs C) ( $p=0.5845$ ) or mini-muscle  
360 status ( $p=0.2639$ ). However, with body mass as a covariate ( $p<0.0001$ ), both linetype ( $p=0.0027$ )  
361 and mini-muscle status ( $p<0.0001$ ) affected mass of the triceps surae complex; HR mice had lighter  
362 muscles than C mice, and mini-muscle mice had even lighter muscles (Fig. 1). Neither linetype  
363 ( $p=0.1027$ ) nor mini-muscle status ( $p=0.7161$ ) affected total MTU length (Fig. 1). However,

364 linetype affected both triceps surae muscle belly length ( $p=0.0039$ ) and Achilles tendon lengths  
365 ( $p=0.0016$ ); HR mice had significantly shorter muscle bellies and significantly longer tendons than  
366 C mice. This effect was consistent across all HR lines, with no effect of mini-muscle status on either  
367 muscle belly length ( $p=0.7641$ ) or tendon length ( $p=0.5935$ ) observed (Fig. 2, Supplemental Figure  
368 S1).

369

370 When comparing the nine "lines" (with line HR6 separated into HR6M and HR6N), with age as a  
371 covariate, body mass varied significantly ( $p=0.0010$ : Supplemental Figure S1 A) but did not show  
372 a differentiation among the groups of C, HRmini, and HRnorm (as reported in the previous  
373 paragraph). In addition to the linetype and mini-muscle effects noted in the previous paragraph (Fig.  
374 1B), with body mass as a covariate, the mass of the triceps surae muscle complex varied among the  
375 three HRnorm lines (Supplemental Figure S1 B). Specifically, muscle mass was larger in HR8 than  
376 HR7 ( $p=0.0114$ ), with values for HR6N being intermediate to them. In contrast, we did not detect  
377 differences among the four C lines. Total MTU length did not significantly vary among the nine  
378 "lines" ( $p=0.0716$ ; Supplemental Figure S1 C) (with body mass as a covariate). However, with body  
379 mass as a covariate, muscle length varied among "lines" ( $p<0.0001$ : Supplemental Figure S1 A D).  
380 Specifically, line HR8 had longer muscles than either HR7 ( $p=0.0488$ ) or HR6N ( $p=0.0490$ ), but  
381 we did not detect statistically significant differences among the four C lines. Achilles tendon length  
382 did not vary significantly among either the five HR "lines" nor among the four C lines (Supplemental  
383 Figure S1 E).

384

385 *Contractile properties*

386 Peak isometric tetanic stress ( $\sigma_0$ ) tended to be lower in HR than control mice ( $p=0.0726$ ), with no  
387 effect of mini-muscle status ( $p=0.3075$ ). Metrics of muscle speed were determined from the rates of  
388 force development and relaxation in isometric twitches and muscle shortening velocity during  
389 isotonic contractions. Metrics of muscle endurance were determined from the change in muscle  
390 force during repeated, tetanic, isometric contractions.

391

392 Speed

393 HR mice had significantly lower twitch rise times ( $TP_{tw}$ ), indicating faster twitch rise times when  
394 compared with C mice ( $p=0.0286$ ), with no significant effect of mini-muscle status ( $p=0.7016$ ).  
395 Likewise, HR mice have significantly lower twitch half relaxation times ( $TR_{50}$ ;  $p=0.0118$ ),  
396 indicating faster relaxation, with no significant effect of mini-muscle status ( $p=0.4489$ ) (Fig. 3).

397

398 Force-velocity data were plotted both as absolute ( $V_{max}$ ; Fig. 4) and normalized ( $V_{normmax}$ ; Fig. 5)  
399 shortening velocities, with velocity normalized to muscle belly length in the latter. Data were fit  
400 with a second order polynomial as this provided the most consistent fit to the data, especially for  
401 HR lines (Castro et al. 2022). Linetype did not affect estimated  $V_{max}$  ( $p=0.3399$ ), but mini-muscle  
402 individuals had lower values  $V_{max}$  than all other mice ( $p<<0.0001$ , Fig. 4A). We also found  
403 significant interactive effects of force and linetype ( $p<<0.0001$ ) and of force and mini-muscle status  
404 ( $p<<0.0001$ ) interactions (Fig. 4), indicating a difference in slope between HR and C and between  
405 mini-muscle and non-mini-muscle mice, and a  $Z_{force}^2$  by linetype interaction effect ( $p<0.0001$ ),  
406 indicating a difference in curvature between HR and C mice. When comparing the nine "lines"  
407 differences in  $V_{max}$  were apparent among the C lines, with C4 and C5 having higher values than C1

408 and C2 (pairwise  $p<0.05$ ), and among the HRnorm lines, with HR8 having the highest values, HR7  
409 the lowest, and HR6N intermediate (Fig. 4A, all pairwise  $p<0.03$ ).

410

411  $V_{normmax}$  was affected by both linetype ( $p= 0.0086$ ) and mini-muscle status ( $p<<0.0001$ ). We also  
412 found significant force by linetype ( $p<0.0001$ ) and force by mini-muscle status ( $p<<0.0001$ ) effects  
413 (Fig. 5) indicating differences in slope between HR and C and between mini-muscle and non-mini  
414 mice, and a Zforce<sup>2</sup> by linetype effect ( $p<<0.0001$ ), indicating a difference in curvature between HR  
415 and C mice. When comparing the nine "lines",  $V_{normmax}$  was lowest in HRmini "lines" HR3M and  
416 HR6M, intermediate in all C lines and line HR7, and highest in HR6N and HR8 (Fig. 5A). Note  
417 that HR7 had significantly lower  $V_{normmax}$  than either HR6N ( $p=0.0003$ ) and HR8 ( $p<0.0001$ ).

418

419 Endurance

420 Muscles from HR mice had significantly lower slopes of the decline in force over the first 90  
421 contractions ( $Endur_{0-90}$ ), indicating higher endurance, when compared with C mice ( $p=0.0221$ ) and  
422 mini-muscle individuals had significantly lower  $Endur_{0-90}$  values compared to normal-muscle mice  
423 ( $p<<0.0001$ ) (Fig. 6). When comparing the nine "lines", significant variation was apparent among  
424 the four C lines and among the three HRnorm "lines" (Fig. 6A). Linetype did not have an overall  
425 effect on the relative level of force that could be sustained indefinitely (Sustained  $F/F_0$ ) (Fig. 6B;  
426  $p=0.1901$ ). However, mini-muscle mice had much higher Sustained  $F/F_0$  values than all other  
427 "lines", indicating higher endurance (Fig. 6B;  $p<<0.0001$ ). Comparing the nine "lines" indicated no  
428 significant differences among the four C lines (all pairwise  $p>0.23$ ), between the two mini-muscle  
429 lines ( $p=0.33$ ) or among the three normal-muscle HR lines (all  $p>0.13$ ).

430

431 Velocity-endurance correlations

432 Bivariate scatterplots and pairwise correlations of least squares means for the metrics of shortening

433 velocity ( $V_{max}$ ,  $V_{normmax}$ ), endurance ( $Endur_{0-90}$ , Sustained  $F/F_0$ ), and isometric contractile properties

434 ( $\sigma_0$ ,  $TP_{tw}$ ,  $TR_{50}$ ) are shown in Supplemental Figure S2. Correlations were calculated separately for

435 the five HR "lines" and for the four C lines, then compared with a 2-tailed test in the cocor R

436 package. For the five data points for the HR "lines," six correlations were statistically significant:

437  $V_{max}$  and  $V_{normmax}$  ( $r=0.965$ ,  $p=0.0077$ ),  $V_{max}$  and  $Endur_{0-90}$  (Fig. 7;  $r=-0.980$ ,  $p=0.0033$ ),  $V_{max}$  and

438 Sustained  $F/F_0$  ( $r=-0.927$ ,  $p=0.0232$ ),  $V_{normmax}$  and  $Endur_{0-90}$  ( $r=-0.983$ ,  $p=0.0027$ ),  $V_{normmax}$  and

439 Sustained  $F/F_0$  ( $r=-0.954$ ,  $p=0.0119$ ), and  $Endur_{0-90}$  and Sustained  $F/F_0$  ( $r=0.974$ ,  $p=0.0051$ ). Across

440 the four C lines, the only significant correlations were between  $V_{max}$  and stress ( $r=-0.954$ ,  $p=0.0457$ )

441 and  $TR_{50}$  and Sustained  $F/F_0$  ( $r=0.996$ ,  $p=0.0042$ ). Significant differences between the HR and C

442 correlations occurred for  $V_{max}$  and  $Endur_{0-90}$  ( $p=0.0031$ ),  $V_{normmax}$  and  $Endur_{0-90}$  ( $p=0.0019$ ), and

443  $TR_{50}$  and Sustained  $F/F_0$  ( $p=0.0417$ ) with the former two indicating that selective breeding has

444 resulted in the evolution of a trade-off between muscle velocity and endurance.

445

446 **Discussion**

447 Here we examine changes in a locomotor MTU in response to selective breeding for high endurance-

448 running performance in order to better understand the relationship between muscle traits and

449 locomotor behavior, and to explore the role of coadaptation, multiple solutions, and trade-offs in the

450 relationships between underlying traits and performance (Mayr 1963; Bartholomew 1964; Arnold

451 1983; Huey and Bennett 1987; Garland and Carter 1994; Wainwright et al. 2005; Garland et al.

452 2011; Foster et al. 2018; Moen 2019). We compared the morphological and contractile properties

453 of the triceps surae MTU in 4 lines of mice artificially selected for high levels of voluntary wheel-

454 running behavior to 4 control lines bred without regard for their running. Muscle mass, muscle belly  
455 length, and tendon length were determined as indicators of MTU morphology. Twitch rise ( $TP_{tw}$ )  
456 and half relaxation times ( $TR_{50}$ ), absolute and normalized muscle force-velocity properties, and  
457 maximum shortening velocities ( $V_{normmax}$  and  $V_{max}$ ) were determined as indicators of muscle speed,  
458 and the slope of the initial decline in force ( $Endur_{0-90}$ ) and the relative level of force that could be  
459 sustained indefinitely (Sustained  $F/F_0$ ) were determined as metrics of muscle endurance. These  
460 metrics were determined for 7, 6, 6 and 4 mice for C1, C2, C4 and C5, respectively, and for 6, 5, 6,  
461 8 and 6 mice for HR3M, HR6M, HR6, HR7 and HR8, respectively. Across this data set there were  
462 a small number of missing values or outliers that were removed. A single high outlier for  $TP_{tw}$  was  
463 removed from HR7 and for  $TR_{50}$  from C4. Absolute and normalized force-velocity curves had to be  
464 removed for 4 mice (HR6 (2), HR7, HR8) due to poor curve fits, likely due to the relatively low  
465 number of points used to characterize these curves to allow for subsequent reliable measurements  
466 of endurance. One outlier force-velocity point at  $\sim 0.75 F_0$  was removed for 1 mouse (C1), and 1  
467  $V_{normmax}$  was removed due to being a high outlier (HR7). There were 2 missing values for  $Endur_{0-90}$ ,  
468 C2 and HR8, due to the mice dying under anesthesia before the endurance protocol could be  
469 completed and 11 missing values for Sustained  $F/F_0$  (C1, C2, C4 (2), HR3M, HR6 (2), HR7, HR8  
470 (3)) due to either the mice dying under anesthesia or the experiment being prematurely terminated  
471 before a sustained level of force was reached.

