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ABSTRACT

Cell segmentation is a crucial step for understanding cell
mechanisms, and behaviors and for analyzing them with
significant applications in disease modeling, personalized
medicine, and drug development. In this work, we propose
an automated system for cell segmentation in time-lapse
microscopy. This work seeks space-time interest points in
multiple scales and performs spatio-temporal scale selec-
tion in image sequences. Spatio-temporal features drive
segmentation and identification of cells by a multilayered
neural net. We validated our method on datasets of im-
age sequences of live cells and reference masks from the
Cell Tracking Challenge (CTC) consortium. Our methodol-
ogy produced promising segmentation results over multiple
test image sequences. The code is available at https:
//github.com/smakrogi/CSTQ_Pub.

Index Terms— segmentation, time-lapse series, spatio
temporal features, scale selection, neural net

1. INTRODUCTION

Study of living organisms by cell identification, quantification
and characterization using imaging techniques are emerging
research areas in biological and medical studies [1,2]. Recent
developments in time-lapse microscopy enable the observa-
tion and quantification of cell-cycle progression, cell migra-
tion, and growth control.

Cell segmentation and tracking methodologies involve the
tasks of preprocessing, cell segmentation and motion track-
ing [3-6]. One of the challenging aspects of cell analysis is
to develop methods that can provide good quality and accu-
racy on segmentation for different modalities of cell imaging.
Previous works include cell nuclei detection [7, 8] and hybrid
models of deep learning methods and image processing [9].

In this work, we introduce a system for cell detection
and segmentation in time-lapse image sequences. We com-
pute motion activity measures, inspired from the computer
vision fields of video processing, blob detection, and scale
selection [10, 11]. We generate multi-scale feature descrip-
tors for the each of three consecutive frames. We introduce a
technique for selecting automatically a scale with high con-
trast and least background noise, inspired from techniques

of spatio-temporal point-of-interest detectors [11]. The com-
puted features drive the cell detection and segmentation. A
multi-layered neural net is applied at the superpixel level to
separate foreground from background.

We validate our model with datasets from the Cell Track-
ing Challenge consortium [12]. We evaluated our results on
their ground truth masks, which are human-made reference
annotations, agreed by experts. Our method achieved satis-
factory results for 2-D + t datasets of the Cell Tracking Chal-
lenge. Using segmentation and detection measures for per-
formance evaluation, we obtained DSC values of at least 0.80
for all test sequences.

2. METHODOLOGY

2.1. Multi-scale Interest Points, Scale Selection and Super-
pixels

2.1.1. Spatio-temporal Anisotropic Diffusion

In this stage we solve a system of three coupled PDEs ap-
plied to each frame and its direct temporal neighbors. The
goal of this stage is to smooth the background while preserv-
ing the spatio-temporal discontinuities of cells in the frame
and to produce multiple scales of visual representation. More
specifically, given 3 consecutive frames of the sequence at
time points 7 = {¢ — 1,¢,¢ 4 1}, we define a system of three
coupled PDEs for each frame.

oI(i,j,7,s o .
HCIT3) (15107, 0)) - A0, 7,5)

+ Vy(IVI(i,j,7,8)]) - VI(i,j,78) (1)

We apply initial condition I(i,j,7,0) = Iy(4,j,7) and

boundary condition 9% = 0 on 02 x 0T x (0, S). In equation

(1), g(+) is the edge stopping function and s is the scale index.

We iteratively generate multi-scale diffused frame maps.
The diffused frame maps are utilized in the subsequent stages
of spatio-temporal feature detection, segmentation, and fore-
ground/background separation.
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2.1.2. Spatio-temporal Feature Maps and Motion Descrip-
tors

The goal is to detect blob-like structures and other keypoint
types in the spatio-temporal domain. We expect that the use
of non-linear diffusion models will enable the detection of
non-spherical features that may correspond to non-circular
cell shapes. In addition to this step, we also estimate motion
displacement field vectors of the moving regions using Com-
bined Local Global Optical Flow Estimation (CLGOF) [13].
Spatio-temporal Moments These are the spatio-temporal
second moments [14] computed as an extension of Harris cor-
ner detector. This approach computes the structure tensor

2 I, ILlI,
M=w(,ol, 73| I,I, I} I,

LI, LI, I2

where w(-, 0%, 77) denotes a smoothing kernel with integrat-
ing factors o2, 72. Then, it uses the Harris corner detection
criterion S to identify the points of interest

S = det(M) — k - trace®(M). 3)

Spatio-temporal Hessian This approach computes the
Hessian matrix H in the space-time domain

H('702772): Iy:ﬂ Iyy Iyz . 4)

It measures the strength the interest points using the determi-
nant magnitude, S = |det(H)|.

Spatial Hessian on Temporal Derivative This approach
computes the spatial Hessian matrix on first-order temporal
derivatives I; that we denoted by H;. It measures the strength
the interest points using the determinant S = |det(H,)|.

Automated Scale Selection

The goal of the automatic scale selection stage is to iden-
tify the diffused map that best represents the feature descrip-
tors of the foreground regions and limits the noise level. In
this stage, we form multi-scale feature descriptors in spatio-
temporal domain defined by the regional maxima across all
generated scales. These feature vectors are then normalized
so that the algorithm can automatically choose a scale of the
diffused maps.

