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Abstract

In various organisms, sequencing of selectively bred lines at apparent selection limits
has demonstrated that genetic variation can remain at many loci, implying that evolution
at the genetic level may continue even if the population mean phenotype remains
constant. We compared selection signatures at generations 22 and 61 of the “High
Runner” mouse experiment, which includes 4 replicate lines bred for voluntary wheel-
running behavior (HR) and 4 non-selected control (C) lines. Previously, we reported
multiple regions of differentiation between the HR and C lines, based on whole-genome
sequence data for 10 mice from each line at generation 61, which was >31 generations
after selection limits had been reached in all HR lines. Here, we analyzed pooled
sequencing data from ~20 mice for each of the 8 lines at generation 22, around when
HR lines were reaching limits. Differentiation analyses of allele frequencies at ~4.4
million SNP loci used the regularized T-test and detected 258 differentiated regions with
FDR = 0.01. Comparable analyses involving pooling generation 61 individual mouse
genotypes into allele frequencies by line produced only 11 such regions, with almost no
overlap among the largest and most statistically significant peaks between the two
generations. These results implicate a sort of “genetic churn” that continues at loci
relevant for running. Simulations indicate that loss of statistical power due to random
genetic drift and sampling error are insufficient to explain the differences in selection
signatures. The 13 differentiated regions at generation 22 with strict culling measures
include 79 genes related to a wide variety of functions. Gene ontology identified
pathways related to olfaction and vomeronasal pathways as being overrepresented,

consistent with generation 61 analyses, despite those specific regions differing between
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generations. Genes Dspp and Rbm24 are also identified as potentially explaining

known bone and skeletal muscle differences, respectively, between the linetypes.
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Introduction

Although evolution can result in organisms with spectacular capabilities or able to
survive in exceptionally inhospitable environments, all adaptations are bound within
certain limits. These limits are commonly observed in laboratory and agricultural
selection experiments (Dobzhansky and Spassky 1969; Al-Murrani and Roberts 1974;
Careau et al. 2013; Schidétterer et al. 2015; Lillie et al. 2019). Among various possible
causes of selection limits (Al-Murrani and Roberts 1974; Falconer 1989; Douhard et al.
2021), the simplest explanation is the loss of genetic variation, such that narrow-sense
heritability declines to zero (e.g., see Brown and Bell 1961). However, selection
experiments have frequently found that genetic variation remains after reaching a
selection limit (e.g., Lerner and Dempster 1951; Roberts 1966; Dobzhansky and
Spassky 1969; Bult and Lynch 2000; Burke et al. 2010; Careau et al. 2013; Lillie et al.
2019; Hillis et al. 2020). Even for alleles favored by selection, fixation is far from
guaranteed (Burke et al. 2010; Schlétterer et al. 2015; Stephan 2016; Hillis et al. 2020).
One selection experiment that has continued selection long after reaching a limit
is the High Runner (HR) mouse experiment, which started in 1993 with the purchase of
224 outbred ICR mice from Harlan Sprague Dawley (Swallow, Carter, et al. 1998).
These were randomly bred for two generations, then split into ten breeding pairs to
found each of eight closed lines. Four of these lines were designated to serve as non-
selected control lines, while the other four were selected based on voluntary wheel
running. In selected lines, all mice are given access to wheels for 6 days and the male
and female of each family with the highest running on days 5 and 6 would be used as

breeders (no sib-mating). After about 22 generations of selection, three of the four HR
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lines (with the fourth line following suit a few generations later) had plateaued in their
running at approximately 2.5 to 3 times as many revolutions as the controls (Careau et
al. 2013). Recently, the experiment has reached its 100" generation since selection
began and, with exception of some generations when the experiment moved from
Wisconsin to California (generations 32 to 35) and during Covid-19 lockdowns
(generations 91 to 98), selection has continued nearly uninterrupted in the interim.
Whether selection interruption following the move to California resulted in statistically
significant changes to running behavior has not yet been analyzed.

Numerous physiological and morphological differences between the HR and
control lines have been documented (Rhodes et al. 2005; Swallow et al. 2009; Garland,
Jr., Schutz, et al. 2011; Wallace and Garland, Jr. 2016; Khan et al. 2024). These
include traits associated with motivation to run, such as changes in dopamine (Rhodes
et al. 2001; Mathes et al. 2010), serotonin (Waters et al. 2013), and endocannabinoid
signaling (Thompson et al. 2017), as well as changes in brain size and structure (Kolb,
Rezende, et al. 2013). Additionally, changes associated with ability to run have been
found, including endurance capacity (Meek et al. 2009), maximal aerobic capacity
(VOa2max) (e.g., Swallow, Garland, Jr., et al. 1998; Kolb et al. 2010; Dlugosz et al. 2013;
Hiramatsu et al. 2017; Cadney et al. 2021), heart size (Kolb et al. 2010; Kolb, Kelly, et
al. 2013; Kelly et al. 2017), skeletal muscle physiology (Dumke et al. 2001; Syme et al.
2005; Guderley et al. 2008; Castro et al. 2022), and bone morphology (Garland, Jr. and
Freeman 2005; Kelly et al. 2006; Middleton et al. 2008; Middleton et al. 2010; Wallace
et al. 2010; Wallace et al. 2012; Castro and Garland, Jr. 2018; Copes et al. 2018;

Schwartz et al. 2018).
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Previously, whole-genome differentiation analyses using individual mouse data
from 10 males from each of the eight lines at generation 61 identified at least 13
genomic regions differentiated between the control and HR lines (Hillis et al. 2020; Hillis
and Garland, Jr. 2022). Within these regions were genes associated with development
of the brain, heart, bones, and limbs, in addition to reward pathways, and even the
vomeronasal system (see also Nguyen et al. 2020). Dropping individual lines from
analyses revealed new potential signatures of selection and demonstrated that the HR
lines have evolved in different ways at the genomic level (“multiple solutions” Garland,
Jr., Kelly, et al. 2011) that increase wheel-running behavior (Hillis and Garland, Jr.
2022). Despite being ~30-35 generations past the selection limit, a great deal of genetic
diversity remained in all 8 lines including many regions identified as differentiated
between the HR lines and controls.

With the selection limit achieved near generation 22, one might expect many if
not most biologically relevant SNPs to already be differentiated by that generation.
Thus, with respect to the ability to detect selection signatures, little advantage would be
gained from allowing ~30-35 generations to pass before testing for allelic differentiation
between the HR and control lines. Furthermore, simulations performed by Baldwin-
Brown et al. (2014) demonstrate that increasing the number of generations could
reduce power to detect some loci under selection, which they attributed to noise created
by random genetic drift. Reasonably, one might expect that drift over enough
generations may cause control lines to diverge from each other in allele frequencies,
such that selection signatures are obscured in statistical tests that compare replicate

sets of selected and control lines. For example, if some control lines become fixed for
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one allele and the remaining control lines become fixed for another, then, even if all HR
lines were fixed for the same allele favored by selection, statistically significant
differentiation would be difficult to detect. Therefore, analyses of a generation close to
when a selection limit is first reached would be optimal for tests of genetic
differentiation.

In the present study, we analyze pooled sequence data from each of the four HR
lines and four control lines at generation 22. Although these analyses identify many
regions containing genes associated with systems known to be phenotypically
differentiated between the HR and control linetypes, they largely differ from those
previously identified with the generation 61 individual mouse sequence data (Hillis et al.
2020). Furthermore, the number of differentiated regions detected at generation 22 are
more than 20-fold greater than those detected with generation 61 data (treated as
pooled data).

We first discuss possible methodological causes of these differences (e.g.,
pooled vs individual mouse data) and find them lacking. We therefore develop a simple
simulation model, with leptokurtic distribution of locus effect sizes, to test the possibility
that a hypothetical physiological constraint on wheel running could contribute to the
differences between generations 22 and 61 selection signatures. Ignoring locus effect
size, results demonstrate that such constraints can contribute to a reduction in power
and increased variability in the detected response to selection in generations after the
selection limit. However, the magnitude of these effects appears insufficient to explain
the differences observed between generations 22 and 61 in the real data. In addition,

effect size was an important determinant of the ability to detect selection signatures in
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the simulations, including a more than 2-fold increase in power to detect loci with large
effect size at generation 22 as compared to generation 61. Thus, with strict culling
procedures, we suspect that many of the selection signatures detected at both
generations are likely to represent loci with relatively large effects on wheel running.
The regions detected at generation 22 include genes related to olfactory/vomeronasal
systems, which are also identified at generation 61 (Hillis et al. 2020; Nguyen et al.

2020; Hillis and Garland, Jr. 2022).
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Materials and methods

High runner mouse model

As described previously (Careau et al. 2013; Swallow, Carter, et al. 1998), 112 males
and 112 females of the outbred Hsd:ICR strain were purchased from Harlan Sprague
Dawley in 1993 and designated as generation -2. Mice would be randomly bred for 2
generations (-2 and -1) with 2-3 generation -1 mice from each family randomly chosen
to contribute to 1 of 8 different closed lines. Four of these lines were randomly picked to
be “High Runner” (HR) lines, in which mice would be selected for breeding based on
voluntary wheel running. The remaining 4 lines were used as Control (C) lines, without
any selection. Generation 0 was the first generation where HR lines were paired based
on running levels (10 males and 10 females for each line) with generation 1 the first
product of selection.

