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Abstract

We consider the problem of assigning short labels to the vertices and edges of a graph G so
that given any query ⟨s, t, F ⟩ with |F | ≤ f , we can determine whether s and t are still connected
in G− F , given only the labels of F ∪ {s, t}.

This problem has been considered when F ⊂ E (edge faults), where correctness is guaranteed
with high probability (w.h.p.) [DP21] or deterministically [IEWM23], and when F ⊂ V (vertex
faults), both w.h.p. and deterministically [PP22, PPP24]. Our main results are as follows.

Deterministic Edge Faults. We give a new deterministic labeling scheme for edge faults
that uses Õ(

√
f)-bit labels, which can be constructed in polynomial time. This improves

on Dory and Parter’s [DP21] existential bound of O(f log n) (requiring exponential time
to compute) and the efficient Õ(f2)-bit scheme of Izumi, Emek, Wadayama, and Ma-
suzawa [IEWM23]. Our construction uses an improved edge-expander hierarchy and a
distributed coding technique based on Reed-Solomon codes.

Deterministic Vertex Faults. We improve Parter, Petruschka, and Pettie’s [PPP24] deter-
ministic O(f7 log13 n)-bit labeling scheme for vertex faults to O(f4 log7.5 n) bits, using an
improved vertex-expander hierarchy and better sparsification of shortcut graphs. We com-
pletely bypass deterministic graph sketching [IEWM23] and hit-and-miss families [KP21].

Randomized Edge/Verex Faults. We improve the size of Dory and Parter’s [DP21] ran-
domized edge fault labeling scheme from O(min{f + log n, log3 n}) bits to O(min{f +
log n, log2 n log f}) bits, shaving a log n/ log f factor. We also improve the size of Parter,
Petruschka, and Pettie’s [PPP24] randomized vertex fault labeling scheme from O(f3 log5 n)
bits to O(f2 log6 n) bits, which comes closer to their Ω(f)-bit lower bound [PPP24].
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1 Introduction

A labeling scheme for a graph problem can be viewed as a distributed data structure in which all
queries must be answered without inspecting the underlying graph, but only the labels of the query
arguments. Early work focused on labeling schemes for adjacency [Bre66, BF67, KNR92], which is
connected to finding small induced universal graphs [ADK17, AKTZ19].

There are now many labeling schemes for basic navigation queries in rooted trees [ADK17,
AAK+06, AHL14], such as adjacency, ancestry, and least common ancestors. There are labeling
schemes for computing distances in general graphs [AGHP16a], planar graphs [GPPR04, BGP22,
GU23], and trees [GPPR04, ABR05, AGHP16b], as well as labelings for approximate distances [TZ05,
AG11]. There are several labeling schemes for answering queries about the pairwise edge- and
vertex-connectivity in undirected graphs [KKKP04, HL09, IN12, PSY22].

Label Schemes under Faults. Courcelle and Twigg [CT07, CGKT08] initiated the study of
forbidden set or fault tolerant labeling schemes. The idea is to support a standard connectiv-
ity/distance query, subject to faults (deletions) of some subset F of vertices or edges. Several
fault tolerant labeling schemes focus on special graph classes such as bounded treewidth graphs
[CT07] and planar graphs [CGKT08, ACGP16, BCG+22, CMW23]. On general graphs, labeling
schemes that handle at most one or two faults were shown for single-source reachability [Cho16]
and single-source approximate distance [BCHR20].

The first labeling scheme on general graphs under multiple faults was given by Dory and
Parter [DP21], for connectivity under edge faults. More precisely, they assigned labels to edges and
vertices of an undirected n-vertex graph G so that, given the labels of ⟨s, t, F ⟩ where F ⊂ E(G),
one can determine if s and t are still connected in G−F . When |F | ≤ f , they gave a Monte Carlo
randomized construction of labels of size O(min{f + log n, log3 n}) bits that answer each query
correctly with high probability. By increasing the size to O(f log n) bits, their scheme answers
all queries correctly, with high probability, though confirming this property seems to require an
exponential time brute force search. Recently, Izumi, Emek, Wadayama, and Masuzawa [IEWM23]
gave a deterministic polynomial-time construction of labels of size Õ(f2).

Parter and Petruschka [PP22] considered the same problem, but with vertex faults rather than
edge faults, i.e., F ⊂ V (G). They gave deterministic labeling schemes with length O(log n) for

f = 1, O(log3 n) for f = 2, and a randomized scheme of length Õ(n1−1/2f−2
) for general f . This

year, Parter, Petruschka, and Pettie [PPP24] developed randomized and deterministic labeling
schemes with label length Õ(f3) and Õ(f7), respectively. They also observed an Ω(f + log n)-
bit lower bound for vertex faults (randomized or deterministic), which established a complexity
separation between edge and vertex faults. See Table 1.

