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Abstract—This paper introduces a framework for approximate
message passing (AMP) in dynamic settings where the data at
each iteration is passed through a linear operator. This framework
is motivated in part by applications in large-scale, distributed
computing where only a subset of the data is available at each
iteration. An autoregressive memory term is used to mitigate
information loss across iterations and a specialized algorithm,
called projection AMP, is designed for the case where each
linear operator is an orthogonal projection. Precise theoretical
guarantees are provided for a class of Gaussian matrices and
non-separable denoising functions. Specifically, it is shown that
the iterates can be well-approximated in the high-dimensional
limit by a Gaussian process whose second-order statistics are
defined recursively via state evolution. These results are applied
to the problem of estimating a rank-one spike corrupted by
additive Gaussian noise using partial row updates, and the theory
is validated by numerical simulations.

I. INTRODUCTION

Approximate message passing (AMP) refers to a family of
iterative algorithms that has been applied to high-dimensional
inference problems including regression, matrix estimation,
and channel coding; for a comprehensive reference, see the
recent tutorial [1]. The basic form of an AMP algorithm can
be summarized as a recursion on n-dimensional iterates,

xt:Mft(x<t)—thsfs(x<s), tZO,l,Q,...

s<t

ey

where M is an n x n “data matrix”, the f; : R**! — R"™ are
deterministic functions (with initialization fo = fo(0) € R™),
the b;s € R are scalar “debiasing” coefficients , and the notation
<t = (o, ...,xt—1) represents the collection of iterates up
to time ¢t — 1. Depending on the application, the matrix M is
obtained from the observed data via elementary preprocessing
steps such as centering and symmetrization.

One of the key features of the AMP framework is that the
behavior can be tracked precisely in high-dimension settings
provided that the data matrix satisfies certain distributional
assumptions. In these settings, the coefficients by, can be speci-
fied in a way that both accelerates the overall convergence and
guarantees that the process {z;} can be closely approximated
by a Gaussian process {y:} whose mean and covariance can
be efficiently computed via a “state evolution” (SE) recursion.

An important consideration for very large matrix operations
is that computations are distributed across multiple servers. In
practice, the server response times can have a long tail [2],
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and waiting for the “stragglers” can significantly delay the
next iteration. This delay can be mitigated via replication
or coded computation [3]-[7] to ensure that the full matrix
multiplication is available once enough servers respond, at
the cost of additional computation per iteration to maintain a
suitable erasure-correcting code. However, for high-dimensional
inference tasks, it may be more efficient to proceed to the next
iterate. One of the main contributions of this paper is an AMP
framework that naturally captures this scenario, enabling a
precise performance characterization via state evolution.

A. Overview of Main Results

This paper extends the scope of AMP to settings where
the matrix may change with each iteration. Specifically, we
introduce the Linear Operator AMP (OpAMP) framework in
which a linear operator £;: R™*"™ — R™*" is applied to the
data matrix M at each iteration, and the recursion has the form

Ty = Et(M)ft($<t) - Z BtSfS(x<s)-

s<t

@

Under a Gaussian assumption on the data matrix, we show
how the matrices B;s € R™*™ can be specified as a function
of the L; to enforce approximate Gaussianity of the iterates.

To provide a tractable model for long-term memory we also
introduce an autoregressive version of (2) that has a linear
dependence on the previous iterates:

Ty = Et(M)ft(xtfl) + ZAtsxsfl - ZBtsfs(xsfl) (3)

s<t s<t

where the matrices Ay, can be designed such that x; provides
a suitable summary of the previous iterations.

Specializing to the case where each linear operator is given
by Li(M) = II; M for an n X n projection matrix IT;, we
define the projection AMP recursion

xe = I (Mft(ﬂft—l) - thsfs(ﬂis—l)> + Ty (4)

s<t

where the dependence on prior iterations is specified by
the projector sequence. For the special case of commuting
orthogonal projection matrices, the SE has a particularly simple
recursive structure that is analysed in Section III-A.
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Fig. 1. Correlation (0, L) versus iteration count (on the left) and versus total number of n X n multiplications used (on the right). Markers denote empirical
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performance (averaged over 100 trials) and curves denote theoretical SE predictions.