472

473 *Morphology*

474 Our results indicate that selection for voluntary wheel running has consistently favored a reduced  
475 muscle mass, a reduced muscle belly length -- which we interpret as some degree of reduction in  
476 muscle fiber length -- and an increased tendon length. All HR lines have lower muscle masses than

477 all C lines, and, within the HR lines, mice from HRmini lines have lower muscle masses than those  
478 from HRnorm lines (Fig. 1, Supplemental Figure S1). Total MTU length does not differ between  
479 HR and C lines (Fig. 1), but all HR lines have longer tendons and shorter muscle bellies than C lines  
480 (Fig. 2, Supplemental Figure S1). This reduction in muscle mass, and replacement of muscle belly  
481 length with tendon, will have reduced the mass of the distal limb in HR lines, and so presumably  
482 have reduced swing costs and/or allowed for faster swing (Myers and Steudel 1985; Rubenson et al.  
483 2011; Labonte and Holt 2022) and more economical force generation during stance (Kram and  
484 Taylor 1990; Roberts et al. 1998; Beck et al. 2020). In addition to reduced distal limb mass, the  
485 longer tendons of HR mice likely also allow for greater storage and return of elastic strain energy  
486 during running (Pollock and Shadwick 1994; Ettema 1996; Biewener and Roberts 2000; Rubenson  
487 et al. 2011). This may have reduced the need for muscle fibers to do potentially costly work, and  
488 allowed for short muscle fibers that can produce the force required to support body weight cheaply  
489 (Roberts et al. 1997, 1998; Holt et al. 2014; Holt and Mayfield 2023).

490

491 The morphological changes in the triceps surae MTU in all HR lines in response to selection seem  
492 to suggest reduced locomotor costs, or increased running economy, which has been linked to  
493 increased endurance-running performance (Joyner and Coyle 2008; Hoogkamer et al. 2016).  
494 However, although a reduced total cost of locomotion has been observed in HR mice in previous  
495 generations (32 and 34), this effect was confounded by the smaller body masses of HR mice,  
496 resulting in no effect of selection on the mass-specific cost of transport (CoT) (Rezende et al. 2009).  
497 And at generation 46, CoT was found to be higher in mini-muscle than normal-muscle HR mice,  
498 mainly because of higher zero-speed intercepts in the regression of cost on running speed, and higher  
499 postural costs (Dlugosz et al. 2009). This lack of decrease, or even increase, in CoT with selection

500 for endurance running is surprising, given the changes to MTU morphology observed here (Figs.  
501 1+2, Supplemental Figure S1). Other than decreased muscle mass and increased tendon length not  
502 conferring the widely assumed energetic benefits, we can propose several reasons for why this might  
503 be. Firstly, tendon length has not previously been examined in the HR mice, so we do not know if  
504 this adaptation had occurred when CoT was determined, or if it arose subsequently. Secondly, HR  
505 mice are smaller than C mice, and mass-specific CoT increases with decreasing body mass (Heglund  
506 et al. 1982). Hence, the similarity of mass-specific cost in HR and C lines may suggest adaptation  
507 for reduced cost in HR lines that offset this effect of size. Lastly, it may be that other changes  
508 counteract any savings due to reduced muscle mass and increase in tendon length, resulting in a  
509 constant CoT despite varying underlying traits. This latter point may relate to the question of  
510 whether small animals are able to use elastic tendons to achieve the same metabolic savings as large  
511 ones (Biewener et al. 1981; Bullimore and Burn 2005; Christensen et al. 2022). The evolution of  
512 long distal tendons in all 4 lines of HR mice shown here (Fig. 2) provides support for the benefits  
513 of long distal tendons for endurance running performance in small species (Bullimore and Burn  
514 2005; Christensen et al. 2022). However, the lack of a reduced CoT (Rezende et al. 2009) suggests  
515 that they may not convey the same energetic benefits in small animals.

516

517 *Contractile properties*

518 Muscle twitch times and maximum shortening velocity were determined as metrics of muscle speed.  
519 All HR lines show faster twitch properties than C lines, indicating that selective breeding has  
520 increased the rate at which the muscle complex can be activated and deactivated (Fig. 3). This could  
521 be due to changes in calcium handling and sensitivity, myosin isoform, and/or tendon elasticity (Hill  
522 1951; Young and Josephson 1983; Rome et al. 1996; Lindstedt et al. 1998; Mayfield et al. 2016).

523 However, the longer and presumably more compliant tendons in HR lines make it unlikely that  
524 faster twitch times are the result of increased tendon stiffness.

525

526 In general, absolute maximum shortening velocity is not different in HR than C lines. However,  
527 mini-muscle individuals have lower absolute maximum shortening velocity than other mice (Fig. 4)  
528 and absolute maximum shortening velocity varies across HR lines, including across HRnorm lines.  
529 Mini-muscle HR3M and HR6M had the lowest absolute velocities. Non-mini line HR8 had the  
530 highest and was comparable to C lines (Fig. 4). When absolute shortening velocity is normalized  
531 to muscle belly length, HRmini mice have the slowest normalized maximum shortening velocities,  
532 HRnorm lines HR6N and HR8 have the fastest, and all C lines plus HR7 are intermediate. This  
533 indicates that both faster and slower normalized maximum shortening velocities have evolved in  
534 response to selection (Fig. 5). Some caution should be taken with the interpretation of normalized  
535 shortening velocities due to normalization to muscle belly length rather than fiber length. However,  
536 assuming that reduced muscle belly length equates to shorter fibers, the similar or slower absolute,  
537 but faster normalized, maximum velocities seen in HRnorm lines HR6 and HR8 are likely the result  
538 of a combination of shorter muscles (Fig. 2) and faster myosin isoforms. The slower absolute and  
539 normalized maximum shortening velocities seen in mini-muscle HR mice are likely the result of  
540 shorter fibers and slower myosin isoforms (Bottinelli et al., 1994; Schiaffino and Reggiani 2011),  
541 the latter of which is consistent with the loss of the fast type IIb fibers previously observed in the  
542 mini-muscle phenotype (Guderley et al. 2006; McGillivray et al. 2009; Talmadge et al. 2014).

543

544 The faster normalized shortening velocities observed in some of the HRnorm lines are consistent  
545 with the faster twitch times seen in all HR lines (Fig. 3) and suggest that a faster myosin isoform

546 may contribute to both changes. However, the combination of slower normalized shortening  
547 velocities and faster twitch times in HRmini lines is harder to explain, and potentially suggests a  
548 faster calcium response and slower myosin isoform. This may support prior findings that indicate  
549 that muscle speed can be increased in multiple, somewhat independent, ways (Anderson and Roberts  
550 2020). The greatly reduced absolute velocity of HRmini lines (Fig. 4), due to shorter muscles  
551 (Supplemental Figure S1) and slower myosin isoforms, likely explains the reduced sprint speed  
552 observed in these lines (Dlugosz et al. 2009; Khan et al., 2024), and suggests that, while  
553 physiologically feasible, this may not be a phenotype that is observed under natural, rather than  
554 artificial, selection.

555

556 Rate of force decline and level of force that can be sustained were determined as metrics of muscle  
557 endurance. All HR lines, and to a greater extent mini-muscle HR lines, have slower rates of force  
558 decline and, in some cases, higher levels of sustained force than C lines (Fig. 6). This indicates that  
559 selection has, to varying degrees, favored greater muscle endurance. This increased endurance is  
560 likely due to a shift to a more economical muscle contraction and a more oxidative muscle fiber  
561 type. The higher muscle endurance of HR lines (Fig. 6) likely enables their sustained faster wheel-  
562 running running speeds (Lerman et al. 2002; Waters et al. 2008; Fletcher and MacIntosh 2017),  
563 particularly in mini-muscle lines (Dlugosz et al. 2009; Garland et al. 2011), which are largely  
564 responsible for the increased daily running distances (Girard et al. 2001; Garland et al. 2011).

565

566 *Coadaptation, multiple solutions, and trade-offs*

567 The relationship between underlying traits, performance, and fitness (reproductive success, which  
568 in the HR lines is determined experimentally) is often complicated by the required coadaptation

569 between various traits (Mayr 1963; Huey and Bennett 1987; Bauwens et al. 1995; Foster et al. 2018),  
570 the potential for multiple solutions (Houle-Leroy et al. 2003; Wainwright et al. 2005; Garland et al.  
571 2011; Moen 2019), and trade-offs between different aspects of performance (Lindstedt et al. 1998;  
572 Wilson et al. 2002; Garland et al. 2022). All the morphological and physiological changes to the  
573 MTU in response to selection reported here may be considered to be coadapted with the changes to  
574 locomotor behavior. However, we also observe what appears to be an interesting, and not previously  
575 described, coadaptation between muscle and tendon properties. All HR lines exhibit an increase in  
576 tendon length, and a concurrent decrease in muscle belly length (Fig. 2, Supplemental Figure S1).  
577 In some HRnorm lines, this appears to have been accompanied by an increase in normalized  
578 shortening velocity (Fig. 5), presumably due to a faster myosin isoform (Bottinelli et al., 1994;  
579 Schiaffino and Reggiani 2011). This increase in normalized velocity is counter to our predictions of  
580 slower, more oxidative fibers with higher endurance as the faster myosin isoforms likely responsible  
581 for faster normalized shortening velocities are typically accompanied by a more glycolytic  
582 metabolic profile (Rivero et al. 1999; Schiaffino and Reggiani 2011). We suggest this unexpected  
583 change in maximum normalized velocity might be a coadaptation with increased tendon, and  
584 reduced muscle belly, length. Reduced muscle length will have reduced absolute shortening velocity  
585 (Wilson and Lichtwark 2011), which is likely to have had disproportionate effect on locomotor  
586 performance in a small species (Kram and Taylor 1990; Labonte 2023). Hence, we suggest that  
587 potentially shifting to a faster myosin isoform may have allowed absolute muscle velocity to be  
588 maintained to some extent, despite shorter muscles. However, this change to a faster myosin isoform  
589 would likely offset some of the energy saving benefits of tendons (Barclay et al. 1993), and could  
590 explain the lower reliance on metabolic savings from long elastic tendons in small species (Biewener  
591 et al. 1981; Pollock and Shadwick 1994).

592

593 Multiple solutions are identified by different combinations of underlying traits that result in  
594 approximately the same performance (Houle-Leroy et al. 2003; Wainwright et al. 2005; Garland et  
595 al. 2011; Moen 2019). Although some of the underlying traits studied here, such as tendon length  
596 and twitch time, change in similar ways across all HR lines, so indicating a single solution, we see  
597 evidence of multiple solutions in muscle velocity and endurance. All HR lines run approximately  
598 3x greater daily distances than C lines (Girard et al. 2001; Garland et al. 2011). However, selected  
599 lines vary in absolute and normalized muscle shortening velocity and muscle endurance (Fig. 4-7).  
600 These differences would arise from a combination of variance among populations at the onset of  
601 selection and subsequent random genetic drift (Garland et al. 2002; Morgan et al. 2005) that changes  
602 the genetic background within which genes and resultant phenotypes operate, thus potentially  
603 constraining additional responses to selection.

604

605 We have previously described a trade-off between metrics of contractile speed and endurance across  
606 the replicate HR lines (Castro et al., 2022). This finding supported the purported speed-endurance  
607 trade-off in muscle functional properties (Garland, 1988; Wilson et al., 2002; and references  
608 therein). However, the comparison with C lines presented here shows that although we see some  
609 variation in muscle speed and endurance, as well as correlations between metrics of muscle  
610 performance, across C lines, we do not see the negative correlation, and therefore evidence of a  
611 trade-off, between metrics of muscle speed and endurance that we saw in the HR lines (Fig. 7;  
612 Supplemental Figure S2). This indicates that, as expected, trade-offs may only be apparent under  
613 strong selection when they limit the phenotypic space that can be occupied (Roff and Fairbairn 2007;  
614 Shoval et al. 2012; Garland et al. 2022).