Our Results. We show new connectivity labels under both edge and vertex faults that improve
the state-of-the-art as follows:

1. Deterministic labels under edge faults of size Õ(
√
f) bits (Theorem 2.1). This simultaneously

improves Dory and Parter’s [DP21] labels of size O(f log n), which require exponential time
to construct, and Izumi et al.’s [IEWM23] efficiently constructed labels of size Õ(f2). In fact,
Izumi et al. [IEWM23] stated that “it seems plausible that the Ω(f)-bit lower bound holds.”
We refute this possibility.

1



Edge Fault Tolerant Connectivity Labels

Reference Label Size (Bits) Guarantee Notes

Dory & Parter [DP21]
O(min{f + log n, log3 n}) Monte Carlo Query correct w.h.p.

O(f log n) Deterministic Existential bound

Izumi, Emek, Wadayama O(f2 log2 n log log n)
Deterministic

Polynomial construction

& Masuzawa [IEWM23] O(f2 log3 n) Õ(mf2) construction

Trivial Ω(log n) any trivial lower bound

O(min{f + log n,
Monte Carlo Query correct w.h.p.

new
log2 n log(f/ log2 n)})

O(
√
f log2 n log f) Existential bound

O(
√
f log2.25 n log(f log n))

Deterministic
Polynomial construction

Vertex Fault Tolerant Connectivity Labels

Parter O(log3 n) Deterministic f ≤ 2

& Petruschka [PP22] Õ(n1−2−f+2
) Monte Carlo f ∈ [3, o(log log n)]

Parter, Petruschka
O(f3 log5 n) Monte Carlo Query correct w.h.p.

& Pettie [PPP24]
O(f7 log13 n) Deterministic Polynomial construction

Ω(f + log n) any lower bound

O(f2 log6 n) Monte Carlo Query correct w.h.p.

new O(f4 log7 n) Existential bound

O(f4 log7.5 n)
Deterministic

Polynomial construction

Table 1: All Monte Carlo results have a one-sided error probability of 1/poly(n), i.e., they may
report two vertices disconnected when they are, in fact, connected. The existential result of Dory
and Parter [DP21] constructs labels in O(mf log n) time that, with high probability, answer all
queries correctly. However, to verify this fact requires a brute force search. The new existential
results require solving an NP-hard problem, namely sparsest cut.
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2. Deterministic labels under vertex faults of size O(f4 log7.5 n) bits (Theorem 3.1). This im-
proves the O(f7 log13 n)-bit labels of [PPP24].

3. Randomized labels under edge faults of size O(min{f+log n, log2 n log f}) bits (Theorems 4.1
and 4.4). This improves the O(min{f + log n, log3 n})-bit labels of Dory and Parter [DP21].

4. Randomized labels under vertex faults of size O(f2 log6 n) bits (Theorem 5.1). This improves
the O(f3 log5 n)-bit labels of Parter et al. [PPP24].

Related Work: Connectivity Oracles. Our connectivity labels can be viewed as a distributed
version of connectivity oracles under faults. In this problem, we must build a centralized data
structure for an input graph G so that, given a query ⟨s, t, F ⟩, we can check if s and t are still
connected in G − F as fast as possible using the centralized data structure. Connectivity oracles
have been well-studied under both edge faults [PT07, DP20, GKKT15] and vertex faults [DP20,
vdBS19, LS22, PSS+22, Kos23, LW24] and the optimal preprocessing/query bounds have been
proven [PT07, LS22, DP20, KPP16, HKNS15], either unconditionally, or conditioned on standard
fine-grained complexity assumptions.

Our Techniques. The basis of Results 1 and 2 is an expander hierarchy. This is the first
application of expanders in the context of fault-tolerant labeling schemes, although they have
been widely applied in the centralized dynamic setting, e.g. [NSWN17, GRST21, LS22].

We give a clean definition of expander hierarchies for both edge expansion (Definition 2.2) and
vertex expansion (Definition 3.2) as well as simple algorithms for computing them. In the edge
expansion version, our formulation turns out to be equivalent to Pǎtraşcu and Thorup’s [PT07],
but our algorithm improves the quality by a Θ(log n) factor. Our vertex expander hierarchy is new.
Combined with the observation that any ϕ-vertex-expanding set has an O(1/ϕ)-degree Steiner
tree (Lemma 3.6),1 this implies a new low-degree hierarchy that is strictly stronger and arguably
cleaner than all previous low-degree hierarchies [DP20, LS22, LW24, PPP24], which are the critical
structures behind vertex fault tolerant connectivity oracles.