Wheel running measurements were collected by giving mice at approximately 6-8
weeks of age, access to wheels for six days. The amount of running (total revolutions)
on days 5 and 6 was used as the selection criterion. Both days 5 and 6 are used for
repeatability in running behavior and robustness against bad data for a single day
(Careau et al. 2013). For the HR lines, the highest-running male and female from within
each of 10 families were chosen as breeders (within-family selection). For the non-
selected C lines, one male and one female from each of 10 families were chosen as
breeders, independent of wheel running measurements. Sib-mating was disallowed in

all lines (Swallow, Carter, et al. 1998).
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Genome sequencing and allele frequency determination

Roughly 10 male and 10 female mice were taken from each line at generation 22 (Khan
et al. 2024). Mice were decapitated without anesthesia because blood was being taken
for a study of hormone levels (corticosterone) that can respond rapidly to additional
handling or anesthesia. Subsequently, their DNA was extracted from tail tips and then
pooled for determination of allele frequency for each line. This pooled DNA was
sequenced with paired end pooled sequencing with lllumina HiSeq 2500 sequences
were trimmed and aligned to the GRCm38/mm10 mouse genome assembly.
Generation 22 used trimmomatic v0.39 for trimming, BWA v0.7.17 for alignment,
Samtools v1.14 for sorting and indexing, picard v2.26.11 for marking duplicates, and
GATK v4.1.8.1 for calling SNPs. SNPs were filtered to keep those with read quality
(“RQ”) = 20, DP = 10, were missing either quality score, or missing the allele frequency
all together, or had MAF > 0.0126. Allele frequencies (“AF”) were determined for
generation 22 by taking the read depth of the alternate nucleotide allele (i.e., allele
differing from the GRCm38/mm10 alignment) and dividing by the read depth for the
locus. After all quality control methods were implemented, 4,446,523 loci remained for
generation 22.

The generation 61 data were taken from Hillis et al. (2020). 80 male mice (10
from each line) were subject to whole genome sequencing and reads were trimmed and
aligned to the GRCm38/mm10 mouse genome assembly as described in Didion et al.
(2016). This generated an average read depth of 12X per mouse. SNPs were filtered
to keep those with genotype quality ("GQ") > 5, read depth (“DP”) > 3, minimum allele

frequency (“MAF”) > 0.0126 for all samples, and Mapping Quality ("MQ") > 30. One of
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the 80 mice was excluded due to likely contamination (as in Xu and Garland 2017),
leaving 79 for the following analyses. SNPs not found to be present in at least two of
the 79 mice were also removed from analysis. After all quality control methods were
implemented, 5,932,148 loci remained for analyses. To allow comparison with the
pooled sequencing data from generation 22, we calculated allele frequencies as the
number of alternative alleles divided by 2 times the number of mice (i.e., 20 or 18 for

HR3).

Statistical analyses

For generations 22 and 61 we used an arcsine-squared transformation (Ahrens et al.
1990) of the AF. Analyses were conducted on both generations using a traditional T-
test, regularized T-test (RegT)(Baldwin-Brown et al. 2014, see also Baldi and Long
2001), and a variant of the regularized T-test which uses a sliding window to calculate v
(WRT test) (S1 File). The regularized T-test was based on a Bayesian method meant to
minimize the type-| errors caused by sampling error with small sample sizes (Baldi and
Long 2001; Baldwin-Brown et al. 2014), such as the 8 total lines in the HR mouse
selection experiment. We performed these tests and determined the permutation-based
false discovery rate (FDR) for each method (see below). For comparison, we also
performed the RegT and WRT tests on loci found in both generation 22 and 61 (from
pooling individual mouse genotypes) data sets along with the FDR. Since standard T-
tests do not require whole genome or region variances of other loci, the p-values of loci
shared between the two generations could simply be extracted from the complete

original analyses.
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Permutation-based false discovery rate

To determine relative power of generation 22 allele frequencies with arcsine-square
transformation using T-test, regularized T-test, and WRT test, we attempted to calculate
a critical threshold by estimating the FDR of 10% (Benjamini and Hochberg 1995; Xie et
al. 2005). However, after calculating p-values for complete permutations of the different
lines within linetype to better understand the null distribution, we concluded that this
estimated FDR was underestimating the true false discovery rate. Therefore, using
these same permutations, we calculated the FDR directly.

Direct calculations of FDR were performed by calculating FDR for each locus of
the unpermuted data whose p-value was below 0.01 in accordance with the equation:

n False Positives
FDR

- nrejected Null Hypotheses

This was implemented for each locus with:

n permuted loci significant at p

FDR = 35
n unpermuted loci significant at p

Loci with nominal p-value < 0.05 were ordered by FDR score, the p-value was identified
for the locus with the largest FDR below 0.01, and any p-values less than or equal to
the p-value for this locus was treated as significant. The SNPs with FDR = 0.01 were
then further grouped into “significant regions” by grouping any loci within 1mbp of

another and separating groups whose closest SNPs are further than 1mbp.

12
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Divergence over time

To test for a difference in the number of loci showing a significant change in allele
frequency between the HR and C lines from generations 22 to 61, we first conducted a
paired T-test for the 4 C lines and separately for the 4 HR lines. These tests were
based on eight data points for each linetype, i.e., the mean allele frequency for each line
at a given locus at generation 22 and 61. The T-score for the C T-test was then
subtracted from the T-score for the HR T-test, and the absolute value was taken. This
was repeated for each locus, producing values for approximately 2 million loci
(excluding where either the C or HR T-test failed for numerical reasons). These
analyses were then repeated with all 35 permutations (as described above) to estimate
the null distribution of the score based on ~2,000,000 * 35 = ~75,000,000 values.
These scores were ordered to identify the 5t percentile threshold for comparison with

the distribution of the unpermuted results.

“Strict” culling for biological and AF change analyses

Rather than attempt to focus on the genes of more than 100 regions for each of the
different statistical tests, analyses of biological significance and comparisons of change
in allele frequencies between generations 22 and 61 were done using a subset of the
regions identified by FDR. WRT and regularized T-test first culled by removing regions
containing only one significant locus, then culled such that only regions containing at
least 20 significant loci or the lowest p-value among loci in the region was below 1.00E-
04. Regions associated with the T-tests were culled in a similar manner as the WRT

and RegT test, except the p-value cutoff used was 1.00E-06 due to naturally lower p-

13



275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

values. These culling methods should also serve to reduce the influence of sampling
error, as it would be increasingly unlikely for sampling error to simultaneously
underestimate among-line variance across multiple linked SNPs and lines. We will refer

to these additional culling methods below as “strict” culling.

Comparison of selection signatures in generations 22 and 61

Changes in allele frequencies from generation 22 to 61 were analyzed for each region
identified by strict culling for generations 22 and 61. For regions significant at
generation 22, each region and its included SNPs with nominal p<0.05 at generation 22
were matched with SNPs at generation 61. The allele frequencies of these SNPs were
averaged for each line and generation and line graphs created (one for each line) with
generation 22 AF on the left and generation 61 AF on the right. This was then repeated
for regions significant at generation 61, except each region and its included SNPs with

nominal p<0.05 at generation 61 were matched with SNPs at generation 22.

Simulations to compare presumptive statistical power across generations

The available data from the two generations differ in multiple ways that might affect
cross-generation comparisons of selection signatures. Each generation, each line is
reduced to ~20 individuals when ~10 breeding pairs are formed. An ideal "sample" from
a given generation would include all 20 of those breeding individuals. Instead, our
sample from generation 22 was of ~10 males and 10 females per line that were
sampled at random at the time of weaning (i.e., they were not the 20 breeding parents).

In contrast, the mice from generation 61 were a semi-random sample of 10 males from

14
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each line (except nine from HR3 and one female that was unintentionally used from
another line) (Hillis et al. 2020).

For a pooled DNA sample, as for generation 22, a further ideal condition is for
the sample of DNA from each mouse to be of equal volume and concentration through
the extraction and pipetting steps prior to pooling. This would then result in each
mouse’s alleles being represented in equal quantities in the pooled sequencing sample.

The next source of error is read depth, which is effectively a random sampling of
alleles from the pooled sample. Our generation 22 samples were read at an average
depth of 24X. Thus, the frequency of alternative nucleotide alleles for a given SNP
locus was calculated by counting the number of alternative alleles, which was taken as
anything other than the reference. Thus, not all of the 40 alleles (as one of two
possibilities) contributed by the 20 mice could have been identified with a read depth of
24X, which acts as 24 samples taken with replacement.

The generation 61 data are from individual sequencing of 10 mice per line at an
average read depth of 12X, with those results then used to predict the genotype for
each SNP and mouse (Hillis et al. 2020). This should allow for the representation of
nearly all alleles (N = 2 alleles x 10 mice). Originally, those data were analyzed as such
via mixed models to detect selection signatures (Hillis et al. 2020). Here, to allow
comparison with the pooled sequencing data from generation 22, we calculated allele
frequencies as the number of alternative alleles divided by 2 times the number of mice
(i.e., 20 or 18 for HR3), which should incorporate 19-20 unique alleles in equal
proportion. Given that the data available from the two generations differ in multiple

ways, we used simulations in an attempt to assess how this might affect our results.
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For generation 22, simulations to elucidate possible sampling errors were
performed such that alleles for 20 mice were sampled using a random binomial
distribution assuming population allele frequencies of (0.05, 0.10, 0.15, ...,0.90, and
0.95). Then an allele depth was randomly sampled from the actual quality data for the
SNPs used in the generation 22 analyses and alleles were sampled from these
simulated 20 mice (with replace) equal to this read depth. The allele frequency was
then calculated as the number of alternative alleles (1) divided by the total read depth.
This generated a distribution of allele frequencies given a particular starting AF for the
population and was repeated 100,000 times for each starting population AF.

