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Extending Causal Discovery to Live 5G NR
Network With Novel Proportional Fair
Scheduler Enhancements
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Abstract—Understanding the cause-and-effect connections in
intricate systems like telecommunication networks is essential for
enhancing and optimizing their performance. This article, in its
novelty, extends causal discovery to the context of 5G new radio
(NR) Networks by leveraging established technique of the greedy
equivalent search (GES) algorithm to real-world 5G network
data. Our research uncovers causal relations among several
network characteristics represented in the form of a directed
acyclic graph (DAG). A specific causal link between latency
and downlink throughput is further analyzed unveiling a robust
correlation between network utilization and latency, manifesting
the factors of packet loss and retransmissions especially when
the network infrastructure becomes overwhelmed. Building on
these findings, the second significant contribution of our study
involves the introduction of a novel enhancement to the NR
proportional fair (PF) scheduling algorithm. This enhancement
incorporates retransmission considerations to improve network
resource utilization. Our experimental results show notable gains
in network efficiency and resource allocation, highlighting the
potential for real-world enhancements based on the causal
insights uncovered in our research. This research broadens the
horizons of causal discovery within 5G NR networks and presents
a tangible pathway for enhancing network performance and
resource allocation, with implications for the broader field of
network optimization.

Index Terms—S5G new radio (NR) networks, causal discovery,
causality, greedy equivalent Search (GES), proportional fair (PF)
scheduler.

I. INTRODUCTION

URRENT machine learning approaches usually tend

to exploit the correlations observed between the input
data elements [2], [11]. However, there could be spurious
correlations within the data that may sometimes lead us to
wrong conclusions. For example, one of the data illustrations
from [6] suggests a very high (99.79%) correlation between
the U.S. spending on science, space, and technology with the
suicides happened by hanging, strangulation and suffocation.
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Fig. 1. Example of a DAG.

Such high correlation may suggest some false conclusions of
U.S. spending on science and technology may have been the
reason for an increase in suicides happened, but there could be
no direct dependency on these two data metrics and requires
no actions taken. Hence, there is a need to explore causality for
the data produced from complex systems like a telco network
so that an actionable outcome driven cause-effect analysis
can be formulated to improve network utilization and overall
performance.

Causality is the fundamental concept of identifying cause-
and-effect relationships in various fields as introduced by
Judea Pearl in [17] and [25]. It helps to understand how
changes in one factor can lead to the changes in another and
thus enabling us to identify and predict the outcome of various
events. Intricate systems like a real-world telecommunications
network can have numerous interconnected components and
variables. Causality in this context can help unravel the com-
plex cause-and-effect relationships among network attributes.
The insights gained from causal discovery offer a foundation
for practical applications of network optimization and end-user
experience enhancement for 5G and beyond. By understanding
the impact of changes in network characteristics on the Quality
of Service (QoS), causality plays a pivotal role in managing
and evolving mobile networks to meet the ever-increasing
demands of a connected world.

Directed acyclic graphs (DAGs) are often used to represent
a causal relationship between variables [13]. The direction of
the edges in a DAG is interpreted as causal or directional
relationship between variables. The vertices (circles) in a
causal DAG represent variables and edges (arrows) represent
causation. An edge from A to B suggests that A influences B
as shown in Fig. 1. The most fundamental property of a DAG
is that it is acyclic. This means there are no closed loops or
cycles in the graph [25].

While causality represents the fundamental idea that one
variable influence another, causal inference refers to the
process of drawing conclusions about causality from observed
data, often involving statistical or experimental techniques.
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TABLE I
TYPES OF CAUSAL DISCOVERY ALGORITHMS

Approach Algorithms

PC (Peter & Clark)
FCI (Fast Causal Inference)
RFCI (Reliable FCI)
Hill-Climbing Search
Grow-Shrink Algorithm
GES (Greedy Equivalent Search)