We utilize the second order derivative of the spatio-
temporal features over the generated scales as the criterion for
scale selection similarly to [11]. The diffused frame and the
features from the selected scale, drive the subsequent stages
of cell detection and segmentation.

Watershed and Key-point Based Segmentation

In this step we fuse the regional maxima of the feature
maps with regional minima of the edge map to form markers
that drive watershed segmentation. We first invert the stochas-
tic map produced by Parzen density estimation to form re-

gions separated by spatio-temporal discontinuities. We iden-
tify maxima of the keypoints and use them as markers along
with the edge map minima.

2.2. Machine Learning-based Foreground/Background
Separation

We developed a fully connected multi-layered neural network
to classify the watershed superpixels into cell (foreground)
or non-cell (background) classes. The layer structure of the
neural net contains 9 x 12 X 6 x 2 nodes, where each fully
connected layer is followed by a relu activation module. We
used the cross-entropy loss function and LBFGS optimization
to train the network. The training/test vectors consist of the
regional areas, and the regional averages and standard devia-
tions of the diffused map intensities, spatio-temporal descrip-
tors, motion displacement vector magnitudes, and the spatio-
temporal gradient magnitudes.

Because the class of non-cells typically has many more
samples than the cell class, we developed an unsupervised
learning-based stratification approach. We employed DB-
SCAN [15, 16] to cluster samples in the original feature
space. We then randomly under-sampled the most populous
cluster to equalize its size with that of the second most pop-
ulous cluster. This step reduces class imbalance in training
data while preserving the structure of the data as estimated
by nonparametric clustering. The network learns the relation-
ships among the regional features and separates foreground
and background regions without user intervention in the test
sequences.

2.3. Local Intensity Clustering Level Sets with Bias Field
Estimation (LSE-BF)

We employ region based energy minimizing level set mod-
els to refine the delineation of the cells that were detected
in the previous stage of foreground/background separation.
The property of intensity inhomogeneity is used to get a local
clustering criterion in neighborhood of each point in the im-
age [17]. This local criterion is then used to obtain a global
criterion in the neighborhood center of the image. This cri-
terion is used to compute the energy minimized by level set
functions that partition the image domain and to estimate the
bias field.

2.4. Cell Cluster Separation

Adherent cells form clusters that sometimes are detected as a
single cell. In this stage we identify and separate the cell clus-
ters. We identify cell cluster candidates using morphological
characteristics based on the solidity of the detected regions.
We then compute the signed distance map of the binary cell
map and use the distance map boundaries to divide the cell
clusters.
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3. EXPERIMENTS

3.1. Dataset Description

We evaluated our method on Cell Tracking Challenge datasets
of 2D time-lapse live cell sequences. We employed 3 datasets
of fluorescence (Fluo) microscopy and 1 phase-contrast (PhC)
microscopy for training and testing. Each of the datasets
includes two sequences labeled as 01 and 02, along with
reference masks. We tested our algorithm on Fluo-C2DL-
MSC (MSC), which has low resolution cytoplasm of rat
mesenchymal stem cells, Fluo-N2DL-HeLa (HeLa), which
contains low resolution nuclei of cervical cancer cells, Fluo-
N2DH-GOWT1 (GOWT1) that consists of high resolution
nuclei of mouse embryonic stem cells, and PhC-C2DH-U373
(U373) which has high resolution cytoplasm of glioblastoma-
astrocytoma U373 cells. The datasets differ in noise level,
cell density, number of cells leaving and entering the field of
view, resolution, and mitotic events.

3.2. Evaluation Methods

We trained our classifier on the first sequence of the dataset
and evaluated its performance on the second sequence. Our
methodology was evaluated for accuracy of segmentation
against CTC reference data.

The CTC datasets include two sets of reference segmen-
tation masks for evaluation, named gold standard corpus or
gold-truth (GT), and silver standard corpus or silver-truth
(ST). GT reference sequences were manually segmented by
experts with background in biology at three different insti-
tutions. On the other hand, the ST reference sequences are
computer-generated annotations from the top results submit-
ted by former participants.

The CTC training dataset serves as a validation set for
measuring segmentation accuracy by the Dice Similarity Co-
efficient (DSC), Jaccard index, SEG measure (SEG), and
DET measure (DET). We denote by R the set of all bi-
nary cell regions delineated by our cell segmentation method,
while Rg.y is the set of cell pixels from the reference region.

SEG measure — It measures the Jaccard index between
test and reference data, for each cell that has a reference mask.
Then the method sets to zero the indices of cells for which
|Rs N Rpef| < 0.5 |RReyl|. It finally computes the average
of all the individual indices to yield SEG.

DET measure — This is a cell detection accuracy mea-
sure. DET is evaluated by comparing the nodes of the acyclic
graphs generated by the tested algorithm with nodes of the
acyclic graphs of the reference masks. It is defined as

DET = 1-min(AOGM —D, AOGM —D0) /AOGM — DO.