For generation 61, simulations were performed such that alleles for 10 mice
were sampled using a random binomial distribution assuming population allele
frequencies of (0.05, 0.10, 0.15, ...,0.90, and 0.95). Then for each simulated mouse's
genotype, a genotype quality was randomly sampled from the actual quality data for the
SNPs used in the generation 61 analyses. If the simulated genotype for the mouse was
heterozygous, then the genotype quality would be used to generate a 0 or 1 with the
probability of a 1 equaling that of the probability of a genotyping error. If a 1 was
generated (thus an error occurred) the second allele for the mouse was replace with a
copy of the first allele of the mouse. The allele frequency was then calculated as the
number of alternative alleles (i.e., 1) for all ten mice divided by the total alleles (i.e., 20).
This generated a distribution of allele frequencies given a particular starting AF for the
population and was repeated 100,000 times for each starting population AF.

Power analyses were then done by sampling four AF values from the simulated

AF values from an actual population AF of 0.4 for one linetype. Likewise, four AF
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values were sampled from the simulated AF values from an actual population AF of 0.6
for the other linetype. Sampled allele frequencies were transformed using an arcsine-
squared transformation. A T-test (assuming unequal variance) was then conducted
comparing these 8 sampled AF values. Note that this could not be done for RegT and
WRT tests because it would require simulations of regional or genome-wide variance

structure. These sampling and T-tests were repeated 10,000 times.

Simulations comparing power with and without a biological constraint

We used simulations to begin to address whether a biological constraint on a trait under
selection (e.g., wheel running) might affect (1) the ability to detect selection signatures
at generations before (e.g., generation 22) versus long after (e.g., generation 61)
selection limits were reached, (2) the consistency of those signatures across
generations, and (3) the rate at which loci with different allelic effect sizes respond to
selection. Our rationale for using a constraint model is explained in the Discussion. As
a heuristic, some of the parameters in these simulations were chosen to approximate
values observed in the selection experiment and help build a model of architecture for
wheel running in the HR and control mice (Sella and Barton 2019).

Running levels were calculated based on the general equation:
Yy =U+V5t+ 7

Where y is equal to the phenotype (wheel revolutions/day) of an individual mouse; u is
the "base" mean number of revolutions (held constant at the starting value set at
generation 0); vg is the variance contributed by genetic variation; and ve is the variance

contributed by environmental effects.
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As a regression model, this equation is:

y=u+ B1X1 + X

where the genetic variance is represented by f:1X1 and the environmental variance is
represented by f1Xz. Xi represents the summed effect on wheel running of all alleles
carried by the individual, where, to simulate a leptokurtic distribution (Barton and Turelli
1989; Reeve 2000; Reeve and Fairbairn 2001), these alleles are coded as having
variable allelic affects (specifically, £0.4, £0.8, £1.6, £3.2, ... £204.8) at frequencies
inversely proportional to their effect size (specifically, 720 loci with effect £0.4, 480 loci
with effect £0.8, ... 8 loci with effect £204.8) for a total of 2,096 loci, which approximates
the number of haplotype blocks observed across all eight lines (Hillis et al. 2020). Xz
provides the random element of the environmental variance and is determined by

randomly sampling from a normal distribution with mean = 0 and SD = 1.

The equation we applied for these simulations is:

y = 4,570 + 1.3X; + 2,100X,

The values for B1 (1.3), Bz (2,100) and for the number of loci were determined in
conjunction with one another to approximate realistic (in no particular order) (1)
heritability of wheel running at the base generation being about 0.32 (Careau et al.

2013), (2) within-line coefficients of variation as being about 0.57 (Swallow, Carter, et al.
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1998), and (3) realistic response to selection in the HR lines (i.e., achieving ~16,000

revolutions around generation 22)(Careau et al. 2013).

However, this equation does not adequately simulate seasonal variation (see Appendix

S5 in Careau et al. 2013), so we applied an additional modifier:

y =S * (4,570 + 1.3X; + 2,100X;)

S is a constant that alternates cycles between 0.769 (summer), 1 (winter and fall), and
1.3 (winter). As generation time for the first 61 generations was consistently around 3
months, these constants can alternate with each generation. The mean of 4,570
(revolutions/day) was picked to approximate the empirically determined starting running
levels at generation 0 (Swallow, Carter, et al. 1998).

Any running level calculated as below 100 was set to 100, which is approximately
the lowest amount of running ever observed. The maximum wheel-running for
unconstrained simulations was 50,000 revolutions, which is nearly twice as high as has
ever been observed in actual measurements from the selection experiment (Rhodes et
al. 2003; Careau et al. 2013). In practice, the highest running level produced by the
unconstrained simulations was 38,875 (of 24,400 total individuals simulated over 61
generations for the HR lines).

For the starting population of any given line, two alleles were first assigned to
each of the 2,096 independently segregating starting loci for 20 mice (based on the
actual selection procedures: Swallow, Carter, et al. 1998) using a random binomial

distribution with p = 0.5. For control lines, mice were paired, and alleles sampled from
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each of the pair to produce two male and two female offspring (to match the number of
mice that are typically retained and wheel-tested in the selection experiment). The first
of each sex for each family was then chosen to contribute to the next generation, which
is functionally equivalent to the selection experiment, where breeders are chosen a
random within family and sex for control lines. For HR lines, alleles were sampled from
the parents for each of five males and five females (typical litter size is 10). Running
distances were then calculated for all offspring, and the male and female with the
highest running levels within each family were selected to breed for the subsequent
generation (again, based on the actual selection procedure, which uses within-family
selection). For both linetypes, siblings were barred from pairing (following the selection
experiment). Simulations were run for 61 generations and alleles for all breeding pairs
were saved at generation 0 and every 5 generations through 60, as well as generations
22 and 61. This was then repeated for 4 control lines and 4 HR lines.

We modeled the constraint on wheel running as a trait that itself can evolve. To
obtain a realistic value for the constraint, we applied the same principles as for the

wheel-running equation:

C =S % (10,000 + 1.0X.; + 1,750X.,)

C is the constraint to be applied to the mouse’s wheel running. S is the same seasonal
multiplier used in the wheel-running equation, without which, higher running levels in
winter become truncated. Xc: represents the genetic component of the constraint
determined by (arbitrarily) 100 loci with effect sizes of £1 (N=48), 4 (N=24), £11
(N=12), £36 (N=8), 101 (N=5), and +306 (N=3). Xc: represents the environmental
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component, determined by sampling from a normal distribution with mean = 0 and SD =
1 (similarly to wheel running). These values result in a narrow-sense heritability of ~0.2.
Despite targeting a wheel-running constraint of about 16,000 revolutions in the HR lines,
the base constraint value is set to 10,000 because the alleles that increase constraint
are favored by selection in the HR lines. Thus, a lower base value is needed for HR
lines to stop responding to selection at about 16,000 revolutions. For the constrained
simulation, if a mouse ran more than its determined constraint then its revolutions were
treated as equal to the constraint itself before picking the breeders for the next
generation.

These simulations were repeated 100 times (with 4 HR lines and 4 control lines
in each simulation) assuming no constraint and 100 times with the constraint (see S2
File, for parameters). T-tests assuming unequal variance between the 4 control lines
and the 4 HR lines were performed at each of these “saved” generations (0, 5, 10, etc.)
for the allele frequencies at each locus, with an arcsine-squared transform (Ahrens et al.
1990). Power was then calculated for each simulation at each saved generation by
dividing the number of loci with p < 0.05 by the total number of loci (N = 2,096). Power
was also calculated separating loci by effect size (see below).

Standardized selection differentials were calculated following Careau et al.
(2013), by subtracting from the mean running for each sex and family the running level
of the bred individual from that litter and dividing the difference by the standard
deviation of the sex for that litter. Relative power under the constrained and
unconstrained models was calculated using unpaired T-tests (unequal variance) on the

previously described power calculations for each simulation and for each saved
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generation. Relative power across generations was also calculated using unpaired T-
tests (unequal variance), separately for constrained and unconstrained simulations.
Relative consistency in detected selection signatures was calculated by first identifying
the specific significant loci (at a nominal o = 0.05) at generations 22 and 61 in each
simulation. Then, the percentage of loci found significant at generation 22 that
remained significant at generation 61 was calculated. Unpaired T-tests (unequal
variance) were performed comparing these percentages for the constrained simulations
versus the unconstrained simulations. Lastly, ability to detect loci with different effect
sizes was compared using a T-test (unequal variance) of the number of significant loci
(p = 0.05) identified for each effect size and each simulation for generation 22
constrained vs unconstrained models, generation 61 constrained vs unconstrained
models, constrained generation 22 vs generation 61, and unconstrained generation 22
vs generation 61. For all graphs and estimates that required the calculation of a mean
value, missing values were excluded from the calculations. For example, if a p-value
could not be calculated for a given locus due to fixation across all lines for the same
allele, then this locus would be excluded from the power analyses.