Constraint-Based

Score-Based

Hybrid

Causal discovery (also referred to as causal structure search
in [21]) goes a step further, focusing on the automated
or algorithmic identification of causal relationships within
data, especially when the causal structure is unknown [18].
Analyzing such statistical properties of purely observational
data is essential especially when it is difficult or even
impossible to conduct interventions to obtain causal relations.
Causal discovery has been greatly exploited across the fields
like biomedical science fields [4], [9], [14] while some intro-
ductory work has been done in [3] to extend the causal
discovery algorithms to different IT monitoring databases
and to explore its feasibility. Verhelst [20] explored causality
via causal inference related to telco network to understand
customer churn. However, no work has been done to extend
the concept of causality and the causal discovery algorithms
to real-world 5G new radio (NR) mobile network data. This is
where our novel work contributes and helps to improve system
performance with actionable outcomes.

A. Causal Discovery Algorithms

Glymour [21] summarized the computational methods for
causal discovery that were developed in the past three decades
along with some illustrations. A python-based “causal-learn”
extension has been developed by [1] and provided as an intu-
itive application programming interface (API) for researchers
to explore and apply multiple causal discovery algorithms
based on their observational data. Table I is an attempt to
summarize the causal discovery algorithms mentioned in the
literature and categorized by their approach. Nevertheless, it is
essential to re-emphasize that these methods are not uniformly
effective, and there is no one superior algorithm over others
in obtaining causal discovery results but rather depends on
the specific data sets under consideration. Understanding the
assumptions and limitations for each of these algorithms is
needed to identify the right algorithm to be applied to our 5G
NR network data.

Constraint-based algorithms like PC and FCI handles
various data types using reliable conditional independence
tests. However, PC assumes linearity with no confounding
and thus providing asymptotically correct results. FCI can
accommodate confounders outputs equivalence classes and not
complete causal information [28]. RFCI is an extension of
FCI that incorporates reliability constraints but still has the
equivalent class limitation. They are complemented by score-
based algorithms, like hill-climbing search and grow-shrink

algorithms that aim to infer causal relationships from data by
optimizing a scoring criterion [25], [29]. Hybrid approach like
greedy equivalent search (GES) introduced in [27] combines
elements of both constraint-based and score-based methods to
find a causal graph. It starts with a fully connected graph and
iteratively applies operations to add, remove, or reverse edges
while optimizing a score, typically the Bayesian information
criterion (BIC) score [22], [30], [31]. GES algorithm has been
extended to this work to obtain causal discovery due to its
hybrid approach and its ability to accommodate nonlinear
data since linearity cannot be assumed for 5G NR network
data. Additional details on network data used in this work is
explained at a greater detail in Section II.

As the GES algorithm is used in the context of Bayesian
networks, it seeks to identify the optimal structure of a
Bayesian network that best fits the input data. It uses con-
ditional independence tests and searches for the most likely
directed edges between variables. While GES does not have
a single mathematical formula, its operation per [1], [27] is
attempted to be outlined in below steps:

1) Initialization: Start with a fully connected graph, where

all variables are connected to each other.

2) Evaluate Candidate Operations: For each pair of vari-
ables A and B in the data set, three possible operations
are considered.

a) A — B (directed edge from A to B).
b) B — A (directed edge from B to A).
¢) A <— B (undirected edge between A and B).

3) Score the Operations: Calculate a score for each of the
candidate operations using a scoring criterion, such as
the BIC which is used for this work. The score quantifies
how well the operation fits the data while penalizing for
model complexity.

a) Score (A — B) = BIC (DAG + A — B).

b) Score (B — A) = BIC (DAG + B — A).

¢) Score (A <—— B) = BIC (DAG + A <—— B).
where BIC(DAG) represents the BIC score for the entire
DAG.

4) Select the Best Operation: Choose the operation with
the highest score among all the candidates. If the highest
score is negative, then no operation is performed for this
pair.

5) Update the Graph: If an operation was selected in Step
4, update the graph G accordingly by adding, removing,
or reversing the corresponding edge.

6) Repeat Steps 2-5: Iterate through all possible pairs of
variables based on the input data, considering operations,
scoring, and updating the graphs till no more operations
result in further score improvement. The final graph
represents the estimated causal structure that maximizes
the chosen scoring criterion for given input data.

