arXiv:2410.18885v1 [cs.DS] 24 Oct 2024

Connectivity Labeling Schemes for Edge and Vertex Faults
via Expander Hierarchies

Yaowei Long Seth Pettie* Thatchaphol Saranurak’
University of Michigan University of Michigan University of Michigan

Abstract

We consider the problem of assigning short labels to the vertices and edges of a graph G so
that given any query (s,t, F') with |F| < f, we can determine whether s and ¢ are still connected
in G — F, given only the labels of F'U {s,t}.

This problem has been considered when F' C E (edge faults), where correctness is guaranteed
with high probability (w.h.p.) [DP21] or deterministically [IEWM23], and when F' C V (vertex
faults), both w.h.p. and deterministically [PP22, PPP24]. Our main results are as follows.

Deterministic Edge Faults. We give a new deterministic labeling scheme for edge faults
that uses 0(\/7)-bit labels, which can be constructed in polynomial time. This improves
on Dory and Parter’s [DP21] existential bound of O(flogn) (requiring exponential time
to compute) and the efficient O(f2)-bit scheme of Izumi, Emek, Wadayama, and Ma-
suzawa [[EWM23]. Our construction uses an improved edge-expander hierarchy and a
distributed coding technique based on Reed-Solomon codes.

Deterministic Vertex Faults. We improve Parter, Petruschka, and Pettie’s [PPP24] deter-
ministic O(f7 log"® n)-bit labeling scheme for vertex faults to O(f*log™® n) bits, using an
improved vertex-expander hierarchy and better sparsification of shortcut graphs. We com-
pletely bypass deterministic graph sketching [TEWM23] and hit-and-miss families [KP21].

Randomized Edge/Verex Faults. We improve the size of Dory and Parter’s [DP21] ran-
domized edge fault labeling scheme from O(min{f + logn,log®n}) bits to O(min{f +
log n, log® nlog f }) bits, shaving a logn/log f factor. We also improve the size of Parter,
Petruschka, and Pettie’s [PPP24] randomized vertex fault labeling scheme from O(f3 log® n)
bits to O(f2 log® n) bits, which comes closer to their Q(f)-bit lower bound [PPP24].

*Supported by NSF Grant CCF-2221980.
fSupported by NSF Grant CCF-2238138.

Contents

1 Introduction
2 Deterministic Edge Fault Connectivity Labels
2.1 First Tool: Edge Expander Hierarchies
2.2 A Simple O(f)-Bit Labeling Scheme
2.3 Second Tool: Code Shares
2.4 An O(V/f)-Bit Labeling Scheme
3 Deterministic Vertex Fault Connectivity Labels
3.1 Overview and Challenges L
3.2 The Structure e
3.2.1 The Basis: A Vertex Expander Hierarchy
3.2.2 The Initial Structure: Low-Degree Steiner Trees and Shortcut Graphs
3.2.3 Structures Affected by Queries Lo
3.2.4 A Divide-and-Conquer Lemma
3.2.5 An Improved Divide-and-Conquer Lemma, via Sparsified Shortcut Graphs . .
3.3 The Strategy for Handling Queries L.
3.4 The Labeling Scheme: Implementing the Strategy
3.4.1 The Euler Tours of (Extended) Steiner Trees
3.4.2 Profiles of Vertices, Components and Subtrees
3.4.3 Labelson Euler Tours
3.4.4 Labels for Implementing EnumFromGiant(r,,I')
3.4.5 Space Analysis
3.4.6 The Final Labeling Scheme,
4 Randomized Edge Fault Connectivity Labels
4.1 A Simple Labeling Scheme o o
4.2 A Smaller Labeling Scheme
5 Randomized Vertex Fault Connectivity Labels
6 Lower Bound for Global Connectivity under Vertex Faults
7 Conclusion and Open Problems
Acknowledgments

A Low-Degree Steiner Trees Spanning Tough Sets

B Improved Singleton-Detection Scheme: Proof of Lemma 4.5

13
13
15
15
16
20
20
24
27
30
31
31
33
37
41
44

44
44
46

49

50

51

52

52

54

1 Introduction

A labeling scheme for a graph problem can be viewed as a distributed data structure in which all
queries must be answered without inspecting the underlying graph, but only the labels of the query
arguments. Early work focused on labeling schemes for adjacency [Bre66, BE67, KNR92|, which is
connected to finding small induced universal graphs [ADK17, AKTZ19].

There are now many labeling schemes for basic navigation queries in rooted trees [ADKI17,
AAKT06, AHL14], such as adjacency, ancestry, and least common ancestors. There are labeling
schemes for computing distances in general graphs [AGHP16a], planar graphs [GPPR04, BGP22,
GU23], and trees [GPPR04, ABR0O5, AGHP16b], as well as labelings for approximate distances [TZ05,
AGI11]. There are several labeling schemes for answering queries about the pairwise edge- and
vertex-connectivity in undirected graphs [KKKP04, HL09, IN12, PSY22].

Label Schemes under Faults. Courcelle and Twigg [CT07, CGKTO08] initiated the study of
forbidden set or fault tolerant labeling schemes. The idea is to support a standard connectiv-
ity /distance query, subject to faults (deletions) of some subset F' of vertices or edges. Several
fault tolerant labeling schemes focus on special graph classes such as bounded treewidth graphs
[CTO7] and planar graphs [CGKT08, ACGP16, BCGT22, CMW23]. On general graphs, labeling
schemes that handle at most one or two faults were shown for single-source reachability [Chol6]
and single-source approximate distance [BCHR20].

The first labeling scheme on general graphs under multiple faults was given by Dory and
Parter [DP21], for connectivity under edge faults. More precisely, they assigned labels to edges and
vertices of an undirected n-vertex graph G so that, given the labels of (s, ¢, F') where F' C E(G),
one can determine if s and ¢ are still connected in G — F. When |F| < f, they gave a Monte Carlo
randomized construction of labels of size O(min{f + logn,log®n}) bits that answer each query
correctly with high probability. By increasing the size to O(flogn) bits, their scheme answers
all queries correctly, with high probability, though confirming this property seems to require an
exponential time brute force search. Recently, Izumi, Emek, Wadayama, and Masuzawa [[EWM23]
gave a deterministic polynomial-time construction of labels of size O(f2).

Parter and Petruschka [PP22] considered the same problem, but with verter faults rather than
edge faults, i.e., FF C V(G). They gave deterministic labeling schemes with length O(logn) for
f =1, O(log®n) for f =2, and a randomized scheme of length O~(n1_1/2f72) for general f. This
year, Parter, Petruschka, and Pettie [PPP24] developed randomized and deterministic labeling
schemes with label length O(f3) and O(f7), respectively. They also observed an Q(f + logn)-
bit lower bound for vertex faults (randomized or deterministic), which established a complexity
separation between edge and vertex faults. See Table 1.

Our Results. We show new connectivity labels under both edge and vertex faults that improve
the state-of-the-art as follows:

1. Deterministic labels under edge faults of size O(+/f) bits (Theorem 2.1). This simultaneously
improves Dory and Parter’s [DP21] labels of size O(flogn), which require exponential time
to construct, and Izumi et al.’s [IEWM23] efficiently constructed labels of size O(f?). In fact,
Izumi et al. [[EWM23] stated that “it seems plausible that the Q(f)-bit lower bound holds.”
We refute this possibility.

Edge Fault Tolerant Connectivity Labels

Reference

Label Size (Bits)

Guarantee

Notes

O(min{ f + logn,log®n Monte Carlo uery correct w.h.p.
Dory & Parter [DP21] (min{/ s g) Query P
O(flogn) Deterministic | Fzistential bound
Izumi, Emek, Wadayama | O(f?log? nloglogn) .. . | Polynomial construction
Deterministic | _
& Masuzawa [I[EWM23] | O(f%log®n) O(mf?) construction
Trivial Q(logn) any trivial lower bound
O(min{ f + logn,
({j; &) Monte Carlo | Query correct w.h.p.
log”nlog(f/log"n)})
new
O(v/flog®nlog f) Ezistential bound
Deterministic
O(v/flog** nlog(flogn)) Polynomial construction
Vertex Fault Tolerant Connectivity Labels
Parter O(log®n) Deterministic | f <2
& Petruschka [PP22] O(n'=277% Monte Carlo | f € [3,0(loglogn)]
O(f3log’ n Monte Carlo uery correct w.h.p.
Parter, Petruschka (F7log”n) Query P
_ O(f"log™ n) Deterministic | Polynomial construction
& Pettie [PPP24]
Q(f +logn) any lower bound
O(f%1log® n) Monte Carlo | Query correct w.h.p.
new O(f*log" n) Existential bound
Deterministic
O(f*log™ n) Polynomial construction

Table 1: All Monte Carlo results have a one-sided error probability of 1/poly(n), i.e., they may
report two vertices disconnected when they are, in fact, connected. The existential result of Dory
and Parter [DP21] constructs labels in O(mflogn) time that, with high probability, answer all
queries correctly. However, to verify this fact requires a brute force search. The new existential
results require solving an NP-hard problem, namely sparsest cut.

2. Deterministic labels under vertex faults of size O(f*log”®n) bits (Theorem 3.1). This im-
proves the O(f7log! n)-bit labels of [PPP24].

3. Randomized labels under edge faults of size O(min{ f +logn,log? nlog f}) bits (Theorems 4.1
and 4.4). This improves the O(min{f + logn, log® n})-bit labels of Dory and Parter [DP21].

4. Randomized labels under vertex faults of size O(f?log®n) bits (Theorem 5.1). This improves
the O(f3log® n)-bit labels of Parter et al. [PPP24].

Related Work: Connectivity Oracles. Our connectivity labels can be viewed as a distributed
version of connectivity oracles under faults. In this problem, we must build a centralized data
structure for an input graph G so that, given a query (s,t, F'), we can check if s and ¢ are still
connected in G — F' as fast as possible using the centralized data structure. Connectivity oracles
have been well-studied under both edge faults [PT07, DP20, GKKT15] and vertex faults [DP20,
vdBS19, LS22, PSST22, Kos23, LW24] and the optimal preprocessing/query bounds have been
proven [PT07, LS22, DP20, KPP16, HKNS15], either unconditionally, or conditioned on standard
fine-grained complexity assumptions.

Our Techniques. The basis of Results 1 and 2 is an expander hierarchy. This is the first
application of expanders in the context of fault-tolerant labeling schemes, although they have
been widely applied in the centralized dynamic setting, e.g. [NSWN17, GRST21, L.S22].

We give a clean definition of expander hierarchies for both edge expansion (Definition 2.2) and
vertez expansion (Definition 3.2) as well as simple algorithms for computing them. In the edge
expansion version, our formulation turns out to be equivalent to Patragcu and Thorup’s [PT07],
but our algorithm improves the quality by a ©(log n) factor. Our vertex expander hierarchy is new.
Combined with the observation that any ¢-vertex-expanding set has an O(1/¢)-degree Steiner
tree (Lemma 3.6),! this implies a new low-degree hierarchy that is strictly stronger and arguably
cleaner than all previous low-degree hierarchies [DP20, 1.522, LW24, PPP24], which are the critical
structures behind vertex fault tolerant connectivity oracles.

To obtain our deterministic labels under edge faults, we first show that the edge expander
hierarchy immediately leads to a simple O(f)-bit label (Theorem 2.5), which already improves the
state-of-the-art [[EWM23, DP21]. Then, we introduce a new distributed coding technique based
on Reed-Solomon codes to improve the label size to O(\/f) bits, obtaining Result 1.

Our deterministic labeling scheme under vertex faults (Result 2) employs a high-level strategy
from Parter et al. [PPP24], but our label is shorter by an (:)(f3) factor. Roughly, this improvement
comes from two sources. First, Parter et al. [PPP24] employed the deterministic graph cut sketch of
Tzumi et al. [[EWM23], which contributes an ©(f2) factor to the size. We can bypass deterministic
sketching and pay only an O(f) factor because our low-degree hierarchy has an additional vertex
expansion property. Second, Parter et al. [PPP24] constructed a sparsified shortcut graph with
arboricity O(f*) using the hit-and-miss families by Karthik and Parter [KP21]. We are able to
use the simpler Nagamochi-Ibaraki sparsification [NI192] to obtain a sparse shortcut graph with
arboricity O(f?). These two improvements cannot be applied in a modular way, so our final
scheme ends up being rather different from [PPP24].

"Previously, [LS22] showed an O(log(n)/$)-degree Steiner tree spanning any ¢-vertex-expanding set.

All previous centralized connectivity oracles under vertex faults (including the one using vertex
expanders [LS22]) crucially used 2D-range counting data structures, which seem inherently incom-
patible with the distributed labeling setting. Thus, our scheme is inherently different than the
centralized oracles [L.522, DP20].

2 Deterministic Edge Fault Connectivity Labels

The goal of this section is to prove the following theorem.

Theorem 2.1. Fiz any undirected graph G = (V, E) and integer f > 1. There are deterministic
labeling functions Ly = V. — {0,1}11°8" and Ly : E — {0, 1}0(\/]‘/710g(f/¢) log”n) gyuch that given
any query (s,t,F), F C E, |F| < f, one can determine whether s and t are connected in G — F
by inspecting only Ly (s), Ly (t),{LEg(e) | e € F'}. The construction time is exponential for ¢ = 1/2
and polynomial for ¢ = Q(1/y/logn).

We remark that the above labeling scheme is actually more flexible. By reading only the
labels of the failed edges F, it can compute a representation of connected components of G — F' in
poly(flogn) time. From this representation, we can, for example, count the number of connected
components in G — F. This is impossible in the vertex-failure setting for any vertex-labels of size
o(n'=1/1/f). See Section 6. Given the additional labels of s and #, we can then check whether s and
t are connected in G — F, in O(1 + min{lolgl%) g’fgo e log)i]gc —}) time. We can also straightforwardly
handle edge insertions.

To prove Theorem 2.1, we introduce two new tools into the context of labeling schemes. The
first tool is the edge expander hierarchy, for which we give an improved construction in Section 2.1.
This tool alone already leads to a simple and efficient deterministic labeling scheme of size O()
bits, improving prior work [TEWM23, DP21]. In Section 2.3 we introduce a second tool, distributed
code shares, and in Section 2.4 we combine the two tools and prove Theorem 2.1.

2.1 First Tool: Edge Expander Hierarchies

In this section we recall Patragcu and Thorup’s [PT07] definition of an expander hierarchy, then
give a new construction that improves the quality by a factor of ©(logn).

Given a graph G = (V,E), a set X C E and a vertex u, let Degy(u) denote the number of
edges from X incident to v and let Degy (S) =), g Degx (u) denote the volume of S with respect
to X. We say that X is ¢-expanding in G if, for every cut (S,V \ 5),

[Ec(S,V\ 5)| = ¢ min{Degx(S5), Degx(V'\ 5)}.

Consider a partition {E1, ..., Ey} of E. We denote E</ := Uige E;, Exy = ;s Ei, and G<f :=
G N E<p. We also write Deg, := Degp,, Deg<y := Degp,_,, and so on.

Definition 2.2 (Expander Hierarchy). Given a graph G = (V, F), an edge-partition P = {E}, ..., Ex}
of E induces an (h, ¢)-expander hierarchy of G if, for every level ¢ < h and every connected com-
ponent I' of G<y, E,NT is ¢-expanding in I'. That is, for every cut (S,I"\ S) of I', we have

[E<e(S, V(D) \ S)| = ¢ min{Deg,(S5), Deg,(V(T') \ 5)}.

Over all levels ¢, the set of all connected components I of G\ F~, form a laminar family C. Let H
be the tree representation of C. We also call (C,H) an (h, ¢)-expander hierarchy of G.

[

En_i NTy is dpsxpanding in 15
;
f

o

\ Ep, is ¢-expandingin G Ep-1 NTy s g-expandingin I3
o
1

I3

Figure 1: Illustration of the top two levels of an (h, ¢)-expander hierarchy. Ej and Ej_; are drawn
in red and blue, respectively.

See Figure 1 for an example. Below, we give an improved construction of the expander hierarchy.

Theorem 2.3. There exists an algorithm that, given a graph G, computes an (h,@)-expander
hierarchy with h <logn and ¢ = 1/2 in exponential time, or ¢ > Q(1/y/logn) in polynomial time.

Patrascu and Thorup [PT07] gave an exponential-time algorithm for A < logm and ¢ =
1/(2logn) and a polynomial-time algorithm with ¢ > Q(1/log!®n). Theorem 2.3 shaves one
logn factor in ¢ for both settings.?

Theorem 2.3 is perhaps surprising. Recall a related and seemingly weaker concept of ¢-expander
decomposition. A ¢-expander decomposition of a graph G is an edge set X C E such that, for
each connected component I' of G\ X, ENT is ¢-expanding in G[I']. It is known that there is
no expander decomposition with X < 0.99|E| where ¢ = w(1/logn) [AALOGI18, MS18]. Here, we
give an expander hierarchy with ¢ = 1/2.

Theorem 2.3 follows immediately from the lemma below, inspired by [RST14, Lemma 3.1].

Lemma 2.4. There exists an exponential-time algorithm that, given a graph G = (V, E), computes
an edge set X such that every connected component of G\ X contains at most n/2 vertices and X
is %—expanding. In polynomial time, we can instead guarantee that X is Q(1/+/logn)-expanding.
Proof. Initialize X < E. If X is %—expanding, we are done. Otherwise, we repeatedly update X
as follows. Since X is not i-expanding, there exists a vertex set S where |S| < n/2 such that
|E(S,V '\ S)| < 3 min{Degy (S),Degx (V \ S)}. Update X + X UE(S,V\S)\ (X NE(S,S9)).

Let X' denote X after the update. Observe that every connected component of G\ X’ still
contains at most n/2 vertices because |S| < n/2. Moreover, since

SCIXNE(S,8)| + X N E(S,V\ 8)]) = ;Degy (S) > |E(S,V\),

we have

X NE(S,S)| > |E(S,V\S)| - %|XOE(S,V\S)| > |E(S,V\ S)\ X]|.

2The factor 1/2 in Theorem 2.3 is quite artificial. It can be improved to 1 if we slightly change the definition such
that X is ¢-expanding in G if, for every cut (S,V'\ S), |[Ec(S,V \S)| > ¢min{|Ec(S,V)NX|,|Ec(V\ S, V)N X|}.

Thus, | X’| < |X| and there can be at most |E| iterations of the procedure.
To get a polynomial time construction, we instead apply the sparsest cut algorithm of Arora et
al. [ARV09] that, given X, either guarantees that X is £2(1/4/log n)-expanding or returns a set S

where |S| < n/2 and |[E(S,V \)| < 2 min{Degx(5), Degx(V \ 9)}. O
Proof of Theorem 2.3. Given G, compute the edge set X from Lemma 2.4 and set E; < X. To
compute Ey_1, Ep_o,...,Ej, we recurse on each connected component C of G\ X. We have
h <logn because each component C has size |C| < n/2. O

2.2 A Simple O(f)-Bit Labeling Scheme

In this section, we prove Theorem 2.5, which uses O(f)-bit labels. It is the basis for our final
O(V/f)-bit labeling scheme presented in Theorem 2.1.

Theorem 2.5. Fiz any undirected graph G = (V, E) and integer f > 1. There are deterministic
labeling functions Ly : V. — {0,1}1°8" and Lp : E — {0,1}0(f¢711°g2”) such that given any
query (s,t,F), F C E, |F| < f, one can determine whether s and t are connected in G — F by
inspecting only Ly (s), Ly (t),{Lg(e) | e € F}. The construction time is exponential for ¢ = 1/2
and polynomial for ¢ = Q(1/+/logn).

At a very high level, Theorem 2.5 is proved by adapting Pétragcu and Thorup’s [PT07] cen-
tralized edge-failure connectivity oracle to the distributed setting. Note that Theorem 2.5 already
improves the state-of-the-art polynomial-time computable O(f2)-bit labeling of [[EWM23].

Given a function level : E — [h], let {E4,..., Ep} be the corresponding edge partition, where
Ey = level™'(¢). Suppose {E1,...,Ep} induces an (h, ¢)-expander hierarchy H. Define T* to be a
minimum spanning tree with respect to level, and let Euler(7™) be its Euler tour, which is a list of
length n + 2(n — 1) that includes each vertex once (its first appearance) and each T*-edge {u,v}
twice, as (u,v) and (v,u), according to a DFS traversal of 7™, starting from an arbitrary root
vertex. Each vertex u is identified by its position in Euler(T*), denoted DFS(u). We call each edge
in Euler(T*) an oriented edge. See Fig. 2 for a small example.

For each ¢ < h, let T<, be the set of level- trees in the forest T* N E<,. Observe that for each
T € T<y, Euler(T') is a subsequence of Euler(7™), not necessarily contiguous. Furthermore, because
T* is a minimum spanning tree with respect to level, each connected component I' of G<, has a
unique level-¢ tree T € T<, such that T spans I'.

a
(a.(a,0),6, (b,), . (c,0), (b,d), d, (d €), e, (e, d),
EUIer(T*) = (d7 f)7 f7 (f’ d)7 (d7 g)7g7 (g’ d)’ (d7 b)7 (b7 a)7
Cc
’ (a), b ()., 6, 1), (), 5. (. 1), ()
e g

Figure 2: Left: T* on vertex set {a,b,c,...,j}, rooted at a. Right: Euler(T™).

Definition 2.6 (Simple Deterministic Edge Labels). For v € V, the vertex label Ly (v) is just
DFS(v). Each non-tree edge e = {u,v} ¢ E(T*) has a 2logn-bit label Lg(e) = (DFS(u), DFS(v)).
Each tree edge e = {u,v} € E(T*) is assigned an O((f/¢)log? n)-bit label, generated as follows.

1. Store (Ly(u), Ly (v), level(e)).

2. For each (€ [level(e), h|, let T; € T<4 be the tree containing e. Write Euler(Ty) as
Euler(7y) = X - (u,v) - Y - (v,u) - Z.
For each W € {X,Y, Z},

(a) Store the labels of the first and last elements of W, and store the labels of the first and
last vertices in W (i.e. min,cyw DFS(u) and max,cyw DFS(v)).

(b) Store the first f/¢ + 1 level-¢ non-tree edges incident to vertices in W. (Each such edge
{u,v} is encoded by Lg({u,v}) = (DFS(u),DFS(v)).)

The Query Algorithm. For eachlevel 1 </ <h,let T<;r C T<; collect all level-¢ trees T such
that 7" intersects F'. Recall that each connected component I' of G, has a unique T € T<; as its
spanning tree. We define G</ r to be a subgraph of Gy that only collects the connected components
of G'<y whose spanning tree is in T<y r.