615

616 Trade-offs not only constrain phenotypic space but may also drive the evolution of novel  
617 physiologies. For example, the frequency-power trade-off observed in muscle (Lindstedt et al. 1998)  
618 has been circumvented by the evolution of asynchronous muscle in which calcium fluxes are no  
619 longer directly linked to contraction (Josephson et al. 2000). We see some evidence of this in the  
620 novel comparison of HR and C lines presented here, where mice from HR8 appear to have increased  
621 muscle endurance compared to mice from C lines, with little to no reduction in absolute maximum  
622 shortening velocity (Fig. 4+7) and an increase in normalized maximum shortening velocity (Fig. 5;  
623 Supplemental Figure S2). We suggest that this may reflect a novel physiology, whereby a shift to  
624 an oxidative, fatigue-resistant, fiber has not been accompanied by a shift to a slower myosin, so  
625 disrupting the typical covariation of myosin isoform and metabolic enzymes that defines muscle  
626 fiber types (Rivero et al. 1999; Schiaffino and Reggiani 2011). This is not unprecedented, as  
627 locomotor muscles of several cursorial ungulates have high concentrations of both fast IIx myosin  
628 and oxidative enzymes, suggesting fibers that are both fast and fatigue resistant (Kohn et al. 2011;  
629 Curry et al. 2012; Kohn 2014)

630

631 **Conclusion**

632 Here we explore the effect of long-term selective breeding for high endurance-running performance  
633 on the morphological and contractile properties of a distal limb MTU, the triceps surae complex,  
634 across four replicate selected and four non-selected control lines of mice. Mice from selected (HR)  
635 lines show reduced muscle mass and length, and an increase in tendon length, which likely reduces  
636 the mass of the distal limb and increases elastic strain energy storage and return during running.  
637 Mice from selected lines also have faster twitch times, similar or slower absolute shortening

638 velocities, both faster and slower normalized velocities (depending on the line) and higher  
639 contractile endurance. We document a combination of apparently faster normalized shortening  
640 velocities (presumably due to faster myosin isoforms), longer tendons, and shorter muscles that may  
641 represent coadaptation to somewhat maintain absolute contractile speed despite morphological  
642 changes. We identify various combinations of muscle speed and endurance across selected lines that  
643 all result in approximately the same increase in daily running distance, thus demonstrating multiple  
644 solutions. We show a trade-off between muscle speed and endurance that arises in response to  
645 selective breeding for endurance running, but also suggest that the faster muscles with higher  
646 endurance seen in a one HR line represents a combination of myosin isoform and metabolic  
647 properties that contrasts with our classic definitions of fiber types and so represents a novel  
648 physiology that circumvents this trade-off.

649

650

651

652

653

654

655

656

657

658

659

660

661 **Literature cited**

662 Aagaard P., J.L. Andersen, M. Bennekou, B. Larsson, J.L. Olesen, R. Crameri, S.P. Magnusson, et  
663 al. 2011. Effects of resistance training on endurance capacity and muscle fiber composition in  
664 young top-level cyclists: concurrent resistance and endurance training. *Scand J Med Sci Sports*  
665 21:e298–e307.

666 Albuquerque R.L., K.E. Bonine, and T. Garland Jr. 2015. Speed and endurance do not trade off in  
667 Phrynosomatid lizards. *Physiol Biochem Zool* 88:634–647.

668 Alexander R.McN. 1991. Energy-saving mechanisms in walking and running. *J Exp Biol* 160:55–  
669 69.

670 Alexander R.McN., G.M.O. Maloiy, R. Njau, and A.S. Jayes. 1979. Mechanics of running of the  
671 ostrich (*Struthio camelus*). *J Zool* 187:169–178.

672 Andersen P. and J. Henriksson. 1977. Training induced changes in the subgroups of human type II  
673 skeletal muscle fibres. *Acta Physiol Scand* 99:123–125.

674 Anderson C.V. and T.J. Roberts. 2020. The need for speed: functional specializations of  
675 locomotor and feeding muscles in *Anolis* lizards. *J Exp Biol* 223:jeb.213397.

676 Arampatzis A. 2006. Influence of the muscle-tendon unit's mechanical and morphological  
677 properties on running economy. *J Exp Biol* 209:3345–3357.

678 Arnold S.J. 1983. Morphology, Performance and Fitness. *Am Zool* 23:347–361.

679 Barclay C.J. 2005. Modelling diffusive O<sub>2</sub> supply to isolated preparations of mammalian skeletal  
680 and cardiac muscle. *J Muscle Res Cell Motil* 26:225–235.

681 Barclay C.J. 2023. A century of exercise physiology: key concepts in muscle energetics. Eur J  
682 Appl Physiol 123:25–42.

683 Barclay C.J., J.K. Constable, and C.L. Gibbs. 1993. Energetics of fast- and slow-twitch muscles of  
684 the mouse. J Physiol 472:61–80.

685 Bartholomew G.A. 1964. The roles of physiology and behavior in the maintenance of homeostasis  
686 in the desert environment. Symp Soc Exp Biol 18:7–29.

687 Bauwens D., T. Garland Jr., A.M. Castilla, and R.V. Damme. 1995. Evolution of sprint speed in  
688 Lacertid lizards: Morphological, physiological and behavioral covariation. Evolution 848–863.

689 Beck O.N., J. Gosyne, J.R. Franz, and G.S. Sawicki. 2020. Cyclically producing the same average  
690 muscle-tendon force with a smaller duty increases metabolic rate. Proc R Soc B Biol Sci  
691 287:20200431.

692 Biewener A., R.McN. Alexander, and N.C. Heglund. 1981. Elastic energy storage in the hopping  
693 of kangaroo rats (*Dipodomys spectabilis*). J Zool 195:369–383.

694 Biewener A.A. and T.J. Roberts. 2000. Muscle and tendon contributions to force, work and elastic  
695 energy savings: A comparative perspective. Exerc Sports Sci Rev 28:99–107.

696 Bonine K.E., T.T. Gleeson, and T. Garland Jr. 2005. Muscle fiber-type variation in lizards  
697 (*Squamata*) and phylogenetic reconstruction of hypothesized ancestral states. J Exp Biol  
698 208:4529–4547.

699 Bottinelli R., Canepari M., Reggiani C. and Stienen G.J.M. 1994. Myofibrillar ATPase  
700 consumption during isometric contraction and isomyosin composition in rat single skinned muscle  
701 fibers. *J Physiol* 481:663-675

702 Bullimore S.R. and J.F. Burn. 2005. Scaling of elastic energy storage in mammalian limb tendons:  
703 do small mammals really lose out? *Biol Lett* 1:57–59.

704 Cadney M.D., N.E. Schwartz, M.P. McNamara, M.P. Schmill, A.A. Castro, D.A. Hillis, and T.  
705 Garland Jr. 2021. Cross-fostering selectively bred High Runner mice affects adult body mass but  
706 not voluntary exercise. *Physiol Behav* 241:113569.

707 Careau V., M.E. Wolak, P.A. Carter, and T. Garland Jr. 2013. Limits to behavioral evolution: The  
708 quantitative genetics of a complex trait under directional selection. *Evolution* 67:3102–3119.

709 Castro A.A., T. Garland Jr., S. Ahmed, and N.C. Holt. 2022. Trade-offs in muscle physiology in  
710 selectively bred high runner mice. *J Exp Biol* 225:jeb244083.

711 Charles J.P., O. Cappellari, A.J. Spence, J.R. Hutchinson, and D.J. Wells. 2016. Musculoskeletal  
712 geometry, muscle architecture and functional specializations of the mouse hindlimb. (W. D.  
713 Phillips, ed.) *PLOS ONE* 11:e0147669.

714 Christensen B.A., D.C. Lin, M.J. Schwaner, and C.P. McGowan. 2022. Elastic energy storage  
715 across speeds during steady-state hopping of desert kangaroo rats (*Dipodomys deserti*). *J Exp Biol*  
716 225:jeb242954.

717 Claghorn G.C., Z. Thompson, J.C. Kay, G. Ordóñez, T.G. Hampton, and T. Garland Jr. 2017.

718 Selective breeding and short-term access to a running wheel alter stride characteristics in house

719 mice. *Physiol Biochem Zool* 90:533–545.

720 Cook R.D. and W. Sanford. 1999. Applied regression including computing and graphics. John

721 Wiley & Sons, Inc., New York, NY.

722 Curry J.W., R. Hohl, T.D. Noakes, and T.A. Kohn. 2012. High oxidative capacity and type IIx

723 fibre content in springbok and fallow deer skeletal muscle suggest fast sprinters with a resistance

724 to fatigue. *J Exp Biol* 215:3997–4005.

725 Dlugosz E.M., M.A. Chappell, D.G. McGillivray, D.A. Syme, and T. Garland Jr. 2009.

726 Locomotor trade-offs in mice selectively bred for high voluntary wheel running. *J Exp Biol*

727 212:2612–2618.

728 Ettema G.J.C. 1996. Elastic and length–force characteristics of the gastrocnemius of the hopping

729 mouse (*Notomys Alexis*) and the rat (*Rattus Norvegicus*). *J Exp Biol* 199:1277–1285.

730 Fletcher J.R. and B.R. MacIntosh. 2017. Running economy from a muscle energetics perspective.

731 *Front Physiol* 8:433.

732 Foster C. and A. Lucia. 2007. Running economy: the forgotten factor in elite performance. *Sports*

733 *Med* 37:316–319.

734 Foster K.L., T. Garland Jr., L. Schmitz, and T.E. Higham. 2018. Skink ecomorphology: forelimb

735 and hind limb lengths, but not static stability, correlate with habitat use and demonstrate multiple

736 solutions. *Biol J Linn Soc.*

737 Garland Jr. T., M.T. Morgan, J.G. Swallow, J.S. Rhodes, I. Girard, J.G. Belter, and P.A. Carter.

738 2002. Evolution of a small-muscle polymorphism in lines of house mice selected for high activity

739 levels. *Evolution* 56:1267–1275.

740 Garland Jr. T. 1988. Genetic basis of activity metabolism I. Inheritance of speed, stamina, and

741 antipredator displays in the garter snake *Thamnophis sirtalis*. *Evolution* 42:335–350.

742 Garland Jr. T. 2003. Selection experiments: An under-utilized tool in biomechanics and

743 organismal biology. *Vertebr Biomech Evol*. Bios Scientific Publisher, Oxford.

744 Garland Jr. T. and P.A. Carter. 1994. Evolutionary Physiology. *Annu Rev Physiol* 56:579–621.

745 Garland Jr. T., C.J. Downs, and A.R. Ives. 2022. Trade-offs (and constraints) in organismal

746 biology. *Physiol Biochem Zool* 95:82–112.

747 Garland Jr. T. and P.L. Else. 1987. Seasonal, sexual, and individual variation in endurance and

748 activity metabolism in lizards. *Am J Physiol-Regul Integr Comp Physiol* 252:R439–R449.

749 Garland Jr. T. and C.M. Janis. 1993. Does metatarsal/femur ratio predict maximal running speed

750 in cursorial mammals? *J Zool* 229:133–151.

751 Garland Jr. T., S.A. Kelly, J.L. Malisch, E.M. Kolb, R.M. Hannon, B.K. Keeney, S.L. Van Cleave,

752 et al. 2011. How to run far: multiple solutions and sex-specific responses to selective breeding for

753 high voluntary activity levels. *Proc R Soc B Biol Sci* 278:574–581.

754 Garland Jr. T. and M.R. Rose. 2009. Experimental evolution: concepts, methods, and applications

755 of selection experiments. University of California Press, Berkeley.