By following this approach, GES aims to find a DAG that
represents the causal structure of the data while adhering to
the observed conditional independence relationships.

The remainder of this article is structured as follows.
In Section II, we delve into the specifics of the real-
world 5G NR network data utilized for causal discovery.
Section III presents the results of causal discovery and
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TABLE 11
NETWORK ATTRIBUTES

Variable Network Attributes Unit
X1 Mean Timing Advance meters
X2 Session Duration sec
X3 Mean CQI #
X4 Mean PUSCH SINR dB
X5 Average MAC DL Throughput kbps
X6 Average MAC UL Throughput kbps
X7 Mean Latency msec
X8 Mean Jitter msec

conducts a comprehensive data analysis involving network
variables. Section IV introduces enhancements to the NR
proportional fair (PF) scheduling algorithm and illustrates the
improvements observed through simulations. Section V offers
the concluding remarks, while Section VI outlines potential
avenues for future research.

II. REAL-WORLD (LIVE) 5G NR NETWORK DATA
A. Network Attributes

Mobile network operators (MNOs) often have multiple
streams of data that is being generated from various network
elements and stored per its utility. For example, all the RAN
network data that streams from gNBs can be stored as one data
set while the diagnostic data collected from user equipment
(UEs) can be stored in a separate data set. Such storage
and usage can vary from operator to operator based on their
specific need and their usability of such data sets.

In this work, two different data sources that update period-
ically are explored and consolidated per desired geo-location
and timeframe such that they complement each other. First
data source is referred to as “Session Records” that store the
records of each individual session of every UE while they
are connected on 5G NR network. These detailed records are
stored for every single UE that’s connected to target gNB that
is under consideration. This data is directly streamed from
gNBs to storing servers where data is parsed and consumed
in desired tabular format. Since there could be few hundred
sessions being served by gNBs at every given instance,
these records are further aggregated for easy handling. Eight
different network attributes are chosen such that there is a
consistent data availability with no data integrity issues like
missing data variables within the data sets. Each of these
network attributes are assigned a variable (X1, X2, ...X8) for
further analysis purpose and listed in Table II.

Second data source is referred to as “performance monitor-
ing (PM) records” where gNB periodically streams Counters
that are rolled up as key performance indicators (KPIs) that
operators typically use to monitor their network performance.
These predefined metrics are populated for every 15 min
interval irrespective of the amount of traffic its carrying
and gets stored in operations support systems (OSSs) that
further parse and stores the data. Key difference among the
two data sources is that while Session Records data gives
valuable insights into user sessions, it does not have any
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visibility on overall network loading conditions experienced
by gNBs. While “PM Records” data does provide KPIs that
shows the network utilization on radio resource level, but the
user experience metrics are consolidated among all users and
cannot depict a clear end user experience like Session Records
data does. Hence, there is a need to consider both the data sets
together to gain a holistic view of causal discovery observed.

B. Data Collection

Input data sets used for this work are collected from a U.S.-
based MNO’s live 5G NR network. Data is collected directly
from gNBs for both Session Records and PM Records and
aggregated on hourly basis. Complete data set comprises of
user sessions for an entire 24 h duration on a typical weekday
in the month of July 2023. Data collection is from multiple
sites located in Seattle, WA area with a mix of both densely
and lightly loaded scenarios spreading across urban and rural
areas. Since NR is implemented as both standalone (SA) as
well as non-SA (NSA) in this network, data sets account for
both the types of NR implementations. However, since it is
the same gNBs that are operating in both SA 4+ NSA mode,
same radio resources are shared among both implementations.
This network has NR implemented in FR1 with N41 (2500
MHz) as its mid-band NR layer with 100 Mhz bandwidth
while N71 (600 MHz) is its low-band NR layer with 15 Mhz
bandwidth. Since all the gNBs under consideration belong to a
single RAN vendor and have a similar network configuration
with no significant differences, all the NR feature sets in place
are common and accounts for data consistency. All the entries
are further filtered for nonguaranteed bit rate (non-GBR) class
of 5G channel quality indicators (5QIs) representing a typical
data session (excluding voice) performed by the users. This is
to account for the fact that voice traffic is carried by 4G long
term evolution (LTE) in case of NSA sessions while it can be
carried by 5G NR in case of SA as voice of NR (VoNR) is
enabled in this network. Final data set from Session Records
has about 176 000 sessions sampled after eliminating missing
network attributes and accounting for data consistency.