Our goal is to sequentially build vertex partitions P, ..., Py, where Py is a partition of V(G<¢)
that reflects the connected components of G<y r — F. In fact, we will compute, for each T' € T</ r,
a partition Py[T] of V(') that reflects the connected component of I' — F' (where I is the connected
component of G<, that has T" as its spanning tree), and then Py is simply the union of P,[T] over
all T € T<y p. After Py, is computed, we can count the number of connected components in G — F,
or answer s-t connectivity queries, given Ly (s), Ly (t).

Each Py[T] has a compact representation as follows. We start with defining intervals. Consider
a T € T<y. We can detect whether T intersects F' and if so, enumerate TN F' = {eq,... ez}
using Item 2a of the F labels. If we remove the oriented copies of T'N F, Euler(T") breaks into
a set of 2fy + 1 intervals J (T, F'). Note that from Item 2a, for each interval in J (T, F'), we can
obtain the labels of its first and last elements and its first and last vertices. Towards the compact
representation of Py[T], we can think of each J € J (T, F) as the vertex set J NV (T'). Each part
P € Py[T] is represented by a set of intervals Jp C J (T, F') such that P =J;c 7, J NV(T).

For the purposes of point location, we will write J € J (T, F') as [minye jnr DFS(u), max,e jnr DFS(v)].
Note that in general, an interval [DFS(u), DFS(v)] in J (7', F') contains (the DFS numbers of) ver-
tices outside of T'. Nonetheless, for vertices in V(T'), these intervals allow us to do correct point
location.

Observation 2.7 (Point Location). Suppose x € V(T'), T € T<¢r. If [DFS(u),DFS(v)] is the
(unique) interval in J(T,F) containing DFS(x) then there is a component in T — F containing
u,x, and v.

The query algorithm only does point location on vertices known to be in V(T"), so Observa-
tion 2.7 suffices for correctness.

Suppose Py_; has been computed. For each T' € T<, intersecting F', we enumerate T'N F' =
{e1,...,e5} and initialize P[T] < J (T, F) (i.e. each part P € Py[T] is only one interval), then
proceed to unify parts of Py[T] by applying rules R1-R4 and the operation Uniter(z,y). The z,y
in Uniter(z,y) can be vertices in V(T'), intervals in J (7, F') or even parts in Py[T], and Uniter(z,y)
will unite the parts containing z and y in Py[T].

R1. If J,J' are two intervals of Euler(T") that share a common endpoint, say J ends with ‘u’ and
J' begins with ‘(u,v)’, call Unitep(J, J').

R2. For each call to Uniter (z,y) made in the construction of Py_1[T"], T C T, call Unitep(z,y).

R3. For each non-tree edge {u,v} € E; encoded in the labels {Lg(e;) | i € [fo]}, if {u,v} & F, call
Uniter(u, v).

Rule R1 is implemented with Item 2a of the F-labels. The enumeration of edges in R3 uses
Item 2b of the F-labels, but to implement Uniter(u,v) we need to locate the intervals in J (T, F)
containing u, v. Since level({u,v}) = ¢, both u,v are in V(T'), and by Observation 2.7 we can locate
the intervals containing wu, v, given DFS(u), DFS(v).

According to R2, every Uniter(z,y) performed at level £ — 1 on some 77 C T is re-executed
verbatim as Uniter(z,y) if x,y are vertices. Since z,y € V(T') C V(T), Observation 2.7 lets us
identify the intervals in J (T, F) containing x,y. If z,y were intervals from J (7", F) we can pick
the first vertices from z and y, say 2/, v/, and call Unitep(2’,y’). Once again, 2’,y' € V(T") C V(T),
so Observation 2.7 applies.

After executing R1, Py[T] reflects the connected components of T'— F. After executing R2,
P[T] reflects the connected components of (G<,—1[V(T)|UT) — F. If it were the case that R3 had
access to all level-£ non-tree edges, then it would be sufficient to find all connected components
of G[V(T')] — F. However, Item 2b of the F-labels are only guaranteed to reveal up to f/¢ + 1
level-¢ non-tree edges per interval in J (T, F).

Lemma 2.8. If Py, ..., P, € Py[T] are those parts with Deg,(P;) > f/®, then Ule P; are contained
in a single connected component of G<y — F.

Proof. Suppose the claim is false, that there is some partition of {Py,..., Py} into A and B which
are disconnected. Then

|E§€(A? B)| < f _
min{Deg,(A), Deg,(B)} = f/¢
contradicting the fact that H is an (h, ¢)-expander hierarchy. O

,

In light of Lemma 2.8, we continue to unify parts according to a fourth rule.
R4. If P, P’ € Py[T] have Deg,(P),Deg,(P') > f/¢, call Uniter(P, P’).

The full partition P, is obtained by taking the union of all Py[T], for T' € T<, intersecting F,
plus the trivial partitions P,[T] = {V(T)} for every T € T<, disjoint from F.

Lemma 2.9 (Correctness). If P € Py, then P is a connected component in G<y — F.

Proof. Rules R1-R3 are clearly sound and Lemma 2.8 implies R4 is sound. We consider com-
pleteness. If there is a path between u,v € V(T') in G<;—; — F then by induction on ¢, u and v
will be in the same part of P, after executing R1 and R2. Suppose u, v are joined by a path in
G<¢— F, but u,v are in different parts P,, P, connected by a level-¢ edge e/ = {u/,v'}. Because
R3 could not be applied, €’ is not contained in Item 2b of the F-edges bounding the intervals in
J (T, F) containing v, ', implying Deg,(P,), Deg,(P,) > f/o, but then by R4, P,, P, would have
been united. O

Once we have constructed Py, a connectivity query (s, t, F') works as follows. First, identify the
two intervals in Euler(T™) of the forest T* — F' that contains s and t. This can be done using the pre-
decessor search over the endpoints of the intervals in O(min{; Og)ig)ign, I o?lién }) time [PT06, PT14],
since there are O(f) intervals, each represented by O(logn)-bit numbers. Then we check whether

the two intervals are in the same part of Py, corresponding to the same connected component of
G- F.

2.3 Second Tool: Code Shares
Theorem 2.10 gives the distributed coding scheme. We will only invoke it with d = 2.

Theorem 2.10 (Reed-Solomon Code Shares). Let m € IF’; be a message, with ¢ > k. For any
integer parameter d > 2, there are O(dlogq)-bit code shares C1,...,Ck so that for any index set
J C [k] with |J| > k/d, we can reconstruct m from the code shares {C; | j € J} in polynomial time.

Proof. One can regard m as the coefficients of a degree-(k — 1) polynomial g; over Fy, or even as
a degree-([k/d| — 1) polynomial g4 over F_a. The code shares (C;)1<i<k are defined to be distinct
evaluations of gg.

Given the code shares {C; | i € J} for |J| > k/d, we can reconstruct g4 and hence m in polynomial
time via polynomial interpolation. O

2.4 An O(\/T)—Bit Labeling Scheme

High-level Idea. The labeling scheme of Section 2.2 is non-constructive inasmuch as rule R4
infers that two P, P’ are connected, not by finding a path between them, but by checking if their
volumes Deg,(P),Deg,(P’) > f/¢. In this section, we give a labeling scheme that is even more
non-constructive. We can sometimes infer that a part P with Deg,(P) < f/¢ is nonetheless in
a connected component C of G<; — F' with Deg,(C) > f/¢ without explicitly knowing an edge
incident to P.

A key idea in the construction is to store a large volume of information about an interval of an
Fuler tour as code shares distributed across labels of “nearby” edges. Given a sufficient number of
code shares, we will be able to reconstruct the information about the interval.

Notations. We shall assume without loss of generality that the graph has degree 3. Given any
G’ = (V' E') with irregular degrees, we form G = (V, E) by substituting for each v € V' a Deg(v')-
cycle, then attach each edge incident to v’ to a distinct vertex in the cycle, hence |V| = |E’|/2. Given
labelings Ly : V. — {0,1}*,Lg : E — {0,1}*, we let Lg/(e') = Lg(¢p(€')), Ly/(v') = Ly (o(v)),
where ¢(e') € E is the edge corresponding to ¢’ and ¢(v') € V is any vertex in the Deg(v’)-cycle
of v/. Correctness is immediate, since F/ C E’ disconnects s,t € V' iff ¢(F') C E disconnects
¢(s), o(t) € V.

Recall T* is the minimum spanning tree of G with respect to the level function. Fix a level /.
Let T € T<; be a tree spanning a component of G<,. For each v € V(T'), let

1 if v is incident to a level-¢ non-tree edge,
wty(v) =
0 otherwise,

and for each oriented tree edge (u,v), let wty(u,v) = 0. If S is an interval of vertices and oriented
edges in Euler(T'), wty(S) = >, g Wte(x).
Let [, 8] denote the interval of Euler(T') starting at « and ending at 8. Then disty(«,) =

disty (5, @) def > elaf\ a5} wte(7).> For any vertex/edge element « in Euler(T), the set of all

vertices within distance r is:
Bally(ar,r) = {v € V(T) | disty(cr,v) < r}.

We overload the Ball-notation for edges e = {u,v}. Here (u,v), (v,u) refer to the oriented occur-
rences of e in an Euler tour, if e is a tree edge.

Bally((u,v),r) UBally((v,u),r) when e € E(T) is a tree edge,
Bally(e,r) =
Bally(u,) U Ballg(v,) when e € E(T) is a non-tree edge.

Henceforth, the only balls we consider have radius r,

r V9.

Assume, without loss of generality, that wt(Euler(7")) is a power of 2, by padding the end with

dummy weight-1 elements if necessary. For every j < jmax def [log(f/¢)], define Z; to be a partition
of Euler(T') into consecutive intervals with weight 27, each the union of two intervals from Z;_;.

The Scheme. The key idea of this labeling scheme is to focus on large gap edges. See Fig. 3.

V12 Vg
5 o

Euler(T)

Figure 3: An interval I; € Z; with wt(f;) = 27 (j = 3). There are 12 level-¢ edges in
E(1;,1;), {ui,v1},...,{u12,v12}, ordered by their non-I; endpoint. The large gap edges of I;
are {u1,v1}, {ug, va}, {us, vs}, {ur, v7}, {us, vs}, {ug, vo}, {u12, vi2}-.

Definition 2.11 (Large Gap Edges). Fix an interval I; € Z; and let Ey(1;) := E,(I;,1;) be all
level-£ edges with exactly one endpoint in I;. We write Ey(I;) = {{u1,v1}, {u2,v2}, ...} such that,
for all 7, u; € I; and v; € E Order the edges according to v;, so

DFS(v1) < DFS(v2) < -+ < DFS(vj,(1,)))- (1)

3We exclude the endpoints of the intervals from the sum just to avoid double counting at the endpoints when we
sum distances of two adjacent intervals.

10

If, for q € [1,|E((1})|), vg+1 & Ballg(vg,7), then {ug,vq}, {tg+1,v4+1} are called large gap edges
w.r.t. £ and I;. The first and last edges {ui,v1}, {u|Ee(1j)‘,v‘E£(1j)|} are always large gap edges.
Define LGE,(I;) € Ey(I;) to be the set of large gap edges and Ige,(;) = |LGE/(I;)| to be their

number.

Regard LGE,(I;) as a message my(I;) € qugee(]j), where ¢ = poly(n) is large enough to encode
a single edge. We apply Theorem 2.10 with d = 2 to break my(I;) into code shares so that given

any set of Ige,(I;)/2 shares we can reconstruct my(I;). If {u,v} € LGEy(/;) is a large gap edge

with u € I; and v € I}, let Cy (v, u) be the code share of {u,v} w.r.t. £ and I;. Set Cy (v, u) Loty

if {u,v} ¢ LGE,(/;) is not a large gap edge. (Note that C ;j(u,v) would be a different code share
w.r.t. some interval [J/ > v.) To simplify notation, for each edge e = {u,v}, we define the level-¢
code share of e as a bundle Cy(e) = {Cy j(u,v),Cp;(v,u) | j < jmax}. Note that Cy(e) also indicates
whether e is a large gap edge w.r.t. all intervals I; > u and Ij'» 3 v, for all j < jmax-

Definition 2.12 (Shorter Deterministic Edge Labels). An O (\/f/¢log(f/¢) log? n)—bit label

Lg(e) for each edge e = {u,v} is constructed as follows.
1. Store (Ly(u), Ly (v), level(e)).
2. For each (¢ € [level(e), h] and all level-¢ edges ¢’ = {u/, v’} incident to Bally(e,r) vertices,

(a) store (DFS(u’), DFS(v")),
(b) store the level-¢ code share bundle Cy(¢’).

3. If e € T*, then for each ¢ € [level(e), h], let T; € T<y be the tree containing e. Write Euler(7})
as
Euler(Ty) = X - (u,v) - Y - (v,u) - Z.

(a) For each W € {X,Y, Z}, store the labels of the first and last elements of W, and store
the labels of the first and last vertices in W (i.e. min,cw DFS(u) and max,ew DFS(v)).

(b) For each j < jmax, let I;l),l§2),lj(3),l§4) € Z; be the closest intervals on either side of

(u,v), (v,u) that do not contain (u,v) or (v,u). For each k € {1,...,4}, store IgeK(I](-k)),

and if Igeg(I](k)) < 4r, store LGE@(I](k)).
The bit-length of the edge labeling is justified as follows. Item 1 has length O(logn). Since
Cy(e) uses O(Jmax logn) bits by Theorem 2.10, we have that Item 2 has length O(hrjpaxlogn) =
O(\/f/dlog(f/$)log®n). Ttem 3 has length h-(O(log n)+7jmaxO(logn)) = O(\/f/dlog(f/¢)log?n)
bits.

The Query Algorithm. We initialize Py[T], T' € T<¢ r, exactly as in the proof of Theorem 2.5,
and proceed to apply rules R1-R3 as-is. Note that we can implement R1 using Item 3a and R3
using Item 2a. R2 is simply re-executing calls to Unitez from those 7" € T<y_; p such that 7" C T
We replace rule R4 with the similar rule R4’.

R4’. Suppose that Q C Py[T] is such that for each P € Q, P must be in a connected component
C of Gy — F with Deg,(C) > f/¢. Then, unite all parts of Q with calls to Unitep.

11

To prove correctness, we recall the definition of J = J(T,F). Let FNE(T) = {e1,... ez} be
the set of deleted tree edges of T, which we can enumerate using Item 3a of the edge labels. These
edges break Euler(T) into a set of 2fp 4+ 1 intervals denoted by J (T, F). Each part P € Py[T]
consists of a collection of intervals from J (T, F'). Our goal is to prove the following.

Lemma 2.13. For each interval J € J, we can either (i) list all other intervals J' € J adjacent
to J, or (i) infer that J is in a connected component C' of G<y — F with Deg,(C) > f/¢.

The above lemma implies correctness of the algorithm as we can keep applying R3 and R4’ to
obtain the correct Py[T] at the end.

Consider an interval J € J. Let the F-edges bounding J be ag,«;. Observe that we can
partition J into less than 2(jmax + 1) intervals from Zo U --- UZ;_ . . We consider each of these
intervals I; € Z; individually. Below, we say that F' reveals ¢ if €' is incident to a vertex in
Bally(e, r), for some failed edge e € F. Whenever F reveals ¢/, Item 2 of the edge labels gives us

the position of its endpoints and the code share bundle for ¢’. The following lemma is crucial.

/
o J y

o5

B
Bo

Euler(T) o

Figure 4: Illustration of Lemma 2.14. An interval I; C J is incident to J'. J,J € J are bounded
by ag,aq1 € F and o, a € F, respectively. Either fy is a large gap edge, and stored in either
Lg(ap) or Lg(aq), or it is stored in Lg(B1), where 51 = {x,y} € F (if it exists), or 1 = o).

Lemma 2.14. Consider an interval I; C J € J where I; € I;. If we have access to the set
LGE((I;) of large gap edges, then we can check if another interval J' € J is adjacent to I;.

Proof. Suppose that J' € J is adjacent to I;. Let Sy = {u,v} € E — F be the first level-¢ non-
deleted edge with u € I;,v € J', when ordered by DFS number. We claim that either 5y € LGE,(I;)
is a large gap edge or By is revealed by F. In either case, we learn the endpoints of Sy, which
certifies that J' is adjacent to I;.

Let J' be bounded by F-edges «f, ;. Consider a level-¢ edge {x,y} that is the predecessor of
Bo according to Equation (1). In particular, x € I; and y ¢ I; has the largest DFS(y) such that
DFS(y) < DFS(v). Suppose By ¢ LGE,(I;). Then, v € Bally(y,) by definition. Now, we claim there
is a 1 € F where v € Bally(f1,7). Hence, [y is revealed by F' which would complete the proof.
There are just two cases.

o If y € J', then {x,y} € F since [y is the first non-deleted edge. We choose 1 = {z,y} € F
and therefore v € Bally(51,7).

o If y ¢ J', then disty(v, af)) < dists(v,y) < r and therefore v € Bally(cy),). Weset 81 = af, € F
so v € Ballg(81, 7). O

12

We are now ready to prove Lemma 2.13.

Proof of Lemma 2.13. There are three cases.

Case 1: An I; C J has Ige,(/;) < 4r. By Item 3b of the label Lg(ag) or Lg(aq), we can access
the whole set LGE,(I;). So, by Lemma 2.14, we can list all intervals J' € J adjacent to I;.

Case 2: An I; C J has Ige,(I;) > 4r, and F reveals at least (Ige,(/;))/2 large gap edges in
LGE,(Z;). Given (Ige,(I;))/2 code shares, by Theorem 2.10, we can also reconstruct LGE,(I;). So,
we can again list all intervals J' € J adjacent to I;, by Lemma 2.14.

Case 3: An I; C J has Ige,(I;) > 4r, and F reveals at most (Ige,(I;))/2 large gap edges in
LGE(Z;). In this case, we claim that the connected component C' in G<;, — F' containing I; has
Deg,(C) > f/¢. Observe that for each unrevealed large gap edge {u,v} € LGE,(I;) with u € I}, it
must be that Bally(v,r) C C because there is no failed edge e € F within distance r from v. Each
Bally(v,) has weight at least 27, and the sum of their weights can be at most four times the weight
of their union. So Deg,(C) > (2r/4) - (Ige,(1;)/2) > (2r/4) - (4r/2) =1 > f/¢ as desired. O

3 Deterministic Vertex Fault Connectivity Labels

This section is dedicated to proving Theorem 3.1 concerning labels for vertex faults.

Theorem 3.1 (Improved Deterministic Vertex Labels). Fiz any undirected graph G = (V, E) withn
vertices and integer f > 1. There are deterministic labeling functions Ly : V — {0, 1}O(f4‘¢’71 log” n)
such that given any query (s,t,F), FF C V, |F| < f, one can determine whether s and t are
connected in G — F by inspecting only Ly (s), Ly (t),{Ly(v) | v € F}. The construction time is
exponential when ¢ =1 and polynomial when ¢ = Q(1/+/logn). The query time is poly(f,logn).

To prove Theorem 3.1, we first describe the underlying hierarchical structure of the algorithm
in Section 3.2. This structure allows us to prove a divide-and-conquer lemma (Lemma 3.14) that
is crucial for answering connectivity queries under vertex failures in a bottom-up manner on the
hierarchy. Based on the divide-and-conquer lemma, in Section 3.3 we then describe how to answer
connectivity queries assuming access to primitives that return information about the hierarchy.
Finally, we describe how to implement these primitives in a distributed manner by providing the
labeling scheme in Section 3.4.

3.1 Overview and Challenges
We briefly discuss our approach at a very high level. We would like to highlight the specific

challenges that arise when tolerating vertex faults relative to edge faults.

The First Challenge. We start with the ideal scenario that the input graph is already a vertex
expander. The first challenge is how to obtain a stable connectivity certificate. Recall that in the
edge fault scenario (also assuming the graph is an edge expander), we can simply take a spanning
tree as a stable connectivity certificate. The removal of any f edges will only break the spanning

13

tree into f 4+ 1 subtrees. However, in general there is no upper bound on the number of subtrees
when removing f vertices.

This is a natural barrier to handling vertex faults, and several previous works, e.g. [DP20, LS22,
PPP24], follow the same idea to overcome it. Take a low-degree spanning tree as a stable connectiv-
ity certificate. A vertex expander indeed admits a low-degree spanning tree; this is formally stated
in Lemma 3.6.

Using this idea, one can easily generalize our edge fault connectivity labeling scheme to obtain
an 6(f)-size vertex fault connectivity labeling scheme for vertex expander input graphs. Roughly
speaking, let I’ be the vertex faults. From the low-degree spanning tree T', we first obtain an initial
partition P of G \ F' consisting of the connected components of 7'\ F'. Then we exploit the nature
of a ¢-vertex expander G: all sets A € P s.t. |[AU Ng(A)| > f/¢—=call them giant sets—must be
inside the same connected component of G\ F. On the other hand, for each non-giant set A € P,
its neighbor set Ng(A) is of size at most f/¢ and we can obtain Ng(A) explicitly by designing
labels on the Euler tour of the low-degree spanning tree. Therefore, we first merge all the giant
sets of P together, and then merge further using Ng(A) for each non-giant A € P.

The Second Challenge. The second challenge arises when the input graph is not a vertex
expander. In fact, an input graph G admitting a two-level vertex expander hierarchy already
captures this challenge. A graph G admits a two-level ¢-vertex expander hierarchy if there is a
separator X C V(G) s.t. X is ¢-expanding in G, and each connected component C' of G\ X is a
¢-vertex expander.

Let F' be the vertex faults. We assume that we are given an initial partition P of V(G) \ F
that captures (1) the connectivity of C'\ F' for each connected component C of G\ X, and (2) the
connectivity of X in T\ F certified by the stable connectivity certificate T'. For example, we can
think of

P ="PxU U {components of C'\ F'},
components C of G\ X

where Px is some partition of X \ F which is with respect to the connectivity of X in G \ F, but
may not fully capture the connectivity of X in G\ F.

Clearly, we are done if we can further merge sets in P using edges incident to X, call them
X-edges. Let us try the same algorithm and see how it breaks. The fact that X is ¢-expanding in
G tells us that all sets A € P s.t. [(AUNg(A)) N X| > f/¢ (giant sets) must belong to the same
connected component of G\ F. Also, for each non-giant set A € P, Ng(A) N X is of size at most
f/¢ and we can obtain it explicitly with O(f)-bit labels. Again, we first merge giant sets into one
giant group, and then for each A € P, merge it with each group intersecting Ng(A) N X. Let us
try to confirm the correctness of this merging procedure. We use {z,v} to denote an X-edge with
rzeX.