756 Girard I., M.W. McAleer, J.S. Rhodes, and T. Garland Jr. 2001. Selection for high voluntary  
757 wheel-running increases speed and intermittency in house mice (*Mus domesticus*). *J Exp Biol*  
758 204:4311–4320.

759 Gleeson T.T. and J.M. Harrison. 1988. Muscle composition and its relation to sprint running in the  
760 lizard *Dipsosaurus dorsalis*. *Am J Physiol-Regul Integr Comp Physiol* 255:R470–R477.

761 Green H., H. Reichmann, and D. Pette. 1983. Fiber type specific transformations in the enzyme  
762 activity pattern of rat vastus lateralis muscle by prolonged endurance training. *Pflugers Arch*  
763 399:216–222.

764 Guderley H., Houle-Leroy P., G.M. Diffee, D.M. Camp, and T. Garland Jr. 2006. Morphometry,  
765 ultrastructure, myosin isoforms, and metabolic capacities of the “mini muscles” favoured by  
766 selection for high activity in house mice. *Comp Biochem Physiol B Biochem Mol Biol* 144:271–  
767 282.

768 He Z.H., R. Bottinelli, M.A. Pellegrino, M.A. Ferenczi, and C. Reggiani. 2000. ATP consumption  
769 and efficiency of human single muscle fibers with different myosin isoform composition. *Biophys*  
770 *J* 79:945–961.

771 Heglund N.C., M.A. Fedak, C.R. Taylor, and G.A. Cavagna. 1982. Energetics and mechanics of  
772 terrestrial locomotion. IV Total mechanical energy changes as a function of speed and body size in  
773 birds and mammals. *J Exp Biol* 97:57–66.

774 Hill A.V. 1951. The effect of series compliance on the tension developed in a muscle twitch. *Proc*  
775 *R Soc Lond B Biol Sci* 138:325–329.

776 Hiramatsu L., J.C. Kay, Z. Thompson, J.M. Singleton, G.C. Claghorn, R.L. Albuquerque, B. Ho,  
777 et al. 2017. Maternal exposure to Western diet affects adult body composition and voluntary wheel  
778 running in a genotype-specific manner in mice. *Physiol Behav* 179:235–245.

779 Holt N.C. 2019. Beyond bouncy gaits: The role of multiscale compliance in skeletal muscle  
780 performance. *J Exp Zool Part Ecol Integr Physiol* 333:50–59.

781 Holt N.C., N. Danos, T.J. Roberts, and E. Azizi. 2016. Stuck in gear: age-related loss of variable  
782 gearing in skeletal muscle. *J Exp Biol* 219:998–1003.

783 Holt N.C. and D.L. Mayfield. 2023. Muscle-tendon unit design and tuning for power  
784 enhancement, power attenuation, and reduction of metabolic cost. *J Biomech* 153:111585.

785 Holt N.C., T.J. Roberts, and G.N. Askew. 2014. The energetic benefits of tendon springs in  
786 running: is the reduction of muscle work important? *J Exp Biol* 112813.

787 Hoogkamer W., S. Kipp, B.A. Spiering, and R. Kram. 2016. Altered running economy directly  
788 translates to altered distance-running performance. *Med Sci Sports Exerc* 48:2175–2180.

789 Houle-Leroy P., T. Garland Jr., Swallow J.G., and Guderley H. 2000. Effects of voluntary activity  
790 and genetic selection on muscle metabolic capacities in house mice *Mus domesticus*. *J Appl*  
791 *Physiol* 89:1608–1616.

792 Houle-Leroy P., H. Guderley, J.G. Swallow, and T. Garland Jr. 2003. Artificial selection for high  
793 activity favors mighty mini-muscles in house mice. *Am J Physiol-Regul Integr Comp Physiol*  
794 284:R433–R443.

795 Huey R.B. and A.F. Bennett. 1987. Phylogenetic studies of coadaptation: Preferred temperatures  
796 versus optimal performance temperatures of lizards. *Evolution* 41:1098–1115.

797 Husak J.F. 2006. Does speed help you survive? A test with Collared Lizards of different ages.  
798 *Funct Ecol* 20:174–179.

799 Jenkins F.A. and S.M. Camazine. 1977. Hip structure and locomotion in ambulatory and cursorial  
800 carnivores. *J Zool* 181:351–370.

801 Josephson R.K., J.G. Malamud, and D.R. Stokes. 2000. Asynchronous muscle: A primer. *J Exp  
802 Biol* 203:2713–2722.

803 Joyner M.J. and E.F. Coyle. 2008. Endurance exercise performance: the physiology of champions:  
804 factors that make champions. *J Physiol* 586:35–44.

805 Khan, R. H., J. S. Rhodes, I. A. Girard, N. E. Schwartz, and T. Garland, Jr. 2024. Does behavior  
806 evolve first? Correlated responses to selection for voluntary wheel-running behavior in house  
807 mice. *Ecological and Evolutionary Physiology* 97:In press.

808 Kohn T.A. 2014. Insights into the skeletal muscle characteristics of three southern African  
809 antelope species. *Biol Open* 3:1037–1044.

810 Kohn T.A., R. Burroughs, M.J. Hartman, and T.D. Noakes. 2011. Fiber type and metabolic  
811 characteristics of lion (*Panthera leo*), caracal (*Caracal caracal*) and human skeletal muscle. *Comp  
812 Biochem Physiol A Mol Integr Physiol* 159:125–133.

813 Kolb E.M., S.A. Kelly, K.M. Middleton, L.S. Sermsakdi, M.A. Chappell, and T. Garland Jr. 2010.  
814 Erythropoietin elevates but not voluntary wheel running in mice. *J Exp Biol* 213:510–519.

815 Kram R. and C.R. Taylor. 1990. Energetics of running: a new perspective. *Nature* 346:265–267.

816 Labonte D. 2023. A theory of physiological similarity in muscle-driven motion. *PNAS*

817 120:e2221217120.

818 Labonte D. and N.C. Holt. 2022. Elastic energy storage and the efficiency of movement. *Curr Biol*

819 32:R661–R666.

820 Lappin A.K. and J.F. Husak. 2005. Weapon performance, not size, determines mating success and

821 potential reproductive output in the Collared lizard (*Crotaphytus collaris*). *Am Nat* 166:426–436.

822 Lerman I., B.C. Harrison, K. Freeman, T.E. Hewett, D.L. Allen, J. Robbins, and L.A. Leinwand.

823 2002. Genetic variability in forced and voluntary endurance exercise performance in seven inbred

824 mouse strains. *J Appl Physiol* 92.

825 Lindstedt S.L., T. McGlothlin, E. Percy, and Pifer, J. 1998. Task-specific design of skeletal

826 muscle: balancing muscle structural composition. *Comp Biochem Physiol* 120:35–40.

827 Mayfield D.L., B.S. Launikonis, A.G. Cresswell, and G.A. Lichtwark. 2016. Additional in-series

828 compliance reduces muscle force summation and alters the time course of force relaxation during

829 fixed-end contractions. *J Exp Biol* 219:3587–3596.

830 Mayr E. 1963. *Animal species and evolution*. Harvard University Press, Cambridge, MA.

831 McGillivray D.G., T. Garland Jr., Dlugosz E.M., Chappell M.A., and Syme D.A. 2009. Changes

832 in efficiency and myosin expression in the small-muscle phenotype of mice selectively bred for

833 high voluntary running activity. *J Exp Biol* 212:977–985.

834 Mendez J, and Keys A. 1960. Density and composition of mammalian muscle. *Met Clin Exp*  
835 9:184-188

836 Mendoza E. and Azizi E. 2021. Tuned muscle and spring properties increase elastic energy  
837 storage. *J Exp Biol* 224:jeb243180.

838 Moen D.S. 2019. What determines the distinct morphology of species with a particular ecology?  
839 The roles of many-to-one mapping and trade-offs in the evolution of frog ecomorphology and  
840 performance. *Am Nat* 194:E81–E95.

841 Morgan T.J., M.A. Evans, T. Garland Jr., J.G. Swallow, and P.A. Carter. 2005. Molecular and  
842 quantitative genetic divergence among populations of house mice with known evolutionary  
843 histories. *Heredity* 94:518–525.

844 Myers M.J. and K. Steudel. 1985. Effect of limb mass and its distribution on the energetic cost of  
845 running. *J Exp Biol* 116:363–373.

846 Picasso M.B.J. 2010. The Hindlimb Muscles of *Rhea americana* (*Aves, Palaeognathae, Rheidae*):  
847 Pelvic Limb Muscles of *Rhea*. *Anat Histol Embryol* 462–472.

848 Pollock C.M. and R.E. Shadwick. 1994. Allometry of muscle, tendon, and elastic energy storage  
849 capacity in mammals. *Am J Physiol-Regul Integr Comp Physiol* 266:R1022–R1031.

850 Powell P.L., R.R. Roy, P. Kanim, M.A. Bello, and V.R. Edgerton. 1984. Predictability of skeletal  
851 muscle tension from architectural determinations in guinea pig hindlimbs. *J Appl Physiol*  
852 57:1715–1721.

853 Rezende E.L., F.R. Gomes, M.A. Chappell, and T. Garland Jr. 2009. Running behavior and its  
854 energy cost in mice selectively bred for high voluntary locomotor activity. *Physiol Biochem Zool*  
855 82:662–679.

856 Rivero J.L., A.L. Serrano, P. Henckel, and E. Aguera. 1993. Muscle fiber type compositon and  
857 fiber size in successfully and unsucessfully endurance-raced horses. *J Appl Physiol* 75:1758–1766.

858 Rivero J.L.L., R.J. Talmadge, and V.R. Edgerton. 1999. Interrelationships of myofibrillar ATPase  
859 activity and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle.  
860 *Histochem Cell Biol* 111:277–287.

861 Roberts T.J., R. Kram, P.G. Weyand, and C.R. Taylor. 1998. Energetics of bipedal running: I.  
862 metabolic cost of generating force. *J Exp Biol* 201:2745–2751.

863 Roberts T.J., R.L. Marsh, P.G. Weyand, and C.R. Taylor. 1997. Muscular force in running  
864 turkeys: the economy of minimizing work. *Science* 275:1113–1115.

865 Roff D.A. and D.J. Fairbairn. 2007. The evolution of trade-offs: where are we? *J Evol Biol*  
866 20:433–447.

867 Rome L.C., D.A. Syme, S. Hollingworth, S.L. Lindstedt, and S.M. Baylor. 1996. The whistle and  
868 the rattle: the design of sound producing muscles. *Proc Natl Acad Sci* 93:8095–8100.

869 Rubenson J., D.G. Lloyd, D.B. Heliams, T.F. Besier, and P.A. Fournier. 2011. Adaptations for  
870 economical bipedal running: the effect of limb structure on three-dimensional joint mechanics. *J R  
871 Soc Interface* 8:740–755.

872 Scales J.A. and M.A. Butler. 2016. Adaptive evolution in locomotor performance: how selective  
873 pressures and functional relationships produce diversity. *Evolution* 70:48–61.

874 Schiaffino S. and C. Reggiani. 2011. Fiber types in mammalian skeletal muscles. *Physiol Rev*  
875 91:1447–1531.

876 Schwartz N.E., M.P. McNamara, J.M. Orozco, J.O. Rashid, A.P. Thai, and Garland, Jr. 2023.  
877 Selective breeding for high voluntary exercise in mice increases maximal VO<sub>2</sub>max but not basal  
878 metabolic rate. *J Exp Biol* 226:jeb245256.

879 Shoval O., H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel, et al. 2012.  
880 Evolutionary trade-offs, pareto optimality, and the geometry of phenotypic space. *Science*  
881 336:1157–1160.