III. CAUSAL DISCOVERY RESULTS
A. Causal Discovery

Applying the GES algorithm using causal-learn python API
provided in [1] to the real-world live 5G NR network data for
eight key network attributes mentioned earlier results in the
causal discovery DAG as shown in Fig. 2.

Even when the network attributes are given in specific order
of X1 to X8, the GES algorithm’s output is observed to be
in a different order which suggests that all the combinations
of network attributes are evaluated and only the ones that
has statistically high cause-and-effect relations been formed as
depicted in the causal discovery DAG. Duration of the session
is observed to be the primary cause among all the network
attributes and influences most of the others. This is because
a longer session gets influenced by the inherent mobility
scenarios in the real-world. Both the uplink and downlink
(DL) throughputs are caused by channel quality indicator
(CQI) and signal-to-interference-noise-ratio (SINR) seems to
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Duration

Fig. 2. GES algorithm-based causal discovery DAG.

be inherent and reflects the role played by radio channel and
its quality metrics. However, no clear relation is identified
between session duration and channel quality metrics of CQI
and SINR as they did not meet the statistical criteria. In real
world, it is not always going to be direct relations among these
attributes since an increase in duration doesn’t necessarily
cause a change in channel conditions unless the user is in
mobility. One key observation among throughput relations is
that DL throughput seems to be causing uplink throughput
but not the other way around. This is because this network
is heavily utilized in DL and such DL throughput seems to
require ack/nack in the uplink which in turn contributes to
uplink throughput. Also, both uplink and DL throughputs tend
to cause timing advance along with channel quality metrics
of CQI and SINR. Latency is the key outcome that is being
caused by channel conditions of CQI, SINR along with session
duration, timing advance and DL throughput. Very end of
this causal discovery observations has the network attribute
of jitter which caused primarily by latency along with uplink
throughput and duration of the session.

This research aims to delve deeper into the direct causal
relationship observed between DL throughput and latency in
comparison to the indirect relation between uplink throughput
and latency via timing advance. This is to help further
reinforce the observed causality using additional methods,
including Granger causality (GC) and correlation. Such deeper
analysis is required for action-based causal analysis to help
improve system’s performance.

B. Granger Causality for Throughput and Latency

GC is another statistical concept that also helps to determine
the causal relationship between two time series data sets.
Recent extension of GC to 5G network as been done in [5] to
show its utility to optimize mobile networks. It refers to the
idea that if the past values of a time series help to predict the
future values of another time series, then we can conclude that
first time series “Granger Causes” the second time series [23].
In other words, GC is a measure of causal relationship between
two time series, and it is used to determine whether one time
series can be used to predict the future values of another time
series. However, it is important to note that Ganger causality
does not imply a causal relationship in the sense of a direct
cause-and-effect relationship. Rather, it simply indicates that
one time series can be used to predict the future value of
another time series, which may or may not be due to a causal
relationship between the two. As the Session Records data
collected per UE is time series based, GC can be applied to
quantify the predictability of one series on another.

GC can be measured using equation where x; and y; be the
covariance stationary sequences, set up a regression model of
x; for lags of y and x as shown in (1). MATLAB toolbox
provided in [24] helps to implement and quantify GC for the
input 5G NR network data

n n
Xy =c¢+ thyt—i + Zajxt—j + & (1
i=1 =1

where c is constant.

Since GC is directional, quantification is performed per
relation in both directions. Observed GC results as shown
in Fig. 3 illustrates a high causal relation between latency
versus DL throughput is in the order of 70 for both directions
while its only in the range of 30 for latency and uplink
throughput in both directions. Hence, observed results show
that each relation of latency toward DL and uplink throughput
are equally predictable in both directions. However, the future
predictability of latency’s time series is higher from DL
throughput rather than from uplink throughput. This further
confirms the direct causal relations obtained between DL
throughput and latency versus the uplink throughput and
latency using the GES algorithm earlier.