1. Any two giant sets Ay, A € P are indeed merged.

2. Suppose an X-edge {z,v} joins A1, Ay € P with x € A1, v € Ay, where Aj is non-giant. Then
we will merge A; and As because A; intersects Ng(Az2) N X.

3. Suppose an X-edge {x,v} joins A;, Ay € P with x € Aj,v € Ay, but now A; is non-giant
and Ay is giant. Although A; intersects Ng(Az2) N X, we are not guaranteed that A; and Ag
are merged because As is giant. In other words, X-edges in case 3 will not be detected by
this method. o

14

This asymmetry is the major difference between the vertex-fault case and the edge-fault case.
To overcome it, the key observation is that if there exists a case-3 X-edge for a non-giant set Ay,
i.e. there exists an X-edge {z,v} such that € A; and v is in some giant set, then A; must be
merged with the giant group. In other words, for a non-giant A, instead of knowing all case-3
X-edges incident to Ay, it suffices to check if any such case-3 X-edges ezist.

Therefore, we will count the number of case-3 X-edges for each non-giant set A;. Roughly
speaking, this is possible because this number is exactly d.1 — dnon-giant — 0, Where

dan = number of X-edges {z,v} s.t. z € A4y,
dnon-giant = number of X-edges {z,v} s.t. € A; and v is in some non-giant Ay,
dp = number of X-edges {z,v} s.t. x € Ay and v € F.

We will not elaborate now on how to count these numbers.

3.2 The Structure
3.2.1 The Basis: A Vertex Expander Hierarchy

In this section, we construct an expander hierarchy for vertex expansion similar to the edge expan-
sion version from Section 2.1. This will be the basis of our structure.

For any graph G = (V, E), a vertex cut (L, S, R) is a partition of V such that L, R # () and
there is no edge between L and R. For any vertex set X C V', we say that X is ¢-vertex-expanding
in G if for every vertex cut (L, S, R) in G,

15| > ¢min{|X N (LUS), | X N (RUS)}.

Consider a partition {V1,...,V,} of V. We denote V<; := J;, Vi and V5 := |J;5, Vi. Let G<¢ be
the graph induced by V<. -

Definition 3.2 (Vertex Expander Hierarchy). Given a graph G = (V, E), a vertex-partition P =
{Vi,...,Vi} of V induces an (h, ¢)-vertex-expander hierarchy if, for every level £ < h and every
connected component I' in G<¢, V, NI is ¢-vertex-expanding in I'. That is, for every vertex cut
(L,S,R) of T,

1812 pmin{|V; 0 (LUS), Ve (RUS)[},

From P, the connected components I' in G« for all levels ¢ form a laminar family C. Let H be
the tree representation of C. We also call (C,H) an (h, ¢)-vertex-expander hierarchy of G.

The following theorem is analogous to Theorem 2.3.

Theorem 3.3. There exists an algorithm that, given a graph G, computes an (h, ¢)-vertez-expander
hierarchy with h < logn and ¢ = 1 in exponential time, or h < logn and ¢ > Q(1/y/logn) in
polynomial time.

Long and Saranurak’s [[.S22] vertex expander hierarchy is weaker, both qualitatively and struc-
tually. To be precise, the Long-Saranurak hierarchy only guarantees ¢ > 1 /no(l), but it admits
almost-linear construction time. Furthermore, the expander components in the Long-Saranurak
hierarchy may not form a laminar family. The proof of Theorem 3.3 follows immediately from the
lemma below.

15

Lemma 3.4. There exists an exponential-time algorithm that, given a graph G = (V, E), computes
a vertexr set X such that every connected component of G\ X contains at most n/2 vertices and
X is 1-vertez-expanding. In polynomial time, we instead guarantee that X is Q(1/+/logn)-vertez-
expanding.

The proofs of Theorem 3.3 and Lemma 3.4 follow in exactly the same way as how we proved
the analogous results in the edge version. We include them for completeness.

Proof. Initialize X « V. If X is l-expanding, we are done. Otherwise, we repeatedly update X as
follows. Since X is not l-expanding, there exists a vertex cut (L, S, R) where |L| < n/2 such that
|S] < min{|X N(LUY)|,| X N(RUS)|}. Update X + X\ (X NL)US.

Let X’ denote X after the update. Observe that every connected component of G\ X' still
contains at most n/2 vertices because |L| < n/2. Moreover, |X’| < |X| because, while we added
at most |S \ X| new vertices to X, we removed |X N L| > |S\ X| vertices from X where the
inequality holds because |SNX|+ S\ X| =S| < |[X N(LUS)| = |X NL|+|SNX]|. Therefore,
there are at most |V| iterations before X is 1-vertex-expanding. This concludes the proof of the
exponential-time algorithm.

To get polynomial time, we instead apply the sparsest cut algorithm by [FHLO05] that, given X,
either guarantees that X is Q(1/+/logn)-vertex-expanding or returns a vertex cut (L, S, R) where

|L| < n/2 such that |[S| < min{|X N (LUS)|,|X N (RUS)|}. O
Proof of Theorem 3.3. Given G, compute the vertex set X from Lemma 3.4 and set V; + X.
To compute Vj,_1,Vj_o,..., Vi, we recurse on each connected component C' of G\ X. We have
h <logn because each component C' has size |C| < n/2. O

Notation in subsequent sections. Let (C,H) be an (h, ¢)-vertex-expander hierarchy of G.
For each level-¢ component I' € C, we define v := V;, NI to be the core of I'. The following
Observation 3.5 is straightforward from the definition.

Observation 3.5. We have the following.
1. There is no edge connecting two disjoint components in C.
2. For each component I' € C, its core v is ¢p-vertex-expanding in I.
3. The cores { | T € C} partition V(G).

By convention, the core of a I' decorated with subscripts, superscripts, and diacritic marks
inherits those decorations, e.g., 47 is the core of ff For two components I', T s.t. TV < T (resp.
I < T), we also write 4/ < 7 (resp. 7/ < 7). For each component I', N(T") denotes the set of
neighbors of I' in V' — I'. Define N;(I') = N(I') N 4, which is only non-empty when v < 4. We
call such N4(I') neighbor sets. For each vertex v € V(G), we use v, to denote the unique core
containing v, so I';, denotes the corresponding component of 7,.

3.2.2 The Initial Structure: Low-Degree Steiner Trees and Shortcut Graphs

Based on the vertex expander hierarchy, we construct low-degree Steiner trees and shortcut graphs,
both of which will help answer connectivity queries.

16

Low-Degree Steiner Trees. For each component I' € C, using Lemma 3.6, we will compute a
Steiner tree T, with maximum degree A = O(1/¢) that spans the core v in G[I']. Sometimes, we
will call the vertices in Steiner tree T’, nodes, just to be consistent with the terminology of extended
Steiner trees introduced later. In particular, each node u € v C V(7)) is a terminal node, and the
other nodes V(T,) \ v are Steiner nodes. Observe that each vertex in I" will correspond to at most
one node in 7T’,, and vertices in 7 are in one-to-one correspondence with terminal nodes in T’,.

A hierarchy with such low-degree Steiner trees but without the vertex-expanding property was
first introduced by Duan and Pettie [DP20] as the low-degree hierarchy, which has been shown
to be useful for the vertex-failure connectivity problem in both the centralized [DP20, LS22] and
labeling scheme [PPP24] settings. Roughly speaking, these Steiner trees are useful because they
serve as connectivity certificates. By the low-degree property, when f vertices fail, each Steiner tree
will be broken into at most O(f/¢) subtrees, each of them still being connected in the new graph.
The query algorithm need only look for edges that reconnect the subtrees rather than determine
connectivity from scratch.

Long and Saranurak [LS22] gave an almost linear time algorithm to compute an O(logn/¢)-
degree Steiner tree spanning a ¢-vertex expanding set A in G. We give an improved algorithm that
computes an O(1/¢)-degree Steiner trees based on Fiirer and Raghavachari [FR94], albeit with a
slower running time. This improvement to the degree will shave logarithmic factors off our final
label size. The algorithm below can be of independent interest. Its proof is deferred to Appendix A.

Lemma 3.6 (Low-degree Steiner Trees). Given a graph G such that a set A C V(G) is ¢-vertex-
expanding in G, there is an algorithm that computes an O(1/¢)-degree Steiner tree that spans A in
G. The running time is O(mnlogn).

The Neighborhood Hitter S. We want the Steiner trees to have low degree A so that f vertex
failures generate at most fA subtrees. This argument only requires that failed vertices have low
degree. Following [PPP24], we generate a partition S = (S1,...,S¢41) of the vertex set, and build
a version of the data structure for each S; € S, which one can think of as vertices that are not
allowed to fail. By the pigeonhole principle, for any failure set F' there exists an S = 5; such that
SNF = (. Thus, it is fine if, in the data structure with failure-free set S, all S-vertices have
unbounded degrees.

The main benefit of having a failure-free S is to effectively reduce neighborhood sizes, as follows.

If we were to generate the partition S randomly, then with high probability either (i) N4 (I')N.S # 0

or (ii) |[N5(I')] < Aub o O(flogn). In case (i) we can link 7% and T, without increasing the degrees

of non-S vertices by much (see extended cores below), and in case (ii) we have a good upper bound
on |Ny(I')|. In fact, it is possible to achieve this guarantee deterministically using the method of
conditional expectations [PPP24]. Concretely, we just compute S by invoking Lemma 3.7 with all
such neighbor sets N;(I') as the inputs.

Lemma 3.7 ([PPP24, Lemma 8.1]). Given a graph G with a polynomial number of vertex sets
{Br CV | 1<k <poly(n)}, there is a deterministic algorithm that computes a partition S =
{S1,....8p41} of V(G) s.t. for each S; and By, either S;NBy, # 0 or |By| < O(flogn). The running

time is polynomial.

Henceforth we use S to refer to an arbitrary part of the partition S. In the preprocessing phase
we generate a data structure for each S € S, but in the context of a query (s, ¢, F'), S refers to any
part for which SN F = ().

17

Extended Cores and Extended Steiner Trees. Each component I' € C has an extended core
vt defined as follows:
def /
Euo U

v =<y
st. Ny(I'YNS #£0
Observe that if v/ € v, then [N, (I")] < Ay, = O(flogn). Whenever N5 (I')N.S # () is non-empty,
let s5(I') € N5(I') N S be an arbitrary representative in its neighborhood set.

Just as each core v has a Steiner tree T, the extended core v**' has an extended Steiner tree
Text. Each tree node in V/(T,ext) is either a terminal node or Steiner node. As we will see in the
construction, the terminal nodes are one-one corresponding to vertices in v°**. Each Steiner node
corresponds to exactly one vertex in I', while each vertex in I' can correspond to arbitrary numbers
of Steiner node in V(T,ext).

Construction of T,Yext. The construction of T,Yext is as follows.

1. First, we make a copy of T, and for each strict descendant 7' C v***, make a copy of T,

2. Let Py, be a copy of an arbitrary simple path in the graph G[I"U{s,(I'")}] connecting the
vertex s(I”) € ~ (which corresponds to the terminal node s,(I') € V(T,)) to some vertex
v" € I such that v’ corresponds to some tree node in V(7).

3. Finally, we obtain T,ext by attaching the copy of T,/ (for all strict descendants v" C 7ex)

to the copy of T, using the path P,_,,. That is, we glue the endpoint s,(I') of Py, to
the terminal node s,(I'") € V(T},), and glue the other endpoint v of P,/_, to the tree node
U/ € V(T’Y’)

By the construction, V(Tex:) is made up of V(T), V(T,) of each strict descendant ' C v,
and the internal nodes of each path P,/_,. We define the terminal nodes in V(T}ext) to be

e the terminal nodes in V(7) (they one-one correspond to vertices in), and

ext

e the terminal nodes in V(T) for each strict descendant v C v*** (they one-one correspond

to vertices in 7).

Other tree nodes in V(T)ext) are Steiner nodes. By definition, the terminal nodes in V(T ex:)

one-one correspond to vertices in vyt

Properties of T,ext. First, T ext has some kind of low degree guarantee of non-S vertices, as shown
in Lemma 3.8.

Lemma 3.8. For each vertex v € I'\ S, the tree nodes corresponding to v have total T ex:-degree
at most O(hA).

Proof. Recall that V(T,ext) is made up of V(T), V(T) of each strict descendant o C v***, and
the internal nodes of each path P, _,,

e v can correspond to at most one tree node in V(7). This tree node have degree at most A
in T,ext because it is not an endpoint of any path P,/_,, (since v ¢ S).

18

e For each strict descendant o/ C X', if v € I, v can correspond to at most one tree node in
V(T,/) (note that if v ¢ I", v must correspond to no tree node in V(7T/) since V(T,) C I').
This tree node have T exi-degree at most A + 1 because it has degree at most A in T, and
it has degree 1 in P,/_,, if it is an endpoint of P,/_,,.

The number of such 4/ is at most h since the number of components containing v is at most
h. Therefore, this part contributes at most h(A + 1).

e For each path P,_,,, if v € I, v can correspond to at most one internal node of P,/_,, (note
that if v ¢ I”, v will correspond to no internal node of P,/_,, since all internal nodes are in
I'V). This node has T ext-degree 2.

Again the number of such path P,/_,, is at most h, and this part contributes at most 2h.
O

The second property is the simple Observation 3.9. We will exploit it in the proof of Lemma 3.13
and Section 3.3.

Observation 3.9. For each ' < 7 such that ' C v, its Steiner tree Ty, or even Toy U Py_,.,

is a subtree of Tyext, where Ty U Py, denote the tree obtained by gluing the endpoint v' of Py_,,
to the tree node v' € V(T).

Lemma 3.8 shows that when f vertices fail, they break T’ ex: into at most O(fhA) = O(flogn/¢)
subtrees, since S-vertices are not allowed to fail. The analogue of Lemma 3.8 in [PPP24] creates
extended Steiner trees with degree A + h rather than O(hA), but might not satisfy the property
that T, is a subtree of Text, which is used in our labeling scheme.

The Shortcut Graphs. The global shortcut graph G is also defined w.r.t. an arbitrary S € S. It
is formed by adding shortcut edges to G, each with an assigned type.* For each component I' € C
and each strict ancestor I' of I', we define
5 N5 () if Ny(I') is disjoint from S,
{s5(I")} if N4(T') intersects S.

N() = UN@(F).

Gisa typed multigraph with the same vertex set as G and

E(G) = E(G) U JClique(N(T)),
T

where all edges in E(G) have type original and all edges in the clique Clique(N(I")) have type .
The shortcut graph w.r.t. T' € C, denoted by Gr is the subgraph of G induced by edges with
both endpoints in I" and at least one in the core ~.

“Previous papers call a shortcut edge an artificial edge and call a shortcut graph an auxiliary graph. We change
the names to make them more descriptive.

19

The idea of adding shortcut edges has appeared in prior works [DP20, S22, PPP24 CPR11]
on the vertex-failure connectivity problem. Intuitively, the simplest way to add shortcut edges is
to add a clique on N(I') for each component I". With the shortcut edges, when failed vertices
come, if some component I' is unaffected (it has no failed vertices) the query algorithm can ignore
vertices in I', and use the shortcut edges to capture the connectivity provided by I'. However,
generally the performance of the algorithm depends on the sparsity of the shortcut edges, so this
naive construction will not give good algorithms. Indeed, most prior work [DP20, LS22, PPP24]
introduced different sparsification techniques on shortcut edges. In our work, we sparsify the
shortcut edges by adding a clique on the sparsified neighbor set N (T") instead of the original one
N(T).

3.2.3 Structures Affected by Queries

In this subsection, we will define notations and terms related to a particular query (s,t, F'), and
then introduce the query strategy from a high level. Recall that S € S represents any part of the
partition disjoint from F'.

Affected Components/Cores, Affected Edges, and Query Graphs. We introduce the
following notations and terms.

e For each component I" € C, if T intersects F'U {s,t}, we say I' is an affected component and
v is an affected core, otherwise they are unaffected.

e For each edge e={u,v} € E(GF) in the shortcut graph w.r.t. I', it is an affected edge if the
type of e is 7/ for some affected /. Let Ep aff C E(Gp) collect all affected edges in GF, and
let Enunag = (GF) \ El“’aﬁ‘ be the set of unaffected edges.

e For each affected component T', its query set is Qr = v U U, focted <y ~" and its extended
query set is QP = v U, gocted <y ~'.

e We define the query graph qury of I to be G%ry = Gr [QF] \Ep aff- Namely, the query graph

G is the subgraph of Gr induced by the extended query set Q¥ excluding all affected
edges.

Observation 3.10. The number of affected components is at most h(f + 2).

3.2.4 A Divide-and-Conquer Lemma

Next, we state the key lemma, Lemma 3.11, saying the connectivity after failures can be captured
by the structure we defined in previous sections. Roughly, for any affected component I', the
connectivity between vertices can be captured by either (1) shortcut edges in I, (2) extended Steiner
trees T,ext, or (3) the recursive structure on affected children of I'. Naturally, this equivalence hints
at a divide-and-conquer strategy by querying bottom-up from the hierarchy. We will formally
describe this strategy in Section 3.3.

Before stating Lemma 3.11, we introduce some notations. For an undirected graph H and a
subset of vertices A C V(H), we define Conn(A, H) to be an undirected graph on vertices A s.t. an
edge (u,v) exists in Conn(A, H) if and only if v and v are connected in H. We note that when H

20

refers to an extended Steiner tree and A C V(G) refers to a set of original vertices, this notation
Conn(A, H) is still well-defined as long as each vertex in A corresponds to exactly one terminal
node in H. For an extended Steiner tree T.exi, we use Tyext \ F' to denote the forest by removing
all nodes corresponding to vertices in F.

Lemma 3.11. Let T' € C be an affected component. FEach pair of vertices x,y € Qr \ F are
connected in G[I'| \ F if and only if they are connected in the union of

1. Conn(QEt\ F,GIEV \ F),
2. Conn(Y*™** \ F,Tyext \ F), and

3. UFchud Conn(Qr,q \ F,G[Lenild] \ F), where the union is over all affected children I'cpiig of
T.

Proof. 1t is relatively simple to see that z,y are connected in Gr \ F if they are connected in the
union, because each of G\ F, Tyext \ F and G[[epiia) \ F' only use valid connectivity in G[I']\ F.

To be precise, for the graph Glclry \ F', consider an edge e = {u,v} in it.
e If e has type original then e also exists in G[I'] \ F.

e Otherwise, e is a shortcut edge with some type +' such that 7/ is unaffected. By definition,
u,v € N(I"") and I" is disjoint from F, hence u,v are connected in G[I'] \ F.

Similarly, Text \ F' is a subgraph of G[I'] \ F' and G[I'chiig] \ F' is obviously a subgraph of G[I'] \ F'.

From now we focus on proving the other direction. Let P, be a simple path connecting x and
y in G[I'] \ F. We can write Py, as Py, = Py o Pyo--- o P, where the endpoints u;, v; of P; are the
Qr-vertices and each subpath P; are internally disjoint with Qr. It suffices to show that for each
subpath P;, u; and v; are connected in the union.

Case (a). Suppose Yy, Vv, < 7 (recall that ~,,,7,, are the cores containing w;,v; respectively).
Then there is a child I'epjg of I' 8.t Y, Yo; = Yehild and all vertices in P; are inside I'cpig \ F. To see
this, assume for contradiction that P; contains two vertices from two different children Icpiig, I 4
of I'. However, by property 1 of the hierarchy, P, must go through some vertex in v under this
assumption, contradicting that F; is internally disjoint from @Qr. Furthermore, we know 7chjq is
affected because v,, and 7, are affected (since 7,,, 7, € Qr and Qr only collects affected cores).
Also, note that u;,v; € Qrg,,, \ F because Qr N Lepig = Qr,,,- Putting it all together, we know
u; and v; are connected in Conn(Qr., \ F, G[LCchiid] \ F) (i.e. Part 3) by the existence of P;.

child

In what follows, we will argue that arbitrary two vertices u,v € Qr \ F are connected in the
union, if they satisfy

(i) u €y or v € v, and

(i) there is an original edge e = {u,v} € E(G[I]) or there is an unaffected component IV < T" s.t.
u,v € N(I).

Indeed, for each above subpath P; not in Case (a), its endpoints u; and v; must satisfy the conditions
(i) and (ii). Condition (i) is easy to see. For condition (ii), if P; has only one edge, that this edge
e = {u;,v;} is an original edge in G[I']. If P, has more than one edge, all internal vertices of P; fall

21

in unaffected cores, because P; is internally disjoint from Qr. Again by property 1 of the hierarchy,
there exists an unaffected component I containing all internal vertices of P;, so u;, v; € N(I').

Case (b). Suppose condition (ii) tells there is an original edge e = {u,v} € E(G[I']). Then this
edge is added to Gr because u € v or v € v, and it is inside Gq Y because it has type original and

u,v € Qr \ F C Q% \ F. Therefore, u and v are connected in Conn(QeXt \ F,GY\ F) (i.e. Part
1),

From now on, we suppose condition (ii) tells there is an unaffected component I < T s.t.
u,v € N(I"). We can further assume w,v,I"” satisfy condition

(ili) there is a path P connecting v and v with all internal vertices inside I/, and P intersects the
/
core 7'.

This is without loss of generality by letting IV be the minimal component s.t. u,v € N(TV).
Case (c). Suppose u,v € 7.

Subcase (c1). Suppose N (I") is disjoint from S. Recall the way we add shortcut edges, we add
a clique on N(I) D N, (I) with type o' Because u,v € N(I') Ny = N,(I"), there is a shortcut
edge e = {u,v} in this clique. Note that e will be added into Gt because u € v or v € 7, and e
will survive in quy \ F because u,v € QF'\ F and the type 7/ is unaffected. Therefore, v and v
are connected in Conn(Q‘IiXt \ F,G¥\ F) (i.e. Part 1).

Subcase (¢2). Otherwise N, (I"”) intersects S. By definition, 7/ is in the extended core y*** of
component I'. Condition (iii) tells that P intersect 7'. Let wy,w, € PN~ be the P-vertices closest
to u and v respectively. Claim 3.12 tells that w, and w, are connected in Conn(y** \ F, T,exi \ F)
(i.e. Part 2).