882 Swallow J.G., P.A. Carter, and T. Garland Jr. 1998. Artificial selection for increased wheel-  
883 running behavior in house mice. *Behav Genet* 28:227–237.

884 Syme D.A., K. Evashuk, B. Grintuch, E.L. Rezende, and T. Garland Jr. 2005. Contractile abilities  
885 of normal and “mini” triceps surae muscles from mice (*Mus domesticus*) selectively bred for high  
886 voluntary wheel running. *J Appl Physiol* 99:1308–1316.

887 Talmadge R.J., W. Acosta, and T. Garland Jr. 2014. Myosin heavy chain isoform expression in  
888 adult and juvenile mini-muscle mice bred for high-voluntary wheel running. *Mech Dev* 134:16–  
889 30.

890 Trappe S., M. Harber, A. Creer, P. Gallagher, D. Slivka, K. Minchev, and D. Whitsett. 2006.  
891 Single muscle fiber adaptations with marathon training. *J Appl Physiol* 101:721–727.

892 Wainwright P.C., E. Alfaro, D.I. Bolnick, and C.D. Hulsey. 2005. Many-to-one mapping of form  
893 to function: a general principle in organismal design? *Integr Comp Biol* 45:256–262.

894 Waters R.P., K.J. Renner, R.B. Pringle, C.H. Summers, S.L. Britton, L.G. Koch, and J.G.  
895 Swallow. 2008. Selection for aerobic capacity affects corticosterone, monoamines and wheel-  
896 running activity. *Physiol Behav* 93:1044–1054.

897 Williams C.D. and N.C. Holt. 2018. Spatial scale and structural heterogeneity in skeletal muscle  
898 performance. *Integr Comp Biol* 58:163–173.

899 Wilson A. and G. Lichtwark. 2011. The anatomical arrangement of muscle and tendon enhances  
900 limb versatility and locomotor performance. *Philos Trans R Soc B Biol Sci* 366:1540–1553.

901 Wilson R.S., R.S. James, and R.V. Damme. 2002. Trade-offs between speed and endurance in the  
902 frog *Xenopus laevis*: a multi-level approach. *J Exp Biol* 205:1145–1152.

903 Young D. and R.K. Josephson. 1983. Mechanisms of sound-production and muscle contraction  
904 kinetics in cicadas. *J Comp Physiol A* 152:183–195.

905

906

907 **Figure legends**

908

909 Fig. 1 – Triceps surae muscle mass (A) and muscle-tendon unit length (B) as a function of body  
910 mass for all eight lines, with individuals from HR line 6 separated into mini-muscle (HR6M) vs  
911 normal-muscle (HR6N) individuals. In A, mice from HR lines have reduced muscle mass and mini-  
912 muscle individuals have even lighter muscles, with a positive effect of body mass (for log-log  
913 transformed data, the allometric scaling exponent from the statistical model = 0.846 with a standard  
914 error of 0.180). In B, MTU length is unaffected by linetype or mini-muscle status, but body mass  
915 had a positive effect of body mass (for log-log transformed data, the allometric scaling exponent =  
916 0.243 with a standard error of 0.102).

917

918 Fig. 2 – Triceps surae muscle belly length (A) and Achilles tendon (B) length as a function of body  
919 mass for all lines, with individuals from HR line 6 separated into mini-muscle (HR6M) vs normal-  
920 muscle (HR6N) individuals. Mice from the HR lines have shorter muscles and longer tendons. For  
921 log-log transformed data, the allometric scaling exponents from the statistical models are 0.255 +  
922 0.145 (SE) for muscle belly length and 0.330 + 0.278 for tendon length.

923

924 Fig. 3 – Twitch rise ( $TP_{tw}$ ) and half relaxation ( $TP_{50}$ ) for all HR (solid bars), highlighting HRnorm  
925 (black) and HRmini (grey) lines, and C (open bars) lines. Least squares means and standard errors  
926 show that, for both traits, values for HR mice are significantly reduced when compared with C lines.

927

928 Fig. 4 – (A) Relationship between resistive force and absolute shortening velocity for values from  
929 all individual mice. Data were analyzed as repeated-measures models in SAS Procedure MIXED.

930 See text for explanation of results. Age was also included as a covariate (not shown). (B)  $V_{max}$   
931 values obtained from the extrapolation of second order polynomial fits to the force-velocity data to  
932 zero force for each individual mouse, as shown in A, then compared among nine "lines" (also in  
933 SAS Procedure MIXED, but "line" was treated as a fixed effect). Least squares means and standard  
934 errors show that  $V_{max}$  values are lower in HRmini (grey bars: HR3M, HR6M) than HRnorm lines  
935 or individuals, with some variation observed across C (open bars: C1, C2, C4, C5) and HRnorm  
936 lines (black bars: HR6N, HR7, HR8).

937

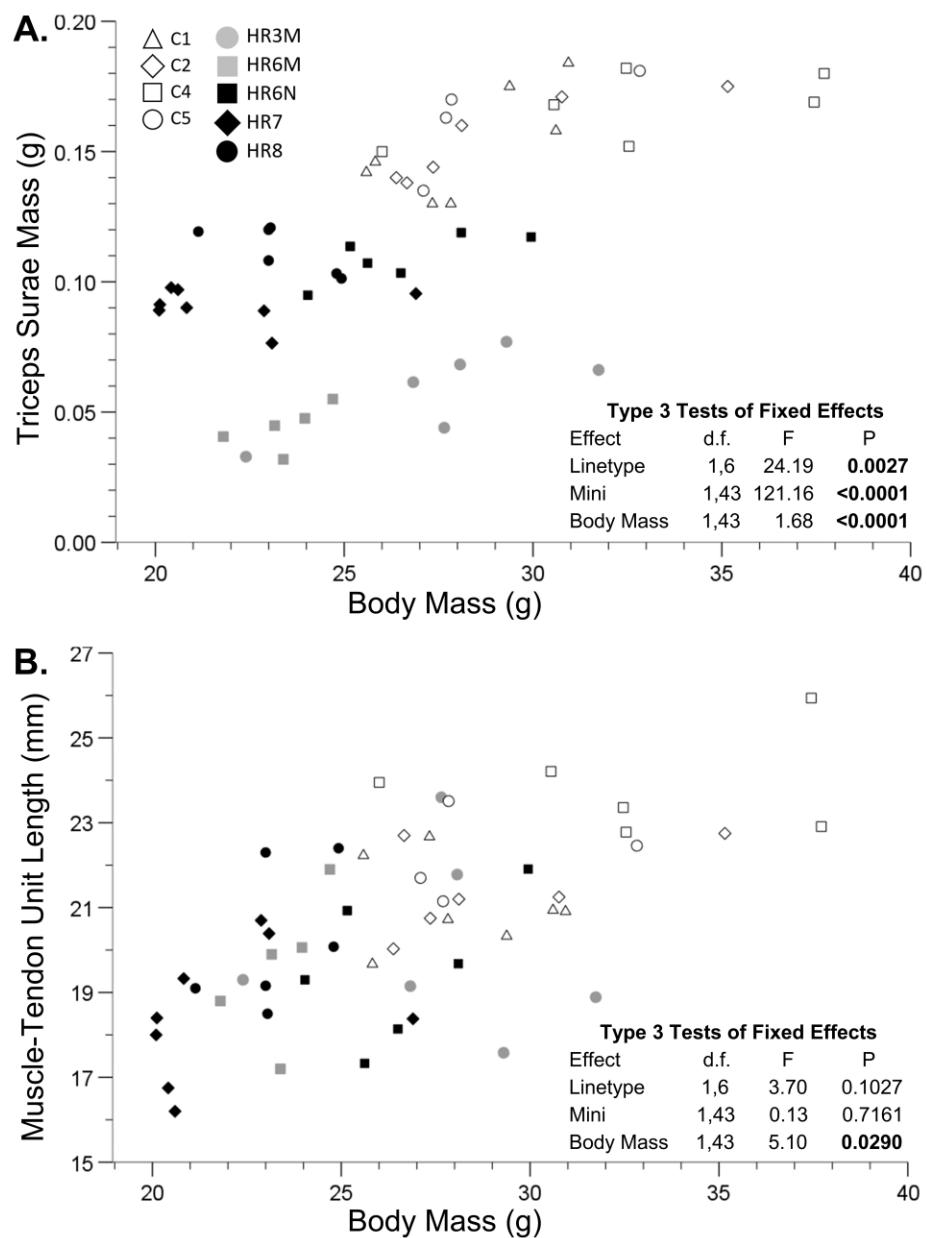
938 Fig. 5 – (A) Relationship between resistive force and normalized shortening velocity for values from  
939 all individual mice. Data were analyzed as repeated-measures models in SAS Procedure MIXED.  
940 See text for explanation of results. Age was also included as a covariate (not shown). (B)  $V_{normmax}$   
941 values obtained from the extrapolation of second order polynomial fits to the force-velocity data to  
942 zero force for each individual mouse, as shown in A, then compared among nine "lines" (also in  
943 SAS Procedure MIXED, but "line" was treated as a fixed effect). Least squares means and standard  
944 errors show that  $V_{normmax}$  values are both higher and lower in HR mice than C mice, with HRmini  
945 lines/individuals (grey bars) having the lowest values, and there being considerable variation across  
946 HRnorm lines (black bars).

947

948 Fig. 6 – Least squares means and standard errors from analyses comparing the nine "lines" for  
949 Endur<sub>0-90</sub> (A) and Sustained F/F<sub>0</sub> (B) metrics. ANOVA tables are from comparisons of HR with C  
950 lines and normal with mini-muscle individuals (SAS Procedure Mixed). Least squares means and  
951 standard errors show that Endur<sub>0-90</sub> declines much more slowly in HRmini individuals (grey bars:  
952 HR3M, HR6M) than in HRnorm lines or individuals, and HRnorm mice have a slower decline than

953 do C mice, with some variation observed across C (open bars: C1, C2, C4, C5) and across HRnorm  
954 lines (black bars: HR6N, HR7, HR8). Least squares means and standard errors also show that  
955 Sustained  $F/F_0$  is much higher in mini-muscle individuals than in normal-muscle individuals, with  
956 no difference between HRnorm and C mice. (C-F) Sample endurance traces from individuals for  
957 four lines, HRmini (C), HRnorm (D), and C (E, F).

