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AbstractÐThis paper introduces a framework for approximate
message passing (AMP) in dynamic settings where the data at
each iteration is passed through a linear operator. This framework
is motivated in part by applications in large-scale, distributed
computing where only a subset of the data is available at each
iteration. An autoregressive memory term is used to mitigate
information loss across iterations and a specialized algorithm,
called projection AMP, is designed for the case where each
linear operator is an orthogonal projection. Precise theoretical
guarantees are provided for a class of Gaussian matrices and
non-separable denoising functions. Specifically, it is shown that
the iterates can be well-approximated in the high-dimensional
limit by a Gaussian process whose second-order statistics are
defined recursively via state evolution. These results are applied
to the problem of estimating a rank-one spike corrupted by
additive Gaussian noise using partial row updates, and the theory
is validated by numerical simulations.

I. INTRODUCTION

Approximate message passing (AMP) refers to a family of

iterative algorithms that has been applied to high-dimensional

inference problems including regression, matrix estimation,

and channel coding; for a comprehensive reference, see the

recent tutorial [1]. The basic form of an AMP algorithm can

be summarized as a recursion on n-dimensional iterates,

xt = Mft(x<t)−
∑

s<t

btsfs(x<s), t = 0, 1, 2, . . . (1)

where M is an n× n ªdata matrixº, the ft : R
n×t → R

n are

deterministic functions (with initialization f0 = f0(∅) ∈ R
n),

the bts ∈ R are scalar ªdebiasingº coefficients , and the notation

x<t = (x0, . . . , xt−1) represents the collection of iterates up

to time t− 1. Depending on the application, the matrix M is

obtained from the observed data via elementary preprocessing

steps such as centering and symmetrization.

One of the key features of the AMP framework is that the

behavior can be tracked precisely in high-dimension settings

provided that the data matrix satisfies certain distributional

assumptions. In these settings, the coefficients bts can be speci-

fied in a way that both accelerates the overall convergence and

guarantees that the process {xt} can be closely approximated

by a Gaussian process {yt} whose mean and covariance can

be efficiently computed via a ªstate evolutionº (SE) recursion.

An important consideration for very large matrix operations

is that computations are distributed across multiple servers. In

practice, the server response times can have a long tail [2],
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and waiting for the ªstragglersº can significantly delay the

next iteration. This delay can be mitigated via replication

or coded computation [3]±[7] to ensure that the full matrix

multiplication is available once enough servers respond, at

the cost of additional computation per iteration to maintain a

suitable erasure-correcting code. However, for high-dimensional

inference tasks, it may be more efficient to proceed to the next

iterate. One of the main contributions of this paper is an AMP

framework that naturally captures this scenario, enabling a

precise performance characterization via state evolution.

A. Overview of Main Results

This paper extends the scope of AMP to settings where

the matrix may change with each iteration. Specifically, we

introduce the Linear Operator AMP (OpAMP) framework in

which a linear operator Lt : R
n×n → R

n×n is applied to the

data matrix M at each iteration, and the recursion has the form

xt = Lt(M)ft(x<t)−
∑

s<t

Btsfs(x<s). (2)

Under a Gaussian assumption on the data matrix, we show

how the matrices Bts ∈ R
n×n can be specified as a function

of the Lt to enforce approximate Gaussianity of the iterates.

To provide a tractable model for long-term memory we also

introduce an autoregressive version of (2) that has a linear

dependence on the previous iterates:

xt = Lt(M)ft(xt−1) +
∑

s<t

Atsxs−1 −
∑

s<t

Btsfs(xs−1) (3)

where the matrices Ats can be designed such that xt provides

a suitable summary of the previous iterations.

Specializing to the case where each linear operator is given

by Lt(M) = ΠtM for an n × n projection matrix Πt, we

define the projection AMP recursion

xt = Πt

(

Mft(xt−1)−
∑

s<t

btsfs(xs−1)
)

+Π⊥
t xt−1 (4)

where the dependence on prior iterations is specified by

the projector sequence. For the special case of commuting

orthogonal projection matrices, the SE has a particularly simple

recursive structure that is analysed in Section III-A.
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Fig. 1. Correlation ⟨θ, xt

∥xt∥
⟩ versus iteration count (on the left) and versus total number of n×n multiplications used (on the right). Markers denote empirical

performance (averaged over 100 trials) and curves denote theoretical SE predictions.