Analyses were performed again implementing possible sampling error calculated
by the simulations to compare statistical power, as described in the previous section
"Simulations to Compare Presumptive Statistical Power Across Generations". This was
implemented by taking the actual allele frequency for each line at generations 22 and 61
in the simulations using the constraint model. These allele frequencies were then
replaced with an allele frequency sampled from the results (rounded to the nearest

0.05) of the population allele frequency of the sampling error simulations (i.e., 0.05,
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0.10, 0.15... 0.95). For example, if the allele frequency for a given line at generation 22
(constraint model) was 0.25, then this 0.25 would be replaced by a randomly sampled
estimated allele frequency from the sampling error simulations (generation 22) where
0.25 was the actual population allele frequency. Generation 61 allele frequencies were

similarly replaced using the results of the generation 61 sampling error simulations.

Ethics statement

The selection experiment has been carried out in strict accordance with the approval
from the Institutional Animal Care and Use Committee (IACUC) at two different
institutions and under multiple protocol number. All experiments have been conducted
to minimize distress to the animals. Any injuries or illness were treated in accordance
with veterinarian recommendations. The present manuscript uses only published

sequence data and new sequence data from historical tissue samples.
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Results

Basic characteristics of genetic variation

The number of variable loci used in the present study includes 4,446,523 for generation
22 and 5,932,148 for generation 61. Generation 61 data had an average read depth of
12X per mouse for 10 mice in each of the 8 lines, producing an average read depth of
over 100 per line for detection of many more variable SNPs in each line. The overlap of
base positions between generations 22 and 61 was 2,045,546 SNPs. As expected,
minor allele frequency (MAF), generally decreases for both HR and C lines between
generations 22 and 61 (Fig 1). MAF values for HR and C lines are generally similar at

generation 22; however, these diverge for many regions by generation 61.

Fig 1. Average minor allele frequencies. Average minor allele frequencies for
generation 22 control lines, generation 22 HR lines, generation 61 control lines, and
generation 61 HR lines by chromosome (numbered on the right). Regions identified as
differentiated at generation 22 are indicated with an orange line above each
chromosome's graph (regions smaller than 50 kbp are omitted). Regions identified as
consistently differentiated at generation 61 (Hillis et al., 2020) are indicated similarly

with a green line.

Differentiated SNPs and chromosomal regions

For analyses containing all generation 22 loci (N = 4,446,523), WRT identified 1,184
differentiated loci based on 0.01 FDR (Table 1). These loci fall into 258 unique regions

(separated by at least 1 million base pairs). At generation 61, 1,449 loci were identified
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as differentiated based on 0.01 FDR. Although identifying similar numbers of loci as the
generation 22 analyses, P-values for individual SNPs for generations 22 and 61 show
little similarity (Figs 2B-C), with arcsine-square transform Pearson’s r = 0.116.
Ultimately, the SNPs identified at generations 22 and 61 were largely different.
Moreover, the SNPs identified at generation 61 clustered into only 11 unique regions, as

compared with the 258 regions for generation 22 (Fig 3A-B).

Fig 2. P-value comparisons between generations. Scatterplot comparisons of the
generations 22 and 61 p-values with Pearson’s correlation: (A) Generation 22
regularized T-test vs generation 22 WRT test (cor = 0.9997). (B) Generation 22 WRT
test vs generation 61 WRT test (cor = 0.0909). (C) Generation 22 WRT test vs

generation 61 WRT test (cor = 0.1156). (D) Distribution of raw p-values (generation 22).

Fig 3. Manhattan plots and volcano plots of differentiation analyses. Manhattan
plots for results from (A) the generation 22 WRT test (shared loci), (B) the generation 61
(pooled) WRT test (shared loci). The red peaks indicates those that exceeded critical
threshold (FDR = 0.01) for that individual test. Volcano plot including -logP vs HR allele
frequency minus C allele frequency for (C) generation 22 and (D) Generation 61
(orange points indicate HR AF > C AF; green points indicate HR AF < C AF). (E)
Scatterplot comparing the -log p-values of the generation 61 mixed model analyses
(individual mouse) with -log p-values produced when these same data are treated as
pooled sequencing allele frequencies and analyzed with WRT test. Red line has

intercept = 0 and slope = 1. Green line represents the least squares regression line.
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Table 1. WRT results.

. FDR 0.01 Significant All Regions after

Data Total Loci (-logP) gSN Ps Regions stfict culling
Gen22AF 2,045,546 2.66 630 187 6
Gen61AF 2,045,546 3.06 1,285 11 4
Gen22AF 4,446,523 2.62 1,184 258 13
Gen6lAF 5,932,148 3.23 1,449 11 5

Number of SNPs listed represents those that are statistically significant based on a False
Discovery Rate of 1% using permutations. Analyses with 2,045,546 loci incorporate only loci
which are shared between generations 22 and 61. Regions distinguished by being separated
from the next closest significant locus by more than 1 million bp. Additional regions remaining
after additional culling methods have either 20 significant loci or at least 2 significant loci with
one having a p-value <1.00E-04.

Given such notable differences between the SNPs and regions implicated by
generation 22 and 61 analyses (Table 2), analyses were repeated focusing only on the
loci found in both data sets (N = 2,045,546). With fewer loci being analyzed, fewer
significant SNPs were identified at FDR = 0.01, as well as fewer regions for all analyses

except for WRT with generation 61. The total peaks identified when using only the

shared SNPs includes 187 and 11 regions for generations 22 and 61, respectively.
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556 Table 2. Genomic regions identified as differentiated under “strict” culling
G22 G22 G61 G61 . : . Shared
Region WRT Region WRT Chr minPOS maxPOS Size Loci Loci
1 X 1 152,318,219 153,239,876 921,658 40 25
2 X 2 78,021,909 78,974,325 952,417 3 0
1 X 3 51,199,110 51,602,693 403,584 124 65
3 5 32,384,612 32,975,871 591,260 32 4
4 5 102,846,390 106,315,986 3,469,597 63 37
2 X 6 40,933,658 41,748,676 815,019 5 1
5 X 6 122,815,876 124,446,843 1,630,968 43 20
3 X 9 41,413,436 42,478,817 1,065,382 1,277 647
6 X 9 80,349,989 82,894,555 2,544,567 27 20
7 10 14,067,617 18,376,599 4,308,983 25 7
8 10 20,890,526 21,419,406 528,881 33 4
4 X 10 104,966,751 105,529,701 562,951 2 0
9 X 13 46,088,694 46,866,721 778,028 33 13
10 14 52,115,206 53,776,455 1,661,250 42 7
11 14 77,333,032 78,080,942 747,911 4 3
5 X 15 19,245,017 20,197,326 952,310 27 17
12 X 18 57,707,454 60,118,834 2,411,381 128 81
13 X 18 78,018,740 78,504,680 485,941 4 4

557 A testis deemed to have produced a differentiated region if the region contains at least 20 SNPs significant at FDR = 0.01 or at least
558 2 SNPs significant at FDR = 0.01 and at least one SNP with p-value < 1.0E-04 (See Methods: Determination of Selection

559  Signatures). “Loci” listed are those significant at FDR = 0.01 (Table 1), the counts themselves match the number of differentiated loci
560 identified by the statistical test with the most such loci. “Shared Loci” are the number of loci listed in the “Loci” column that are also
561  shared between both generations.

562 Bolded loci match “consistent” regions identified by Hillis et al. (2020)

563

564
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Regions after “strict” culling

Using all available SNPs for generation 22, after applying “strict” culling (see Methods),
the remaining regions were reduced to 13. All of the regions implicated by these
analyses included or were near genes with intuitive implications for running behavior
(see Discussion). For generation 61, strict culling reduced the total peaks to only 5
unique regions.

Despite the HR lines reaching selection limits around generation 22 or shortly
thereafter (Careau et al. 2013), the most differentiated 13 regions (Table 2) have little
fixation. Of the SNPs in these regions (N =79,198), only about 8.78% are fixed in the
HR lines, which is not significantly different from the 9.21% fixed in the control lines
(unequal variance t-test comparing % fixed in the 4 HR versus 4 C lines: p-value =
0.4322). If we repeat this fixation comparison for the loci shared between generations
22 and 61 (N = 42,745), 1.62% are fixed in the HR lines, which is still not significantly

different from the 1.58% fixed in the control lines (p-value = 0.6129).

Comparison of selection signatures at generation 61 for individual vs. pooled

sequencing data

Originally, the generation 61 individual mouse data were analyzed using mixed models
(Hillis et al. 2020). We compared the previously published p-values from those
analyses with the p-values produced after pooling data by line and analyzing by the
WRT test (Fig 3e). The mixed model analyses produced lower p-values in general, as
would be expected due to loss of power with pooling (Xu and Garland 2017), with the

difference being greater for lower p-values. As a result, fewer SNP loci and hence
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fewer chromosomal regions were identified as significantly differentiated between the
HR and C lines with pooled data. Of the total regions detected with FDR = 0.01, 7 were
identified at generation 22 that matched the 13 “consistent” regions identified with the
mixed model analyses (Hillis et al. 2020). The 6 consistent regions that were not
identified by analyses of the pooled data tended to have relatively large p-values for
individual SNP loci or cover a narrower area of the genome, as compared with the other

7 consistent regions.