To obtain our deterministic labels under edge faults, we first show that the edge expander
hierarchy immediately leads to a simple Õ(f)-bit label (Theorem 2.5), which already improves the
state-of-the-art [IEWM23, DP21]. Then, we introduce a new distributed coding technique based
on Reed-Solomon codes to improve the label size to Õ(

√
f) bits, obtaining Result 1.

Our deterministic labeling scheme under vertex faults (Result 2) employs a high-level strategy
from Parter et al. [PPP24], but our label is shorter by an Θ̃(f3) factor. Roughly, this improvement
comes from two sources. First, Parter et al. [PPP24] employed the deterministic graph cut sketch of
Izumi et al. [IEWM23], which contributes an Θ̃(f2) factor to the size. We can bypass deterministic
sketching and pay only an Õ(f) factor because our low-degree hierarchy has an additional vertex
expansion property. Second, Parter et al. [PPP24] constructed a sparsified shortcut graph with
arboricity Õ(f4) using the hit-and-miss families by Karthik and Parter [KP21]. We are able to
use the simpler Nagamochi-Ibaraki sparsification [NI92] to obtain a sparse shortcut graph with
arboricity Õ(f2). These two improvements cannot be applied in a modular way, so our final
scheme ends up being rather different from [PPP24].

1Previously, [LS22] showed an O(log(n)/ϕ)-degree Steiner tree spanning any ϕ-vertex-expanding set.
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All previous centralized connectivity oracles under vertex faults (including the one using vertex
expanders [LS22]) crucially used 2D-range counting data structures, which seem inherently incom-
patible with the distributed labeling setting. Thus, our scheme is inherently different than the
centralized oracles [LS22, DP20].

2 Deterministic Edge Fault Connectivity Labels

The goal of this section is to prove the following theorem.

Theorem 2.1. Fix any undirected graph G = (V,E) and integer f ≥ 1. There are deterministic

labeling functions LV : V → {0, 1}logn and LE : E → {0, 1}O(
√

f/ϕ log(f/ϕ) log2 n) such that given
any query ⟨s, t, F ⟩, F ⊂ E, |F | ≤ f , one can determine whether s and t are connected in G − F
by inspecting only LV (s), LV (t), {LE(e) | e ∈ F}. The construction time is exponential for ϕ = 1/2
and polynomial for ϕ = Ω(1/

√
log n).

We remark that the above labeling scheme is actually more flexible. By reading only the
labels of the failed edges F , it can compute a representation of connected components of G− F in
poly(f log n) time. From this representation, we can, for example, count the number of connected
components in G − F . This is impossible in the vertex-failure setting for any vertex-labels of size
o(n1−1/f/f). See Section 6. Given the additional labels of s and t, we can then check whether s and
t are connected in G − F , in O(1 + min{ log logn

log log log n ,
log f

log logn}) time. We can also straightforwardly
handle edge insertions.

To prove Theorem 2.1, we introduce two new tools into the context of labeling schemes. The
first tool is the edge expander hierarchy, for which we give an improved construction in Section 2.1.
This tool alone already leads to a simple and efficient deterministic labeling scheme of size Õ(f)
bits, improving prior work [IEWM23, DP21]. In Section 2.3 we introduce a second tool, distributed
code shares, and in Section 2.4 we combine the two tools and prove Theorem 2.1.

2.1 First Tool: Edge Expander Hierarchies

In this section we recall Pǎtraşcu and Thorup’s [PT07] definition of an expander hierarchy, then
give a new construction that improves the quality by a factor of Θ(log n).

Given a graph G = (V,E), a set X ⊆ E and a vertex u, let DegX(u) denote the number of
edges from X incident to u and let DegX(S) =

∑
u∈S DegX(u) denote the volume of S with respect

to X. We say that X is ϕ-expanding in G if, for every cut (S, V \ S),

|EG(S, V \ S)| ≥ ϕmin{DegX(S),DegX(V \ S)}.

Consider a partition {E1, . . . , Eh} of E. We denote E≤ℓ :=
⋃

i≤ℓEi, E>ℓ :=
⋃

i>ℓEi, and G≤ℓ :=
G ∩ E≤ℓ. We also write Degℓ := DegEℓ

, Deg≤ℓ := DegE≤ℓ
, and so on.