B. Case Study: Power Iteration with Partial Updates

Consider computing the dominant eigenvalue v; € R™ of
a symmetric data matrix M = >, &vv, with eigenvalues

|€1] > |€2] > -+ > |&n| € R via power iteration:

Tipq = M&
[l

(&)
for some initialization x¢p € R™. Assuming that the initial
value zo has some angle oo > 0 with the leading eigenvalue v,
classical convergence bounds [8, Theorem 8.2.1] guarantee that
the rescaled iterations x;/||z;|| converge to v; geometrically
fast as long as the spectral gap is greater than one. This result
is general and holds for any symmetric matrix M. To present
our AMP-based method, we focus on matrices M that were
drawn from a rank-one spiked matrix model, M = \OT + Z
where A > 0, # € R" is, in this example, presumed to be a
unit vector, and Z is an n X n random matrix drawn from the
Gaussian orthogonal ensemble GOE(n), i.e., Z is symmetric
with independent N(0,1/n) entries above the diagonal and
independent N(0,2/n) entries on the diagonal. The goal is to
use the leading eigenvalue v; to provide an estimate of the
direction of the ground-truth signal 6.

Interpreting the projection onto the unit sphere x +— z/||z||
as a denoising function, a standard AMP correction term can
be added to the power method to obtain the recursion

1 Tt—1 )
Tip1 = —— | Mxy —
T el ( Y ]

with the convention that z_; /||z_1|| = 0. When M is sampled
from a spiked matrix model, this iteration can be tracked
accurately in the large-n limit via SE. Furthermore, when
A > 1, the iterates {x;} can be shown to converge to the fixed
point Avq, a multiple of the leading eigenvector.

Q)

Now, consider the setting where only a fraction of the rows
of M are available at each iteration ¢, i.e. only IT; M is observed
for some diagonal 0-1 matrices {II;}. Based on the results in
this paper, we propose the following AMP-corrected power

method with partial updates:

v = o (M — 3 (T T ) 20

e X
)

where the complementary projections are simply II;- = I — II;.
This recursion is practical as it does not require knowledge
of any of the model parameters and its computational cost
per iteration ¢ is dominated by the matrix multiply II, Mz,
which involves O(nk;) operations, where k; = rank(II;). In
Section III-B, we provide single-letter formulas for the SE
dynamics of (7) under some structural assumptions on the
signal 6 and update schedule {II;}.

In Figure 1, the projection AMP algorithm in (7) is applied
to a size n = 5,000 data matrix with A = /2, and the results
are averaged over 100 Monte Carlo trials, each with the same
ground truth 6 € {iﬁ}" and initialization xo € R™ with
(0, H;—M) = 0.01. A comparison of the empirical results and
the theoretical prediction obtained from the asymptotic SE is
provided for the following protocols:

+ H#.’I}t

o Full matrix: The full data matrix is applied each iteration.
e Round robin: The rows are partitioned into 10 equally-
sized subsets. Each iteration applies the rows in a subset.
e Random update: Each row is updated independently with
probability 1/10.
Intuitively, the round-robin and random-update protocols con-
verge more slowly than full-matrix AMP with respect to the raw
iteration count. However, if we instead plot the performance
with respect to effective number of n x n matrix multiplications,
we find that the round-robin protocol is more efficient than
the full-matrix protocol. (For certain parameter settings, the
random-update protocols is also more efficient, but this is not
always the case.)

C. Related Work

Most of the work in the AMP literature has focused on
finite-memory versions of (1) where each f; depends only on
a fixed number of previous iterates [9]-[17]. The full-memory
formulation in (1) has appeared in recent work as a model for
generalized first-order methods [18], [19].



Our analysis builds on the theoretical framework for non-
separable functions and IID Gaussian matrices introduced
by Berthier et al. [20], and further developed in [21], [22]
where (pseudo)-Lipschitz continuity is the only assumption
placed on the function sequence and convergence is assessed in
terms a sequence of suitably normalized pseudo-Lispchitz test
functions. Our main theorems establish conditions under which
the normalized difference ﬁ |x<r —y<r| over a fixed number
of iterations 7' converges to zero in probability in the large-n
limit. Concurrent work explores this form of convergence from
a non-asymptotic perspective [23].

A version of the projection AMP framework of this paper was
studied by Cakmak et al. [24] using non-rigorous dynamical
functional theory. Projection AMP is also related to recent
work that uses a full memory AMP recursion to approximate
the discrete-time dynamics of gradient descent and other first-
order optimizations techniques [25], [26]. These works focus
on the behavior of existing optimization techniques in scaling
regimes where the number of rows updated at each iteration
grows sublinearly with the problem dimension. By contrast, the
main focus of this paper is to design algorithms that overcome
the limitations of the dynamic data as expressed in (2), e.g.,
by optimizing the long-term memory as function of the linear
operators.