B. Case Study: Power Iteration with Partial Updates

Consider computing the dominant eigenvalue v1 ∈ R
n of

a symmetric data matrix M =
∑n

i=1 ξiviv
⊤
i with eigenvalues

|ξ1| ≥ |ξ2| ≥ · · · ≥ |ξn| ∈ R via power iteration:

xt+1 = M
xt

∥xt∥
(5)

for some initialization x0 ∈ R
n. Assuming that the initial

value x0 has some angle α > 0 with the leading eigenvalue v1,

classical convergence bounds [8, Theorem 8.2.1] guarantee that

the rescaled iterations xt/∥xt∥ converge to v1 geometrically

fast as long as the spectral gap is greater than one. This result

is general and holds for any symmetric matrix M . To present

our AMP-based method, we focus on matrices M that were

drawn from a rank-one spiked matrix model, M = λθθ⊤ + Z
where λ > 0, θ ∈ R

n is, in this example, presumed to be a

unit vector, and Z is an n× n random matrix drawn from the

Gaussian orthogonal ensemble GOE(n), i.e., Z is symmetric

with independent N(0, 1/n) entries above the diagonal and

independent N(0, 2/n) entries on the diagonal. The goal is to

use the leading eigenvalue v1 to provide an estimate of the

direction of the ground-truth signal θ.

Interpreting the projection onto the unit sphere x 7→ x/∥x∥
as a denoising function, a standard AMP correction term can

be added to the power method to obtain the recursion

xt+1 =
1

∥xt∥

(

Mxt −
xt−1

∥xt−1∥

)

(6)

with the convention that x−1/∥x−1∥ ≡ 0. When M is sampled

from a spiked matrix model, this iteration can be tracked

accurately in the large-n limit via SE. Furthermore, when

λ > 1, the iterates {xt} can be shown to converge to the fixed

point λv1, a multiple of the leading eigenvector.

Now, consider the setting where only a fraction of the rows

of M are available at each iteration t, i.e. only ΠtM is observed

for some diagonal 0±1 matrices {Πt}. Based on the results in

this paper, we propose the following AMP-corrected power

method with partial updates:

xt+1 =
1

∥xt∥
Πt

(

Mxt −
1

n

∑

s<t

tr
(

Π⊥
t−1 · · ·Π⊥

s+1Πs

) xs

∥xs∥
)

+ Π⊥
t xt (7)

where the complementary projections are simply Π⊥
t = I−Πt.

This recursion is practical as it does not require knowledge

of any of the model parameters and its computational cost

per iteration t is dominated by the matrix multiply ΠtMxt,

which involves O(nkt) operations, where kt = rank(Πt). In

Section III-B, we provide single-letter formulas for the SE

dynamics of (7) under some structural assumptions on the

signal θ and update schedule {Πt}.

In Figure 1, the projection AMP algorithm in (7) is applied

to a size n = 5, 000 data matrix with λ =
√
2, and the results

are averaged over 100 Monte Carlo trials, each with the same

ground truth θ ∈ {± 1√
n
}n and initialization x0 ∈ R

n with

⟨θ, x0

∥x0∥ ⟩ = 0.01. A comparison of the empirical results and

the theoretical prediction obtained from the asymptotic SE is

provided for the following protocols:

• Full matrix: The full data matrix is applied each iteration.

• Round robin: The rows are partitioned into 10 equally-

sized subsets. Each iteration applies the rows in a subset.

• Random update: Each row is updated independently with

probability 1/10.

Intuitively, the round-robin and random-update protocols con-

verge more slowly than full-matrix AMP with respect to the raw

iteration count. However, if we instead plot the performance

with respect to effective number of n×n matrix multiplications,

we find that the round-robin protocol is more efficient than

the full-matrix protocol. (For certain parameter settings, the

random-update protocols is also more efficient, but this is not

always the case.)