C. Correlation Among Causal Relations

As mentioned in the introduction, correlation is often
assumed for causality which can lead to inaccurate action-
able results. However, idea here is to observe and quantify
correlation for causally related variables. Based on the causal
discovery relations identified, an hourly aggregated trending
of 4 network variables — DL throughput, uplink throughput,
latency, and jitter are shown in Fig. 4 using a double-axis plot.
Left y-axis represents throughput of both uplink and DL in
kilobits per second (kbps) while the right y-axis represents
latency and jitter in milliseconds (msec). The x-axis represent
the hour of the day covering entire 24 h of a day. Bar graph
representation of throughput shows that DL throughput is
relatively much higher than uplink throughput at any given
hour of the day. While jitter seems consistent between 3 and
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Fig. 4. Hourly trending of four network attributes.

5 ms, latency trend-line seems to be closely following the
DL throughput trend throughout the day and illustrating that
latency tends to go higher as the DL throughput increase
for most hours of the day. When higher data rates are
often attributed to lower latency, this seems to be a counter-
intuitive observation. Such behavior can be explained by
certain network characteristics like network congestion or load
utilization.

Higher throughput may attract more users and applications,
leading to network congestion. Congestion can result in
packet loss and retransmissions, especially when the network
infrastructure becomes overwhelmed. Also, higher throughputs
often involve more aggressive resource allocation on time,
frequency, or spatial domains. If the resources are limited
or over-allocated, there may be contention or interference
among users, leading to collisions and retransmissions and thus
resulting in queuing delays and higher latency.

PM Records provide the average percentage of radio
resources being consumed on physical DL shared channel
(PDSCH) for non-GBR 5QIs. This data from PM records is
obtained for the same day and same geographical area as the
initial Session Records data is collected for consistency. Fig. 5
shows both the latency and network utilization plotted together
in double-axes view for same hours of the day. A strong
correlation can be observed among these network variables.
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Fig. 5. Hourly trending of latency and network utilization.

A positive correlation coefficient indicates a positive linear
relationship, while a negative coefficient indicates a negative
linear relationship. A value close to 1 or —1 indicates a
strong correlation, while a value close to 0 suggests a weak
or no correlation. For the data shown in Fig. 5, correlation
coefficient of (.77 is obtained suggesting a strong correlation
among both the network variables and supports the real-world
causal discovery analysis so far.

Such in-depth analysis of network metrics propelled by the
insights from causal discovery offers a foundation for practical
applications in 5G NR network optimization. This pioneering
work showcases the extent this causal discovery approach can
be applied to real-world mobile networks to gain insights and
to optimize it based on the network operator’s use case.

IV. PROPOSED PROPORTIONAL FAIR SCHEDULER
ENHANCEMENT

A. NR Scheduler Introduction

Scheduler resides in medium access control (MAC) layer
in gNB and it is responsible for managing resource alloca-
tion to connected users in real-time across both time and
frequency domain. Fig. 6 shows an overview of a typical DL
scheduler while a similar approach is applicable to uplink
resource allocation as well. Resources are first assigned for the
retransmissions, irrespective of the adopted scheduling strategy
and so the pending retransmissions feedback is given directly
to the scheduler to schedule such UEs first. Once all the
retransmissions are scheduled, scheduler is provided with a
list of priority UEs to schedule. Such list of priority UEs is
obtained as an outcome of the specific scheduler algorithm
being used. Choice of a specific scheduling algorithm is
usually dependent on the end goal of MNOs, but they generally
tend to deploy such that the network resources are optimized
while it caters for best end user experience. Scheduler inputs
that are fed into scheduler algorithms typically include CQIs,
total number of UEs, average data rates, packet delays, queue
status, buffer levels, and QoS identifier [19].
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Fig. 6. Overview of DL NR scheduler.