Divergence over time

The 5th percentile threshold for the difference in T-scores determined by permutations
was 5.139787. About 6.44% of the T-scores for unpermuted data were larger than this.
This difference of 6.44 - 5% indicates that ~1.44% of our values for the real data
(approximately 28,470 SNPs) may be considered nominally statistically significant for o
= 0.05. This result provides statistical support for our claim that the selection signatures
differ between generations 22 and 61 (see Discussion). Defining a region as containing
at least 20 significant SNPs with no adjacent SNPs separated by more than 1mbp, and
considering the 1,400 most significant SNPs, they cluster into 14 regions on 13

chromosomes (Table 3).
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Table 3. Genomic regions of divergent evolution

Chr minPOS maxPOS Loci Median_T Highest_ T T_position g22 go1°®

1 152,255,010 153,208,066 44 48.9 94.9 152,795,939 WRT

1 156,267,494 156,908,946 21 48.5 115.5 156,699,891

2 153,709,397 157,032,971 20 46.0 102.8 154,908,418 1 Test

3 45,831,668 52,497,670 49 51.0 139.9 51,543,977 2 Tests

4 89,020,582 90,615,570 26 52.5 103.3 90,007,699 1 Test

5 107,675,741 111,271,760 30 55.2 232.2 109,810,077 Consistent

9 41,416,364 42,248,169 31 47.3 99.8 41,533,058 Consistent
10 101,702,890 105,671,151 154 47.4 177.0 103,108,543 2 Tests
12 109,050,203 110,779,901 28 46.6 109.2 109,228,613

14 96,560,689 98,613,561 76 49.5 212.2 97,831,005 Consistent
15 18,635,736 20,608,793 39 51.4 208.5 19,984,048 Consistent
16 45,132,582 47,948,007 23 46.5 163.9 45,158,346

18 69,603,969 74,277,731 62 46.7 147.5 73,016,958

19 35,121,427 35,736,790 40 48.7 250.1 35,699,388

@Tests here are the three tests used by Hillis et al. 2020 (local maxima, haplotype, and FixedHR/PolyC). “Consistent” is the term

used to describe regions identified by all three tests.
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Simulations to compare presumptive statistical power across generations

Simulations were conducted to gauge how much the allele frequencies determined
through sequencing reflect allele frequencies of the actual populations at generations 22
and 61. Generation 22 allele frequencies have greater variance from the actual
population AF than generation 61 (see Figs 4A-B for an example of the 0.5 population
AF distribution). The greater error variance in generation 22 is associated with reduced
statistical power of 0.3864 versus 0.5031 for generation 61 when comparing simulated

allele frequencies of 0.4 and 0.6 (Figs 4C-D).

Fig 4. Variance and power simulation results. Simulations for a population allele
frequency of 0.5 for (A) generation 22 and (B) generation 61. See Methods for details.
Values shown are allele frequencies for each of 100,000 simulated data sets for a single
line. Methodological differences in the sampling of mice and sequencing procedures for
the two generations result in greater sampling error for generation 22 (i.e., larger SD).
Note that binning is done such that loci that fall on a break (e.g., 0.05) are grouped into
the lower bin (e.g., 0 to 0.05). Similar simulations were then conducted to create data
sets for use in estimating statistical power for detecting selection signatures for
generations 22 and 61. (C) Distribution of p-values for simulated allele frequencies of
0.4 versus 0.6, for generation 22. Power for o = 0.05 is 0.3864. (D) Distribution of p-
values for simulated allele frequencies of 0.4 versus 0.6, for generation 61. Power for a

= 0.05is 0.5031.
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Simulations comparing power with and without a biological constraint

Simulations were performed modeling response to selection assuming either a
constraint with a base of 10,000 revolutions per day and the capacity to evolve to about
17,000 (in the winter) or no such constraint (see Methods). For both constrained and
unconstrained simulations, wheel running for HR and control lines diverge recognizably
at least by generation 6 (Fig 5A), consistent with the selection experiment. The
replicate HR lines for unconstrained and constrained models appear fairly similar for
earlier generations (Figs 5B-C), presumably because mice are not widely achieving
constrained running levels. As expected, the among-line variation for control lines
increases gradually across generations. For the HR lines, among-line variance does
not increase to a noticeable extent and potentially even diminishes by later generations,
a result that is also consistent with the selection experiment (Garland, Jr., Kelly, et al.

2011).

Fig 5. Power simulations considering a constraint. Simulated running levels for (A)
mean running of 4 non-selected control lines (blue) for 200 simulations compared with
mean running of 4 HR lines under 100 unconstrained simulations (dark red) and 100
constrained simulations (light red). (B) Individual HR and control lines single
unconstrained simulation. (C) Individual HR and control lines single constrained
simulation. Black lines show the mean narrow-sense heritability for four lines within
each linetype for (D) 100 control line simulations (arbitrarily the first 50 from each
model), (E) 100 simulations for HR lines with unconstrained running, and (F) 100

simulations for HR lines with constrained running (16,000 revolutions). Standardized
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657  selection differentials (calculated within family and sex) from simulations for (G) control
658 lines, (H) HR lines without a constraint, and (I) HR lines with a constraint. The red line
659 represents the mean of all heritability and selection differentials (N = 100). Note

660 different axes for panel G versus H and |.

661

662 The calculated heritability (slope of the regression of offspring [generation 1] on
663 midparent [generation 0]) for all 200 simulations for control lines indicate that our

664 parameters resulted in a narrow-sense heritability of about 0.3621 (N=8,000 families).
665 For individual lines, the estimated heritability for successive generations was highly
666 variable, as would be expected with such small sample sizes (10 families/line).

667 However, the means clearly indicate a slow loss of heritability in the control lines and a
668 more rapid loss in the HR lines, although values never go to zero (Figs 5E-F),

669 consistent with the selection experiment (Careau et al. 2013).

670 The standardized selection differentials (calculated within family and sex) for the
671 unconstrained model remained very consistently around 0 for the control lines (Fig 5G)
672 and 1.2-1.3 for the HR lines (Figs 5H-l). However, the constrained selection differential
673 is on average 0.016 below the unconstrained differential. Although slight, this difference
674 remains consistent across nearly all generations (graph not shown). In the actual

675 selection experiment, selection differentials declined across generations (Careau et al.
676 2013).

677 Under both models, Type | error rate for a = 0.05 when comparing allele

678 frequencies of HR with C lines was deflated at generation 0, regardless of the effect

679 size for the locus. Type | error ranged from 0.0313 to 0.0420 with no preference for any
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effect size (S1 Table). This relatively low power when comparing the HR and control
lines (when the line itself is the experimental unit) has been documented previously with
simulations for both genetic data and phenotypes (Hillis et al. 2020; Castro et al. 2021).
As expected, power to detect differentiation between the HR and C lines
increased across generations, but never exceeded 0.057 for any generation for either
model. Comparing models at each generation indicates that power is significantly
higher under the unconstrained model by generation 15, although the difference is trivial
(0.0015 with P=0.0127) (Table 4). This differential in power increased through
generation 50, when it reached 0.0055 (P=2.63E-15), before beginning to diminish with
later generations. Although the information in Table 4 does not tell us about the power
to detect loci based on effect size (see numbered list below), it does establish that we

expect more total selection signatures at generation 61 than 22 (see Discussion).

Table 4. Simulated statistical power for constrained and unconstrained models

P-value for Unc. P-value for C.
Comparing present Comparing present P-value for
Unconstrained generation to Constrained generation to Constrained vs
Generation power previous generation® power previous generation® Unconstrained®
0 0.0408° NA 0.0409¢ NA 0.8436
5 0.0417 0.1192 0.0423 0.0365 0.3688
10 0.0429 0.0379 0.0429 0.2685 0.9817
15 0.0447 0.0060 0.0432 0.6693 0.0127
20 0.0456 0.1272 0.0425 0.1891 2.69E-07
22 0.0461 0.4333 0.0425 0.9470 2.31E-07
25 0.0465 0.5290 0.0434 0.1721 1.58E-06
30 0.0484 0.0042 0.0447 0.0374 4.61E-08
35 0.0503 0.0041 0.0463 0.0155 4.51E-09
40 0.0527 0.0006 0.0476 0.0423 5.31E-13
45 0.0544 0.0160 0.0497 0.0009 6.42E-11
50 0.0557 0.0584 0.0502 0.4380 2.63E-15
55 0.0562 0.4050 0.0510 0.2169 2.40E-13
60 0.0565 0.7307 0.0512 0.8162 3.70E-13
61 0.0563 0.8387 0.0512 0.9147 6.27E-13
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a8These p-values are calculated using a T-test assuming unequal variance comparing the power
of the generation for that line to the previously listed generation (e.g., unconstrained power at
generation 5 compared to generation 0 has a p-value of 0.1317).

® P-value from a T-test (unequal variance) comparing the power of the 100 unconstrained
simulations to the 100 constrained simulations

¢Type | error rate.