C. Related Work

Most of the work in the AMP literature has focused on

finite-memory versions of (1) where each ft depends only on

a fixed number of previous iterates [9]±[17]. The full-memory

formulation in (1) has appeared in recent work as a model for

generalized first-order methods [18], [19].



Our analysis builds on the theoretical framework for non-

separable functions and IID Gaussian matrices introduced

by Berthier et al. [20], and further developed in [21], [22]

where (pseudo)-Lipschitz continuity is the only assumption

placed on the function sequence and convergence is assessed in

terms a sequence of suitably normalized pseudo-Lispchitz test

functions. Our main theorems establish conditions under which

the normalized difference 1√
n
∥x≤T −y≤T∥ over a fixed number

of iterations T converges to zero in probability in the large-n
limit. Concurrent work explores this form of convergence from

a non-asymptotic perspective [23].

A version of the projection AMP framework of this paper was

studied by CË akmak et al. [24] using non-rigorous dynamical

functional theory. Projection AMP is also related to recent

work that uses a full memory AMP recursion to approximate

the discrete-time dynamics of gradient descent and other first-

order optimizations techniques [25], [26]. These works focus

on the behavior of existing optimization techniques in scaling

regimes where the number of rows updated at each iteration

grows sublinearly with the problem dimension. By contrast, the

main focus of this paper is to design algorithms that overcome

the limitations of the dynamic data as expressed in (2), e.g.,

by optimizing the long-term memory as function of the linear

operators.

In a slightly different direction, the special case of (2) where

the linear operator is fixed for all iterations has been studied

by a subset of the authors in the context of the matrix tensor

product model [27], [28].

Beyond the setting of IID Gaussian matrices, AMP algo-

rithms have also been proposed and analyzed for orthogonally-

invariant random matrix ensembles [29]±[36] and semirandom

ensembles [37]. These results impose a separability assumption

on the functions {ft}, which precludes the general linear

transformations used in the proof of our OpAMP framework.

Extending the results in this paper to other matrix ensembles

is an interesting direction for future research.

Recent efforts have developed distributed, accelerated, and

robust variations on the power method as well as long-run

convergence guarantees under suitable conditions [38]±[43].

Additionally, recent work on subspace tracking algorithms

with missing data [44] has characterized the high-dimensional

performance limit via differential equations [45].

II. LINEAR OPERATOR AMP

This section describes the linear operator AMP framework

and states our main theoretical results. Owing to space

limitations, the proofs can be found in the full version [46].

To streamline the presentation, we focus on a centered

version of the recursion given by

xt = Lt(Z)ft(x<t)−
∑

s<t

Btsfs(x<s) (8)

where Z is a GOE(n) matrix. The extension to settings where

the matrix has a low-rank signal component follows from

standard arguments in the AMP literature; see Section III.

Each linear operator Lt has a (non-unique) decomposition

of the form

Lt(Z) =

K
∑

k=1

LtkZRtk (9)

for n × n matrices {Ltk, Rtk : k = 1, . . . ,K}. We require

that the both operator norm and the rank (i.e., the smallest K
such that (9) holds) are bounded uniformly w.r.t. the problem

dimension n.

Our theoretical results provide a connection between the

distribution of the AMP iterates and a zero-mean Gaussian

process {yt} whose second-order statistics are described in

terms of {Lt} and {ft} via a recursive process called state

evolution. Starting with Cov(y0) =
1
n
∥f0∥2In, the covariance

at time t is defined by the covariance up to t− 1 according to

Cov(ys, yt) =

K
∑

l,k=1

qsltkLslL
⊤
tk, (10)

qsltk :=
1

n
E[⟨Rslfs(y<s), Rtkft(y<t)⟩] (11)

This construction holds holds for any collection of matrices

{Ltk, Rtk} satisfying the decomposition in (9).

Assumption 1. Each ft : R
n×t → R

n is L-Lipschitz contin-

uous and satisfies 1√
n
∥ft(0)∥ ≤ C where C,L are positive

constants that do not depend on n.

Assumption 2. Each Lt can be decomposed in the form given

in (9) with ∥Rtk∥op, ∥Ltk∥op ≤ C ′ for all t, k ∈ N0, where

C ′,K are are positive constants that do not depend on n.