In a slightly different direction, the special case of (2) where
the linear operator is fixed for all iterations has been studied
by a subset of the authors in the context of the matrix tensor
product model [27], [28].

Beyond the setting of IID Gaussian matrices, AMP algo-
rithms have also been proposed and analyzed for orthogonally-
invariant random matrix ensembles [29]-[36] and semirandom
ensembles [37]. These results impose a separability assumption
on the functions {f;}, which precludes the general linear
transformations used in the proof of our OpAMP framework.
Extending the results in this paper to other matrix ensembles
is an interesting direction for future research.

Recent efforts have developed distributed, accelerated, and
robust variations on the power method as well as long-run
convergence guarantees under suitable conditions [38]-[43].
Additionally, recent work on subspace tracking algorithms
with missing data [44] has characterized the high-dimensional
performance limit via differential equations [45].

II. LINEAR OPERATOR AMP

This section describes the linear operator AMP framework
and states our main theoretical results. Owing to space
limitations, the proofs can be found in the full version [46].

To streamline the presentation, we focus on a centered
version of the recursion given by

Ty = Et(Z)ft(UUq) - ZBtsfs($<s)

s<t

®

where Z is a GOE(n) matrix. The extension to settings where
the matrix has a low-rank signal component follows from
standard arguments in the AMP literature; see Section IIIL.

Each linear operator £; has a (non-unique) decomposition
of the form

K
Li(Z) = LuZRu ©)
k=1

for n x n matrices {L, Rir : k = 1,..., K}. We require
that the both operator norm and the rank (i.e., the smallest K
such that (9) holds) are bounded uniformly w.r.t. the problem
dimension n.

Our theoretical results provide a connection between the
distribution of the AMP iterates and a zero-mean Gaussian
process {y:} whose second-order statistics are described in
terms of {£;} and {f;} via a recursive process called state

evolution. Starting with Cov(yo) = 1| fo||*I,, the covariance
at time ¢ is defined by the covariance up to ¢ — 1 according to

K
Cov(ys,yt) = Y quunLaLi, (10)
l,k=1
1
Qsitk = EE[<RslfS(y<s)7Rtkft(y<t)>] (1)

This construction holds holds for any collection of matrices
{Lyx, Ry} satisfying the decomposition in (9).

Assumption 1. Each f;: R"** — R" is L-Lipschitz contin-
uous and satisfies ﬁ”ft(())ﬂ < C where C, L are positive
constants that do not depend on n.

Assumption 2. Each £; can be decomposed in the form given
in (9) with || Regllop, || Lix]lop < C’ for all t,k € Ny, where
C', K are are positive constants that do not depend on n.

Theorem 1. Let {x;} be generated by (8) and let {y;} be the
zero-mean Gaussian process defined by the SE (10). Suppose
Assumptions 1 and 2 hold, Z ~ GOE(n), and the matrices
{B¢s : 0 < s < t} are given by

K

1
Bts = Z E tr(RtkE[Dsft(y<t)}le) Lthsl
k,l=1

12)

Here, the notation Dy indicates the Jacobian matrix of f;(z<¢)
computed w.r.t. the input vector xs. Then, for any fixed number
of iterations 7', there exists a sequence (in n) of couplings

between ., and y., such that HIST\/%‘USTH 0.

A. Autoregressive Linear Operator AMP

n— oo

While the general formulation in (8) allows for arbitrary
dependence on prior iterations, the question remains of how
the f; should be optimized as a function of the linear
operators. Motivated by practical considerations, we introduce
an autoregressive version of (8), that uses a weighted linear
combination of previous updates:

v = Lo(Z) filwe1) + Y Apsws = Y Brafs(zio1) (13)
s<t s<t
Here, the n xn matrices A;s describe the long-term dependence
and the functions f; are applied only to the prior iteration,
reducing the complexity of both the implementation and the
analysis.



To describe the SE, we define the collection of n X n matrices
{Cs; : 0 < s <t} according to

-1

L, L,
—Alo In CVlO In
—Ayp _At,tfl I, Cho Ct,tfl I,

Since these matrices are block unitriangular, their inverses exist.

Furthermore, using the convention that Cy; = I,,, the mapping
from {A;s} to {Cs} can be expressed recursively via

t—1
Cts = Z AtrCrs
r=0

The distribution of the iterates from (13) is compared with a
zero-mean Gaussian process {y;} whose covariance is defined
recursively according to

Z Z 510k Csst Lt (Lo Crer) T (15)

s'<s,t'<t l,k=1

(14)

COV ysa yt

where qg¢ is defined in (11).