Claim 3.12. We have wy,w, € Y>*\ F, and the terminal nodes w, and w, are connected in

T,cht \ F

Proof. First, we have wy,w, € v\ F C 4"\ F. Next, the terminal nodes w,, and w, are connected
in Text \ F'is because (1) the terminal nodes w, and w, fall in T, (since the vertices w,,w, are
inside 7), (2) the Steiner tree T, connects w,, and w,, (3) T, is a subtree of T ext (since v C y***)
and (4) T, is disjoint from F' (since I' is unaffected). O

It remains to show that u € v and w, € +' are connected in the union, and that w, € 7/ and
v € 7 are connected in the union. Actually, these two claims can be derived from Lemma 3.13.
Here we show that v and w,, satisfy the requirements of Lemma 3.13 (so do v and w, by a similar
argument). For w, trivially v ¢ F and u € 7. For w,, recall that ,,, denotes the core containing
Wy, and we know 7y, = 7. Hence, as we mentioned above, vy, < ¥, Y, is unaffected and N, (I'y,)
intersects S. Because we take the w, € P N~/ closest to u, the subpath of P from u to w, either
has one edge or has all interval vertices inside some 7" < 7y, , which means e = {u,w,} € E(G[I])
or u,w, € N(I').

Case (d). Suppose u € 7 and v € 7, < 7. Note that u and v satisfy the requirements of
Lemma 3.13, so they are connected in the union.

Lemma 3.13. Let u,v be two vertices satisfying that

e u¢ F andu€~;

22

e v F, v, <~ and either

— vy s affected or
— Yy is unaffected and N, (T'y) intersects S;

e The edge e = {u,v} € G[I'], or there is an unaffected component v' < v, s.t. u,v € N(I').
We have uw and v are connected in the union.

Proof. First observe that 7, belongs to the extended core y*** of v because N,(T',) intersects S.

Similar to the Case (b) above, if there is an original edge e = {u,v} € E(G[I']), then this edge
is added to G because u € v, and it survives in G2\ F' because it has type original, u € v € QE*
and v € 7, C v C Q§**. Therefore, u and v are connected in Conn(QE* \ F,GEY \ F) (i.e. Part
1).

From now we assume there is an unaffected component 7/ < v, s.t. u,v € N(I'). The following
argument is similar to the Case (d) above. Again, by choosing 4/ whose component I' is the
minimal one that contains all internal vertices of P, we can assume there is a path P connecting u
and v with all internal vertices falling in I, and P intersects 7.

Case (1). Suppose N, (I') intersects S, and v # s,,(I"). We show that v and v/ def S+, (I'") are
connected in the union.

e If v, is affected, the vertices v and v’ are connected by Part 3 by the following reasons. Let
[enilg be the child of T' such that I'y, < Tepjg. First, qenig is affected because v, € Qr (it
means 7, is affected) and v, < Yehila.- Second, v,v" € Qr,,., \ F because v,v" € v, \ F (v ¢ F
because v’ € S and S is disjoint from F'), and v, € Qr N Cepita = Qry,,- Third, v and
v" are connected in G[[epjiq] \ F because v,v’ € N(I'), TV is an unaffected component, and
I’ < r, < Fj.

e If v, is unaffected and N, (T',) intersects S, the terminal nodes v and v’ = s, (I') are connected
in Conn(y** \ F,Tyext \ F) (i.e. Part 2) by the following reasons. First, T}, is a subtree of
Tjext (since 7y, €y from N,(I',) intersects S). Furthermore, T, has no vertex in F' (since

7 is unaffected), and the terminal nodes in T’ ext corresponding to vertices v,v" are on the

subtree T, (since v,v’ € 7).

Therefore, it suffices to show that u is connected to v’ in the union, which can be reduced to the
following cases.

Case (2). Suppose N, (I") is disjoint from S, or v = s,, (I"). Further assume that N, (I") is disjoint
from S. Recall the construction of shortcut edges, we have u € N, (I") € N(I') and v € N(T") (if
N, (T is disjoint from S, then v € N, (T") € N(I"); if v = s, (I"), then v = s, (I") C N(I")), so
there is a shortcut edge connected u' and v with type 4/. This edge is in Gr because u € v, and it
survives in G%ry \ F' because 7' is unaﬁ'?cted, uw€ vy CQE and v € v, €™ C QF. Therefore, u
and v are connected in Conn(QE* \ F,GEY \ F) (i.e. Part 1).

Case (3). Suppose N, (I") is disjoint from S, or v = s,, (I''). Further assume that N, (I") intersects
S. Let v/ = sy(I'"). Let w be the P-vertex in 4/ closest to w.
First, v and v’ are connected in Conn(QE*\ F, G \ F) (i.e. Part 1) by the following reasons.

When adding shortcut edges, we have v,u’ € N (") (by the same reason as above), so there is a

23

shortcut edge connecting ' and v with type /. This edge is in Gr because u € v, and it survives
in G\ F because 7' is unaffected, v’ € v C QE%, ' ¢ F (since v’ € S) and v € 7, C 7 C Q.

Next, v and w are connected in Conn(y**\ F,T,ex \ F') (i.e. Part 2). This is because in
the extended Steiner tree Thext, the terminal nodes u' and w fall in subtree T,y U P,_,, (from
Observation 3.9), and all vertices in T’y U Py/_,- are not in F' (since all vertices in T’ fall in the
unaffected component I, and all vertices in P,/_,, also fall in I' except one endpoint s, (I"), which
is in 5).

It remains to show that w and u are connected in the union. We can reuse the argument in the
whole proof of Lemma 3.13. We now verify that u and w satisfy the conditions of Lemma 3.13.
Because u is unchanged, u ¢ F and u € 7. For w (note that 7, = 7), because w € v, < 7 < 7
and 7, is unaffected, we know w ¢ F, vy, < v and 7, is unaffected. Moreover, N, (7,) intersects S
is from the assumption of case (3). Next, consider the subpath of P from u to w, denoted by P’.
If P" has only one edge e = {u,w}, then we are good. Otherwise, P’ has some internal vertices.
Note that by our choice of w, the internal vertices of P’ are all in I'"\ 7/. By Property Item 1 of the
hierarchy, they must belong to I',, ., for some child 7/, ;4 of 7. In other words, the unaffected core
Yipiaa = Yw has u,w € NI, .4). In conclusion u,w indeed satisfy the conditions of Lemma 3.13.
Finally, this recursive argument will stop because when we reach Case (3) again, the 7/ this time
will have depth larger than the one of the last time, and the hierarchy has finite depth. O

O

3.2.5 An Improved Divide-and-Conquer Lemma via Sparsified Shortcut Graphs

The goal of this section is to show an improved version Lemma 3.11 which proves precisely the
same statement except that the query graph G is replaced by its sparsified version G{7.

Lemma 3.14. Let " € C be an affected component. For each pair of vertices x,y € Qr \ F, they
are connected in G[U'| \ F if and only if they are connected in the union of

1. Conn(QE*\ F,GI \ F),
2. Conn(Y**\ F,Tyex: \ F), and
3. Conn(Qrq \ Fy GLenita) \ F') for all affected children T'chilg of T

Working the sparsified query graph é%ry is crucial for bounding the size of the vertex label to
be poly(flogn) in Section 3.4. This technique was also used in [PPP24]. However, sparsified query
graphs are not crucial for understanding the overall strategy of the algorithm in Section 3.3. Hence,
during the first read, we suggest readers assume G{” = G%ry, skip this section, and continue until
when sparsified query graphs are needed in Section 3.4.

Below, we define sparsified shortcut graphs and sparsified query graphs and then prove Lemma 3.14.

Sparsified Shortcut Graphs. Here, we define the sparsified shortcut graph ér of the shortcut
graph Gr with respect to each component I' € C. Roughly speaking but not precisely, we will
sparsify the subgraph Gr[y®!], abbreviated as é,yext, into a graph é,yext with arboricity 6(?)
while keeping the (pairwise) connectivity unchanged under O(f2) vertex failures. We will see later
why it should tolerate 5(f?) failures rather than f. Let us recall the guarantees of the Nagamochi-
Ibaraki [N192] sparsifiers.

24

Lemma 3.15 (Nagamochi and Ibaraki [N192]). Given a simple undirected graph R and a parameter
d, there is a deterministic algorithm that computes a subgraph R of R with V(R) = V(R) satisfying
the following.

1. R has arboricity d.

2. Given arbitrary vertex failures ' C V(R) s.t. |F| < d, each pair of vertices u,v € V(R) \ F
are connected in R\ F' if and only if they are connected in R\ F.

A graph with arboriticy d is one whose edge-set can be partitioned into d forests and as a con-
sequence, the edge-set can be oriented so that the maximum out-degree is d. Parter et al. [PPP24]
also computed low-arboricity sparsifiers deterministically, but used hit-miss hash families [KP21]
rather than Nagamochi-Ibaraki sparsification.

Finally, we are ready to formally describe how to sparsify Gr into Gr.

1. Let G,Yext = @p [’ye"t] be the subgraph of ér induced by the extended core v***, and let G’?ﬁxt

be the simple graph corresponding to GA,\/ext, i.e., a bundle of edges with the same endpoints
but different types collapse to one edge.

2. We obtain the sparsified graph ngxt of G*P jext by applying Lemma 3.15 with parameter d =
T+ B2 f A+ 1 = O(f2log® n).

Aarbo =
3. Obtain G ext by including, for each {u,v} € E(G ext) all edges with endpoints {u, v} in G,Yext
(such edges may have various types).

4. Lastly, obtain Gp by substituting G ext for G e in Gr. Namely, E(Gr) = (E(Gr) \
E(@ ext)) U E(G ext). By this definition, Gr[y eXt] = G,yext

Sparsified Query Graphs. Recall that we define the query graph G of T to be G¥Y =
Gr [QF] \Ep aft- Naturally, we define a sparsified query graph Gq Y = Gp[ext] \Ep aff- That is,

the sparsified query graph Gq Y is the subgraph of Gr induced by the extended query set Q$,
excluding all affected edges.
Now, we proceed to prove Lemma 3.14.

Lemma 3.16. Let I' € C be an affected component. Two vertices x,y € YU\ F are connected in
GV Y™\ F if and only if they are connected in GE” [y*'] \ F.

Proof. By definition, G [y*t] = Gp[ext] \Ep o and G2V [y eXt] ér[xt)\ B afr, because 7 C
Q. Recall that when sparsifying Gr into Gr, we construct G ext = Gp[] from G ext = Gp[ext]
by the following way.

e First let C?ff;xt be the corresponding simple graph of G,Yext.

o éi‘;m is the sparsified simple graph from applying Lemma 3.15 on éig"t with parameter
d=f+h2fam + 1.

° La.Stly 1et é,yext = GA,Yext N E(éi}zxt)

25

Trivially, = and y are connected in GEY[y*<] if they are connected in é%ry['ye"t], because
G [is a subgraph of G [y*] by definition.

From now we focus on the other direction. Tt suffices to show that, for each edge & € E(GEY [y*))
E(G o) \ Erag with endpoints u,v ¢ F, we have u and v are connected in GV \ F =
(Gryext \Ep aoff) \ F. First, if {u,v} € E(G Pet), then trivially e € E(é,yext) by the construction,

which immediately gives u and v are connected in (é,yext \ EA’F’aﬁ‘) \ F.
Hence, we assume u and v are not adjacent in Gfﬁxt from now. Recall the construction of

sportcut graphs, for each ’yA’ < 7, the shortcut edges with type 4/ must have their endpoints in
N(T), and we know that |N(I”)| < h - App. Let

Ve=(FU | NIT)Ny@YN {u, 0}

affected ~/

That is, Vi collects all y***-vertices which are failed or incident to some affected edges, excluding u
and v. We have that |Vi| < f+ h%(f 4+ 2) b, because the number of affected 4/ is at most h(f +2)
by Observation 3.10.

Let G*P be the corresponding simple graph of (yoxt \ Er aff) \ F'. Because é € E(G ext),

Xt valid
we have {u, v} € E(G,Sylzxt), and furthermore {u,v} € E(G;IZXt \ Vr) because u,v ¢ Vp. This means
u and v are connected in ésgxt \ V¢ by Lemma 3.15 and the fact that |Vr| < d — 1. Finally, by

Claim 3.17, u and v are connected in G so they are also connected in (é,yext \ Eran) \ F as

yext valid’
desired.

Claim 3.17. Gs;;(t \ Vr is a subgraph ofG

ext yvalid *

Proof. Consider an edge {z,y} € E(G® ext \ Vr), and we will show that {z,y} € E(G ext valid)-
Because we have assumed that w and v are not adjacent in G exts W have either = or y is not

in {u,v}, say x ¢ {u,v}. From the construction of G,yext, there must be an edge € € E(é,yext)
connecting x, y.

We now show that € is an unaffected edge. Assume for contradiction that ¢ is affected. Let
7" be the type of e. Then 7' is affected, and x € Np. Because we also have x ¢ {u,v} and
V(Gi{zxt) =4 we know x € (Np» Ny*YH) \ {u, v} C Vg, a contradiction.

Now because € € E((N?cht) is an unaffected edge connecting z,y ¢ F (because F' C Vi), € shows
up in (Gext \ Eraf) \ F, and {z,y} € E(GSEXt vahd) O

O

Corollary 3.18. Let I' € C be an affected component. Two vertices x,y € QF* \ F are connected
in G\ F if and only if they are connected in GE¥ \ F.

Proof. Note that the edge set E(Gr)\ E(Gr[y™*]) is exactly the same as E(Gr)\ E(Gr[y*)). This
means E(GEY)\ E(GEY [y eXt]) is exactly the same as E(GIY) \ E(GYY[y*]), because GIY, GIY
are just constructed from Gr, Gr by removing affected edges and taking the restriction on vertices
Q. Combining Lemma 3.16, we get this corollary immediately. O

Combining Lemma 3.11 and Corollary 3.18, we get Lemma 3.14 immediately.

26

3.3 The Strategy for Handling Queries

In this section, we will describe the query algorithm, but we will assume some interfaces along the
way. The labeling scheme for these interfaces will be deferred to the next subsection.

As we discussed above, the query algorithm will solve the connectivity of Qr \ F' on G[I'] \ F
for all affected components I' in a bottom-up order. In fact, here we already need an interface
ListAffectedComps() which lists all the affected components in a bottom-up order.

At a particular step I', naturally the output is a partition Pr of Qr \ F which capture the
connectivity (i.e. two vertices xz,y € Qr \ F are in the same group of Pr if and only if they are
connected in G[I'] \). However, in our implementation, we will represent Pr implicitly by a
partition Kr of subtrees on the Steiner trees.

Definition 3.19 (Subtrees w.r.t. F'). For each affected core v, we break the Steiner tree T, into
subtrees by removing failed vertices F', and let 75 be the set of these subtrees. Similarly, for the
extended Steiner tree T.ext, we define the subtrees T, exc by removing all nodes corresponding to
failed vertices. For each subtree T, we let V"™ (7) denote the terminal nodes in 7, and without
ambiguity, V™" (1) also refers to the vertices in G corresponding to the terminal nodes in V™ (7).

For each affected component I', we define

= U 7

affected v/ =<y

Note that {V™"(7) | 7 € Tr} partitions Qr \ F, because {v'\ F'| affected 7/ < v} partitions Qr \ F
(by Observation 3.5 and the definition of Qr), and for each affected 7' < ~, {V™2(7) | 7 € T/}
partitions 4"\ F. Moreover, each subtree T € T certifies that vertices in V"?(7) are connected in
G[I'] \ F. Therefore, we can indeed represent the partition Pr of vertices Qr \ F' using a partition
Kr of subtrees Tr. More precisely, the output of the step at I' is a partition Kp of Tr s.t. its
mapping Pr = {U,cx V™ (7) | K € Kr} on Qr \ F capture the connectivity of Qr \ F in G[I']\ F.

Solving New Connectivity at I'. As shown in Lemma 3.14, the new connectivity at step I'
is the connectivity of Q& \ F in GE¥ \ F and the connectivity of (terminal nodes) v***\ F in

Text \ F. Again, we want a partition PP** of Qf** \ F that captures the new connectivity, and in

the implementation we will represent PEX* implicitly by a partition KE*' of subtrees of extended
Steiner subtrees.
Formally, we define

7}eXt = 7jyext U U Ty/-

affected /<~y

s.t. 4/ is not in vt

We also have {Vtmn(r) | T € TFeXt} partitions QF' \ F. Our goal is to compute a partition K¢ of
T with its mapping PR = {U,cx V™ (1) | K € K} satisfying the following.

1. Each u,v € Q%" \ F in the same part of P£** are connected in G[['] \ F.
2. Each u,v € Q& \ F connected in G¥¥ \ F are in the same part of PE.

3. Bach u,v € ¥\ F C Q" \ F whose terminal nodes are connected in Thext \ F are in the
same part of P,

27

Note that requirement 3 is automatically satisfied because each pair of terminal nodes u,v € Y\ F’
connected in Thext \ F' must belong to V'™ (1) for the same subtree 7 € Toext.

To compute a partition K satisfying requirements 1 and 2, we will exploit the following key
observation, Lemma 3.20, from the vertex expander hierarchy. Roughly speaking, those subtrees
with too many ~y-vertices inside and surrounding must belong to the same connected component of
Gr\ F.

Before stating Lemma 3.20, we introduce some notations. For a graph G’ and a vertex set
A C V(G"), we let N (A) denote the neighbors of A in G’. For each subtree 7 € T, let
Vimn(7) = V'™(7) Ny be the y-vertices inside V™ (7),” and let N, (1) = NCT (VI (7)) Ny be

the intersection of 4 and the neighbors of V'™ (7) in G7.

Lemma 3.20. Let 71,72 € T be two subtrees such that [N, (11)|4|V;™ (11)| > f/¢ and [N, (72)|+
V3™ (12)| > f/¢p. Then V'™ (11) and V'™ (12) are contained in the same connected component of
G\ F.

Proof. Assume for contradiction that 7 and 75 belong to two different connected components Cy
and Cy of G[I']\ F. Tt must be that N¢I'/(C;) C F for i € {1,2}.

We clearly have Vvtmn(ﬁ) UN, (1) C (01 U NG[F](C'l)) N-~y. Vvtmn(ﬁ) is contained in Cy N~y by
assumption. A y € N,(7) is joined by an edge {z,y} € E(élclry) s.t. © € ;. This edge can have
type original, or type ' for some unaffected v < ~. Either way, there is a path from x to y whose
internal vertices are in I'. Note that I' is disjoint from F, so y € C; U N¢I'(C}). We have shown
that for i € {1,2},

(€ UNEIC)) | = (Vi) + N, ()] > £/9.
Because 7 is ¢-vertex-expanding in G[I'], we have
INCIC)| = 6 - min {| (01 L NCTC)) |10\ Nl > 6 (£/0) = 1.

However, INCI'/(Cy)| > f contradicts the fact that NCI(C;) C F. O]

We say a subtree 7 € T is giant if [V™(7)| 4 |[N,(7)| > f/¢, otherwise it is non-giant. We
start from a trivial partition of 7*" in which each subtree forms a singleton group, and then merge
the groups according to the following rules.

R1. Put all giant subtrees into the same group, called the giant group. Whenever a connected
group {7;} of subtrees collectively has [V;™({7;})| + [N,({7:})| > f/, merge it with the
giant group.

R2. Let 7, € 7" be non-giant and 7, € 7" be such that N,(7;) intersects V"™ (7). Then
merge the groups containing 7, and 7.

R3. Let 7, € T be non-giant and 7, € T be giant such that N,(7;) intersects V'™ (7).
Then merge 7, with the giant group.

®In fact, V;™(7) is not empty only when 7 € T ext.

28

Before we move on to discuss the implementation of these rules, we first show that the partition
lCl‘i"t generated as above will satisfy requirements 1 and 2. The requirement 1 is satisfied because
the rules are using valid connectivity in G[I']\ F. In particular, R1 is safe according to Lemma 3.20.
For each of R2 and R3, N, (7;) intersects V'™ (7,) means there is an edge in F (é%ry) connecting
z € V™(7,) and y € V'™ (7,), which means z and y are connected in G[I'] \ F' because this edge
is unaffected and z,y ¢ F (note that V'™ () and V*™"(7,) are disjoint from F). To show that
requirement 2 is satisfied, we will show that for each edge {x,y} € E(GYY\ F) connecting V"™ (7;)
and V' (1), the subtrees 71 and 7o will be merged by one of the rules. Recall that the edges in
graph G must be incident to -, and é%ry is a subgraph of G{¥. Hence we have either = € or
y € v, and without loss of generality, we assume y € ~.

e When both 7 and 7 are giant they will be merged by R1.
e When both 7; and 7 are non-giant they will be merged by R2.

e When 71 is non-giant and 73 is giant, they will be merged by either R2 or R3 (depending on
whether y € VY8 (y) or y € V(7).

The following primitives will allow us to implement rules R1, R2, and R3. Here I' is an affected
component and 7 € T,

ListSubtrees™*(I"): List all subtrees of 7.

ListSubtrees(I'): List all subtrees of Tr.

ListTerminals(7,T'): Return up to f/¢ + 1 elements of V™" (7).
ListNeighbors(7,I"): Return up to f/¢ + 1 elements of N, (7).
IsTerminal(v, 7): Return true iff v is a terminal in 7.
PickTerminal(7): Return any element of V'™ (7).

EnumFromGiant(7,T'): Requirement: 7 € T ext, and 7 is non-giant. Return the number of edges in
E(GEY \ F) joining Vi™ (1) and Uyiane — yimn(r Y,

Clearly ListSubtrees®™*(T"), ListTerminals(7,T'), and ListNeighbors(7,T") can be used to list all
subtrees and determine which are giant. This suffices to implement rule R1. ListNeighbors and
IsTerminal suffice to implement rule R2. We implement rule R3 non-constructively. In other
words, we do not find a specific giant 7, such that N, (7,) N V™ (7,) # 0, but merely infer that
there exists such a 7, if EnumFromGiant(,,I') > 0. Observe that the condition of rule R3 is
7y € T If 7y & Toex then we cannot call EnumFromGiant, but in this case 7, € T\ Tiext
implies V™" (7,) = 0, so R3 cannot be applied anyway.

Obtain Kr from K&* and all Kr,,. Next, we discuss how to compute Kr for a particular
affected component I', assuming we have already got the X&' above (capturing the new connectivity
at I') and the Kr_,, of all affected children I'¢hjg of T'.

29

We call ListSubtrees(I') and form their initialize partition Kr as:

Kp = HrilreT}u U Kr -

I’s affected children I'¢phjg

That is, any subtrees grouped in Kr_,,, are initially grouped in ICIQ. It remains to group subtrees
according to the connectivity learned from KE.

For each group K € K&, we merge all the groups K° € K2 such that V™ (K?) intersects
ytmn(fexty - By Observation 3.9, VU(7) is either contained in or disjoint from Vtmn(7ext) for
7€ K% e KY and 7 € K™ € K& Thus we can detect whether they intersect by calling
v < PickTerminal(7) and IsTerminal(v, 7%<%). After all grouping, the final partition is Kr.