Theorem 1. Let {xt} be generated by (8) and let {yt} be the

zero-mean Gaussian process defined by the SE (10). Suppose

Assumptions 1 and 2 hold, Z ∼ GOE(n), and the matrices

{Bts : 0 ≤ s < t} are given by

Bts =

K
∑

k,l=1

1

n
tr(RtkE[Dsft(y<t)]Lsl)LtkRsl (12)

Here, the notation Ds indicates the Jacobian matrix of ft(x<t)
computed w.r.t. the input vector xs. Then, for any fixed number

of iterations T , there exists a sequence (in n) of couplings

between x≤T and y≤T such that
∥x≤T−y≤T ∥√

n

p−−−−→
n→∞

0.

A. Autoregressive Linear Operator AMP

While the general formulation in (8) allows for arbitrary

dependence on prior iterations, the question remains of how

the ft should be optimized as a function of the linear

operators. Motivated by practical considerations, we introduce

an autoregressive version of (8), that uses a weighted linear

combination of previous updates:

xt = Lt(Z)ft(xt−1) +
∑

s<t

Atsxs −
∑

s<t

Btsfs(xt−1) (13)

Here, the n×n matrices Ats describe the long-term dependence

and the functions ft are applied only to the prior iteration,

reducing the complexity of both the implementation and the

analysis.



To describe the SE, we define the collection of n×n matrices

{Cst : 0 ≤ s < t} according to











In
−A10 In

...
. . .

−At0 · · · −At,t−1 In











−1

=











In
C10 In

...
. . .

Ct0 · · · Ct,t−1 In











Since these matrices are block unitriangular, their inverses exist.

Furthermore, using the convention that Ctt = In, the mapping

from {Ats} to {Cts} can be expressed recursively via

Cts =

t−1
∑

r=0

AtrCrs (14)

The distribution of the iterates from (13) is compared with a

zero-mean Gaussian process {yt} whose covariance is defined

recursively according to

Cov(ys, yt) =
∑

s′≤s,t′≤t

K
∑

l,k=1

qs′lt′kCss′Ls′l(Lt′kCtt′)
⊤ (15)

where qsltk is defined in (11).

Assumption 3. ∥Ats∥op ≤ C ′′ for all s, t where C ′′ is a

positive constant that does not depend on n.

Theorem 2. Let {xt} be generated by (13) and let {yn} be

the zero-mean Gaussian process defined by the SE. Suppose

Assumptions 1, 2, and 3 hold, Z ∼ GOE(n), and the matrices

{Bts : 0 ≤ s < t} are given by

Bts =

K
∑

k,l=1

1

n
tr
(

RtkE[Dft(yt−1)]Ct−1,sLsl

)

LtkRsl (16)

where {Ltk, Rtk} provide the decomposition of Lt given in

(9) and {Cts} are defined by (14). Then, for any fixed number

of iterations T , there exists a sequence (in n) of couplings

between x≤T and y≤T such that
∥x≤T−y≤T ∥√

n

p−−−−→
n→∞

0.

Note that in view of (14), the matrices Ct−1,s appearing in

the correction term at time t can be computed in recursively

in terms of the matrices Ct−2,s used in the previous iteration.

B. Projection AMP

The projection AMP framework is a specialization of (13)

where each linear operator is given by Lt(Z) = ΠtZ for an

n×n projection matrix Πt and the autoregressive linear memory

term is the complementary projection matrix Π⊥
t = I − Πt

applied to the past iteration.

The projection AMP recursion can be expressed as

xt = Πt

(

Zft(xt−1)−
∑

s<t

btsfs(xs−1)
)

+Π⊥
t xt−1 (17)

A useful property of this formulation is that the memory terms

depend only on the projector sequence and the debiasing terms

are described by scalars.