958

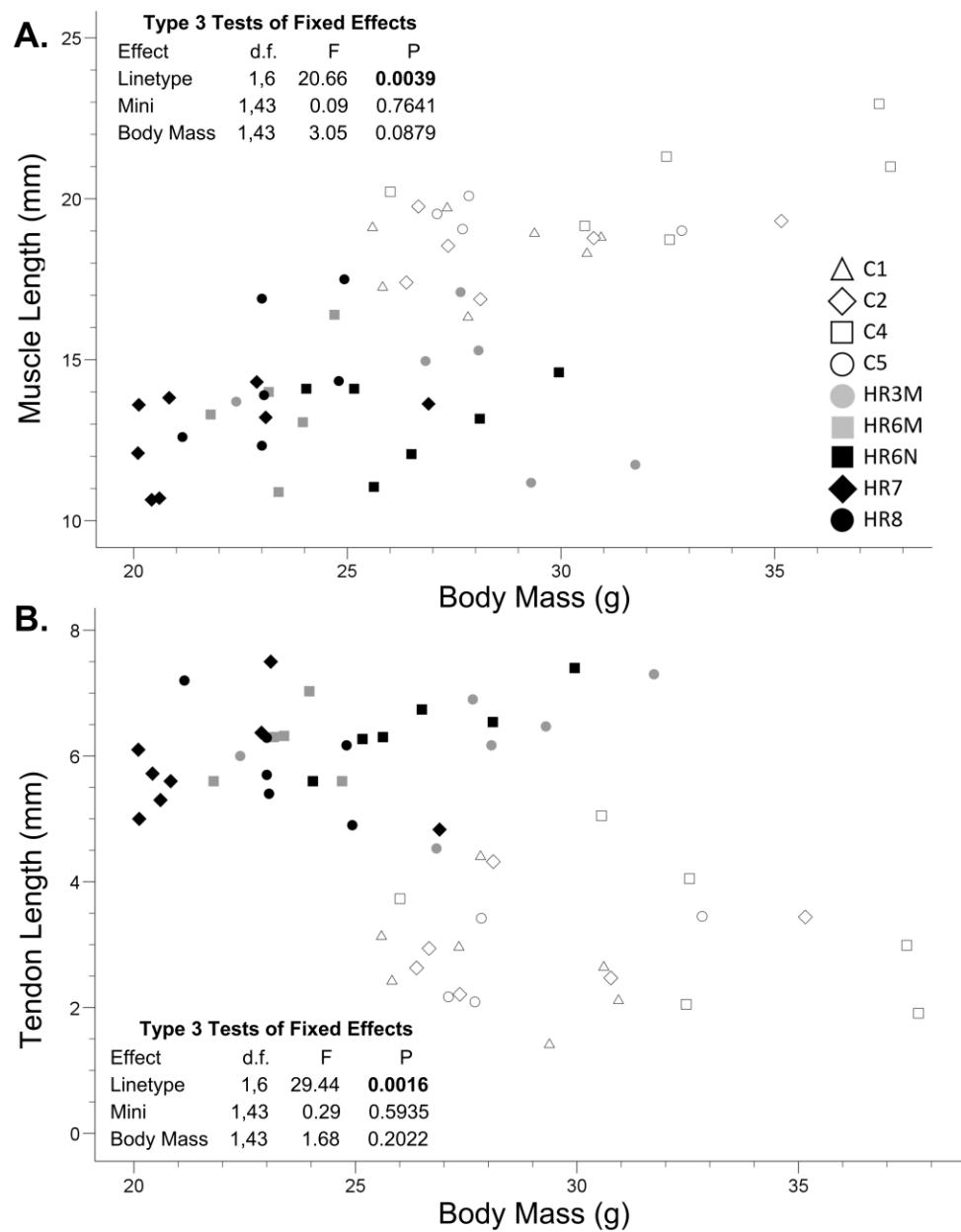

959 Fig. 7 – Relationship between velocity ( $V_{max}$ ) and endurance ( $Endur_{0-90}$ ) metrics across HR (solid  
960 symbols) and C (open symbols) lines, highlighting HRmini (black) and HRnoRM (grey) lines or  
961 individuals. The correlation for the C lines is 0.868, which differs significantly (2-tailed  $p=0.0031$ )  
962 from the correlation for the five HR "lines ( $r=-0.980$ ). Additional scatterplots and analyses are found  
963 in Supplemental Figure S2 and discussed in the Results section.