&)

Here AOGM denotes Acyclic Oriented Graph Measure for
detection, and AOGM-D is the cost of transforming a set of
nodes provided by the cell segmentation method into the set

of reference nodes. AOGM-DO is the cost of creating the set
of reference nodes.

(b)
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Fig. 1. Segmentation comparisons for Fluo-N2DH-GOWT1-
02. (a) Intensity frame, (b) GT reference segmentation, (c)
segmentation by the proposed method.

4. RESULTS

We report DSC and Jaccard segmentation accuracy results in
Table 1, and SEG and DET measures in Table 2. We dis-
play examples of segmentation results and reference masks in
Figures 1 and 2. We utilized the gold standard corpus GT and
silver standard corpus ST reference masks in our experiments.
The accuracy scores computed are for the second sequence in
the dataset that was not used for training the neural net.

Table 1. DSC and Jaccard results of C'STQ v3.0 versus
ST
Dataset DSC | Jaccard
Fluo-C2DL-MSC-02 0.837 | 0.729
Fluo-N2DL-HeLa-02 0.903 | 0.823
Fluo-N2DH-GOWT1-02 | 0.947 | 0.900
PhC-C2DH-U373-02 0.799 | 0.672

We have compared the results of our current method de-
noted by C'ST'Q v3.0 to previous versions C'STQ v2.0 and
v2.9. CSTQ v2.0 implements a probability density model
for foreground and background detector, no scale selection,
and no motion descriptors for segmentation [6]. We also re-
port scores of C'ST'Q v2.9, that employs a non parametric
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Fig. 2. Segmentation comparisons for PhC-C2DH-U373-
02. (a) Intensity frame, (b) GT reference segmentation, (c)
segmentation by the proposed method.

Table 2. SEG measure results versus ST, SEG measure and
DET measure results versus GT

Version Dataset SEG | SEG | DET
ST GT GT

CSTQ v2.0 MSC-02 0.647 | 0.594 | 0.734
CSTQ v2.9 MSC-02 0.782 | 0.691 | 0.838
CSTQ v3.0 MSC-02 0.770 | 0.694 | 0.755
CSTQ v2.0 HeLa-02 0.735 | 0.646 | 0.830
CSTQ v2.9 HeLa-02 0.853 | 0.802 | 0.964
CSTQ v3.0 HeLa-02 0.855 | 0.801 | 0.968
CSTQ v2.0 | GOWTI1-02 | 0.861 | 0.853 | 0.926
CSTQ v2.9 | GOWTI1-02 | 0.903 | 0.902 | 0.876
CSTQ v3.0 | GOWT1-02 | 0.906 | 0.907 | 0.876
CSTQ v2.0 U373-02 0.576 | 0.609 | 0.607
CSTQ v2.9 U373-02 0.681 | 0.684 | 0.844
CSTQ v3.0 U373-02 0.677 | 0.687 | 0.832

likelihood density model for foreground/background separa-
tion and no motion descriptors for segmentation. Our method
was developed in the Matlab framework and built as a single
command line binary file. The p £ o estimate of computation
time per frame over the test datasets is 89.9 4= 74.51 seconds.

5. DISCUSSION AND CONCLUSION

The experiments show that our method produces promising
results and performs well in the presence of intensity homo-
geneity in the sequences.

The algorithm was validated on 4 real datasets. We cal-
culated the DSC and Jaccard scores in Table 1 using the ST
reference masks, because ST reference sequences have dense

Comparison of SEG measure using GT and ST reference masks
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W SEG GT
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Dataset
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Fig. 3. Performance comparison versus GT and ST reference
masks.

annotations, i.e., annotations for all cells in all frames for a
given dataset. This is in contrast to the sparse GT reference
masks, where only certain cells in selected frames were an-
notated. We computed the SEGMeasure for our results using
both GT reference masks and ST reference masks. We report
SEGMeasure and DETMeasure results versus GT in Table 2,
and SEG results versus ST and GT in Figure 3.

When comparing the SEG and DET measures, we observe
that the detection rates are higher than the segmentation rates.
This is expected, because in segmentation the goal is to delin-
eate the boundary cells with accuracy.

We observed that incorporation of spatial and temporal
feature detectors has improved the results for watershed seg-
mentation. Furthermore, the neural net classifier improves the
separation of foreground regions from background regions.
The learning of relationships among the region descriptors
has enabled the classifier to identify foreground regions with
increased resilience to noise. On the other hand, detection of
low contrast cells for GOWT1-02 and HeLa-02 datasets is an
area of improvement for our method. Similarly, delineating
thin structures for MSC-02 may be challenging, due to vari-
ations in pixel intensities, presence of noise, and resolution
limitations.

In conclusion, our research work integrates machine
learning methods with automated scale selection of the dif-
ferential spatio-temporal features along with optical flow
estimation for the motion of the cells. This is a promising
research area that seems to be applicable to the problem of
cell segmentation and detection. Future goals are to closely
investigate deep learning spatio-temporal feature detection
techniques in order to improve the robustness and generaliz-
ability of cell segmentation and to evaluate the algorithm on
additional cell microscopy techniques.
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