Real-world gNBs from which the 5G NR network data is
collected for causal discovery uses PF scheduler that considers
channel conditions for each UE in the queue to avoid accumu-
lating data in the buffer. A comparative analysis among four
widely used scheduling algorithms, namely round robin (RR),
best CQI (BCQI), fractional frequency reuse (FFR), and PF
that are applicable to future communication networks has been
summarized in [12]. This work highlights that PF scheduler
achieves a maximum balance between fairness and maximum
cell throughput by illustrating the algorithm’s decision-making
flow. Enhancements proposed in [15] attempts to overcome
a limitation of PF scheduler where it does not consider the
QoS for each UE. This enhancement allows to prioritize traffic
like ultra reliable low latency communication (URLLC) over
enhanced mobile broadband (eMBB) traffic when serving both

types.

B. Proposed Scheduler Enhancements

While the current PF scheduler prioritizes retransmissions
when scheduling the UEs in buffer and does not account for
scheduling weight [10], [26], literature suggests that all the
proposed enhancements should consider additional scheduler
inputs like QoS requirements when using PF scheduler for new
transmissions. Our causal discovery learnings from this work
suggests that DL throughput causes latency and scheduling
UEs to achieve higher throughput based on their channel
conditions and buffer status requirements does not always
result in improved latency. To realize an action-based causal
approach, we propose a feedback loop of retransmissions per
UE back into the scheduler algorithm. This feedback is used as
an input for new transmissions to the same UE and influences
its scheduling weights to maintain latency requirements.

The specific steps in the proposed PF scheduler are illus-
trated in the flowchart shown in Fig. 7. At the beginning
of each transmission time interval (TTI), the proposed PF
scheduler first verifies whether retransmissions (ReTXs) are
scheduled. If ReTXs are present, they receive priority for
resource allocation based on feedback from prior transmis-
sions. If no ReTXs are scheduled, the scheduler then identifies
UE:s eligible for new transmissions. CQI inputs are considered
for all eligible UEs. The PF scheduler computes scheduling
weights by considering CQI, buffer status, and ReTX feed-
back. UEs are then sorted in descending order according to
their scheduling weights. The UE with the highest weight is

Schedule ReTXs FNO

ReTx
Feedback

Eligibile UEs for NewTx

Proportional Fair
Scheduling

Descending sort of UEs

Pick highest weightage
UE

I

Resource Allocation

Yes

All UEs
scheduled ?

No

available RBs

No

End

Fig. 7. Proposed PF scheduler enhancements.

selected for resource allocation. The scheduler subsequently
checks if all UEs have been scheduled. If resource blocks
(RBs) remain available, the scheduler continues by allocating
these to the next highest-weighted UE. Mathematically, this
can be represented in five steps as below.

1) Initialization: For every evaluation, scheduler considers
all the remaining resources (RB) available after all
the pending retransmissions are scheduled. (UE, RB)
represents the resource allocation matrix with Nyg users
to schedule.

2) For all the eligible UEs that have pending new trans-
missions, the newly developed technique computes the
weight w;; corresponding to ith user with jth RB by
multiplexing the PF metric to the inverse of retransmis-
sion HARQ failure rate (Rx;) of each user as shown
in (2). This allows to consider previously failed trans-
missions and accounts for it in the current TTI evaluation

rij 1

== X — 2
Wi R, Rx; 2)

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on June 09,2025 at 19:39:32 UTC from IEEE Xplore. Restrictions apply.



294

where 7;; is the instantaneous rate and R; is the average
data rate detailed in [26]. Such implementation factors in
the buffer requirements along with their past data rates
for each UE.

3) All the eligible UEs are ranked according to w; ; weigh-
tage metrics saved in the resource allocation matrix
(UE, RB). Priority is given to the UE; having highest
metric w; ;.