Assumption 3. [|As]lop < C” for all s,t where C” is a
positive constant that does not depend on n.

Theorem 2. Let {x;} be generated by (13) and let {y,} be
the zero-mean Gaussian process defined by the SE. Suppose
Assumptions 1, 2, and 3 hold, Z ~ GOE(n), and the matrices
{Bs : 0 < s <t} are given by

Z Lt (RWED fulye 1)|Co1sLa) LRt (16)

where {L, Ry} provide the decomposition of £; given in
(9) and {C}s} are defined by (14). Then, for any fixed number
of iterations 7, there exists a sequence (in n) of couplings

between z., and y., such that HIST\/‘%’STH P o

n— oo

Note that in view of (14), the matrices C;_; s appearing in
the correction term at time ¢ can be computed in recursively

in terms of the matrices C;_5 s used in the previous iteration.

B. Projection AMP

The projection AMP framework is a specialization of (13)
where each linear operator is given by £,(Z) = II,Z for an
nxn projection matrix II, and the autoregressive linear memory
term is the complementary projection matrix I} = I — II,
applied to the past iteration.

The projection AMP recursion can be expressed as

2= (Zfu@er) = Y biofilwe)) + MFas (D)

s<t

A useful property of this formulation is that the memory terms
depend only on the projector sequence and the debiasing terms
are described by scalars.

The additional structure of projection matrices also leads to
simplifications for the SE. The covariance of the zero-mean
Gaussian process {y;} is given by

(18)
7E[<fs’ (ysul), ft’(yt’fl)>]cvss’Hs’(Ht’cvtt')—r

COV(yS7 yt)
s'<s,t’'<t

where the matrices C;4 are defined by

L,
Cis =
t {H#H#_l

Theorem 3. Let {x;} be generated by (17) and let {y,} be
the zero-mean Gaussian process defined by the SE. Suppose
Assumption 1 holds, Z ~ GOE(n), and the scalars {bss : 0 <
s < t} are given by

s=t

19
0<s<t (19

1 1
Hs+2Hs+1

bts = %tr(E[th(ytfl)]thl,sHs)

Then, for any fixed number of iterations 7', there exists a
sequence (in 1) of couplings between z., and y., such that
le<r—y<rll P 0.
\/’TL n—oo

The SE for projection AMP admits further simplifications
for the special case of commuting orthogonal projections, i.e.,
each Il is symmetric and II,II; = II,II, for all s,t. Starting
with (18) and then using the fact that the II; and C}s; commute,
one finds that Cov(y,) satisfies the simple recursion

(20)

1
Cov(ys) = ;E[Hft(yt—l)ﬂz]nt + Cov(y;—1)IT} 2D

where Cov(y;_1)IT; = T+ Cov(y;_1) is symmetric. In partic-
ular, if IIp = I,, and every f; is supported on the sphere of
radius o/n then it follows that Cov(y;) = 0?1, for all ¢ € Nj.

III. MATRIX ESTIMATION WITH PARTIAL UPDATES

In this section, we show how our linear operator framework
can be applied to settings where the entire data matrix cannot
be applied at each iteration. For concreteness, we focus on the
rank-one spiked matrix model

Ao
M=-600"+Z7 (22)
n
where A > 0 is a positive scalar, § = (01,...,60,,) € R™ is the
unknown signal, and Z ~ GOE(n) is additive noise. The goal
is to recover § from M subject to the constraints that only a
subset of the rows of M can be accessed at each iteration.

The update constraints are modeled using projection AMP
with projections of the form II; = diag(d;) where §; € {0,1}"
is a binary vector indicating which rows can be updated in the
t-th iteration. For a given sequence of “denoising” functions
{f+}, we construct a sequence of estimates {f,} using the
following version of projection AMP:

éf = fi(r1-1)
Ty = 5t o (Mét - Z bt5é3> + (1 - 5t) OCTt—1

s<t

(23a)
(23b)



Here, o denotes the elementwise (Hadamard) product and 1
denotes the all ones vector. The scalar debiasing coefficients
b;s are defined as a function of the SE according to (28). To
circumvent some cumbersome details that arise with a generic
initialization, we will assume throughout this section that every
row of the matrix is updated in the the first time step, i.e.,
0o = 1 is the all ones vector.