The average Pearson correlation between p-values across 2,096 loci for
generation 22 and 61 for the constrained model (r = 0.3843) was not statistically
different from that for the unconstrained model (r = 0.3889: total N = 200, unpaired-T = -
1.6938, P = 0.0919). In the unconstrained model, 33.3% of the loci significantly
differentiated at generation 22 (a = 0.05) were still differentiated at generation 61,
versus 31.5% under the constrained model (unpaired-T of percentage of loci
consistently different for generations 22 and 61 at p < 0.05 for 200 simulations = -
2.4269, P = 0.01614). This consistency of about 1/3 is more than 3 times greater than
for the real data (9.12% for T-tests), which mirrors the drop in the correlation of p-values
between generations 22 and 61 (Fig 2B, r = 0.0898). Incorporation of sampling error
into the constrained model lowered the correlation between p-values to 0.2695 and the
proportion of loci significant at generation 22 still significant at generation 61 to 22.7%.

Comparisons of power to detect differentiation between the HR and C lines in
relation to effect size of locus and generation under two simulation models (S2 Table)
indicates:

1. power increased with effect size, as expected;
2. at generation 22, power was greater in the unconstrained model for loci with effect

sizes 25.6 or above;
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3. at generation 61, power was greater under the unconstrained model for loci with
effect sizes 12.8 and above (excluding the largest effect size, 204.8);
4. under both models, power was consistently greater at generation 61, except for the

largest effect size, where the power is reversed.

Comparison of selection signatures in generations 22 and 61 for pooled data

When the average allele frequencies of SNPs within regions identified by strict culling at
generation 22 (this study) are compared to the average AF of those loci at generation
61, an increase in among-line variance is apparent for generation 61, within both the HR
and C linetypes (Fig 6A). All else being equal, this increase in among-replicate variance
should lower the statistical power to detect differentiation between the HR and C
linetypes. In agreement with this expectation, most of these strict regions at generation
22 (Table 2) are no longer significantly differentiated at generation 61 (Table 2 and Fig
6A). However, several of the 5 strictly culled regions at generation 61 also show some
evidence of differentiation at generation 22 (Fig 6E). Although strict culling methods
exclude regions identified with generation 61 AF analyses, regions implicated in
generation 22 with FDR = 0.01 culling alone do have considerable overlap with some of
these 5 regions identified at generation 61. Generation 61 regions 3, 4, and 5 (Table 2)

were significant at FDR = 0.01 for all three analyses at generation 22 (S3 Table).

Fig 6. Power simulations considering a constraint. (A) Allele frequencies of regions
identified as significant (via strict culling) at generation 22 (Table 2) (excepting region

18, for which no loci were available in the generation 61 data). Line plot examples are
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provided for generation 22 (B) region 1, (C) region3, and (D) region 10, with generation
22 on left and generation 61 on right. (E) Allele frequencies of regions identified as
significant at generation 61. (F) Line plot example for generation 61 region 6. SNPs
included have a nominal p<0.05 at generation 22 and any SNPs at generation 61 which

matched the generation 22 SNPs (shared loci, see Table 1).

For some of the regions identified as significant at generation 22, differentiation
may have been lost by generation 61 as result of a single line diverging from the others
(for example, line 3 in region 1 or line 7 in region 3 [Figs 6B-C]). In general, mean
differences at generation 22 are much smaller than at 61, but also with much less
among-line variance. A particular example of this includes region 10 (Fig 6D), which is
the only region identified at generation 22 (after strict culling) to continue to be detected

as differentiated at generation 61 (see Discussion).

Possible biological function of generation 22 differentiated regions

A total of 79 genes (including predicted genes and miRNA) were identified using “strict”
culling of generation 22 regions. These were insufficient for powerful ontology tests and
so regions containing at least five differentiated loci at FDR <0.01 were included,
bringing the total number of included genes to 345 (S4 Table). Of these 345
differentiated genes, 285 were recognized by the Panther database (used by the Gene
Ontology Resource) and used for identifying potential biological function. Those not

recognized were generally miRNA, predicted, or olfactory genes.
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GO Biological Functions implicate antifungal innate immune response, sensory
perception of smell, and embryonic skeletal system morphogenesis. The antifungal
enrichment appears to be the result of a group of C-type lectin genes found on
chromosome 6 (chr6:122,815,876-124,446,843). It may not be a coincidence that this
region also includes a group of vomeronasal genes contributing to the sensory
perception of smell term. The genes that implicate the embryonic skeletal
morphogenesis term include a cluster of Hoxb genes found on chromosome 11
(chr11:93,129,916-96,570,699).

A few genes specifically from the 79 found in the “strict” regions merit mention for
their relevance to the running phenotype, including Cited2 (adrenal cortex formation),
Rbm?24 (positive regulation of skeletal muscle fiber differentiation), and Dspp (negative

regulation of bone development).

38



782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

Discussion

Overview

Previously, whole-genome sequence data for individual mice at generation 61 of the
High-Runner mouse selection experiment were used to identify genomic regions
differentiated between HR and control lines. Thirteen of these were termed "consistent”
because they appeared with three different analytical methods (Hillis et al. 2020).
These 13 regions contained genes associated with known phenotypic differences
between the HR and control lines and intuitive associations with running ability and/or
motivation/reward systems. However, given that the HR lines had begun to reach
selection limits around generations 17-27, depending on line and sex (Careau et al.
2013), tens of additional generations, with continuing random genetic drift, could have
obscured many selection signatures. Therefore, in the present study, we analyzed
allele frequencies for the lines sampled at generation 22, based on DNA pooled by line.
These analyses of generation 22 identify hundreds of genomic regions differentiated
between the HR and C lines (FDR = 0.01), despite using pooled sequence data rather
than sequences for individual mice (Xu and Garland 2017). We then reanalyzed the
data from generation 61 as allele frequencies by line, to mimic the data available for
generation 22, and found that the regions identified as differentiated at generation 61
are, at best, weakly differentiated at generation 22. Nevertheless, both generations’
differentiated regions contain genes that make biological sense for wheel-running
behavior. Below, we discuss (1) implications of the differences in data type between

generations 22 and 61, (2) possible statistical and biological explanations for the
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differences in identified regions, and (3) genes and biological systems highlighted by the

genomic regions identified by generation 22 analyses (after strict culling).

Differences in selection signatures at generations 22 and 61

We expected estimates of selection signatures to be similar at generations 22 and 61,
based on the fact that the HR lines had mostly reached selection limits by generation 22
(Careau et al. 2013), such that the most biologically important loci would have gone to
fixation or at least reached equilibria across most or all of the HR lines. In agreement
with this expectation, of the 13 "consistent" regions identified by Hillis et al. (2020) for
generation 61 (using individual mouse data), 8 were still identified by at least one of the
tests (FDR = 0.01) using the generation 61 genotypes pooled into allele frequencies per
line. Generation 22 analyses of pooled sequence data identified 7 of the 13 consistent
regions (although several of these regions were only detected by a few SNPs: S3
Table). Interestingly, the consistent region on chromosome 14 was more strongly
detected at generation 22 than at generation 61 using pooled sequence analyses (Table
2).

On the other hand, the strongest selection signatures observed at generation 61
with the data treated as pooled sequences are not among the strongest ones observed
at generation 22 (based on number of SNPs detected and their p-values), despite
continued selection on the HR lines. For example, region 1 of the generation 61 “strict”
culling pooled analyses (chr3:51,199,110-51,602,693) included 124 SNPs (Table 2),
and whereas generation 22 analyses did not detect any of these loci as significant.

Another example, region 3 of the generation 61 pooled analyses (chr9:41,413,436-
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827 42,478,817) included 1,277 SNPs (FDR = 0.01), but none of the 647 shared loci were
828 identified by in the generation 22 analyses (S3 Table). When directly comparing SNPs
829 differentiated at FDR = 0.01, we see only a single SNP of overlap for the WRT test.
830 In addition to the differences in individual SNP results, a 17-fold greater number
831 of regions was identified by generation 22 analyses than generation 61 pooled analyses
832 at FDR = 0.01 (Table 1). This ratio applies to all statistical tests and the complete SNP
833 analyses for each generation, as well as the analyses of SNPs shared by the two

834 generations. Moreover, the SNPs identified at generation 61 were clustered into far
835 fewer regions (Table 1). Broadly, this difference in numbers of selection signatures
836 have at least two possible explanations, which are not mutually exclusive: (1)

837 differences in data type, quality, and quantity; (2) biological differences between

838 generations 22 and 61.

839

840 1) Differences in data type, quality, quantity, and sampling error

841  Our power to detect differentiation in allele frequencies should have been lower for
842 generation 22 than for generation 61 (Figs 4C and D). As also noted in the Methods,
843 the estimates for SNP allele frequencies per line at generation 61 were based on ~10
844  mice/line sampled and an 12X average read depth per mouse, yielding a total of

845 5,932,148 variable SNP loci (Hillis et al. 2020). For generation 22, pooled sequencing
846  was done with ~20 mice/line and an average read depth of 24X, yielding 4,446,523
847 variable SNPs (Table 1). Generally, with an average read depth of 12X per mouse,
848  both alleles will be represented for each mouse (i.e., 20 alleles per line) for generation

849 61 allele frequencies. However, with 24X average read depth for generation 22,
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simulations involving sampling alleles with replacement show that generation 22 is
prone to vary more from the actual population allele frequency (Figs 4A and B). Thus,
the much greater number of differentiated SNPs and chromosomal regions detected at
generation 22 would not appear to be simply a function of greater statistical power

versus generation 61. Thus, we now consider possible biological explanations.