4) For each RB;, we look at the UE; with the highest metric
across users to assign it the RB; as shown in

RB; — UE(argmax(wU)); i=0,1,2,...,Nye. (3)

5) In case there are multiple users that end up having the
same weightage, (3) can be updated to (4) to rank UEs
according to their priority level by selecting users with
lowest priority value

RB; — argmin(UE_priority(argmax(w,-j)))
i=0,1,2,...,Nyg. 4)

Resource allocation is to be repeated for each symbol until
all the available RBs are depleted. By implementing these
steps, we realize the benefits of our proposed enhancements
to the existing PF scheduler by leveraging the GES algorithm
inputs in processing 5G NR network data shows that proposed
method can significantly improves latency and throughput due
to the adaptive consideration of retransmission feedback and
scheduling weights. Further enhancements that can be made to
this proposed algorithm based on [8] and [16] are considered
out of scope for this work and are covered in Section VI.

Even with the existing PF scheduler, when resources are
prioritized for scheduling retransmissions of previously failed
transmissions, it can assist in completing these delayed trans-
missions. However, this approach inadvertently delays the
scheduling of other UEs. The PF algorithm does not inherently
compensate for UEs that require retransmissions, especially
when these UEs have high buffer requirements. Consequently,
these UEs may receive disproportionate scheduling priority,
impacting their ability to handle both new transmissions
and retransmissions. This results in inefficient utilization of
network resources and can lead to decreased goodput metrics.

By incorporating specific adjustments to the proposed
PF scheduler, such as dynamic buffer-aware prioritization
and adaptive resource allocation for retransmissions, we can
enhance overall network performance. These adjustments
address the bias introduced by high buffer requirements by
ensuring that retransmissions are balanced with the needs
of other UEs. This results in a more equitable distribution
of scheduling resources, leading to improved throughput and
better overall goodput metrics. The proposed enhancements
optimize resource usage and mitigate delays, thereby improv-
ing the efficiency of 5G NR network data scheduling.

C. Simulation Setup

MATLAB 2023b is wused for simulation purpose
and MathWork’s “NR TDD Symbol Based Scheduling
Performance Evaluation” example is used to simulate 5G NR
network. Every possible effort is made to set the simulation
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DL-UL Pattern Periodicity

Fig. 8. TDD pattern configuration.

TABLE III
SIMULATION PARAMETERS

Simulation Parameter Value
Number of UEs 15
Application Throughput 1Mbps — 100Mbps
SCS 30kHz
Scheduling Type Symbol-based
Bandwidth 100 MHz
Carrier Frequency 2.5GHz TDD
Scheduler Type Proportional Fair &
Proposed Enhancement
Modulation Up to 64QAM
CQI Range 0-15

parameters as close as possible (within system limitations)
to replicate real-world 5G network from which original data
outlined in Section II was obtained.

Simulation parameters used are as summarized in Table III,
Carrier Frequency of 2.5 GHz is chosen with a bandwidth
of 100 MHz and TDD frame patten of three DL slots, one
uplink and one special slot as shown in Fig. 8. Special slot has
seven DL symbols and five uplink symbols and a guard period
of two symbols. Each slot is 1 ms duration while DL-UL
Pattern Periodicity is Sms and subcarrier spacing (SCS) is 30
kHz. A total of 15 UEs are simulated to be active on the
gNB with scheduling done at symbol-level granularity. Each
UE is randomly located in the varying azimuth and elevation
in reference to gNB to simulate a real-world scenario. Also,
each UE is set with a varying size application DL throughput
ranging between 1 to 100 Mb/s to simulate high loading
scenario on the 100 MHz carrier. Simulation settings of other
layers are left untouched from Mathwork’s original example
as they are agnostic to these scheduler changes.

D. Performance Evaluations

The performance evaluation metrics [7] were outlined to
compare the resource allocation algorithms while comparing
a comprehensive list of all the scheduler algorithms related
to mobile networks. Such performance evaluation metrics
include delay, throughput, goodput, and spectral efficiency.
These metrics are used to quantify the performance of our
proposed PF scheduler enhancements in comparison to the
current implementation.