Answering Query (s,t,F). We compute the partitions {Kr} for all affected I' in postorder,
culminating in the root partition Kr, . Then s and ¢ are connected iff there exists a K € Kr,,,
and 75,7 € K such that IsTerminal(s, 75) = IsTerminal(t, ;) = true.

3.4 The Labeling Scheme: Implementing the Strategy

Finally, we describe a labeling scheme that supports the interfaces required by the query algorithm.
Note that we still fix an S; € S and assume that vertices in S; will never fail, and the labeling
scheme we describe is only for this 5;. At the very end, we will discuss our final labeling scheme
and how to find a non-failed S; for a query.

We restate the interfaces in a formal way as follows.

o ListAffectedComps() outputs the identifiers of affected components in a bottom-up order.

e ListSubtrees(T"), ListSubtrees™*(I") receive the identifier of an affected component T, and list
the profiles of subtrees in 7r and T respectively.

e ListTerminals(7,I") receives the identifier of an affected component I' and the profile of a
subtree 7 € T, and either detects [V;™(7)| > f/¢ or outputs the profiles of all vertices in
V,thn(T).

e ListNeighbors(7,I") receives the identifier of an affected component I' and the profile of a
subtree 7 € T, and either detects [V™*(7)| 4 [N, (7)| > f/¢ or outputs the profiles of all
vertices in N, (7).

e IsTerminal(v, 7) receives the profile of a vertex v and the profile of a subtree 7 (an arbitrary
one from Definition 3.19), and outputs whether v is in V*™(7) or not.

e PickTerminal(7) receives the profile of a subtree 7 € 7T, of some affected 7, and outputs the
profile of an arbitrary vertex in V™" ().

e EnumFromGiant(7,,I") receives the profile of a non-giant subtree 7, € T ext, and outputs the
number of edges in E(GEY \ F) connecting |J ViR (z,) and Vi™ (7).

glant 7, €TE*t

We make some remarks on the terms identifiers and profiles. For those objects defined in the
preprocessing phase (i.e. vertices in G, components/coresﬁ7 Steiner trees and extended Steiner

SA component T' and its core 4 has the same identifier.

30

trees), we assign each of them a distinct O(logn)-bit integer as its identifier, denoted by id(-). Note
that O(logn) bits suffice because the number of such objects is polynomial. During the query phase,
we may further generate profiles for the objects (including those defined in the query phase, e.g.
subtrees from Definition 3.19). A profile is something that representing this object and generally
it is not only a single integer.

3.4.1 The Euler Tours of (Extended) Steiner Trees

Like what we did for the edge fault connectivity labels, we will exploit the Euler tour to “linearize”
the (extended) Steiner trees. However, the Euler tours here are slightly different from the definition
in Section 2.

Definition 3.21 (Euler Tours). For each (extended) Steiner tree T', we define Euler(T) to be its
Euler tour, which is a list that includes all occurrence of nodes according to a DFS traversal of T,
starting from an arbitrary root node. For convenience, we add two virtual occurences start(T) and
end(7T’) at the front and the end of Euler(T") as the “guards”. See Figure 5 for a small example.

a

start(1),a,b,c,b,d,e,d, f,d,g,d,b,
Euler(T) = (@)
C i a,h,i,h,j, h,a, end(T))

e 9
Figure 5: Left: an (extended) Steiner tree T, rooted at a. Right: Euler(T).

For each occurrence v, € Euler(T'), we say a node vyg € V(T') owns v if voe is an occurrence of
Und, and naturally the vertex that owns v is the the vertex in G corresponding to the node in V(T")
that owns ve.. We let pos(v,c) denote the position of vee in Euler(T'). In particular, pos(start(7)) = 0
and pos(end(T")) = 2|V (T')|, since the number of non-virtual occurrences in Euler(T") is 2|V (T")| — 1.
The profile of an occurrence v, € Euler(T') is defined as profile(vo.) = (id(v),id(T"), pos(voc)),
where v is the vertex that owns v,.. Exceptionally, profile(start(7T")) = (L, id(T"), pos(start(7"))) and
profile(end(7")) = (L,id(T"), pos(end(T))).

Label occurrences(v, T'). For each vertex v ¢ S and each (extended) Steiner tree T' € {T, | v €
V(T))} U{Text | v € V(Tyext)}, the label occurrences(v,T’) stores the profiles of occurrences in
Euler(7") owned by v, i.e. occurrences(v,T") = (profile(voc,1), profile(voc,2), ...), where voc 1, Vo2, - €
Euler(T") are owned by v.

3.4.2 Profiles of Vertices, Components and Subtrees

We define the profiles of vertices, components and subtrees, and use them to implement interfaces
ListAffectedComps(), ListSubtrees(T"), ListSubtrees™"(I") and IsTerminal(v, 7).

Label profile(T"). The profile of a component I' € C, denoted by profile(T"), is constructed as follows,
and we will store profile(T") at each vertex v € T.

e Store id(T"), id(T%,) and id(Tyext).

31

e For each ancestor I s.t. I' < I, store id(I') and a one-bit indicator indicating whether Ny (I)
intersects S.

Label profile(v). The profile of a vertex v € V(G), denoted by profile(v), is constructed as follows,
and we will store profile(v) at vertex v.

e Store id(v).

e For each (extended) Steiner tree T € {T,,} U {Thext | v € ¥} (i.e. v has a corresponding
terminal node in 7T'), let 7(v,T) denote the occurrence Euler(T) owned by the terminal node
(corresponding to the vertex) v with the least pos(vec)”, called the principal occurrence of the
vertex v on T, and we store profile(m(v,T)).

Implement ListAffectedComps(). Note that we can already implement the interface ListAffectedComps|()
by inspecting the profiles of components storing at vertices {s,t} U F. In fact, we can even support
the basic operations in Observation 3.22.

Observation 3.22. By inspecting the profiles of components storing at vertices {s,t} UF, we can
suport the following.

o List id(T') of all affected components T'.
o Given id(I") of an affected component T', get id(T,) and id(Text).

o Given id(T') of an (extended) Steiner tree of some (unknown) affected component T', decide
whether it is a Steiner tree or an extended Steiner tree and get id(T").

e Given id(T'1),id(T'2) of two affected components I'1,Ty, distinguish among (1) Ty <X Ty, (2)
Iy XT'y, and (3) no ancestral relation between I'y and T'a.

o Given id(I"),id(T") of two affected components I",T s.t. T' < T, decide if v C y***.

Profiles of Subtrees. For an (extended) Steiner tree T' € {7y, T\yext | 7 is affected}, we will represent
a subtree 7 € T (T is the set of subtrees of 7" w.r.t. F' from Definition 3.19) by a collection of
intervals on Euler(T).

Definition 3.23 (Intervals). For each (extended) Steiner tree T' € {T), Text | v is affected}, we
break Euler(T) into intervals by removing start(7), end(7T") and all occurrences owned by failed
vertices, and let Zr denote these intervals. For each interval I, we use foc,; and roc; to denote
the left and right outer endpoints of I. To be precise, for an interval including occurrences from
position a to b, the outer endpoints of I are the occurrences at position a — 1 and b+ 1. The profile
of an interval I € Zr is profile(I) = (profile({oc 1), profile(roc,r)). Furthermore, we define V*™2(T) to
be the set of vertices with its principal occurrences 7(v,T') falling in 1.

Observation 3.24. There is an assignment that assigns a subset of interval T, C Ir to each
subtree T € T, satisfying the following.

e For each subtree 7 € T, V(1) = Urez, Ve (r).

"In fact, we can fix m(v,T) to be an arbitrary occurrence owned by the terminal node v (no need to be the one
with the least pos(voc)).

32

o {Z. |7 €T} forms a partition of .

We state the relations between intervals Zr and subtrees 7 in Observation 3.24. These are
well-known facts from the nature of DFS traversals. Furthermore, by inspecting only profile(v) for
vertices v € F', we can obtain profile(I) for all I € Zp explicitly. Furthermore, it is an easy exercise
to compute such a partition {Z, | 7 € T} of Zp with properties in Observation 3.24 (roughly
speaking, we can just simulate the DFS traversal using a stack).

Finally, for each subtree 7 € T, we define its profile to be profile(7) = {profile(I) | I € Z,}, i.e.
we collect profile(I) of all I € Z; into profile().

Implement ListSubtrees(I') and ListSubtrees™"(I"). We take ListSubtrees(I') as an example, and we

can implement ListSubtrees™*(T") in a similar way. We have already computed the profiles of all
subtrees in Definition 3.19. We just scan all subtrees 7 and output profile(r) if 7 € Tr. To check
whether 7 € Tr, recall that Tr collect subtrees from Steiner tree T, for all affected I" < T. Note
that from profile(7), we can obtain id(7T") of the (extended) Steiner tree T s.t. 7 € T, so using
Observation 3.22, we can get the id(I") of the affected I" s.t. T,y = T (or know such I'" does not
exist), and check whether IV < T

Implement IsTerminal(v, 7). Note that V'™ (7) = J;oz. V™) by Observation 3.24, so to check
whether v € V'™1(7) it suffices to check whether v € V'™(]) for each I € Z.. From profile(I)
(stored in profile(7)), we can get id(T") of the (extended) Steiner tree 7" s.t. I is on Euler(7),
and further get the position of the outer endpoints of I, i.e. pos(foc) and pos(rocr). Lastly, we
look at profile(w(v,T")) (stored in profile(v)) of the principal occurrence of v on T, and check if
pos(loc,1) < pos(m(v,T)) < pos(roc,r)-

3.4.3 Labels on Euler Tours

We introduce some labels related to Euler tours, and then use them to implement the interfaces
PickTerminal(7), ListTerminals(7,T") and ListNeighbors(7,T").

Label SuccTerminal(voe, T'). For each component I' € C and each occurrence v, € Euler(TY), we
construct a label SuccTerminal(vee,Ty). Let € 7 be the vertex whose principal occurrence
m(x,T,) is to the right of vy, and has the least pos(w(x,T5)). We store profile(z) in the label
SuccTerminal(voc, T%y), and without ambiguity, SuccTerminal(voc, Ty) also refers to this vertex z in
our analysis. We store the label SuccTerminal(voc, T) at the vertex v owning ve.. Exceptionally,
when v is start(T%) or end(T’,), we store SuccTerminal(voe, Ty) at all vertices inside I'.

Implement PickTerminal(7). Note that the input guarantees that 7 € 7, for some affected 7. By
Observation 3.24, we have V'™ (1) = ez V'™ (1), so it suffices to obtain a vertex of V'™ (I) of
some I € Z,. For a particular I € Z, if V*™?(]) is not empty, the vertex = SuccTerminal({oc, 1)
must be inside V™*(]) by definition. Hence, we just need to check whether z € V™2(]), or
equivalently, whether pos({oc 1) < pos(m(z,Ty)) < pos(roec,r). Indeed, this is doable because we can
obtain pos(oc 1), pos(Toc,1),id(Ty) from profile(r) and obtain pos(w(x,T’,)) from profile(z) (profile(z)
is obtained from the label SuccTerminal({qc 1, T) by Observation 3.25).

Observation 3.25. Given profile(I) of some interval I € Z; of some T € T, we can access
SuccTerminal (Yo 1, T5).

33

Proof. We can obtain profile({o 1) from profile(I). If £ 1 is owned by some vertex v (i.e. foc 1 is not
start(T’,) or end(T’,)), v must be inside F', so the label SuccTerminal({q 1, T5) stored at v is accessible
and we can locate it using profile(oc 7). If loc 1 is start(T,) or end(T%), SuccTerminal(voe, Ty) is
accessible from an arbitrary vertex v € I' N ({s,t} U F'). Such v exists because I is affected (7 is

well-defined only when I is affected). O]
Label InnerTerminals_’ (voc, Tyext). For each component ' € C and each occurrence voe € Euler(Tex:)
not owned by S-vertices, we construct the label InnerTerminaIs,?> (Vocs T,yext) as follows.

Let V> collect all vertices = € « with principal occurrence 7(z, T'yext) to the right of ve.. We sort
vertices z € V. in order of 7(z, T,ext) from leftmost to rightmost. The label InnerTerminals>” (voc, T+)
will take the first f/¢ + 1 vertices in V,*, and for each vertex v € InnerTerminals_’ (voc, T+), we
store profile(v) in the label InnerTerminals ” (voc, Ty).

We will store the label InnerTerminals ’(voc, Thext) at the vertex v owning voc. Exceptionally,
when v, is a virtual occurrence (i.e. start(T,ex) or end(T5*")), we store InnerTerminals_” (voc, Tyext)

v ¥
at all vertices v € I'.

Implement ListTerminals(7,T"). Recall that the input guarantees that 7 € 7. By definition,

V™2 (7) is not empty only when 7 € Text. Using id(7) and Observation 3.22, we can easily check if
7 € Tyext, s0 from now we assume 7 € Toext. For each interval I € Z,, we define V™ (I) = V'™ (I)N
7 to be the y-vertices in V™" (I). From Observation 3.24, we know V™ (1) = ez V™ (1). By
Lemma 3.27, it suffices to inspect InnerTerminals(4,c 1, T,Yext) for all I € Z,. Note that we can access
InnerTerminals(£oc 7, Tyext) by Observation 3.26.

Observation 3.26. Given profile(1) of some T € Text, we can access InnerTerminals ” ({oc,r, Tyext)
forall I € Z,.

Proof. This is similar to Observation 3.25. For each I € Z, we can obtain profile(4y ;) from
profile(7). If £y s is owned by some vertex v, we can access InnerTerminals_’ ({oc, 1, Tyext) from the
vertex v. Otherwise, lo 1 is start(T,) or end(T,), and we can access InnerTerminals}’ (o, 1, Tyext)
from the vertex v from an arbitrary vertex v € I' N ({s,t} U F)) because I' is affected (T ext is
well-defined only when ~ is affected). O

Lemma 3.27. Given profile(I) of an interval I € I, of some T € Text, we can either detect
V2™ (I)| > f/¢ or output the profiles of all vertices in V™ (I), if we can access InnerTerminals_’ (€oc,r, Tyest).

Proof. We consider a candidate fqtmn(f) of V™2(I) defined as
ﬁtmn(l) = {z € InnerTerminals_’ (loc,1, Tyext) | pos(foc,1, Tyext) < pos(m(x, Tyext)) < pos(roc,1, Tyext)}-

By definition, we have IN/thn(I) C V™ (I). Thus, if]1~/th“([)\ > f/¢, we detect [VI™™(I)| > f/¢.
From now, assume W/Vtmn(f)| < f/¢, and we claim that 177“““([) = V™(I). Assume for
contradiction that there exists a vertex = € Vi™(I) \ 177“““([). Note that when construct-

ing InnerTerminals’” (foc 1, Thext), the vertex x is inside V,~ = because 7(z,Tyext) € I is indeed
5 oc,

to the right of f,. ;. The only scenario in which z is not selected in XN/thn(I) is when the size
of InnerTerminals’ (¢, T\ ext) reaches f/¢ + 1 and each vertex 2’ € InnerTerminals ’ (¢, T\ex:) has
pos(loc,r) < pos(m(z’,Ty+)) < pos(m(x,Ty+)). However, this means these f/¢ + 1 vertices 2’ will be
picked into 177“““(]), contradicting \V;mn(f)< f/o. O

34

Corollary 3.28. Given an interval I € L of some non-giant subtree T € Text, we have V,;Jmn(l) C
InnerTerminals_’ (oc, 1, Tyext).

Proof. Recall the candidate XN/th“(I) in the proof of Lemma 3.27. By definition, 177“““([) C

InnerTerminals’ (€oc,r, Tyext). Furthermore, because 7 is non-giant, we have V™ (I) = f@tmn(f). O

Labels NeighborEdge " (voc, T') and NeighborVertex.’ (voc, T). For each component I' € C, each (ex-

tended) Steiner tree T' € {Text } U{T,/ | 7' < 7}, and each occurrence vy, € Euler(T) not owned by
S-vertices, we construct the label NeighborEdge_’ (voc, T') and NeighborVertex:’ (voc, T') as follows.

For each undirected edge {u,v} € E(Gr) with type 1, we treat it as two directed edges (u, v,)
and (v,u,n). Then we let E,’ be a list collecting all directed edges e = (x,y,7) € E(Gr)s.t. y €~
and z has a principal occurrence 7(z,T’) to the right of ve.. We sort edges e = (z,y,n) € E;’ in
order of 7(x,T) from leftmost to rightmost.

In what follows, we construct a list NeighborEdgej(vOC, T') of edges in £’ by considering edges
in E,’ one by one according to the order. Meanwhile, we will maintain another list

NeighborVertex_’ (voe, T) = {y | (x,y,m) € NeighborEdge " (voc, T')}

Each edge (,y,n) in NeighborEdge."(voc, T') is stored in the form (pos(7(z,T)),id(y),id(n)), and
each vertex y in NeighborVertex?(voc, T) is stored as profile(y).

Let e = (x,y,n) € E,, be the current edge, and we add e into NeighborEdgej(voc, T) if all the
following three conditions hold at this moment.

L. There is no edge ¢’ = (2',3',n') € NeighborEdge’ (voc, T) s.t. v’ =y and ' = 1.

2. The number of edges ¢’ = (2/,4',7') € NeighborEdge."(voc, T') s.t. 3 = y is smaller than
h(f+2)+1.

3. The size of NeighborVertex.’ (voc, T') should be smaller than A(f + 2)Ay, + f/¢ + 1.

Note that conditions 2 and 3 guarantee that the number of edges in NeighborEdge7 (Voe, T') is at
most (A(f +2) + 1)(h(f + 2y + £/ -+ 1).

We will store the labels NeighborEdge ' (voc, T') and NeighborVertex ' (voe, T) at the vertex v
owning v... Exceptionally, when v, is sta[t(T) or e_nd(T), we store Neighb_orEdge?(voc,T) and
NeighborVertex_’ (voc, T') at all vertices v € T', where I' = ' if 7' = T\exe and T' = T" if T' = T/ for
some v < .

Implement ListNeighbors(7,T"). From id(7), we can obtain id(7") where T is the (extended) Steiner
tree owning 7. For each interval I € 7., we let

~qry
N, (1) = NOO (V™ (1)) n
be the neighbors of V™(I) in graph GV falling in . Furthermore, let
NY(I) = {y | {,y} € B(GE),x € V'™ ()} Ny (2)

denote the vertices in v adjacent to some x € V'™ (]) in the graph é%ry . By definition, NE/HC(I)
may include vertices in V*™2(I), and N,(I) = NanC(I)\ VI (]) is exactly the set by excluding
Vimn(ry from N;HC(I). Therefore,

N, (I) € NI*°(I) € N,(I) U V™ (I).

35

To answer ListNeighbors(7,I"), it suffices to apply Lemma 3.29 (with access guarantee from
Observation 3.30) on each I € Z, by the following reasons. By Observation 3.24, we have V'3 (1) =
Urez, V™ (I). Therefore, we have

Ny(r) € | NIPe(I) € Ny(r) V™ (7).
IeZ;

If Lemma 3.29 detect |[N¢(I)] > f/¢ for some I € I, it means [V™(7)| 4 |N,(7)| > f/¢.
Otherwise, Lemma 3.29 outputs (the identifiers of) all vertices in N*¢(I) for all I € Z;. To get
N, (1), we just need to remove from (J;cz N°(I) vertices in V™ (7). Note that we can check
whether a vertex v € ez, Ny(I) is in V™ (7) using IsTerminal(v, 7), or even just get V™»(r)
explicitly using ListTerminals(7,T").

Lemma 3.29. Given profile(I) of an interval I € I, of some T € T, we can either detect
\N,iync(l)\ > f /¢ or output the profiles of all vertices in N;HC(I), if we can access NeighborEdge;> (loe,1,T)
and NeighborVertex ' ({oc 1, T), where T is the (extended) Steiner tree owning T.

Proof. We consider a candidate N,iync(l) of N;HC(I) defined as

NY“(I) = {y |(z,y,n) € NeighborEdge ' (¢, T’)
s.t. pos(loc,1,T) < pos(m(x,T)) < pos(roc,r,T") and 7 is not affected}.

Note that pos(oc,r, T') and pos(roc 1, T") are stored in profile(I), pos(m(x,T)) is stored in Neigh borEdge? (boc,1,T),
and we can obtain profile(y) from NeighborVertex ™ (¢oc 1, T).
By the construction of NeighborEdge ' (¢,T), we have N;HC(I) C NIr¢(I). Thus if \]V;HC(I)] >
f/®, we detect |[NJ*(I)] > f/¢. From now we assume |[N°(I)| < f/¢, and we will show that
Nine() = Nine(T). | 5
Assume for contradiction that there exists y s.t. y € Ny°(I) and y ¢ NJ*°(I). Let e = {z,y} €
E(GEY) be an edge with endpoints x € V"™(I) and y and type n (1 must be unaffected since we

exclude edges with affected types from élclry). Because m(x,T) is to the right of loc; and y € 7,
when constructing Neig;hborEdge,?> (loc,1,T'), we will add the edge (z,y,n) into E,” . However, we

know (x,y,n) ¢ NeighborEdge " (¢oc,1,T), because otherwise y will be added in Zv;nc([). Namely,
when we try to add (z,y,7) into NeighborEdge ' (foc1,T), at least one of the three conditions is
violated.

Suppose Condition 1 is violated, i.e. there is an edge (2',3',n') € NeighborEdge " (foc,1, T)
st. ¥ =y and ' = 1. Furthermore, we have pos({oc,) < pos(m(z’,T)) < pos(m(x,T)) because
(',y',n) is added before. This means y' = y will be selected into K@“C (I), a contradiction.

Suppose Condition 2 is violated, i.e. there are at least h(f + 2) + 1 many edges (2/,y',7) €
NeighborEdge ' (¢,T) with y' = y, and all of them satisfy pos(foc,r) < pos(m(z',T)) < 7(x,T).
Furthermore, all these edges have different types n’ by Condition 1. Because the number of affected
types is at most A(f + 2) by Observation 3.10, at least one of these edges has an unaffected type
n’. Then 3’ = y will be selected into Njync (I), a contradiction.