964

965

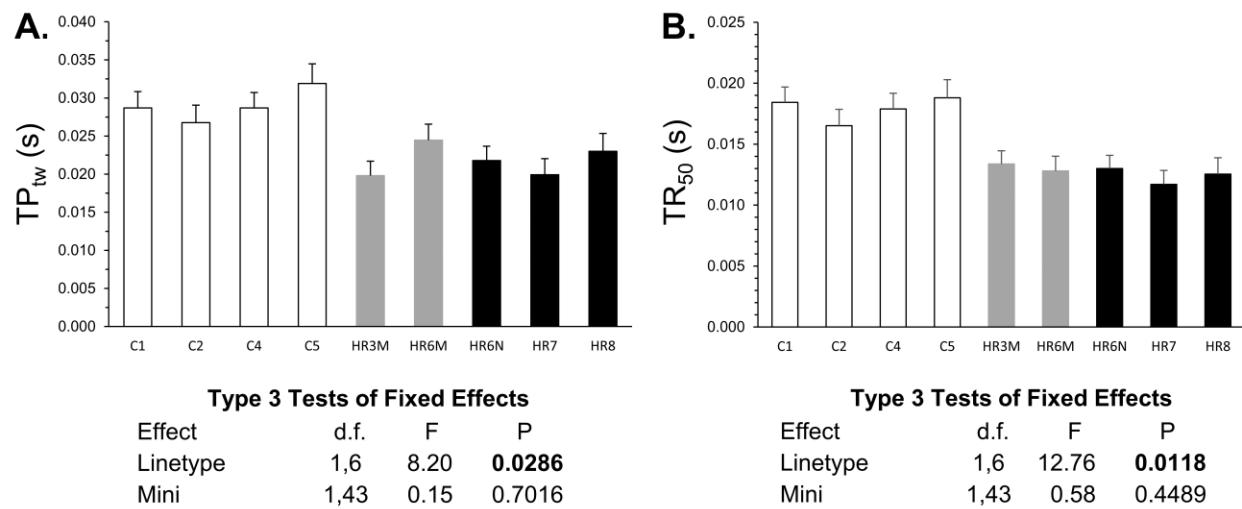
966 Figure 1

967




968

969


970 Figure 2

971

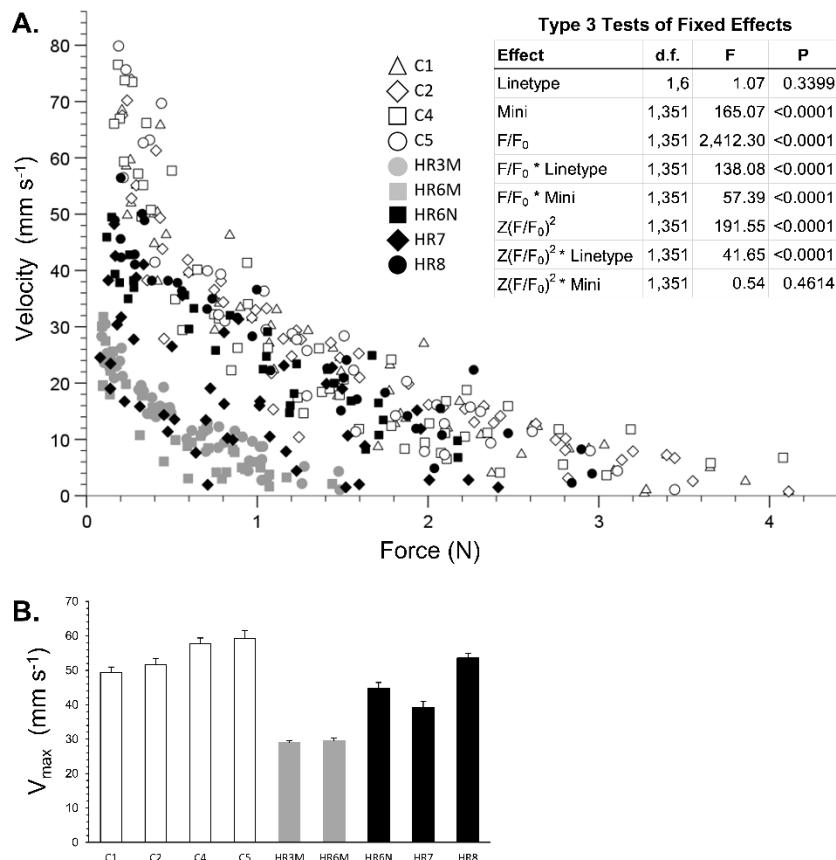


975 Figure 3

976



977


978

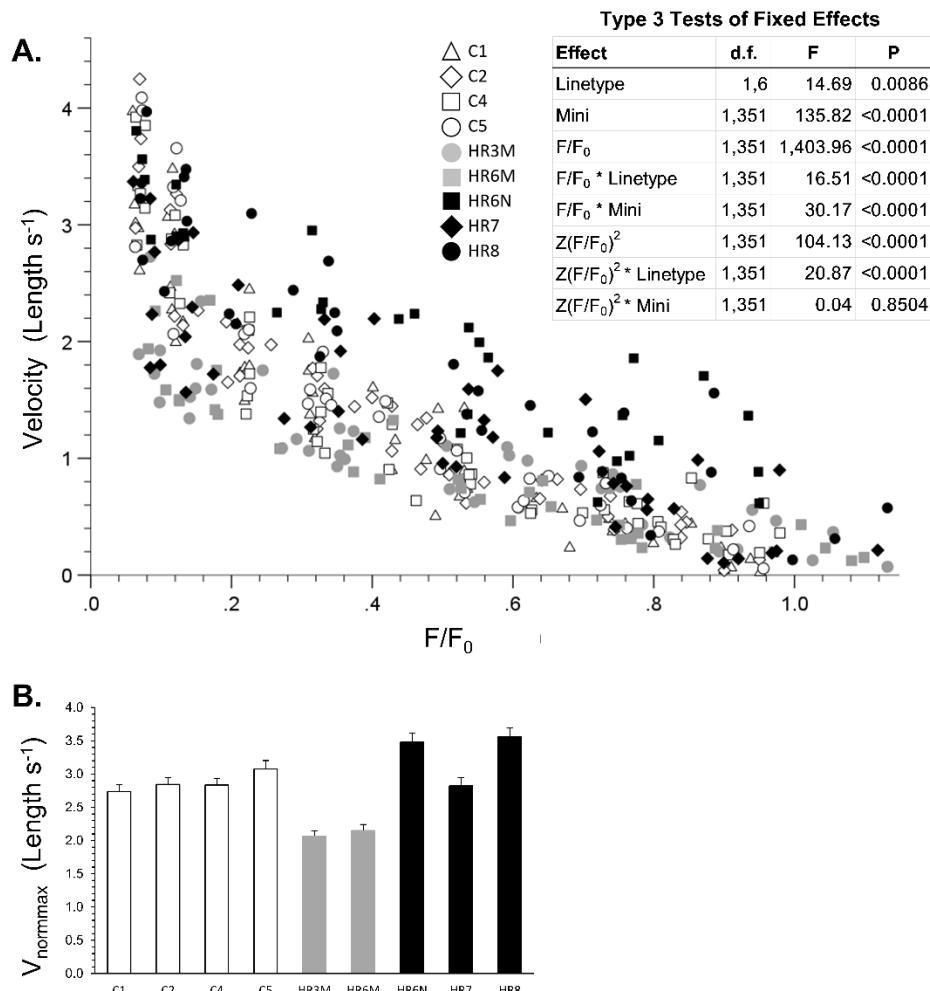
979

980 Figure 4

981

982




983

984

985

986 Figure 5

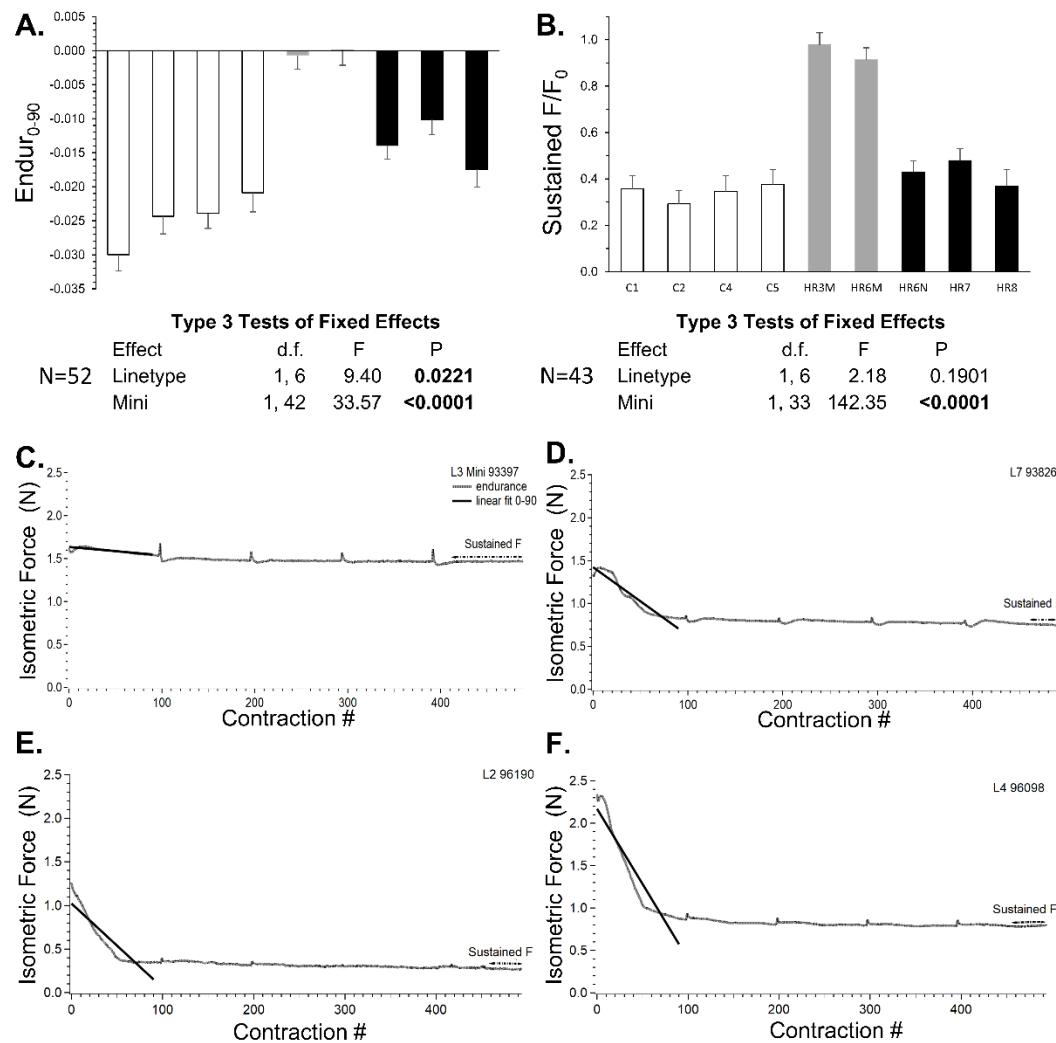
987



988

989

990


991

992

993

994

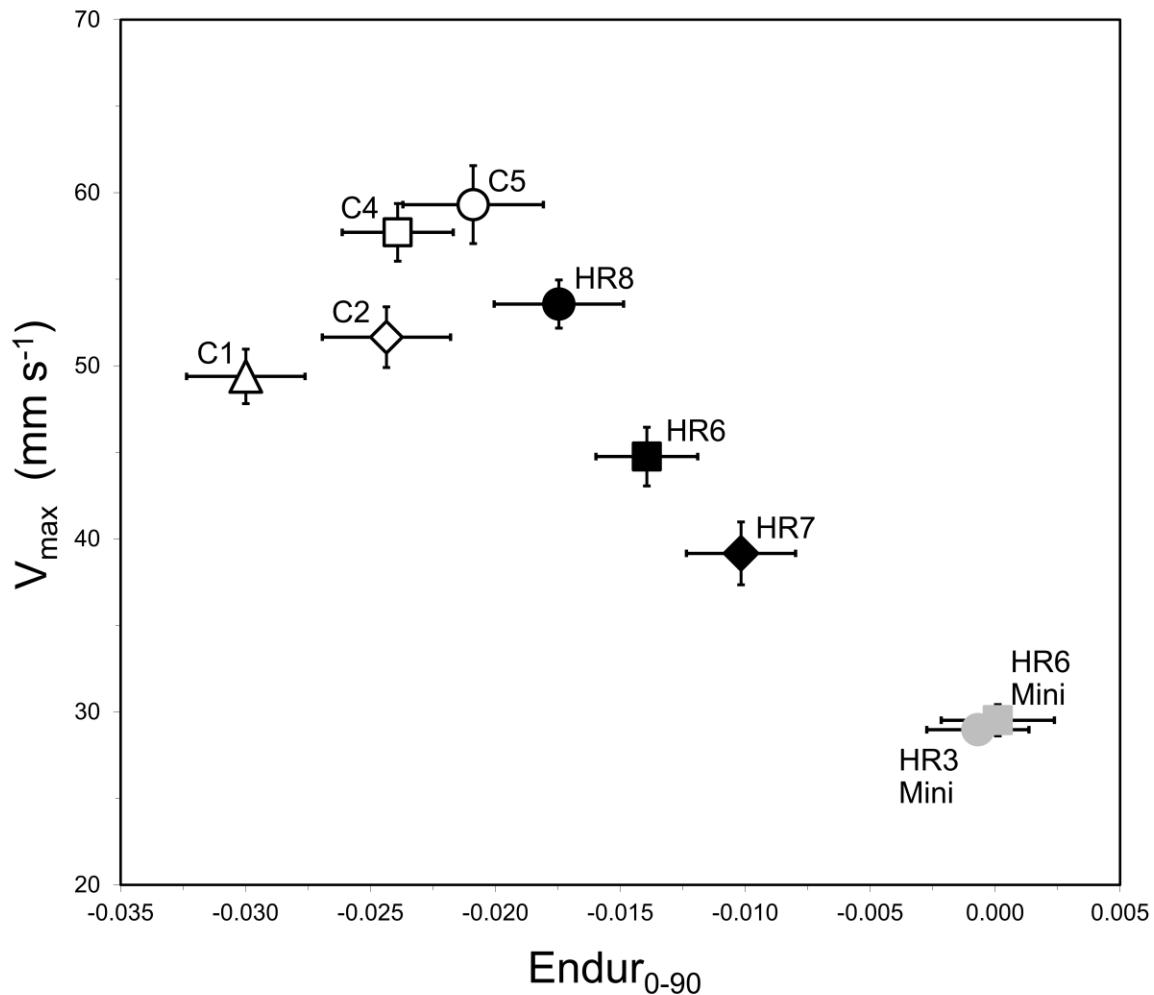
995 Figure 6



996

997

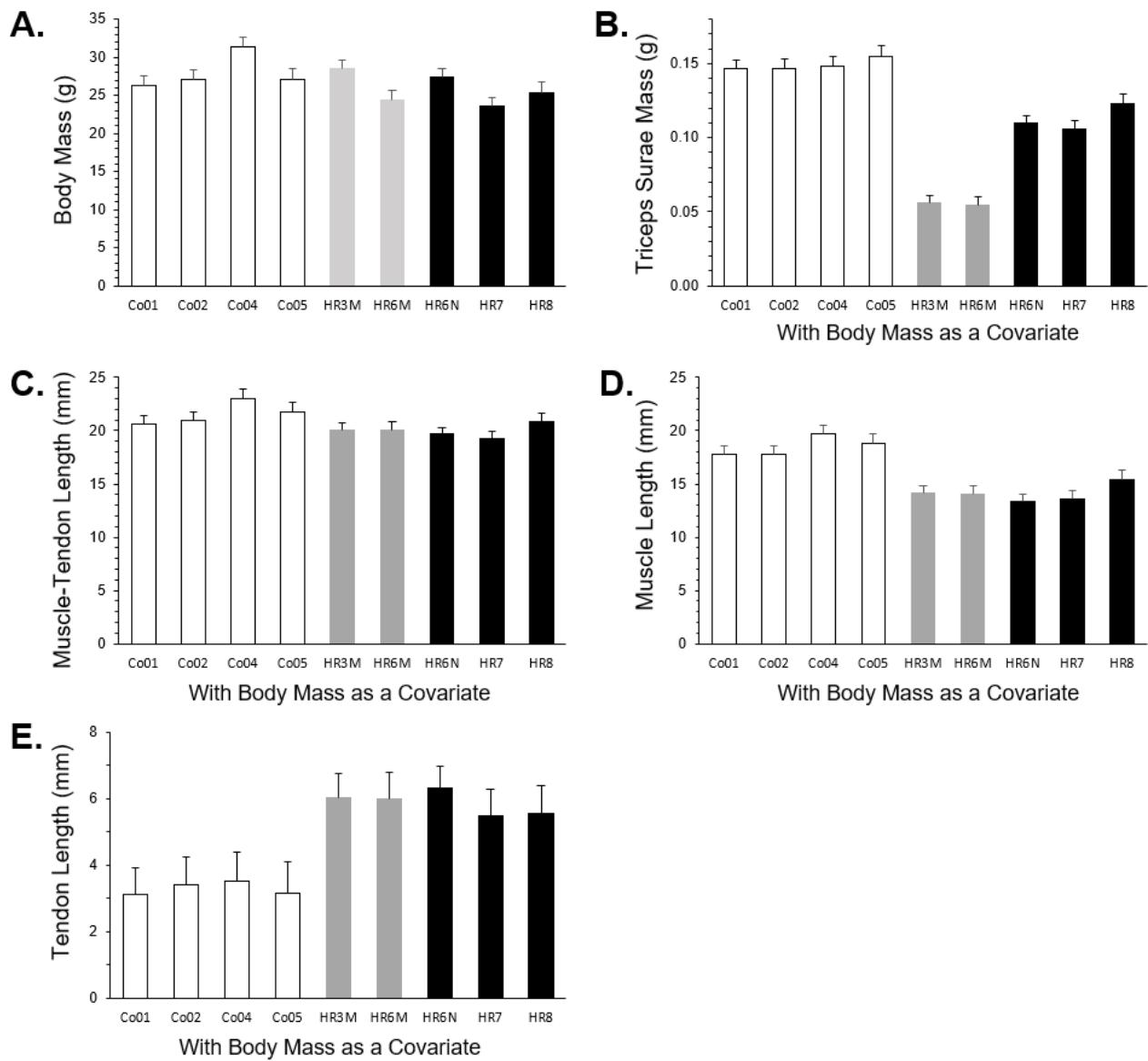
998


999

1000

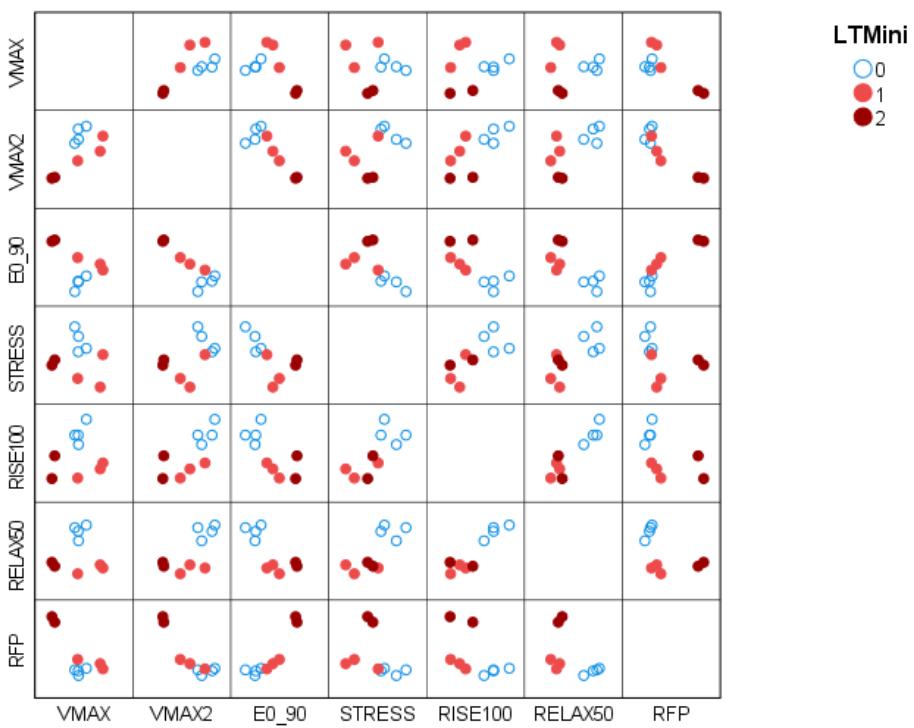
1001

1002 Figure 7


1003



1004


1005

1006



**Supplemental Figure S1. Variation among the nine "lines" showing line HR6 separated into individuals with (HR6M) and without (HR6N) the mini-muscle phenotype. Values are Least Squares Means and Standard Errors from one-way ANCOVAs comparing the nine groups in SAS Procedure Mixed, with body mass and age as covariates (for analysis of body mass, only age was a covariate). Non-selected control (C) lines are in open bars, mini-muscle lines or individuals (for line HR6N) are in gray bars, and HR lines that are purely composed of normal-muscle individuals are in black bars. Of particular interest in these analyses was whether a trait varied significantly among the replicate C lines (which would indicate random mutation and/or genetic drift) or among the replicate HR lines (which may also indicate multiple adaptive responses to selection a.k.a. "multiple solutions"). Of particular note, the relative mass of the triceps surae muscle varied significantly among the three normal-muscled HR lines: muscle mass was larger in HR8 than HR7 ( $p=0.0114$ : differences of least squares means from SAS Procedure**