2) Biological differences

One way to highlight the differences in selection signatures detected at generations 22
and 61 is to note that of the differentiated regions detected for generation 61, two of
them contain hundreds of statistically significant SNPs (FDR = 0.01) shared between
the generation 22 and 61 data sets. Despite this, those two regions are not among the
more differentiated regions in the Manhattan plots (Fig 3A and B).

What biological explanations might account for such discrepancies? One
possibility is a physiological constraint that eliminates the need for all loci favorable to
wheel running to be maintained at high frequencies once a selection limit is reached
(see verbal model in Hillis and Garland, Jr. 2022). We consider this from the
perspective that many complex traits are influenced by hundreds or thousands of loci
(Wood et al. 2014; Long et al. 2015). Voluntary exercise behaviors would likely be
among them, given that they incorporate numerous physiological and morphological
traits related to ability (e.g., cardiac muscle, skeletal muscle, bone, metabolism, water
and temperature homeostasis) as well as aspects of motivation and reward (e.g.,

dopamine signaling, chemosensory systems) (Lightfoot et al. 2018; Wang et al. 2022).

42



872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

Although biological constraints can be defined in various ways (Garland et al.
2022), in the present context, a constraint would be anything that limits the maximum
revolutions that an individual mouse can run during the testing period. Previously, we
discussed how different unique responses to identical selection criteria (i.e., “multiple
solutions”) could occur and referenced constraints as a potential explanation (Hillis and
Garland, Jr. 2022). To utilize and expand on their example, suppose that mice are
subject to a constraint on wheel running caused by joint pain: they stop running when
the pain becomes intolerable. In this scenario, joint pain is sufficient to limit wheel
running and it serves as a “weak link” or single limiting factor in the biological systems
required for high wheel running. Then suppose 10 alleles located at 10 independent
biallelic loci, with entirely additive effects, are capable of increasing wheel running.
Suppose further that only five such alleles are needed to achieve the maximum amount
of wheel running permitted by joint pain. Under this model, if selection acts on a
population to increase running, then (1) fixation of the favorable allele at any five of the
10 loci will coincide with a selection limit determined by pain tolerance, (2) none of the
alleles at any of the 10 loci must be fixed to reach the pain-determined limit, (3) more
than 5 favorable alleles could be maintained at intermediate allele frequencies, and (4)
as long as enough favorable alleles are maintained for the selection limit, some
favorable alleles can be lost without detriment to wheel running. These factors allow for
substantial variation among the replicate lines and considerable flexibility for change
within a given line, even for favorable wheel-running alleles at the selection limit. This
possibility of "genetic churn" beyond a selection limit that is caused by a physiological

constraint also implies that genotype-to-phenotype maps (Travisano and Shaw 2013;
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Zamer and Scheiner 2014; Porto et al. 2016; Zinski et al. 2021) may be moving targets
and hence difficult to identify. Therefore, we used simulations to compare power to
detect and consistency in detected selection signatures, both with and without a

physiological constraint.

Allele frequency divergence over time

The relatively large number of SNPs identified to be divergent between generations 22
and 61 illustrate a shift between the generations. Furthermore, regions with the
greatest divergence between the generations align closely with some of the previously
identified regions, particularly those identified by the generation 61 mixed model
analyses (Table 3). By generation 22, the lines had not had as much time to evolve as
much separation in allele frequencies between HR and C as by generation 61. As a
result, the differences between the linetypes are generally between -0.5 and 0.5 at
generation 22 (Fig 3C), whereas this difference expands to between -1 and 1 for
generation 61 (Fig 3D). Given that the significant regions identified at gen 61 are
typically going to be those whose difference is near -1 or 1, most likely those same
regions at gen 22 had differences within the -0.5 and 0.5 range. Therefore, a growing
difference in HR and C allele frequency had to have occurred, in our data, between gen
22 and gen 61 to observe a significant difference at 61. Such loci would naturally be

among the more significant in the difference of t-tests over time.
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Simulations comparing power under constrained versus unconstrained models

These simulations were conducted to test whether a physiological constraint on the
phenotype of wheel-running behavior could reduce the consistency of loci identified at
different generations of a selection experiment. To better simulate realistic phenotypic
variance within the population, both the wheel-running and constraint phenotype
simulations were based on equations with both genetic and environmental sources of

variance, such that both could evolve.

Similarities between the constrained model and real data

The constrained model appears to better reflect what we observe in the actual response
to selection. This is due to the lack of a clear selection limit achieved under the
unconstrained model (Fig 5A). Although the response to selection diminishes over time
(likely due to the reduction in heritability: Fig 5E), a clear plateau is not apparent. In

contrast -- as must be the case -- a clear plateau occurs under the constrained model.

Correlation between generations 22 and 61 p-values

For the tests comparing allele frequencies at each of 2,096 loci between the HR and C
lines, the correlation of p-values between generations 22 and 61 was statistically lower
in the constrained model (r=0.3843) as compared to the unconstrained model
(r=0.3889), though still 4x higher than for the real genomic data (r=0.0909) (Fig 2).
Even with the inclusion of sampling error, the correlation (r=0.2695) is nearly 3x greater
than for the real genomic data, which indicates that other factors (e.g., gene

interactions) must be contributing to the differences between the generations.
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In spite of the similarity in the correlation of p-values between generations for
simulations, the between-generation consistency of detected selection signatures was
slightly but statistically greater under the unconstrained (33.3%) than under the
constrained model (31.5%). This difference may be due to the constrained model
having very slightly (~0.016) though consistently lower selection differentials (Figs 5G
versus 5H), which could lead to less fixation of favored alleles. However, the relatively
small difference between models in consistency of selection signatures is not enough to
explain the large differences in the real data between generations 22 and 61 (Table 2).
The inclusion of sampling error into the estimates decreased the 31.5% consistency
between generations 22 and 61 differentiated loci to 22.7%. This level of consistency
with simulated data remains more than 2-fold higher than for the real data (9.12%), thus
implicating the presence of additional factors that reduce consistency in the real data
(e.g., epistatic effects).

Overall, our simulations fail to demonstrate why we observe a 17X drop in
significant regions from generation 22 to 61 (Table 1), implying instead that we should

detect more at generation 61 than at 22 (Table 4).

Effect sizes of loci

Under both models, more loci were detected at later generations (Table 4). However,
the power to detect loci with the largest effect size was much higher at earlier than later
generations (S2 Table and S1 Fig). This pattern makes sense in consideration of the
factors that affect the average difference in allele frequency between the HR and control

lines and the variance among replicate lines within linetypes. Drift will generally
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increase the variance among lines with each generation. The allele frequencies in the
simulated control lines will be affected only by this drift. Allele frequencies in the HR
lines will be affected both by drift and selection, where selection will have stronger
effects at loci with larger effect sizes. This results in something of a race between
selection increasing the difference in allele frequencies between HR and control lines,
while drift increases among-line variance for both HR and control lines. For loci with
small effect sizes, drift will have a relatively greater influence over allele frequencies
than selection at any generation, and thus detection rates never vary far from the Type |
error rate, i.e., power is virtually zero (S2 Table). Loci with large effect sizes, however,
are able to differentiate rapidly, often leading to fixation of the favored allele in our
simulations (S1 Fig). Even after fixation in the HR lines, drift is still able to increase
allele-frequency variance among the control lines (potentially to the point of fixing loci
for opposite alleles), thus further reducing the power to detect any differentiation. Thus,
the power to detect signatures of selection should increase the most rapidly across
generations for loci with the largest effect sizes, but power is also expected to decline
after fixation of the favored alleles in the HR lines and with continuing increase in
variance among the control lines (S1 Fig).

That the power to detect a locus as differentiated is correlated with its effect size
is unsurprising. For example, under the unconstrained model the power to detect
selection signatures for loci with 0.4 effect size is about 16.6-fold less than the power to
detect loci with 204.8 effect size and 12.8-fold less for the constrained model
(generation 22). This gap diminishes to about 7.7-fold difference (both models) by

generation 61 (S2 Table), presumably due to the reasons described in the previous
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paragraph. However, the 0.4 effect size loci are far more numerous than the 204.8
effect size loci (N = 720 and 8, respectively). Consequently, the number of 0.4 effect
size loci detected as significant is nearly 5-fold greater (unconstrained) and more than
7-fold greater (constrained) than the number of 204.8 effect size loci detected. The
most notable difference between the constrained and the unconstrained models is that
at generation 22 the unconstrained model yielded substantially more power than the
constrained model for loci with the largest effect sizes (0.724 to 0.485, respectively;
unpaired t-test, P=4.01E-22). This would imply that constraints may have a substantial
impact on the ability to detect selection at loci with the greatest effect sizes, a result that
deserves further study.

For identifying possible biological functions, we would ideally focus on loci with
relatively large effect size, as these will have the most direct influence on the phenotype
and may serve as potential targets for future functional studies. We have no information
on effect sizes of SNPs or regions detected as differentiated for our real data. The
relative proportions of low- and high-effect size loci among the detected selection
signatures in the real data will likely vary from our simulations, depending on the actual
distribution of those effect sizes and other factors. However, the simulations do suggest
that we may have numerous small-effect size loci among our detected selection
signatures. The inclusion of the “strict” culling method was meant to prioritize regions
that would have large effect sizes. Having more loci that are differentiated and linked
together would be expected from those regions under strong selection because
recombination would have fewer generations to break up linked base pairs before the

region becoming fixed in the HR lines. As the simulations have so many more loci with
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small effect sizes, at generation 0, when we compare the lowest p-value produced for
each simulation for the 0.4 effect size we tend to see lower p-values than loci with 204.8
effect size simply because of more opportunities to produce a low p-value. However,
generation 22 appears to be better for detecting a greater proportion of selection
signatures from loci with large effect sizes as the relative proportion on large effect size

loci appears to be higher (S2 Table).