Suppose Condition 3 is violated, i.e. the number of vertices in NeighborVertex? (¢,T) reaches
hfdm + f/¢ + 1. We know that at most hfAy, vertices in v can be incident to affected edges,
because (1) the number of affected components is at most h(f +2) by Observation 3.10, and (2) for

36

each affected component, the shortcut edges it created will be incident to at most Ay, vertices in y
(recall the construction of shortcut edges). Thus, at least f/¢ 41 vertices in NeighborVertex.’(¢,T)

will be incident to only unaffected edges. All these vertices will be picked into NE/HC(I), which means

\NEYHC(I)\ > f/¢, a contradiction.
O

Labels NeighborEdgefY_ (Voe, T') and NeighborVertexfy_ (Voe, T'). Symmetrically, for each component

I' € C, each (extended) Steiner tree T" € {Thex} U {T) | v/ < 7}, and each occurrence vy, €
Euler(T") not owned by S-vertices, we work on the reversed Euler(T"), and construct and store labels
NeighborEdge’ (voc, T') and NeighborVertex™™ (voc, T') in the same way as NeighborEdge.’ (voc, T') and
NeighborVertexW_) (Voe, T'). Observation 3.30 below can be proved using an argument similar to
Observation 3.26.

We will use labels NeighborEdge ™ (voc, T') and NeighborVertex' (voc, T) in Section 3.4.4.

Observation 3.30. Given id(T") and profile(r) of some T € T™*, we can access NeighborEdge~” (foc.1,T),
NeighborVertex_’ (¢oc,1,T), NeighborEdge (roc 1, T), and NeighborVertex' (roc,r,T) for all I € I,
where T is the (extended) Steiner tree owning 7.

Corollary 3.31. Given an interval I € I of some non-giant subtree T € TE**, we have N}YHC(I) C
NeighborVertex’ (loc,1,T) and N*(I) C NeighborVertex! (roc,r,T), where T is the (extended)
Steiner tree owning T.

Proof. This corollary follows the proof of Lemma 3.29. Recall the definition of the candidate
N¢(I). When 7 is non-giant, we have |[NI*“(I)| < f/¢ and N¢(I) = N“(I). By defini-
tion,]VE/HC(I) C NeighborVertex.’ ({oc,1,T), so N“(I) C NeighborVertex.’ (boc,r, T). NI<(I) C

NeighborVertex' (roc 1, T) can be proved similarly. O

3.4.4 Labels for Implementing EnumFromGiant(7,,I")

Before introducing the labels, we first discuss the high level idea. For an undirected (multi-)graph
H and two vertex set X,Y C V(H) (X,Y may intersect), we use dg(X,Y) to denote the number
of edges with one endpoint in X and the other one in Y, but an edge with both endpoints in X NY
will be counted twice. Namely, 6u(X,Y) = >, cx yey 0u(,y).

Our goal is to compute 5éqry\ »(U eText ViR (), Vimh(r,)) for a non-giant subtree 7, €
r

giant 7,

Toext. We first rewrite it to get rid of the affected shortcut edges. Precisely, we have

dganp(U V@)L V) = YD 05 (VI (), VM ()

giant 7, €T giant 7, €T

- Y), Vi (),

giant 74 6'7}6"t

where 5%H(Vtmn(71),V7tmn(Ty)) is the number of affected edges in I' connecting V*™2(7,) and
r

V,thn(jy). ThNiS equation holds bNecause each 7 € T has V"™ (7,) C QF'\ F and by defini-

tion GE¥ = Gr[QF*] \ {e € E(Gr) | e is affected}. For each term 5%?(Vtm“(7'x),Vvtm“(Ty)), its

value is given by Lemma 3.32.

37

Therefore, it remains to compute > ;.. - et (Fér(vtrnn(%)7 Vi (7,)). We further have

Yo e (VI(m), VIt (m)) = Y g (@ VTN m) = D O, (@, Vit (T)

glant 7, €TE*t TEQS TEQENF
tmn tmn
g oc V (72), V3™ (1))
non-giant
T €T

because {V'™2(7) | 7 € T} partitions QF* \ F. The second equation basically says that, to
compute the number of edges from giant subtrees to V,;mn(’Ty), we can first compute the number
of edges from all vertices in Q&' to Vvtmn(Ty), and then subtract those edges starting from failed
vertices and non-giant subtrees. We will compute the three terms on the right hand side using
Lemmas 3.33, 3.35 and 3.36 respectively.

Label ArtificialEdge(v/, ér) For each component I" and each strict descendant IV < T', we construct

a label ArtificialEdge(v/, ép) which, for each artificial edges {x, y} with type 7' in Gr, stores a tuple
(profile(x), profile(y), id(I")). We store ArtificialEdge(7y’, Gr) at each vertex v € T".

Lemma 3.32. Given |d() and profile(7;), proﬁle(Ty) of T € T and non-giant 7, € Tiext, we can
access ArtificialEdge(y/, Gr) for each affected v/ < ~, and then compute 5aﬁ (Vtmn(Tx) ViR ().

Proof. First, we can get id(I') for all affected component IV < T'. For each affected I” < T', we then
access ArtificialEdges (7af) from an arbitrary vertex in "N (FU{s,t}) (such vertex exists because
I is affected). In other words, we can obtain (profile(u), profile(v)) for all affected shortcut edges
{u,v} in Gr.

Therefore, we just need to scan each affected ér edge {u, v}, and decide the membership of each
u,v at each V™ (7,), V™ (7). The membership at V™" (7,) can be easily decided because we can
obtain V™" (7,) explicitly by ListTerminals(r,,T’) (note that 7, is non-giant). To decide whether u €
yimn(z) (resp. v € V'M(7,)), we just need to invoke IsTerminal(u, 7,.) (resp. IsTerminal(v, 7,.)). O

Label Degree(z, Gr[y**]). For each component I' € C and each occurrence voe € Euler(Text) not
owned by S-vertices, we construct the following labels. _
For each vertex z € InnerTerminals>’ (voc, Thext), we let Degree(z, Gr[y*']) denote the degree

of vertex x in graph éphe"t] (i.e. the subgraph of the sparsified shortcut graph Gr induced
by the extended core v***). We store Degree(z, Gr[y**']) along with the vertex x in the label

InnerTerminaIs?(vOC, Tyext).

Labels Enum(v,y, Gr) and Enum(z,y, Gr). For each component I' € C and each I" < I s.t. 7/ is

not in v***, we construct the following labels. Note that | N, (I)] < Ap, because 4/ is not in y***

e For each vertex y € N, (I'), we let Enum(~/, y, é{‘) be the total number of ép—edges connecting
some vertex x € 7' and the vertex 7. We store Enum(y/,y, Gr) at each vertex v € T".

e For each vertex = € 7/ and vertex y € N,(I"), let Enum(z,y, Gr) be the number of Gr-edges
connecting x and y (recall that Gris a multigraph, so Enum(z, y, G’p) may be larger than 1),
and store it at vertex z.

38

Lemma 3.33. Given id(I") and profile(,) of some non-giant subtree T, € T ext, we can compute

5ér (ext Vtmn (Ty))

Proof. We further decompose the expression to be

O (QF VI () = 0 Gg @ Vimm) + S 0500V),

TEexXt affected v/ <~y

s.t. 7 is not in °x*

because {7 | 7/ <7, 7/ is affected and 7' is not in v} U {7***} forms a partition of Q&®.
For the first term on the right hand side, we can rewrite it as

Y e @V m) = Y S pe (@ VM) =Y Degree(y, Gr[y™]).

$E’78Xt xe,yext yethmn (Ty)

To compute it, we first obtain (the profiles of) all vertices in V™" (7,) using ListTerminals(7,,T")
(because 7, is non-giant). By Corollary 3.28, we have

Vtmn (1) U Vtmn U InnerTerminals(loc, 1, Tyest).
I€T,, Iez,,

By Observation 3.26, we can access all these InnerTerminals({oc 1, Tyext), so we can further access
Degree(y, Gr[y*]) for all y € VR (ry).

Regarding the second term on the right hand side, note that for each vertex y € v s.t. y ¢
N, (I'"), there is no Gr-edge connecting 7' and y. Therefore, we can compute

8. (7, V() = > Enumg (7,),
yevimn (r)AN, (I)

because we can access Enumg (7', y) for each y € N,(I") at any vertex in IV N (F' U {s,t}) (note
that TV N (F U {s,t}) is not empty because 7/ is affected). O

Labels IncidentEdge(:v,ép[fye"t]). For each component I' € C, we construct the following labels.

Recall the construction of the sparsified shortcut graph ér in Section 3.2.5, where we use ésgxt to

ext]

denote the simple graph corresponding to ér [v***]. Furthermore, it is guaranteed that G ext has

arboricity Ayho. Namely, we have an orientation of G °P «-edges s.t. each vertex x € ¥t = V(Gizxt)
has at most Ao incident edges oriented outwards. N

For each vertex # € v*!, we define a label IncidentEdge(z, Gr[y®*']) which, for all its inci-
dent edges (z,y) € E(Gsext) with orientation — y, stores id(x),id(y) along with the number of

(GF[eXt])_edges connecting z and y (i.e. 5@Fhext](f’3ay))-

For each vertex = € v, we will store IncidentEdge(z, Gr[y*]) at . Besides, for each occur-

rence voe € Euler(Tyext) not owned by S-vertices and each vertex y € InnerTerminals ” (voc, Tyext) ©

~ext we store IncidentEdge(y, Gr[y*]) along with the vertex y in the label InnerTerminals_’ (voc, Tyext).

Observation 3.34. Givenid(z),id(y) of two vertices z,y € Xt if we can access IncidentEdge(, Gr [veX*])
and IncidentEdge(y, Gr[Y*™"]), we can compute G, byext] (x,y).

39

Lemma 3.35. Given id(I'), profile(r,),id(z) of some non-giant subtree 7, € Text and some vertex
r €y N F, we can compute og. (@, ViR ().

Proof. Because 7, is non-giant, we can obtain the identifiers of all vertices in Vvtmn(Ty) using
ListTerminals(7,,~y). We consider the following two cases.
Suppose x € Y*** N F. Then

661" (z, V;mn(Ty)) = 5§F[Vext}($a Vytmn(Ty)) = Z 5ér\[,\/ext](x7 Y)-

yevymn(ry)

since z € v*** and Vvtmn(Ty) C v, so it suffices to compute the latter. We enumerate (the identi-

fiers of) vertices y € V™" (), and then compute o, hext](m, y) using Observation 3.34. Note that

we can access IncidentEdge(, Gr[7°*!]) because 2 € F, and access IncidentEdge(y, Gr[y**]) because
y € Vﬂfmn(Ty) C UIeLy InnerTerminaIs?(ﬁoc’I,T,yext) and for all I € Z;, InnerTerminaIs?(EocJ,Twext)
are accessible by Observation 3.26.

Suppose x € (QF*\ v***) N F, which implies 7, (the core containing z) satisfies v, < v and 7, is
not in v°<*. Thus, we can access Enum(z, v/, Gr) for all i/ € N, (I") at vertex z. Again, enumerate
(the identifiers of) all vertices y € V;™(r,). If y € N,(I'y), then dg.(z,y) = Enumg (z,y) by

definition, otherwise 05 _(z,y) = 0 (for implementation, just compare id(y) with the id(y’) in each
entry Enum(z, y,Gr)). Finally, we compute oG, (@, ViR (r)) = > yevimn(r) 0. (2, Y).
Y
U

Labels Pre1cixEnum17“°(voc,T7 y) and PrefixEnumZ*“(voc, T',y). For each component I' € C, each (ex-

tended) Steiner tree T' € {T,ext } U {Ty | 7' < 7}, and each occurrence v, € Euler(T,) not owned
by S-vertices, we construct the following labels. Let 4 be the set of vertices with terminal nodes in
T (ie. 7 =" if T = T\ext, and 7 = 7" if T' = T,y for some 7' < 7).

For each vertex y € NeighborVertex.’(voc,T'), we define label PrefixEnumiWnC(voc,T, y) to be

the total number of edges in E(é[‘) that connect a vertex x € 74 and the vertex y, summing
over all z whose principal occurrence w(z,T) is to the left of v, or exactly vo.. We store
PrefixEnum>*(voe, T, y) along with the vertex y in the label NeighborVertex.’ (voc, T)-

Similarly, for each vertex y € NeighborVertefo_(vOC, T), we define PrefixEnum?*(voc, T, y) to be

the total number of edges in (CNJF) that connect a vertex x € 4 and the vertex y, summing over all
x whose 7(z,T) is to the left of vy (excluding voc). We store PrefixEnumT*(voe, T, y) along with
the vertex y in the label NeighborVertex:™ (voc, T).

Lemma 3.36. Given id(T'), profile(r,), profile(ry) of two non-giant subtrees 7, € T" and 7, € Text
(tw and T, can be the same subtree), we can compute 56F(Vtmn(7m), Vimn(7y)).

Proof. Because T7,, 7, are non-giant subtrees, we can obtain the identifiers of vertices in Vvtmn(Ty)
using ListTerminals(7,,I"). Because we have

O, (V™ (), VI () = > 5. (V™ (7)),
yeVimn(ry)

it suffices to compute 55F(Vtmn(7x), y) for each y € V™ (7). We can further rewrite

0, (V™ (1), 9) = Y 0, (V™ (I),y)
I€z,,

40

and compute dg_(V™™(I),y) for each I € I,
In what follows, we focus on compute 55F (Vtmn(r)) for a fixed I € Z,, and a fixed vertex

y € V;™ (7). We consider two cases.

o Ifye N;HC(I), we will compute

5@F(Vtmn(I), y) = PrefixEnumT*(roc 1, T, y) — PrefixEnumiwnc(ﬁocJ, T,y).

The reason is that, by Corollary 3.31, NEYHC(I) C NeighborVertex,’ (foc 1, T) and N;“C(I) C
Neigh borVertex;_ (Toc,1, T'), we can access PreﬁxEnum;nC (loc,1,T,y) and PrefixEnumi"C(roc,I, T,y)
because we have id(y) and we can access NeighborVertex.” (foc 1, T') and NeighborVertex? (roc, 1, T)

by Observation 3.30.

Ify¢ Njync (I), we claim that all edges in Gp connecting y and V'™2(7,) are affected. To see
this, assume for contradiction that there is an unaffected edge e € E(ér‘) connecting y and
Vtmn(r). Recall that G2 = Gr[QE*] \ Er . (the subgraph of Gr induced by vertices NQ%Xt
excluding all affected edges). Because V™ (I) C QF*' and y € QF®, this edge e is in G},
so y € N*°(I) by its definition (see Equation (2)), a contradiction.

Therefore, we can use a strategy similar to the proof of Lemma 3.32. Concretely, we can
obtain (profile(u), profile(v)) for all affected shortcut edges {u, v} in Gr, and for each of them,
check if it contributes to dg_ (VPR(T),y) using IsTerminal.

3.4.5 Space Analysis

Finally, we analyse the space of our labeling schemes. First, we bound the size of one label for all
different types of labels.

id(+). It takes O(logn) bits.

pos(voe) of occurrences. It takes O(logn) bits because the length of each Euler(T") is polyno-
mial.

profile(voc) of occurrences. It takes O(logn) bits because it stores two id(-) and one pos(voc).

occurrences(v, T'). It takes O(hAlogn) bits because it stores O(hA) occurrence-profiles. Recall
that each vertex v ¢ S owns at most O(hA) occurrences in Euler(T") by Lemma 3.8.

profile(T") of components. It takes O(hlogn) bits because it stores h id(:) and h one-bit indi-
cators. Note that the number of ancestors of I' is h.

profile(v) of vertices. It takes O(hlogn) bits because it stores h occurrence-profiles. Note that
the number of (extended) Steiner trees T € {15, } U {T,ext | v € ¥} is h.

SuccTerminal(voe, T'). It takes O(logn) bits because it stores one occurrence-profile.

InnerTerminals_’ (voc, Tyext). It takes O(hflogn/¢) bits because it stores f/¢+1 vertex-profiles.

41

e NeighborEdge " (voc, T') and NeighborEdge’ (voc, T). It takes

(h(f+2)+ 1)(h(f +2)Ap + /P + 1) - O(log n) bits,

because the number of edges in NeighborEdge " (voc, T') is at most (h(f +2)+1)(h(f +2)Aub +
f/o+ 1), and for each edge we store one occurrence-position and two id(-).

e NeighborVertex_’ (voc, T) and NeighborVertex| (voc, T). It takes O((hfAw, + f/d)hlogn) bits

because the number of vertices in NeighborVertex,?’ (Voe, T') is at most h(f + 2)A\pp + f/0 + 1,
and for each vertex we store its profile.

e ArtificialEdge(+/, Gr). It takes O(h?X2, logn) bits by the following reasons. Because Gr is

a subgraph of GF, the number of +/ type edges in GF is at most that in Gp. Recall the
construction of shortcut edges The ~/ -type edges in Gr forms a biclique between N (rnr
and N.,(T”). Combining | N (I')NT| < |N(I")| < h, and [N, (T")| < Aup, we have the number
of v/-type edges in ép is O(h)\flb). Lastly, for each such edge, we store two vertex-profiles
and one id(-).

e IncidentEdge(z, Gr[y*"]). It takes O(Aarbologn) bits because there are Aybo edges and for
each edge we store two id(:) and one polynomially bounded number.

) Degree(:v,ép[we"t]), Enum(v,y, Gr), Enum(z, y, Gr), PreﬁxEnumg‘C(voc,T,y), PrefixEnumT* (voc, T', y).

Each of them takes O(logn) bits because they are polynomially bounded number.

Next, fixing a vertex v € V(G), we bound the number of labels at v for each label-type.

e occurrences(v,T"). The number is O(h) because the number of (extended) Steiner trees T s.t.
V(T) has nodes corresponding to v ¢ S is O(h) (recall that this label requires v ¢ 5).

e profile(I") of components. The number is h because the number of components containing v
is at most h.

e profile(v) of vertices. The number is one.

e SuccTerminal(voe, T'). The number is O(h2A + h) because the number of (extended) Steiner
trees T s.t. V(T') has nodes corresponding to v is O(h), and each Euler(T") has at most O(hA)
occurrences owned by v ¢ S (recall that this label requires v, not owned by S-vertices). The
vertex v will additionally store O(h) such labels with v, = start(T) or end(T"), because v is
in at most h components, and each component I" corresponds to two (extended) Steiner trees
Ty and Tyext.

e InnerTerminals_’ (voc, Tyext). The number is O(h%?A+h) because the number of extended Steiner

trees T' s.t. V(T') has nodes corresponding to v is at most h, and each Euler(7") has at most
O(hA) occurrences owned by v ¢ S (recall that this label requires vo. not owned by S-
vertices). The additional term O(h) is due to the case voc = start(Tyext) or end(Text).

42

e NeighborEdge.’ (voc, T), NeighborEdge ™ (voc, T'), NeighborVertex:” (voc, T') and NeighborVertex' (voc, T).

For each of them, the number is O((h?A + h)h) by the following reasons. First, the num-
ber of (extended) Steiner trees T' s.t. V/(T') has nodes corresponding to v is O(h). Sec-
ond, each Euler(T) has at most O(hA) occurrences owned by v ¢ S (recall that this la-
bel requires vo. not owned by S-vertices). The additional term O(h?) is due to the case
Voc = start(Tyext) or end(T,ext). Finally, fixing voe and 7', the number of eligible + is h.

o ArtificialEdge(y/, Gr). The number is O(h2), because v is in at most h component I, and each
I'" has h ancestors.

e IncidentEdge(x, Gr[y*']). The number is O(h + (h2A + h)(f/¢ + 1)) by the following rea-

sons. The first term h is because we store IncidentEdge(v, Gp[y*']) at v for each v 3 v,
and there are h such 7**. The second term (h2A + h)(f/¢ + 1) is because we store a la-
bel IncidentEdge(x, Gr[y°*"]) along with cach vertex in InnerTerminals_’ (voc, Tyext). We have
shown that there are O(h*A + h) InnerTerminals}’ (v, Tyext) stored at v, and each of them
has f/¢ + 1 vertices.

o Degree(z, Gr[y*"]). The number is O((h2A + h)(f/¢ + 1)) because each Degree(z, Gr) is
stored along with a vertex in InnerTerminals’” (voc, Tyext).

e Enum(y/,y, Gr). The number is O(h%)\yp) by the following reasons. First, there are at most
h components IV containing v. Second, each I has at most h ancestor I'. Finally, fixing I"
and T, the number of eligible y is [N, (I")| < App.

e Enum(z,y, Gr). The number is O(hAy,) by the following reasons. First, v is in exactly one
~'. Second, the number of component I" s.t. IV < T"is at most h. Finally, fixing I'” and T', the
number of eligible y is | Ny (I")] < App.

o PrefixEnum™(voc, T,) and PrefixEnum®(vee, T,). For each of them, the number is O((h2A+

ol ot

h)h-(hfAnn+ f/®+1)) by the following reasons. Take PrefixEnumiWnC (Voe, T, y) as an example.
Recall that we store this label along with each vertex y € NeighborVertex,7 (Voc, T'). We have
shown that there are O((h?A + h)h) NeighborVertex_” (voc, T') stored at v, and each of them

has hfA\np + f/¢ + 1 vertices.

Regarding the total space at an vertex v € V(G), observe that the bottleneck is the label
NeighborEdge_’ (voc, T') (also NeighborEdge' (voc, T)) and the label IncidentEdge(x, Gr[y**']). The
former takes total bits

(h(f +2)+1)(R(f +2)Aup + f /¢ +1) - O(logn) - O((K* A+ h)h) = O((R° f* A A + h* f? A/ §) log n),
and the latter takes total bits
O(Aarbo log n) : O(h + (th + h)(f/¢ + 1)) = O<hJQf)‘arboA log n/¢)

Plugging in h = O(logn), A = O(1/¢), \up, = O(flogn) and A\ype = O(f%log® n), the total number
of bits is O(f3(log” n/¢ + log® n/¢?)).

43

3.4.6 The Final Labeling Scheme

Recall that the labeling scheme described above is for one S; € S. In fact, our final labeling scheme
will be made up of f + 1 separated (sub-)labeling schemes for the f + 1 groups S; in S. For each
sub-scheme (corresponding to S;) and each vertex v € V(G), we add the index i to the labels at v
belonging to this sub-scheme (view these labels as a whole, so the index ¢ will only be added once),
so that we can locate the correct sub-scheme if we know (the index ¢) of a valid S; for a query
(s,t, F'). Note that such indices takes O((f + 1)log f) extra bits at v because each index i takes
O(log f) bits and there are f + 1 sub-schemes.

Furthermore, we store a label color(v) at each vertex v, where color(v) is the unique index i s.t.
v € S;. For a query (s,t, F), to find a valid S; (i.e. S; is disjoint from F'), it suffices to look at
color(v) of all v € F and pick an index i different from any of such color(v). This label color(v)
takes extra O(log f) bits at a vertex v.

In summary, the space of our final labeling scheme is O(f*(log” n/¢ + log® /¢?)). The query
time is poly(f,logn).