As summarized in Table IV, several key takeaways can be
highlighted in the comparison of existing PF scheduler with
our proposed PF scheduler. The proposed scheduler shows
improvements in multiple performance metrics. Specifically,
it leads to a 2.86% increase in average cell DL through-
put and a more substantial 5.6% boost in average cell DL
goodput. Notably, it maintains the same peak DL throughput
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TABLE IV
SIMULATION RESULTS

Performance Metrics | Existing | Proposed PF | Delta
PF Scheduler %
Scheduler (Post)
(Pre)
Cell DL Throughput 5.59 5.75 2.86%
(Mbps)
Cell DL Goodput 4.99 5.27 5.6%
(Mbps)
Peak DL Throughput 15.55 15.55 -
(Mbps)
Cell DL spectral 1.00 1.06 6%
efficiency (bits/s/Hz)
Peak DL Spectral 3.11 3.11 -
Efficiency (bits/s/Hz)

Fig. 9. Simulation output of proposed PF scheduler enhancement showing
metrics of DL throughput, DL goodput, resource share, and buffer status for
all 15 users over a 100 ms simulation duration.

as the existing scheduler, demonstrating consistency in high-
performance capabilities. Additionally, the proposed scheduler
achieves a 6% improvement in overall cell DL spectral
efficiency. This reflects the efficient utilization of network
resources without wasting them on network retransmissions.
However, there is no change in peak DL spectral efficiency.
Fig. 9 presents the MATLAB simulation output for the
proposed PF scheduler, highlighting four key metrics over a
100-ms simulation period. The top-left graph shows the DL
throughput in Mbps for individual users (UE-1 to UE-15)
and the cell’s peak data rate. The peak data rate of the cell
remains constant, representing the overall cell capacity, while
the average cell throughput is the sum of all 15 users. The data
reveals the variability in throughput experienced by different
users, indicative of the scheduler’s attempt to balance fairness
and performance. The top-right graph illustrates the resource
share percentage for each user, demonstrating the dynamic
allocation of resources among users, which is essential for
maintaining fairness in a multiuser environment. This plot
showcases the PF aspect of the scheduler by allocating
resources without notable bias among a variety of users.

The bottom-left graph displays the DL goodput in Mbps,
representing the actual user-perceived data rate after account-
ing for retransmissions and other losses. The goodput trends

closely follow the throughput patterns, with minimal delta
between the two, underscoring the efficiency of the proposed
scheduler. This minimal delta represents the minimized loss of
packets due to retransmissions, which could otherwise impact
the end user’s perceived experience. Finally, the bottom-
right graph depicts the DL buffer status in KB for each
user, providing insight into the buffer occupancy and its
impact on latency and throughput. The buffer status trends
highlight users with higher data requirements and the sched-
uler’s effectiveness in managing buffer occupancy to minimize
latency. Certain users have high buffer requirements from the
beginning, while another set of users show a gradual rise in
buffer requirement, and yet another set have relatively low
buffer requirements throughout the simulation. Collectively,
these metrics demonstrate the proposed PF scheduler’s abil-
ity to dynamically allocate resources, maintain fairness, and
optimize overall network performance in a 5G NR environ-
ment. Since MATLAB does not account for over-the-channel
transmission delays, we do not have a way to quantify the
impact on latency but it is safe to assume that latency is either
maintained or improved with an improved goodput. Overall,
these findings suggest that the proposed PF scheduler enhances
data throughput and spectral efficiency, which can contribute
to improved network performance and user experience.

V. CONCLUSION AND FUTURE WORK

This article introduces a novel extension of causal discovery
to real-world 5G NR network data, identifying relationships
among key metrics that reflect end-user experience, such as
throughput and latency. Such findings allowed to propose a
novel enhancement to the PF scheduler algorithm by con-
sidering retransmission feedback for calculating scheduling
weights. This proposal is demonstrated via simulation to
improve both user experience and network resource utilization,
including a 2.86% increase in average cell DL throughput and
a 5.6% boost in average cell DL goodput, indicating reduced
packet loss and retransmissions. It also maintains peak DL
throughput and achieves a 6% improvement in overall cell
DL spectral efficiency, optimizing both user experience and
network resource utilization in a 5G NR environment.

This work can be further evolved to areas like 1) iden-
tifying and deriving action-based causal discovery insights
among additional network variables; 2) further optimizing PF
scheduler for delay sensitive applications beyond eMBB; and
3) causality-based layer management to preserve end user’s
Quality of Experience (QoE).
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