**Mixed), with values for HR6N being intermediate to them. For other examples of trait variation among the HR lines, see Figures 4, 5, and 6.**

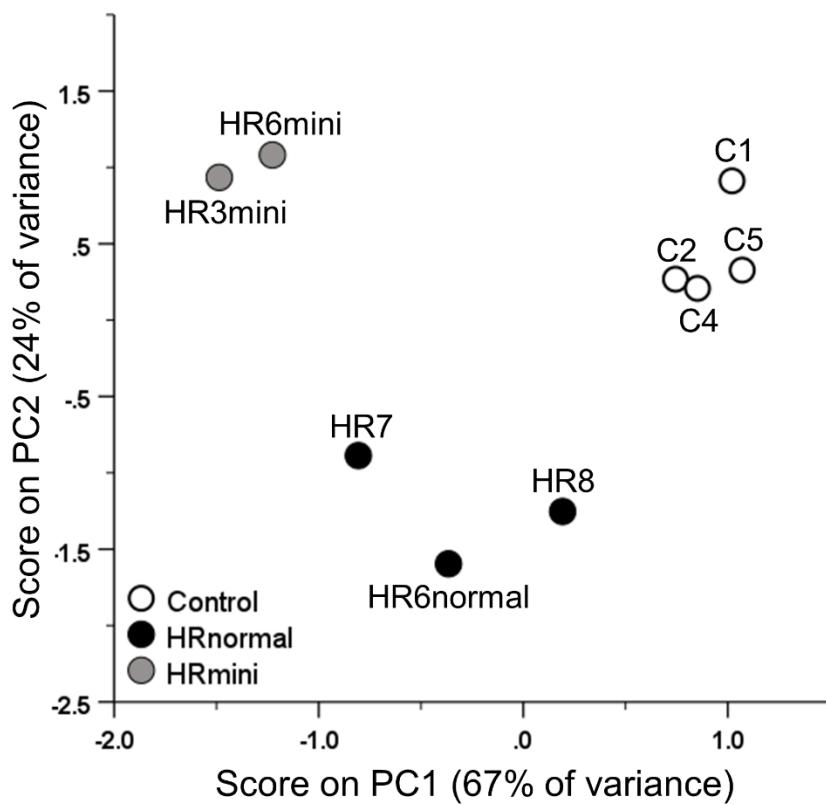
**A.****B.**

| Control (N=4) |                     | VMAX   | VMAX2  | E0_90  | STRESS | RISE100 | RELAX50 | RFP    |
|---------------|---------------------|--------|--------|--------|--------|---------|---------|--------|
| VMAX          | Pearson Correlation | 1      | 0.798  | 0.891  | -0.641 | 0.767   | 0.344   | 0.389  |
|               | Sig. (2-tailed)     |        | 0.2017 | 0.1093 | 0.3591 | 0.2329  | 0.6557  | 0.6112 |
| VMAX2         | Pearson Correlation | 0.798  | 1      | 0.868  | -0.954 | 0.689   | 0.388   | 0.466  |
|               | Sig. (2-tailed)     | 0.2017 |        | 0.1319 | 0.0457 | 0.3108  | 0.6122  | 0.5336 |
| E0_90         | Pearson Correlation | 0.891  | 0.868  | 1      | -0.845 | 0.482   | 0.013   | 0.084  |
|               | Sig. (2-tailed)     | 0.1093 | 0.1319 |        | 0.1550 | 0.5177  | 0.9871  | 0.9155 |
| STRESS        | Pearson Correlation | -0.641 | -0.954 | -0.845 | 1      | -0.446  | -0.155  | -0.244 |
|               | Sig. (2-tailed)     | 0.3591 | 0.0457 | 0.1550 |        | 0.5539  | 0.8453  | 0.7563 |
| RISE100       | Pearson Correlation | 0.767  | 0.689  | 0.482  | -0.446 | 1       | 0.866   | 0.887  |
|               | Sig. (2-tailed)     | 0.2329 | 0.3108 | 0.5177 | 0.5539 |         | 0.1336  | 0.1129 |
| RELAX50       | Pearson Correlation | 0.344  | 0.388  | 0.013  | -0.155 | 0.866   | 1       | 0.996  |
|               | Sig. (2-tailed)     | 0.6557 | 0.6122 | 0.9871 | 0.8453 | 0.1336  |         | 0.0042 |
| RFP           | Pearson Correlation | 0.389  | 0.466  | 0.084  | -0.244 | 0.887   | 0.996   | 1      |
|               | Sig. (2-tailed)     | 0.6112 | 0.5336 | 0.9155 | 0.7563 | 0.1129  | 0.0042  |        |

C.

| Selected (N=5) |                     | VMAX   | VMAX2  | E0_90  | STRESS | RISE100 | RELAX50 | RFP    |
|----------------|---------------------|--------|--------|--------|--------|---------|---------|--------|
| VMAX           | Pearson Correlation | 1      | 0.965  | -0.983 | -0.272 | 0.104   | -0.278  | -0.954 |
|                | Sig. (2-tailed)     |        | 0.0077 | 0.0027 | 0.6576 | 0.8682  | 0.6503  | 0.0119 |
| VMAX2          | Pearson Correlation | 0.965  | 1      | -0.980 | -0.038 | 0.141   | -0.322  | -0.927 |
|                | Sig. (2-tailed)     | 0.0077 |        | 0.0033 | 0.9514 | 0.8206  | 0.5978  | 0.0232 |
| E0_90          | Pearson Correlation | -0.983 | -0.980 | 1      | 0.223  | -0.002  | 0.384   | 0.974  |
|                | Sig. (2-tailed)     | 0.0027 | 0.0033 |        | 0.7189 | 0.9971  | 0.5239  | 0.0051 |
| STRESS         | Pearson Correlation | -0.272 | -0.038 | 0.223  | 1      | 0.484   | 0.155   | 0.337  |
|                | Sig. (2-tailed)     | 0.6576 | 0.9514 | 0.7189 |        | 0.4087  | 0.8034  | 0.5787 |
| RISE100        | Pearson Correlation | 0.104  | 0.141  | -0.002 | 0.484  | 1       | 0.122   | 0.016  |
|                | Sig. (2-tailed)     | 0.8682 | 0.8206 | 0.9971 | 0.4087 |         | 0.8446  | 0.9800 |
| RELAX50        | Pearson Correlation | -0.278 | -0.322 | 0.384  | 0.155  | 0.122   | 1       | 0.546  |
|                | Sig. (2-tailed)     | 0.6503 | 0.5978 | 0.5239 | 0.8034 | 0.8446  |         | 0.3413 |
| RFP            | Pearson Correlation | -0.954 | -0.927 | 0.974  | 0.337  | 0.016   | 0.546   | 1      |
|                | Sig. (2-tailed)     | 0.0119 | 0.0232 | 0.0051 | 0.5787 | 0.9800  | 0.3413  |        |

D.


P-values for Difference of Correlation Coefficients

|         | VMAX2  | E0_90  | STRESS | RISE100 | RELAX50 | RFP    |
|---------|--------|--------|--------|---------|---------|--------|
| VMAX    | 0.4521 | 0.0019 | 0.6946 | 0.4582  | 0.5989  | 0.0621 |
| VMAX2   |        | 0.0031 | 0.1337 | 0.5654  | 0.5439  | 0.0804 |
| E0_90   |        |        | 0.2316 | 0.6666  | 0.7491  | 0.0893 |
| STRESS  |        |        |        | 0.4105  | 0.7986  | 0.6244 |
| RISE100 |        |        |        |         | 0.3295  | 0.2558 |
| RELAX50 |        |        |        |         |         | 0.0417 |

E.

| Variable     | Principal Component |       |       |       |       |       |       |
|--------------|---------------------|-------|-------|-------|-------|-------|-------|
|              | 1                   | 2     | 3     | 4     | 5     | 6     | 7     |
| VMAX         | .507                | -.834 | .039  | .172  | .108  | -.069 | .011  |
| VMAX2        | .937                | -.262 | .129  | .072  | -.018 | .176  | -.015 |
| E0_90        | -.959               | .081  | .202  | .162  | -.047 | .047  | .045  |
| STRESS       | .686                | .595  | -.368 | .197  | .015  | .014  | .014  |
| RISE100      | .847                | .398  | .303  | .126  | -.086 | -.098 | -.015 |
| RELAX50      | .840                | .467  | .192  | -.160 | .114  | .011  | .031  |
| RFP          | -.861               | .454  | .129  | .124  | .135  | .023  | -.033 |
| Eigenvalue   | 4.69                | 1.71  | 4.86  | 2.24  | 0.05  | 0.05  | 0.01  |
| % Variance   | 67.0                | 24.3  | 4.9   | 2.2   | 0.8   | 0.7   | 0.1   |
| Cumulative % | 67.0                | 91.4  | 96.2  | 98.5  | 99.2  | 99.9  | 100.0 |

F.



**Supplemental Figure S2.** Analyses of correlations using least squares means for nine "lines" (line HR6 separated into individuals with and without the mini-muscle phenotype) from one-way ANCOVAs comparing the nine groups in SAS Procedure Mixed. A) Bivariate scatterplots. B) Pearson correlations and 2-tailed significance for the four C lines. C) Pearson correlations and 2-tailed significance for the five HR "lines". D) Tests for difference between the C and HR correlation coefficients. E) Factor loadings (component correlations) of each variable with each of the seven principal components (PCs), based on analysis of the correlation matrix for all seven muscle contractile traits. F) Scatterplot of scores on the first two principal components, which together account for 91.4% of the total variation in contractile properties among the nine "line" means. Note that due to space and notation constraints different abbreviations are used here compared to the main manuscript ( $V_{MAX} = V_{normmax}$ ,  $V_{MAX2} = V_{max}$ ,  $E_{0-90} = Endur_{0-90}$ ,  $RFP = Sustained\ F/F_0$ ,  $RISE100 = TP_{tw}$ ,  $RELAX50 = TR_{50}$ ).