State evolution. Combining Theorem 3 with recentering
arguments, it can be shown that the iterates from the recursion
(23) are well approximated by a Gaussian process {y; }, whose
mean and covariance are defined by a two-parameter SE:

qt = %E[llft(yt_l)llﬂ; Ty = %E[w,ft(yt—lm (24)

where qo = || fol|?/n, 0 = (0, fo)/n are the overlaps arising
from the initial estimate 6y = f, € R™. Starting with E[yg] =
Argf and Cov(yo) = qol,, the mean and covariance of {y;}
are updated recursively according to

Ely:] = Ar¢0; 00 + (1 — 6;) o E[y, 1],
Cov(yt) = g diag(ds) + Cov(y;—1) (I, — diag(é))

A useful property of the SE is that, for each time step ¢,
the distribution of the i-th component of the Gaussian vector
y: = (Y1t, - - -, Ytn) depends only on the signal component 6;
and the last time step in whch ¢-th row of the matrix was
updated. To see this, observe that the Cov(y;) is diagonal for
all iterations, and thus each y, has independent components.
For a given indicator sequence {d;}, the index for the most
recent update of the i-th row before time step ¢ is encoded by
the function 7 : N x {1,...,n} — Ny, defined by

7(t,i) = max{s € {0,1,...,t — 1} : 65, = 1}

(25a)
(25b)

(26)

where J; is the i-th element of the binary vector J,.

From the recursive structure in (25), it follows that every
component that was last updated at time step s is described
by a scalar Gaussian noise model with parameters (g, 7).
Specifically, the variables 1, ..., Yy, are independent with

T(t + 1ai) =S Yti ~ N()‘ngi; qs) 27
for all ¢ € Ny. We note that the function 7 provides an alter-

native representation the indicator sequence {J;}, which can
be recovered via the correspondence &;; = 1{7(t + 1,4) = t}.

=

Debiasing coefficients. Substituting diag(d;) in the definition
for Cis (19), the debiasing terms {b:s} (20) can be compactly

represented in terms of 7 as
n

by =+ > 1{r(t,1) = S}EIDiifulyi-1)

i=1

(28)

where D;; denotes the partial derivative of the ¢-th output
fri(y1—1) with respect to the i-th input y;_1 ;.

A. Asymptotic State Evolution

In this section, we obtain a simplified characterization of
the SE by focusing on the high-dimensional limit for sequence
of problems, with increasing dimension n, where the signal

0 € R™, initialization f, € R™, and indicator sequence {d;} €
{0,1}™*No together satisfy a decoupling property.

Assumption 4. M is given by (22) and the Projection AMP
recursion (23) satisfies the following conditions:

1) For each ¢ € Ny, the joint empirical measure of
{(05,00:,00i, - ..,6) : i € [n]} converges in quadratic
Wasserstein distance to a limiting probability measure
the form p ® v; where p is a distribution on R? whose
marginals have unit second moments and v; is is the
distribution of the first ¢ entries of a binary string drawn
from a probability measure v on {0, 1}Yo.

2) For each t € N, the denoiser f;: R™ — R™ is separable
and is given by fii(wi—1) = Ne(Ti—1,i5 Cr(ti), ATr(t,4))
where 7:: R X Ry x R — R is a Lipschitz continuous
scalar denoiser that is fixed for all n and 7 is the index
function defined in (26).

According to our convention that every row is updated at the
first time step (¢ = 0), the measure v is supported on binary
strings whose first entry is one. For each ¢t € N, we define p;
to the probability mass function for the position of the last
non-zero entry occurring before time ¢, i.e.,

pe(s) = Vt({w c{0,1} tws=1lwey1 = =wi_1 = 0})

for all s € {0,1,...,¢t — 1}. This probability mass function

can also be defined directly via the limiting empirical measure
SR ‘

pi(s) = lim =% 1{r(t,i) = s}

i=1

(29)

where Assumption 4.1 ensures that the limit exists.

B. Power Iteration

In this section, we provide asymptotic guarantees on the
limiting absolute empirical correlation of the projection AMP
estimates {ét} when the denoisers f; are chosen to be the
projection onto the sphere of radius /n. Starting with pg =
J wiidp(u, i), we define the recurrence relation

_ /\Zs<t pspt(s)
Vst (AN202 + Dpe(s)

The following result relates the sequence {p;} and with the
asymptotic correlation between the signal 6 and the distributed
power method estimates {6, }.

Pt (30)

Theorem 4. Let M be a spiked matrix model (22), (9,@0)
satisfy Assumption 4 and [|0y|| = y/n. Consider the estimate
sequence {6;} produced by (23) with f;(z) = v/nz/||z||. Then,
for each t € N,

<9, ét> — Pt L> 0

1

- €1V
n n—oo

for {p;} defined recursively as in (30).

Due to space constraints, the reader is referred to the
extended version of this work [46] for a proof.
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