4 Randomized Edge Fault Connectivity Labels

Dory and Parter [DP21] presented two Monte Carlo labeling schemes for f edge faults. The
first uses O(f + logn) bits, which is optimal for f < logn, while the second is an O(log®n)-bit
sketch based on ¢p-samplers, following Ahn, Guha, and McGregor [AGM12] and Kapron, King, and
Mountjoy [KKM13]. In Section 4.1 we present a simpler proof of the O(f + logn)-bit sketch, with
a slightly faster construction time O(m(1 + f/logn)), rather than O(m(f + logn)) [DP21], and
in Section 4.2 we combine the two sketches to yield an O(log? nlog(f/log?n))-bit sketch, which
improves on [DP21] whenever f = n°(1).

4.1 A Simple Labeling Scheme

Theorem 4.1 (Cf. Dory and Parter [DP21]). Fiz any undirected graph G = (V, E) and integer f >
1. There are randomized labeling functions Ly : V — {0,1}°0°8") and Ly : E — {0,1}/+0(ogn)
such that given any query (s,t,F), F C E, |F| < f, with high probability we can determine if s and
t are connected in G — F, by inspecting the labels Ly (s), Ly (t), and {Lg(e) | e € F'}. The labeling
can be constructed in O(m(1 + f/logn)) time.

Let T* be any spanning tree of G, rooted at an arbitrary vertex root(7™), and let T, be the
set of vertices in the subtree rooted at v. Let Ly (v) = (min,err DFS(u), max,er: DFS(u)) contain
the first and last DFS-numbers in the subtree rooted at v. Given Ly (u), Ly (v), we can determine
whether u, v have an ancestor/descendant relationship. Let sk® : E — {0, 1}¢1°6"+/ be a uniformly
random labeling of the edges. This notation is overloaded for vertices and vertex-sets as follows.

sk%(v) = @ sk%(e) bitwise XOR of E — E(T) edges incident to v
ecE—E(T*)
st.vee
skOE(S) = @sk%(v) for SCV.
veS

44

Definition 4.2 (Edge Fault Tolerant Labels for Theorem 4.1). Fix any edge e = {u,v} € E. The
label Lg(e) contains

o Ly(u),Ly(v), and a bit indicating whether e € E(T™).

e Either sk’(e), if e ¢ T*, or sk%(T7¥), if e € E(T*) with v being the child of u in T*.

Note that since sk?(e)@sk’(e) = 0, this last component of Lz ({u,v}) is the XOR of all sk-labels
of edges crossing the cut (7,,V — T). As a special case, skOE(T:;ot(T*)) =sk%(V) =05

Observation 4.3 (Homomorphism from Sets to Sketches). We also let & be the symmetric differ-
ence of sets, i.e., A@ B=(A—B)U(B—-A). IfA,BCV, sk%(A® B) =sk(A) ®sk’(B).

Proof of Theorem /j.1. To answer a query (s,t, F') we first identify those tree edges FF N E(T*) =
{e1,...,ep}, and let T3, ... ,T}“O be the connected components of 7% — F. We then compute

sk%(T;) for all i € [0, fo] as follows. Suppose the deleted tree edges incident to T} are F; =
{{u1,v1}, ..., {us, v} }, with v; the child of uj. We claim that sk%(T}) is

sk () = @D skx(T5),
Jelt
which can be calculated from the labels of F'. If T}" is rooted at vy, then

Jelt]

and if T7" is rooted at root(17™), then T = T} U---UTy = @;cy Try,- Correctness follows from

Observation 4.3, and the fact that sk(.S) = sk%(S) @ 0 = sk°(S) @ sk (V) = sk?(S), for any S C V.
See Fig. 6.

'iu
*
o root(T™)

Us

JARAYAYARRAVAYIVAYY

Figure 6:

We can then delete the contribution of edges from F' — E(T™) by setting

skp_p(T7) =skp(TH) e P K{u,v}).
{up}eF—E(T*)
uET) WET;

8Here O refers to a zero-vector of the appropriate length.

45

Consider a set S C V, which is the union of some strict subset of {7, ..., T} }. Then sk (9) =
Drecs sk%_x(T7) is the XOR of the sk’-labels of edges crossing the cut (S,S). Thus, if S is the

union of some connected components in G — F, then sk%_(S) = 0. The converse is true with
high probability, since the expected number of false positive zeros (over all non-trivial partitions of
{Tg,..., T3 }) is (200 — 1)27(eloant)) < e,

Using Gaussian elimination, we find a subset I C [fo+1] for which S = J;c; T} and skg_p(S) =
0, then recursively look for more such subsets in I and [fp + 1] — I. The leaves of this recursion
tree enumerate all connected components of G — F', assuming no false positives. We can then
answer connectivity queries w.r.t. G — F in O(min{ log)lg()g)lg()gn, 105% —}) time using predecessor
search [PT06, PT14] over the set of DFS-numbers of endpoints of edges in F' N E(T™).

Dory and Parter’s [DP21] preprocessing algorithm takes linear time O(m) to generate each bit
of the labeling, or O(m(f + logn)) time in total. Assuming a machine with (logn)-bit words,
the random edge labels {sk’(e) | ¢ € E} can be generated in O(m(1 + f/logn)) time. It takes
O(m(1+ f/logn)) to form {sk’(v) | v € V'}, then another O(n(1+ f/logn)) to generate {sk®(T;*) |
v € V'} with a postorder traversal of 7. O]

4.2 A Smaller Labeling Scheme

Theorem 4.4. Fixz any undirected graph G = (V, E) and integer f > 2 log?n. There are randomized
labeling functions Ly : V — {0,1}00€") gnd L : B — {0,1}000s" nlog(f/1og’ m) gyeh that given
any query (s,t,F), F C E, |F| < f, with high probability one can determine whether s and t are
connected in G — F by inspecting only Ly (s), Ly (t),{Lg(e) | e € F}.

The vertex labeling function Ly of Theorem 4.4 is the same as Theorem 4.1; only the edge-labels
will be different. As in [DP21], the edge-label sketches contain the names of a set of edges XORed
together. We need to be able to decide (w.h.p.) when this set has cardinality zero, one, or greater
than one. Lemma 4.5 improves the seed-length of the singleton-detection schemes of Ghaffari and
Parter [GP16] and Gibb, Kapron, King, and Thorn [GKKT15] from O(log? n) bits to O(logn) bits.
See Appendix B for proof.

Lemma 4.5. There are functions uid : {0,1}00°e7) x B — {0,1}90°87) gpnd singleton : {0, 1}0008n) x
{0,1}C00gn) _ £, 1}0008n) 4 { |} with the following properties.

e Given uid,(e) where e = {u,v} and any seed s € {0,1}°0°8™) we can recover Ly (u), Ly (v)
with probability 1.

o For any single-edge set E' = {e*} C E and any seed s € {0,1}°1°8™) singleton, (P, uids(e)) =
uids(e*) with probability 1.

o When |E'| > 1, Pr[singleton (P, 5 uids(e)) = L] = 1-1/poly(n). With probability 1/poly(n),
it may return a false positive uid(e), where e may or may not be in E'. (These probabilities
are over the choice of the random seed s.)

For brevity the subscript s is always omitted.
We construct an £o-sampling sketch as in [KKM13, ACM12] as follows. Let B = O(log(f/log?n)).
For each i € [B], rank; : E — Z7 is a random rank assignment such that Pr(rank;(e) = j) = 277,

46

independent of other edges. Define sk(e) to be a B x logm matrix where

uid(e) if rank;(e) = 4,
s(e)lig) = { " =

0 otherwise.

Overloading the notation to vertices and vertex sets,

skp(v)= €D skgle),
ecE—E(T)
st.vEe

SkE(S) = @skﬁ,(v).

vES

Here & is applied entrywise to the sketch array.

Definition 4.6 (Edge Fault Tolerant Labels for Theorem 4.4). The label Lg(e), e = {u,v} has
bit-length O(log? nlog(f/log?n)). Tt consists of:

e The random O(logn)-bit seed s.

e The sketch from Theorem 4.1, where sk’ : E — {0, 1}1°g2” assigns log? n-bit labels, indepen-
dent of f. Specifically, it includes Ly (u), Ly (v), and either sk%(e), if e & T*, or sk(T*(v)),
where v is the child of u, if e € T™*.

e Either sk(e), if e & T, or skg(Ty), if e = {u,v} € T*, where v is the child of w in T*.
Theorem 4.4 is proved in the remainder of this section.

Consider a query (s, t, F'). Removing the faulty tree edges {e1,... ez} = FNE(T*) results in a
set of trees {17, ..., T} }. Suppose the deleted tree edges incident to T} are {{u1,v1}, ..., {us, vi}},
with v; the child of u;, and let F; C F' be the set of non-tree edges with exactly one endpoint in
T7. Then

skp_ F @SkE @@Sk and E F @Sko T* @@Sko

JE[t] eck; jJElt] eck;

which can be computed directly from the labels {Lg(e) | e € F'}.

At this point we run B = O(log(f/log?n)) probabilistic Borivka steps. We begin with the
partition Py = {1}, ... ,TJZ“O} of V' and maintain the loop invariant that after ¢ Bortivka steps, for
each part P € P;, we have the sketches skgp_p(P) and skOE,F(P). Here P; is a coarsening of P;_1.

In the (i + 1)th Boruvka step we attempt, for each P € P;, to extract from skg_p(P) the uid(e)
of an edge e = {u,u'}, with u € P and v/ € P’ # P, then unify P and P’ in P;;.

Lemma 4.7 (Cut Sketch [AGM12, KKM13]). For any i and P € P;, with constant probability
there ezists a j such that singleton(skp—p(P)[i,j]) = uid(e). Conditioned on singleton returning a
uid(e), e € E — F is an edge crossing the cut (P, P), with probability 1 — 1/poly(n).

Proof. Suppose the number of edges in F — F crossing the cut (P, P) is in the range [2/71,27),

then with constant probability there is exactly one such e with rank;(e) = j, in which case
singleton(skg_r(P)[i,j]) = uid(e). By Lemma 4.5, the probability that singleton(skg_r(P)[i, j'])
returns a false positive, for any j' € [logm], is logm/poly(n) = 1/poly(n). O

47

Let Xp € {0,1} be an indicator for the event that skg_p(P) reports a valid edge in the (i41)th
Boruvka step. If the { Xp}pep, were independent then Chernoff-Hoeffding bounds would imply that
> p Xp is concentrated around its expectation, meaning the number of non-isolated parts in the
partitions would drop by a constant factor, w.h.p., so long as there are Q(log n) non-isolated parts.
However, the {Xp} are not independent, so we require a more careful analysis.

Lemma 4.8. Let P’ C P; be the parts that are not already connected components of G — F. With
probability 1 — exp(=Q(|P}|)), [P 1| < 0.94P;].

Before proving Lemma 4.8 let us briefly explain how queries are handled. We use the sk-sketches
to implement B = O(log(f/log?n)) Borivka steps. The success of these steps are independent, as
step 7 only uses skp_p(P)[i, -], which depends only on rank;. Lemma 4.8 guarantees that the number
of non-isolated components drops by a constant factor in each step, hence after B Boruvka steps
the number of non-isolated parts is at most f’ = (log?n)/2 with probability 1 — exp(—Q(log®n)).

We declare P isolated if sk%,_-(P) = 0, then determine the connected components of the remain-
ing components using Gaussian elimination on the sk’-sketches {sk% (P) | P € Pp, P non-isolated},
exactly as in Theorem 4.4. This last step succeeds with probability 1 — exp(—Q(log?n)) as sk as-
signs edge labels with logZn = f’ + (log?n)/2 bits.

The proof of Lemma 4.8 uses the following martingale concentration inequality.

Theorem 4.9 (See [DP09] or [CLO6]). Let f = f(Y.,) be some function of independent random
variables Y, = (Y1,...,Ynm). Define A; = E(f | Yi) —E(f | Yi—1), v; = limsupy, | V(A; | Y1),
V =23, v, and M be such that Vi.A; < M. Then for any X > 0,

A2
Pr(E(f) £ 2 NP7 = B 2) < o0 (~ 500 w175)

Proof of Lemma 4.8. We order the edges in F/— F' with endpoints in distinct components arbitrarily
as e1,...,em, and let Y; = rank;(e;). Define f(Y,,) = ZPePi Xp, where Xp is an indicator for
the event that ezactly one edge e incident to P has rank;(e) > |log Deg(P)| + 1, where Deg(P) is
the number of F — F edges with exactly one endpoint in P. Clearly f is an underestimate for the
number of components P that isolate a single incident edge in skg_ g (P)[3, -].

For p = Pr(rank;(e) > [logDeg(P)| + 1) = 2~ loeDPe&(P)] ' e have E(Xp) = Deg(P)p(l —
p)Pe(P)=1 > Deg(P)pe~Pe&(P)P In the interval [1,2) this is minimized when Deg(P)p — 2, so
E(Xp) > 2e72 > 0.27.

Suppose e; joins parts P, P’ € P;. Note that revealing Y; = rank;(e;) can only change the

conditional probability of Xp and Xp/. In particular, A; < M 4l 9 and

V(A | Y1) =E(Xp —E(Xp | Y;-1))? | Y1) + E(Xp —E(Xp | Y;21))% | Y1)
+ 2E((Xp —E(Xp | Y;-1))(Xp —E(Xp | Y1) | Yj-1), (3)

where the expectations are over choice of Y;. Suppose that Y;_; reveals the levels of all but g
edges incident to P, and among those revealed, b are at level at least |log Deg(P)| + 1.

Case b > 2. Then it is already known that Xp = 0.

48

Case b =1. Then Xp = 1 iff the remaining g edges choose levels at most |log Deg(P)].

E((Xp —E(Xp | Y;-1))* | Y1)
=p-(0-(1=p)")?+1=p) - (1-p)" = (1-p)??
<p(l—p)2+ (1 —-pp*=p1-0p) (maximized at g = 1.)

Case b = 0. Then Xp = 1 iff exactly one of the remaining g edges chooses a level at least
|log Deg(P) | + 1.
E(Xp —E(Xp | Y;-1))* | Yjo1)
=p-(1=p)? " —gp(1 =p) ")’ + (1 =p)- ((9 - Dp(1 = p)9~% — gp(1 — p)?1)?
<p-(1-p)?+1-pp*>=pl-p) (maximized at g = 1.)
Let p = 2~ logDea(P)] apq ¢ = 2-l1ogDeg(P)] where ¢ < p. From the calculations above, which
are maximized at ¢ = 1, we can upper bound the last term of Eq. (3) as follows. Note: Y; €
[1, [log Deg(P)]], (|log Deg(P)], [log Deg(P")]], and (|log Deg(F")], oo) with probability 1—p, p—q,
and q, respectively.
E(Xp —E(Xp | Y;—1))(Xp —E(Xp [Y1) [Y1)
=q(1-p)(1-q)+ (- a) (1 —p)g+ (1 -p)pg
= (1= p)q(l —2q+ 2p)

and therefore

V(A [Yj-1) <p(1—=p)+q(1—q)+2(1—p)g(l—2q+2p)
< p.

In other words, V(A; | Y;_1) < 4/2lmin{logDeg(P)logDeg(P}] — §/min{Deg(P), Deg(P’)}, and
therefore V' =3, V(A; [Y;_1) < 8|P;|. By Theorem 4.9,

)\2)\2
Pr(f <E(f) —A) <exp <_2(V—|—)M/3)> = exp (‘16]73:-1—4)\/3> '

Setting A = E(f)/2 > 0.13[P¥|, we conclude that Pr(f > E(f)/2 > 0.13|PF]) > 1 — exp(—Q(|P}])).
This implies the number of distinct edges reported in the ith Boruvka step is at least 0.13|P/|/2 =
0.065|P;|, as each edge can be reported twice, by either endpoint. Hence |Pf ;| < 0.935|P;. O

5 Randomized Vertex Fault Connectivity Labels

We improve the size of labeling scheme under f vertex faults from O(f3) [PPP24] to O(f?) bits.

Theorem 5.1. Fiz any undirected graph G = (V, E) and integer f > 1. There are randomized
labeling functions Ly : V — {0, 1}O(f2 108°1) guch that given any query (s,t,F), F CV, |F| < f,
with high probability one can determine whether s and t are connected in G — F by inspecting only
Ly (s), Ly (1), {Lv(v) | v € F}.

49

Our scheme is a small modification to that of Parter, Petruschka, and Pettie [PPP24]. Fix
a collection of vertex sets Ni, No,..., N C V where k < n.” We say that a neighborhood hitter
S C V is good for a fault set F' C V of size |F| < f if

SNF =0 and SNN,; #0 for all N; where |[N;| > cflogn,

where ¢ is a constant. A collection of neighborhood hitters S = {S1,...,Ss} is good for F' if there
exists S; € S that is good for F'. Parter et al. [PPP24] reduces the labeling problem to constructing
a collection of neighborhood hitters as follows.

Lemma 5.2 (Section 5.2 of [PPP24]). Suppose we can construct a collection of neighborhood hitters
S = {51,...,Ss} such that, for each fault set F of size at most |F| < f, S is good for F with
high probability, then there exists a randomized vertex labeling of size O(sf?log®n) satisfying the
guarantee in the setting of Theorem 5.1.

We construct S = {S1,...,Ss} as follows. Set s = O(clogn). For each i, sample each vertex
into S; with probability 1/f. Observe that S; is good for F' with constant probability. Indeed,

Pr[S;iNF =0]=(1—1/H)F > 0(1).
Also, for each N; where |N;| > cflogn,
Pr[S; N N; = 0] = (1 —1/f)Nil <1/,
Thus, by a union bound, Pr[3j s.t. S; N N; = (] n~Me) . Hence, for any fixed F, S is not good

for F' with probability at most (1 — Q(1))® < n=%). By plugging S into Lemma 5.2, we obtain
Theorem 5.1.19

QDIN

6 Lower Bound for Global Connectivity under Vertex Faults

In this section, we show that any vertex labeling scheme that supports global connectivity queries
under f vertex faults requires Q(n'~///f) bits. This improves on an Q(min{n/f, 4/ /f3/2}) lower
bound of Parter et al. [PPP24], and gives a negative answer to the open problem by [PPP24], which
asks for an O(1)-size labeling scheme for global connectivity queries when f = O(1). In contrast,
under edge faults it is easy to answer global connectivity queries with previous schemes [DP21,
IEWM23] or Theorems 2.1 and 4.4.

The lower bound is stated below. The proof closely follows [PPP24, Theorem 9.2] but with
different parameters.

Theorem 6.1. Let L : V — {0,1}° be a b-bit vertex labeling scheme such that, given {L(v) | v € F}
where |F| < f, reports whether G — F is still connected. Then b= Q(n'~'/1/f).

°In [PPP24], each N; = N(I';) is a neighborhood for some component I'; in the low-degree hierarchy, which is
deterministically constructed and fixed. Here, we can think of each IN; as some arbitrary vertex set.

"9Parter et al. [PPP24] gave the same construction of S, but set s = f + 1 so that the criterion that there
exists S; € S with S; N F' = () holds with probability 1, which is necessary for a deterministic labeling scheme. Our
observation is simply that in a Monte Carlo labeling scheme, we only need this property to hold with high probability.

50

Proof. First, construct a “base” bipartite graph Gy = (L U R, Ey) as follows. Set L = {v*} U
{vi,...,vn} and R = {uy,...,u,} where r = {fnl/q. Connect v* to all vertices in R. For each
i € [n], F; C R is a neighbor set of v; where |F;| = f. We make sure that the {F;} are all distinct,
ie., F; # Fj for all i # j € [n]. This is possible because (;) > (r/f) > n by the choice of 7.
Finally, we create a family G of 2" graphs from a fixed graph Gy as follows: For each v;, we can
choose to add new edges into GGy so that v; is connected to all vertices in R.

Suppose an unknown graph G is promised to be from G. Observe that G — F; is disconnected
if and only if we did not add new edges incident to v; into G. So, by reading the labels on F;, we
can check what choice was made for v;. Thus, the labels of all vertices in R can determine G € G.
Thus, 2" > |G|, implying that b > n/ (fnl/ﬂ. O

7 Conclusion and Open Problems

In this paper we gave improved constructions of expander hierarchies (w.r.t. both vertex and edge
cuts) and developed shorter labeling schemes for f-fault connectivity queries, in all four quadrants
of {vertex faults, edge faults} x {randomized, deterministic}.

Our deterministic labeling scheme for edge faults has size O(\/f), but it is not clear that there
must be a polynomial dependence on f.

Open Question 7.1. Is there a deterministic, f-edge-fault connectivity labeling scheme with O(l)—
bit labels?

In the case of randomized edge-labeling schemes, we improved Dory and Parter [DP21] from
O(log®n) to O(log? nlog f). An interesting problem is to prove a non-trivial lower bound on edge
labels, randomized or not. There are natural targets around f = w(logn) and f = poly(n).

Open Question 7.2. Concerning the f-edge fault connectivity problem:
o When f = w(logn), are w(logn)-bit edge labels necessary? (See [DP21] and Theorem /.1.)

o When f = poly(n), are O(log® n)-bit edge labels optimal? (See Q(log®n)-bit lower bounds of
Nelson and Yu [NY19] and Yu [Yu21] for similar problems.)

We actually know how to improve the randomized label length to O(log nlog?(flogn)) if the
following conjecture holds.

Conjecture 7.3. Given a graph G and spanning tree T, define cutsizer(e) to be 0 if e € T and
the number of (non-tree) edges crossing the cut defined by T — e otherwise. For any co > 0, there
exists a ¢y > 0, such that for any graph G and integer f > logn, there is a distribution T of its
spanning trees such that for any F = {e1,..., e} C E,

Tlir7_(|{z € [f] : cutsizer(e;) > (flogn)}| > ci1logn) < n™ .

If Conjecture 7.3 were true, we would pick the spanning tree T" ~ 7T used in the labeling
scheme of Theorem 4.4. Since, with probability 1 — n®, the cut sizes for all but O(logn) trees
of T'— F would be bounded by f(flogn)“, we would only need to store O(log(flogn)) rows in
the sketch-matrix sk, rather than O(logn), in order to implement Boruvka steps. The remaining
c1logn trees with large cut-sizes would be handled using the sk sketch, just as we handle the

o1

residual trees in Theorem 4.4. Using spanning trees [AN19] in Récke’s tree distribution R [Rac08]
guarantees that for any e € E(G), Prpog(cutsizer(e) > fpoly(logn)) < 1/f. Conjecture 7.3 can
be viewed as asserting that there is a distribution where these events are sufficiently independent,
for any F' C E(G) with |F| = f, so that we can get a Chernoff-like tail bound on the event
I{i € [f] : cutsizer(e;) > (flogn)'}| > ¢1logn.