The additional structure of projection matrices also leads to

simplifications for the SE. The covariance of the zero-mean

Gaussian process {yt} is given by

Cov(ys, yt) (18)

=
∑

s′≤s,t′≤t

1

n
E[⟨fs′(ys′−1), ft′(yt′−1)⟩]Css′Πs′(Πt′Ctt′)

⊤

where the matrices Cts are defined by

Cts =

{

In s = t

Π⊥
t Π

⊥
t−1 · · ·Π⊥

s+2Π
⊥
s+1 0 ≤ s < t

(19)

Theorem 3. Let {xt} be generated by (17) and let {yn} be

the zero-mean Gaussian process defined by the SE. Suppose

Assumption 1 holds, Z ∼ GOE(n), and the scalars {bts : 0 ≤
s < t} are given by

bts =
1

n
tr(E[Dft(yt−1)]Ct−1,sΠs) (20)

Then, for any fixed number of iterations T , there exists a

sequence (in n) of couplings between x≤T and y≤T such that
∥x≤T−y≤T ∥√

n

p−−−−→
n→∞

0.

The SE for projection AMP admits further simplifications

for the special case of commuting orthogonal projections, i.e.,

each Πs is symmetric and ΠsΠt = ΠtΠs for all s, t. Starting

with (18) and then using the fact that the Πt and Cts commute,

one finds that Cov(yt) satisfies the simple recursion

Cov(yt) =
1

n
E
[

∥ft(yt−1)∥2
]

Πt + Cov(yt−1)Π
⊥
t (21)

where Cov(yt−1)Π
⊥
t = Π⊥

t Cov(yt−1) is symmetric. In partic-

ular, if Π0 = In and every ft is supported on the sphere of

radius σ
√
n then it follows that Cov(yt) = σ2In for all t ∈ N0.

III. MATRIX ESTIMATION WITH PARTIAL UPDATES

In this section, we show how our linear operator framework

can be applied to settings where the entire data matrix cannot

be applied at each iteration. For concreteness, we focus on the

rank-one spiked matrix model

M =
λ

n
θθ⊤ + Z (22)

where λ > 0 is a positive scalar, θ = (θ1, . . . , θn) ∈ R
n is the

unknown signal, and Z ∼ GOE(n) is additive noise. The goal

is to recover θ from M subject to the constraints that only a

subset of the rows of M can be accessed at each iteration.

The update constraints are modeled using projection AMP

with projections of the form Πt = diag(δt) where δt ∈ {0, 1}n
is a binary vector indicating which rows can be updated in the

t-th iteration. For a given sequence of ªdenoisingº functions

{ft}, we construct a sequence of estimates {θ̂t} using the

following version of projection AMP:

θ̂t = ft(xt−1) (23a)

xt = δt ◦
(

Mθ̂t −
∑

s<t

btsθ̂s

)

+ (1− δt) ◦ xt−1 (23b)



Here, ◦ denotes the elementwise (Hadamard) product and 1

denotes the all ones vector. The scalar debiasing coefficients

bts are defined as a function of the SE according to (28). To

circumvent some cumbersome details that arise with a generic

initialization, we will assume throughout this section that every

row of the matrix is updated in the the first time step, i.e.,

δ0 ≡ 1 is the all ones vector.

State evolution. Combining Theorem 3 with recentering

arguments, it can be shown that the iterates from the recursion

(23) are well approximated by a Gaussian process {yt}, whose

mean and covariance are defined by a two-parameter SE:

qt =
1

n
E
[

∥ft(yt−1)∥2
]

; rt =
1

n
E[⟨θ, ft(yt−1)⟩] (24)

where q0 = ∥f0∥2/n, r0 = ⟨θ, f0⟩/n are the overlaps arising

from the initial estimate θ̂0 = f0 ∈ R
n. Starting with E[y0] =

λr0θ and Cov(y0) = q0In, the mean and covariance of {yt}
are updated recursively according to

E[yt] = λrtδt ◦ θ + (1− δt) ◦ E[yt−1] , (25a)

Cov(yt) = qt diag(δt) + Cov(yt−1)(In − diag(δt)) (25b)

A useful property of the SE is that, for each time step t,
the distribution of the i-th component of the Gaussian vector

yt = (y1t, . . . , ytn) depends only on the signal component θi
and the last time step in whch i-th row of the matrix was

updated. To see this, observe that the Cov(yt) is diagonal for

all iterations, and thus each yt has independent components.