Possible biological functions of generation 22 differentiated regions

Ontology analyses identified biological processes that can be grouped into three
categories: sensory perception of smell, antifungal innate immune response, and
embryonic skeletal system morphogenesis. Of these, the system that is most
consistent between generations 22 and 61 is the perception of smell, which was among
the mostly clearly differentiated systems at generation 61 (Hillis et al. 2020). As was
discussed by Hillis et al. (2020), the experimental procedure for measuring wheel
running, for logistical reasons, involved mice being placed on wheel over three batches
and mice in batches 2 and 3 are placed on wheels which still smell of the previous
mouse (Swallow, Garland, Jr., et al. 1998). Evidence of an evolutionary response to
this is visible in the HR lines in that HR mice will run at very different speeds if on a
wheel that is clean, previously traversed by a male, or previously traversed by a female
(Dewan et al. 2019). Alterations in the transcriptome also indicates changes in olfactory
and vomeronasal systems (Nguyen et al. 2020). Taken together, these results indicate
that perception of smell may be a notable factor in their motivation for running on the

wheels and also consistent with the idea that motivation is expected to evolve before
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ability (Garland, Jr. et al. 2016; Khan et al. 2024). Interestingly, although both
generations demonstrate evolution in genomic regions association with olfaction and
vomeronasal, the regions implicated in each generation are different, with an exception
of the region on chromosome 14 (chr14:52,115,206-53,776,455), which was identified
by the generation 22 WRT analyses and the generation 61 mixed model analyses
(Table 2). However, additional studies should be done to address the effects of
olfactory/vomeronasal systems more directly on running behavior of the HR mice. This
could be done with ablation procedures on HR and C mice and observing changes in
running behavior. The antifungal ontology term is possibly a hitchhiker with the
vomeronasal genes also present in the differentiated region (chr6:122,815,876-
124,446,843).

Ontology analyses also indicated embryonic skeletal system development as
result of a group of Hoxb genes within a differentiated region. If these Hoxb are the
driving force underlying the many skeletal differences that have been documented
between HR and C lines (Garland, Jr. and Freeman 2005; Kelly et al. 2006; Middleton
et al. 2008; Middleton et al. 2010; Wallace et al. 2010; Wallace et al. 2012; Castro and
Garland, Jr. 2018; Copes et al. 2018; Schwartz et al. 2018), then this is an exciting
discovery because it would represent a response to selection in a group of genes
known to be evolutionarily influential in body patterning and development (Stratford et
al. 1999). However, whether the Hoxb genes are the cause of skeletal differentiation is
unclear. Although Hoxb genes may play a role in these changes, they are far from the
only candidates. GO term “skeletal system development” includes 7 additional non-Hox

genes, including Phospho1, Col1a1, and Mbtd1, which are all located in the same
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differentiated region as the Hox genes. Furthermore, individual loci demonstrating the
greatest differentiation do not appear to be in Hox genes themselves or their regulatory
regions. Even if Hox genes are a hitchhiker in a region with other genes more directly
targeted by selection due to their skeletal effects, exploring potential side effects of this
evolution would be of interest. Expression analyses during developmental stages when
these genes are most active may provide insight into how Hox genes may be altered in

the HR mice.

Other genes of potential interest

The 79 genes included in top regions also contain a few of particular note:
Cited2, Rbm24, and Dspp. Each of these genes is associated with ontologies and
phenotypes that have been identified as differentiated between the HR and C mice.
Cited2 is a gene whose knockout (KO) has been associated with alterations in brain and
heart morphology (Barbera et al. 2002; Bamforth et al. 2004; MacDonald et al. 2008)
and has also been associated with adrenal development (Val et al. 2007). As noted in
the introduction, HR mice have larger brains and hearts than C mice (Kolb et al. 2010;
Kolb, Rezende, et al. 2013; Kolb, Kelly, et al. 2013; Kelly et al. 2017). Additionally,
adrenal corticosterone levels were found to be different between the linetypes (Malisch
et al. 2007; Garland, Jr. et al. 2016). Rbm24 is a gene associated with skeletal muscle
fiber differentiation, particularly during regeneration following injury (Cardinali et al.
2016; Zhang et al. 2020; Grifone et al. 2021). The HR and C lines have demonstrated
differences in muscle fiber types within muscles important for wheel running such as the

gastrocnemius (Syme et al. 2005; Guderley et al. 2008; Castro et al. 2022). However,
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differential response to muscle injury has not been found between the linetypes (Kay et
al. 2022). Lastly, Dspp was identified among the differentiated genes. This gene has
been associated with development of long bones (such as femurs) and cortical and
trabecular bone thickness (Verdelis et al. 2008; Jani et al. 2016). The HR and C mice

have shown various differences in bone morphology (see Introduction).

Limitations and conclusions

Some of the limitations of the present study include trying to compare results of pooled
genome sequencing (generation 22) to individual mouse sequencing (generation 61:
Hillis et al. 2020). Though the alleles of the individual mice can be combined to imitate
pooled genome sequences, the differences in number of mice sampled and sampling
error make comparisons problematic (see Methods). This is illustrated by the decrease
in p-value correlations (between generations 22 and 61) as compared to both the
unconstrained and constrained simulations. Nevertheless, as argued above, neither the
increase in number of regions detected as differentiated at generation 22 nor the lack of
correspondence between detected regions at generations 22 and 61 can be explained
solely by methodological differences.

The constraint simulations have their own limitations in that they do not account
for male vs female running differences (females run more than males)(Careau et al.
2013). In addition, dominance, epistasis, and gene-environment interactions were not
considered. Exclusion of these features may be why we were unable to achieve
realistic levels of among-line variation, particularly among the High Runner lines. This

model also does not include linkage disequilibrium or realistic rates of recombination.
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Additionally we do not include reduction in breeding success across generations, which
may explain the drop in selection differential observed by Careau et al. (2013). Lastly,
we did not explore the potential effects of relaxing selection for four generations, as
when the mice were moved from Wisconsin to California (see Introduction). A cluster of
generations of no selection in the HR lines could allow for some drift of the favored
alleles.

Although, we are unsure as to why we see so many regions at FDR = 0.01 that
do not correspond to the generation 61 findings by Hillis et al. (2020), our simulations
suggest that regions with the strongest effect sizes on wheel running are likely to be
among the generation 22 regions. Given the statistical significance and number of
SNPs identified in our “strictly” culled differentiated regions, these regions are most
likely to have had the greatest impact on wheel running at the start of the selection
experiment. Among these regions are genes related to olfactory/vomeronasal function,
reward pathways, and a miRNA cluster that has been associated with energy
homeostasis in neonatal development. All of these associations make sense based on
known phenotypic differences between the HR and control lines (see Introduction).

Future directions might include more complex simulations (e.g., see Baldwin-
Brown et al. 2014; Stephan 2016; Castro et al. 2019), which may better help to explain
the 17X increase in regions detected at generation 22. Including genomic data from
more generations (especially from the base population, generations near to but before
the selection limit, and current generations [i.e., around 100]) may provide more clarity
regarding how the response to selection changes across phases of the selection

response (cf. Rose et al. 2005; Castro et al. 2021). Analyses using all loci and a kinship
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matrix would enable determination of some interactions between genes. Functional
analyses, such as knockouts of some of the genes whose alleles appear to have been
favored by selection, may provide direct evidence of influence on wheel-running
behavior (e.g., Schmidt et al. 2008; Chaouloff et al. 2011; MacKay et al. 2019).
Furthermore, analyses of other physiological aspects of these KO mice may help to

better understand the mechanisms by which the gene influences wheel running.
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S$1 Fig. Simulation power results by effect size and generation. Power (Y-axis) of
different effect sizes at different generations (X-axis). Effect Size - Color: 204.8 - brown,
102.4 - red, 51.2 - orange, 25.6 - yellow, 12.8 - dark green, 6.4 - light green, 3.2 - dark
blue, 1.6 - light blue, 0.8 - dark purple, 0.4 - light purple

S1 File. Regularized and windowed regularized F-test (WRT). Description of
methodology and rationale.

S2 File. Parameters and seeds for constraint simulations. List of the parameters
and seeds used for the simulations with and without constraints.

S1 Table. Effect size and Type | error rates. Includes error rates and means for
different effect sizes and sample sizes.

S2 Table. Power to detect differentiation between HR and C lines in relation to
effect size of locus and generation under two simulation models. Includes effect
sizes, sample sizes, revolutions when homozygous, and power and mean for each
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S3 Table. Differentiated regions identified at generation 22 (FDR = 0.01). Includes
chromosomal location, size of region, most statistically significant base pair p-value, and
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S4 Table. Genes included in “strict” culling regions at generation 22.

S5 Table. Gene ontology results for generation 22 “strict” culling genes. Includes
GO terms, fold enrichment, and raw p-values.
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