The state-of-the-art for connectivity labels under vertex faults are now O(f?) for randomized
schemes, by Theorem 5.1, and O(f*) for deterministic schemes, by Theorem 3.1, while there is a
simple lower bound of Q(f + logn) [PPP24]. We believe the correct exponent is likely 2, but any
non-trivial lower bound would be welcome.

Open Question 7.4. Is there an Q(f!') lower bound for f-vertex fault connectivity labels? What
is the optimal exponent?

Theorem 6.1 strongly separated pairwise connectivity and global connectivity for vertex-labeling
schemes under vertex faults. Can we match the lower bound for global connectivity?

Open Question 7.5. Show a labeling scheme for global connectivity under vertex faults whose size
matches the lower bound by Theorem 6.1.

The (edge) expander hierarchy of Theorem 2.3 improves the expansion of Patrascu and Tho-
rup’s [PT07] by a ©(logn)-factor. The O(flog®nloglogn) query time of their f-edge-failure
connectivity oracle contains some O(log2 n) terms unrelated to the expander hierarchy parame-
ters, so it may be worth revisiting the complexity of this problem in the deterministic setting.
See [DP20, GKKT15] for smaller and faster randomized data structures.

Acknowledgments

Yaowei Long and Thatchaphol Saranurak are partially funded by the Ministry of Education and
Science of Bulgaria’s support for INSAIT, Sofia University “St. Kliment Ohridski” as part of the
Bulgarian National Roadmap for Research Infrastructure.

A Low-Degree Steiner Trees Spanning Tough Sets

In this section, we prove that there exists a O(1/¢)-degree Steiner tree spanning any ¢-vertex-
expanding set.

Lemma 3.6 (Low-degree Steiner Trees). Given a graph G such that a set A C V(QG) is ¢-vertex-
expanding in G, there is an algorithm that computes an O(1/¢)-degree Steiner tree that spans A in
G. The running time is O(mnlogn).

In fact, we will show that the statement holds even for ¢-tough sets, which we define now. For
any graph G and vertex set X C V(G), let cg(X) count the number of connected components C
in G containing some vertex of X. In particular, if G is connected, then cg(X) = 1 for every X.
We say that X is ¢-tough in G if, for every vertex set S C V(G), we have

S| > ¢ - ca—s5(X)

whenever cg_g(X) > 1, i.e., X is not connected in G — S.

52

We say that G has toughness 7(G) = ¢ if V(G) is ¢-tough. The toughness of graphs is a well-
studied measure of the robustness of graphs with many connections to other graph properties (see,
e.g., [Chv73, EJKS85, Wing89, BBS06, Gu21]). Most literature considers the toughness of V(G),
but here, we will focus on the toughness of an arbitrary vertex subset X.

Observe that any vertex-expanding set is tough with the same parameter to up a constant.

Fact A.1. If X is 3¢-vertez-expanding in G, then X is ¢-tough.

Proof. Suppose that X is not ¢-tough, i.e. there exists S where |S| < ¢-cg_g(X). Let ¢ = cg_g(X)
and C1, ..., C. be different connected components in G — S where |C; N1 X| > 0 for all . Let C’ be
the union of other connected components in G — S disjoint from X. Let L = Cy U---UCf /o1 and
R = Cej141 U---UC.UC". We have that [X NL| > [¢/2] > ¢/3,|[X N R| > c— [c/2]c/3. So

|S] < pc < 3pmin{|X N(LUS)|,| X N(RUS)|},
meaning that X is not 3¢-vertex-expanding. O

The following theorem stating that there exists a O(1/¢)-degree Steiner tree spanning any
¢-tough set immediately implies Lemma 3.6.

Theorem A.2. Given a graph G such that a set X C V(G) is ¢-tough in G, there is an algorithm
that computes a (2/¢ + 3)-degree Steiner tree spanning X. The running time is O(mnlogn).

The weaker statement of this theorem was shown by Win [Win89], who gave a non-algorithmic
version of this theorem when A =V, i.e., a spanning tree case.

To prove Theorem A.2, we apply the additive-1 approximation algorithm by [FR94] for finding
a minimum degree Steiner trees. The structural guarantees of their algorithm can be summarized
as follows.

Lemma A.3 ([FR94]). There is an algorithm that, given a graph G with n vertices and m edges
and a vertex X, in O(mnlogn) time returns a tree T in G with mazimum degree A and a vertex
set B C V(T) such that

1. Every leaf of T is a vertex in X,
2. Fach verter v € B has degree Degp(v) > A — 1, and

3. For any two vertices s,t € X — B, s and t are connected in G — B if and only if they are
connected in T — B.

The last property says that the connectivity between vertices of X in G — B and T'— B are
preserved exactly.

Proof of Theorem A.2. We claim that |B| < 2c¢p_p(X)/(A — 3). Since cg_p(X) = er—_p(X)
because of Property 3 and X is ¢-tough, it must be that (Ai2_3) > ¢, meaning that A < 2/¢ + 3.
That is, T is a (2/¢ + 3)-degree Steiner tree spanning X as desired and 7' can be computed in
O(mnlogn) time.

Now we prove the claim. Just for analysis, consider the set Ep of all edges incident to B. If
we delete edges in E, observe that T'— Ep contains exactly |Ep| + 1 connected components. We
classify these connected components in T'— Ep into three types:

53

1. (Trivial components): Components that contain of a single vertex v € B,
2. (Internal components): Components that contains no vertex in B or X,
3. (Leaf components): Components that contains no vertex in B, but contains a vertex in X.

The number trivial components is clearly |B|. The number of internal components is at most
|Ep|/2. This is because each deleted edge in E'p has at most one endpoint in non-trivial components
(internal or leaf components.) But, crucially, each internal component must be incident to at least
2 deleted edges (otherwise, it will contain a leaf, which is a vertex in X). The number of leaf
components is precisely cp_p(X). Since the total number of components is |Ep|+ 1, we have that

|Egl +1 < |B| +|Egl/2 + cr_p(X).
So,
cr—p(X) > |Eg|/2—|B|+1>|B|(A—-1)/2—|B|+ 1> |B|(A—-3)/2

where the second inequality is because B has minimum degree A — 1. O

B Improved Singleton-Detection Scheme: Proof of Lemma 4.5

Let a be a uniformly random odd w-bit integer and ¢ a uniformly random w-bit integer. Tho-
rup [Thol8] proved that the function Sample : [2*] — {0,1}, Sample, ;(z) = 1 (az mod 2* < t)
(written a*x < t in C++ notation) is a distinguisher with probability 1/8. In other words, for any
non-empty set S C [2¥],

Pr <Z Sample,,(r) =1 (mod 2)> > 1/8.
z€S

We identify the edge-set E with {0,1}21°8™. Suppose uid : {0, 1}21°8" — {0, 1}2lo8n x {0, 1}closn
is defined so that uid(z) = (x, Sig(x)), where the signature

Sig(z) = (Samplem1 (@), ..., Sample, | 1ogn(x))

consists of clogn independent invocations of the distinguisher. In this case uid would satisfy the
singleton-detection properties of Lemma 4.5, but with a O(log2 n)-bit seed. To see why, consider
an arbitrary set S C E of edges. Let e* = @, .ge be the XOR of the names of all edges in S. If
|S| > 2, then the probability that we mistakenly believe S to be the singleton set {e*} is

Pr <€Buid(e) = (e*,Sig(e*))) =Pr B uid(e) = (0,0) | < (7/8)°°5™ = 1/poly(n).
ecS ec(So{er})

Like [CKKT15, GP16], this scheme uses a O(log®n)-bit seed, but it is simpler than both of
[GKKT15, Ghal6]. The seed-length can be reduced to O(logn) bits by taking a random walk on
an expander of length O(logn).

54

Theorem B.1 (Hitting Property of Random Walks; see Vadhan [Vad12, Theorem 4.17]). If G is
a regular digraph with spectral expansion 1— X, then for any B C V(G) of density u, the probability
that a random walk (v1,...,v) of t — 1 steps in G starting at a uniformly random vertez vy always
remains in B is

Pr| A (wi€B)|<(u+r1-p).
i€t]

In our case V(G) corresponds to the set of possible seeds (a,t) for Sample, so |V (G)| = poly(n),
and p = 7/8. Whenever A < 1, t = O(logn) suffices to reduce the error probability to 1/poly(n).
If G is d-regular, the cost of encoding the random walk is O(logn) + tlogd = O(logn) bits.

References

[AAK'06] Serge Abiteboul, Stephen Alstrup, Haim Kaplan, Tova Milo, and Theis Rauhe. Com-
pact labeling scheme for ancestor queries. SIAM J. Comput., 35(6):1295-1309, 2006.
1

[AALOGI18] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph clus-
tering using effective resistance. In 9th Innovations in Theoretical Computer Science
Conference (ITCS 2018). Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik, 2018. 5

[ABRO5] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes for small distances
in trees. SIAM J. Discret. Math., 19(2):448-462, 2005. 1

[ACGP16] Ittai Abraham, Shiri Chechik, Cyril Gavoille, and David Peleg. Forbidden-set distance
labels for graphs of bounded doubling dimension. ACM Trans. Algorithms, 12(2):22:1-
22:17, 2016. 1

[ADK17] Stephen Alstrup, Sgren Dahlgaard, and Mathias Baek Tejs Knudsen. Optimal induced
universal graphs and adjacency labeling for trees. J. ACM, 64(4):27:1-27:22, 2017. 1

[AG11] Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing
schemes with affine stretch. In Proceedings 25th International Symposium on Dis-
tributed Computing (DISC), pages 404-415, 2011. 1

[AGHP16a] Stephen Alstrup, Cyril Gavoille, Esben Bistrup Halvorsen, and Holger Petersen. Sim-
pler, faster and shorter labels for distances in graphs. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 338—
350, 2016. 1

[AGHP16b] Stephen Alstrup, Inge Li Gertz, Esben Bistrup Halvorsen, and Ely Porat. Distance
labeling schemes for trees. In Proceedings 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), volume 55 of LIPIcs, pages 132:1-132:16.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016. 1

[AGM12] Kook J. Ahn, Supdipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 459467, 2012. 44, 46, 47

95

[AHL14]

[AKTZ19]

[AN19]

[ARV09)

[BBS06]

[BCG122]

[BCHR20]

[BF67]

[BGP22]

[Bre66]

[CGKTO8]

[Chol6]

[ChvT73]

[CLO6]

[CMW23]

Stephen Alstrup, Esben Bistrup Halvorsen, and Kasper Green Larsen. Near-optimal
labeling schemes for nearest common ancestors. In Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 972-982, 2014.
1

Stephen Alstrup, Haim Kaplan, Mikkel Thorup, and Uri Zwick. Adjacency labeling
schemes and induced-universal graphs. SIAM J. Discret. Math., 33(1):116-137, 2019.
1

Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch
spanning tree. SIAM J. Comput., 48(2):227-248, 2019. 52

Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric em-
beddings and graph partitioning. J. ACM, 56(2), 2009. 6

Douglas Bauer, Hajo Broersma, and Edward Schmeichel. Toughness in graphs—a
survey. Graphs and Combinatorics, 22:1-35, 2006. 53

Aviv Bar-Natan, Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes,
and Oren Weimann. Fault-tolerant distance labeling for planar graphs. Theor. Com-
put. Sci., 918:48-59, 2022. 1

Surender Baswana, Keerti Choudhary, Moazzam Hussain, and Liam Roditty. Approx-
imate single-source fault tolerant shortest path. ACM Trans. Algorithms, 16(4):44:1-
44:22, 2020. 1

Melvin A Breuer and Jon Folkman. An unexpected result in coding the vertices of a
graph. Journal of Mathematical Analysis and Applications, 20(3):583-600, 1967. 1

Marthe Bonamy, Cyril Gavoille, and Michal Pilipczuk. Shorter labeling schemes for
planar graphs. SIAM J. Discret. Math., 36(3):2082-2099, 2022. 1

Melvyl Breuer. Coding the vertexes of a graph. IEEFE Transactions on Information
Theory, 12(2):148-153, 1966. 1

Bruno Courcelle, Cyril Gavoille, Mamadou Moustapha Kanté, and Andrew Twigg.
Connectivity check in 3-connected planar graphs with obstacles. Electron. Notes Dis-
cret. Math., 31:151-155, 2008. 1

Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In 43rd In-
ternational Colloquium on Automata, Languages, and Programming (ICALP 2016).
Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik, 2016. 1

Vasek Chvétal. Tough graphs and hamiltonian circuits. Discret. Math., 5(3):215-228,
1973. 53

Fan R. K. Chung and Lincoln Lu. Survey: Concentration inequalities and martingale
inequalities: A survey. Internet Math., 3(1):79-127, 2006. 48

Shiri Chechik, Shay Mozes, and Oren Weimann. Optimal fault-tolerant reachability
labeling in planar graphs. arXiw preprint arXiv:2307.07222, 2023. 1

56

[CPR11]

[CT07)

[DPOY]

[DP20]

[DP21]

[EJKS85]

[FHLO5]

[FR94]

[Ghal6]

[GKKT15]

[GP16]

[GPPRO4

[GRST21]

[Gu21]

Timothy M. Chan, Mihai Patrascu, and Liam Roditty. Dynamic connectivity: Con-
necting to networks and geometry. SIAM J. Comput., 40(2):333-349, 2011. 20

Bruno Courcelle and Andrew Twigg. Compact forbidden-set routing. In Proceed-
ings 24th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 4393 of Lecture Notes in Computer Science, pages 37—48. Springer, 2007. 1

Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009. 48

Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures.
SIAM J. Comput., 49(6):1363-1396, 2020. 3, 4, 14, 17, 20, 52

Michal Dory and Merav Parter. Fault-tolerant labeling and compact routing schemes.
In Proceedings of the 40th ACM Symposium on Principles of Distributed Computing
(PODC), pages 445-455, 2021. , 1, 2, 3, 4, 44, 46, 50, 51

Hikoe Enomoto, Bill Jackson, Panagiotis Katerinis, and Akira Saito. Toughness and
the existence of k-factors. Journal of Graph Theory, 9(1):87-95, 1985. 53

Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. Improved approximation
algorithms for minimum-weight vertex separators. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 563-572, 2005. 16

Martin Fiirer and Balaji Raghavachari. Approximating the minimum-degree Steiner
tree to within one of optimal. J. Algor., 17(3):409-423, 1994. 17, 53

Mohsen Ghaffari. An improved distributed algorithm for maximal independent set.
In Proceedings 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 270-277, 2016. 54

David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph
connectivity with improved worst case update time and sublinear space. CoRR,
abs/1509.06464, 2015. 3, 46, 52, 54

Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique.
In Proceedings of the 35th ACM Symposium on Principles of Distributed Computing
(PODC), pages 19-28, 2016. 46, 54

Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in
graphs. J. Algorithms, 53(1):85-112, 2004. 1

Gramoz Goranci, Harald Récke, Thatchaphol Saranurak, and Zihan Tan. The ex-
pander hierarchy and its applications to dynamic graph algorithms. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2212-2228.
SIAM, 2021. 3

Xiaofeng Gu. A proof of brouwer’s toughness conjecture. SIAM Journal on Discrete
Mathematics, 35(2):948-952, 2021. 53

57

[GU23]

[HKNS15]

[HLO9]

[TEWM?23]

[IN12]

[KKKPO4]

[KKM13]

[KNR92|

[Kos23]

[KP21]

[KPP16]

[LS22]

[LW24]

Pawel Gawrychowski and Przemyslaw Uznanski. Better distance labeling for un-
weighted planar graphs. Algorithmica, 85(6):1805-1823, 2023. 1

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. Unifying and strengthening hardness for dynamic problems via the on-
line matrix-vector multiplication conjecture. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing (STOC), pages 21-30, 2015. 3

Tai-Hsin Hsu and Hsueh-I Lu. An optimal labeling for node connectivity. In Pro-
ceedings of 20th International Symposium on Algorithms and Computation (ISAAC),
volume 5878 of Lecture Notes in Computer Science, pages 303-310. Springer, 2009. 1

Taisuke Izumi, Yuval Emek, Tadashi Wadayama, and Toshimitsu Masuzawa. Deter-
ministic fault-tolerant connectivity labeling scheme with adaptive query processing
time. In Proceedings of the 42nd ACM Symposium on Principles of Distributed Com-
puting (PODC), 2023. , 1, 2, 3, 4, 6, 50

Rani Izsak and Zeev Nutov. A note on labeling schemes for graph connectivity. Inf.
Process. Lett., 112(1-2):39-43, 2012. 1

Michal Katz, Nir A. Katz, Amos Korman, and David Peleg. Labeling schemes for flow
and connectivity. STAM J. Comput., 34(1):23-40, 2004. 1

Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity
in polylogarithmic worst case time. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1131-1142, 2013. 44, 46, 47

Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs.
SIAM J. Discret. Math., 5(4):596-603, 1992. 1

Evangelos Kosinas. Connectivity queries under vertex failures: Not optimal, but
practical. In 31st Annual European Symposium on Algorithms (ESA 20283). Schloss-
Dagstuhl-Leibniz Zentrum fiir Informatik, 2023. 3

Karthik C. S. and Merav Parter. Deterministic replacement path covering. In Pro-
ceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
704-723, 2021. , 3, 25

Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM
conjecture. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1272-1287, 2016. 3

Yaowei Long and Thatchaphol Saranurak. Near-optimal deterministic vertex-failure
connectivity oracles. In Proceedings 63rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 1002-1010, 2022. 3, 4, 14, 15, 17, 20

Yaowei Long and Yunfan Wang. Better Decremental and Fully Dynamic Sensitivity
Oracles for Subgraph Connectivity. In Proceedings 51st International Colloguium on
Automata, Languages, and Programming (ICALP 2024), volume 297 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 109:1-109:20, Dagstuhl, Germany,
2024. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. 3

58

[MS18]

[N192]

[NSWN17]

NY19]

[PP22]

[PPP24]

[PSST22]

[PSY22]

[PTOG]

[PTO7]

[PT14]

Guy Moshkovitz and Asaf Shapira. Decomposing a graph into expanding subgraphs.
Random Structures €& Algorithms, 52(1):158-178, 2018. 5

Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583—
596, 1992. 3, 24, 25

Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic
minimum spanning forest with subpolynomial worst-case update time. In Proceedings
58th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
950-961, 2017. 3

Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming
spanning forest computation. In Proceedings of the 30th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1844-1860, 2019. 51

Merav Parter and Asaf Petruschka. Optimal dual vertex failure connectivity labels. In
Proceedings of the 36th International Symposium on Distributed Computing (DISC),
volume 246 of LIPIcs, pages 32:1-32:19. Schloss Dagstuhl - Leibniz-Zentrum fiir In-
formatik, 2022. | 1, 2

Merav Parter, Asaf Petruschka, and Seth Pettie. Connectivity labeling and routing
with multiple vertex failures. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing (STOC), pages 823-834, 2024. , 1, 2, 3, 14, 17, 19, 20, 24, 25,
49, 50, 52

Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and
Alexandre Vigny. Algorithms and data structures for first-order logic with connectiv-
ity under vertex failures. In Proceedings of the 49th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), volume 229 of LIPIcs, pages 102:1-
102:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022. 3

Seth Pettie, Thatchaphol Saranurak, and Longhui Yin. Optimal vertex connectivity
oracles. In Proceedings of the 54th Annual ACM Symposium on Theory of Computing
(STOC), pages 151-161, 2022. 1

Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In
Proceedings of the 38th ACM Symposium on Theory of Computing (STOC), pages
232-240, 2006. 9, 46

Mihai Patragcu and Mikkel Thorup. Planning for fast connectivity updates. In Pro-
ceedings of the 48th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 263-271, 2007. 3, 4, 5, 6, 52

Mihai Patragcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select,
and predecessor search. In Proceedings 55th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 166-175, 2014. 9, 46

59

[Riic08]

[RST14]

[Tho18)]

[TZ05)

[Vad12]

[vdBS19]

[Wing9)

[Yu21]

Harald Récke. Optimal hierarchical decompositions for congestion minimization in
networks. In Proceedings 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 255-264, 2008. 52

Harald Réacke, Chintan Shah, and Hanjo Taubig. Computing cut-based hierarchical
decompositions in almost linear time. In Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms, pages 227-238. SIAM, 2014. 5

Mikkel Thorup. Sample(x) = (a*x <=1t) is a distinguisher with probability 1/8.
SIAM Journal on Computing, 47(6):2510-2526, 2018. 54

Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1-24,
2005. 1

Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1-336, 2012. 55

Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability
oracles for large batch updates. In Proceedings of the 60th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 424-435, 2019. 3

Sein Win. On a connection between the existence of k-trees and the toughness of a
graph. Graphs and Combinatorics, 5(1):201-205, 1989. 53

Huacheng Yu. Tight distributed sketching lower bound for connectivity. In Proceedings
of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1856—
1873, 2021. 51

60

	1 Introduction
	2 Deterministic Edge Fault Connectivity Labels
	2.1 First Tool: Edge Expander Hierarchies
	2.2 A Simple (f)-Bit Labeling Scheme
	2.3 Second Tool: Code Shares
	2.4 An (f)-Bit Labeling Scheme

	3 Deterministic Vertex Fault Connectivity Labels
	3.1 Overview and Challenges
	3.2 The Structure
	3.2.1 The Basis: A Vertex Expander Hierarchy
	3.2.2 The Initial Structure: Low-Degree Steiner Trees and Shortcut Graphs
	3.2.3 Structures Affected by Queries
	3.2.4 A Divide-and-Conquer Lemma
	3.2.5 An Improved Divide-and-Conquer Lemma via Sparsified Shortcut Graphs

	3.3 The Strategy for Handling Queries
	3.4 The Labeling Scheme: Implementing the Strategy
	3.4.1 The Euler Tours of (Extended) Steiner Trees
	3.4.2 Profiles of Vertices, Components and Subtrees
	3.4.3 Labels on Euler Tours
	3.4.4 Labels for Implementing EnumFromGiant(y,)
	3.4.5 Space Analysis
	3.4.6 The Final Labeling Scheme

	4 Randomized Edge Fault Connectivity Labels
	4.1 A Simple Labeling Scheme
	4.2 A Smaller Labeling Scheme

	5 Randomized Vertex Fault Connectivity Labels
	6 Lower Bound for Global Connectivity under Vertex Faults
	7 Conclusion and Open Problems
	Acknowledgments
	A Low-Degree Steiner Trees Spanning Tough Sets
	B Improved Singleton-Detection Scheme: Proof of lem:singleton