For a given indicator sequence {δt}, the index for the most

recent update of the i-th row before time step t is encoded by

the function τ : N× {1, . . . , n} → N0, defined by

τ(t, i) := max{s ∈ {0, 1, . . . , t− 1} : δsi = 1} (26)

where δsi is the i-th element of the binary vector δs.

From the recursive structure in (25), it follows that every

component that was last updated at time step s is described

by a scalar Gaussian noise model with parameters (qs, rs).
Specifically, the variables yt1, . . . , ytn are independent with

τ(t+ 1, i) = s =⇒ yti ∼ N(λrsθi, qs) (27)

for all t ∈ N0. We note that the function τ provides an alter-

native representation the indicator sequence {δt}, which can

be recovered via the correspondence δti = 1{τ(t+ 1, i) = t}.

Debiasing coefficients. Substituting diag(δt) in the definition

for Cts (19), the debiasing terms {bts} (20) can be compactly

represented in terms of τ as

bts =
1

n

n
∑

i=1

1{τ(t, i) = s}E[Diift(yt−1)] (28)

where Dii denotes the partial derivative of the i-th output

fti(yt−1) with respect to the i-th input yt−1,i.

A. Asymptotic State Evolution

In this section, we obtain a simplified characterization of

the SE by focusing on the high-dimensional limit for sequence

of problems, with increasing dimension n, where the signal

θ ∈ R
n, initialization θ̂0 ∈ R

n, and indicator sequence {δt} ∈
{0, 1}n×N0 together satisfy a decoupling property.

Assumption 4. M is given by (22) and the Projection AMP

recursion (23) satisfies the following conditions:

1) For each t ∈ N0, the joint empirical measure of

{(θi, θ̂0i, δ0i, . . . , δti) : i ∈ [n]} converges in quadratic

Wasserstein distance to a limiting probability measure

the form µ⊗ νt where µ is a distribution on R
2 whose

marginals have unit second moments and νt is is the

distribution of the first t entries of a binary string drawn

from a probability measure ν on {0, 1}N0 .

2) For each t ∈ N, the denoiser ft : R
n → R

n is separable

and is given by fti(xt−1) = ηt(xt−1,i; qτ(t,i), λrτ(t,i))
where ηt : R × R+ × R → R is a Lipschitz continuous

scalar denoiser that is fixed for all n and τ is the index

function defined in (26).

According to our convention that every row is updated at the

first time step (t = 0), the measure ν is supported on binary

strings whose first entry is one. For each t ∈ N, we define pt
to the probability mass function for the position of the last

non-zero entry occurring before time t, i.e.,

pt(s) := νt
(

{ω ∈ {0, 1}t : ωs = 1, ωs+1 = · · · = ωt−1 = 0}
)

for all s ∈ {0, 1, . . . , t − 1}. This probability mass function

can also be defined directly via the limiting empirical measure

pt(s) := lim
n→∞

1

n

n
∑

i=1

1{τ(t, i) = s} (29)

where Assumption 4.1 ensures that the limit exists.

B. Power Iteration

In this section, we provide asymptotic guarantees on the

limiting absolute empirical correlation of the projection AMP

estimates {θ̂t} when the denoisers ft are chosen to be the

projection onto the sphere of radius
√
n. Starting with ρ0 :=

∫

uû dµ(u, û), we define the recurrence relation

ρt =
λ
∑

s<t ρspt(s)
√
∑

s<t(λ
2ρ2s + 1)pt(s)

(30)

The following result relates the sequence {ρt} and with the

asymptotic correlation between the signal θ and the distributed

power method estimates {θ̂t}.

Theorem 4. Let M be a spiked matrix model (22), (θ, θ̂0)
satisfy Assumption 4 and ∥θ̂0∥ =

√
n. Consider the estimate

sequence {θ̂t} produced by (23) with ft(x) =
√
nx/∥x∥. Then,

for each t ∈ N,
∣

∣

∣

1

n
⟨θ, θ̂t⟩ − ρt

∣

∣

∣

p−−−−→
n→∞

0 (31)

for {ρt} defined recursively as in (30).

Due to space constraints, the reader is referred to the

extended version of this work [46] for a proof.
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