Definition 2.2 (Expander Hierarchy). Given a graphG = (V,E), an edge-partition P = {E1, . . . , Eh}
of E induces an (h, ϕ)-expander hierarchy of G if, for every level ℓ ≤ h and every connected com-
ponent Γ of G≤ℓ, Eℓ ∩ Γ is ϕ-expanding in Γ. That is, for every cut (S,Γ \ S) of Γ, we have

|E≤ℓ(S, V (Γ) \ S)| ≥ ϕmin{Degℓ(S),Degℓ(V (Γ) \ S)}.

Over all levels ℓ, the set of all connected components Γ of G \E>ℓ form a laminar family C. Let H
be the tree representation of C. We also call (C,H) an (h, ϕ)-expander hierarchy of G.
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𝐸𝐸ℎ  is 𝜙𝜙-expanding in 𝐺𝐺

Γ1

Γ2

Γ3

𝐸𝐸ℎ−1 ∩ Γ1 is 𝜙𝜙-expanding in Γ1

𝐸𝐸ℎ−1 ∩ Γ2 is 𝜙𝜙-expanding in Γ2

𝐸𝐸ℎ−1 ∩ Γ3 is 𝜙𝜙-expanding in Γ3

𝐺𝐺

Figure 1: Illustration of the top two levels of an (h, ϕ)-expander hierarchy. Eh and Eh−1 are drawn
in red and blue, respectively.

See Figure 1 for an example. Below, we give an improved construction of the expander hierarchy.

Theorem 2.3. There exists an algorithm that, given a graph G, computes an (h, ϕ)-expander
hierarchy with h ≤ log n and ϕ = 1/2 in exponential time, or ϕ ≥ Ω(1/

√
log n) in polynomial time.

Pǎtraşcu and Thorup [PT07] gave an exponential-time algorithm for h ≤ logm and ϕ =
1/(2 log n) and a polynomial-time algorithm with ϕ ≥ Ω(1/ log1.5 n). Theorem 2.3 shaves one
log n factor in ϕ for both settings.2

Theorem 2.3 is perhaps surprising. Recall a related and seemingly weaker concept of ϕ-expander
decomposition. A ϕ-expander decomposition of a graph G is an edge set X ⊆ E such that, for
each connected component Γ of G \ X, E ∩ Γ is ϕ-expanding in G[Γ]. It is known that there is
no expander decomposition with X ≤ 0.99|E| where ϕ = ω(1/ log n) [AALOG18, MS18]. Here, we
give an expander hierarchy with ϕ = 1/2.

Theorem 2.3 follows immediately from the lemma below, inspired by [RST14, Lemma 3.1].

Lemma 2.4. There exists an exponential-time algorithm that, given a graph G = (V,E), computes
an edge set X such that every connected component of G \X contains at most n/2 vertices and X
is 1

2 -expanding. In polynomial time, we can instead guarantee that X is Ω(1/
√
log n)-expanding.

Proof. Initialize X ← E. If X is 1
2 -expanding, we are done. Otherwise, we repeatedly update X

as follows. Since X is not 1
2 -expanding, there exists a vertex set S where |S| ≤ n/2 such that

|E(S, V \ S)| < 1
2 min{DegX(S),DegX(V \ S)}. Update X ← X ∪ E(S, V \ S) \ (X ∩ E(S, S)).

Let X ′ denote X after the update. Observe that every connected component of G \ X ′ still
contains at most n/2 vertices because |S| ≤ n/2. Moreover, since

1

2
(2|X ∩ E(S, S)|+ |X ∩ E(S, V \ S)|) = 1

2
DegX(S) > |E(S, V \ S)|,

we have

|X ∩ E(S, S)| > |E(S, V \ S)| − 1

2
|X ∩ E(S, V \ S)| ≥ |E(S, V \ S) \X|.

2The factor 1/2 in Theorem 2.3 is quite artificial. It can be improved to 1 if we slightly change the definition such
that X is ϕ-expanding in G if, for every cut (S, V \ S), |EG(S, V \ S)| ≥ ϕmin{|EG(S, V ) ∩X|, |EG(V \ S, V ) ∩X|}.
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Thus, |X ′| < |X| and there can be at most |E| iterations of the procedure.
To get a polynomial time construction, we instead apply the sparsest cut algorithm of Arora et

al. [ARV09] that, given X, either guarantees that X is Ω(1/
√
log n)-expanding or returns a set S

where |S| ≤ n/2 and |E(S, V \ S)| < 1
2 min{DegX(S),DegX(V \ S)}.

Proof of Theorem 2.3. Given G, compute the edge set X from Lemma 2.4 and set Eh ← X. To
compute Eh−1, Eh−2, . . . , E1, we recurse on each connected component C of G \ X. We have
h ≤ log n because each component C has size |C| ≤ n/2.

2.2 A Simple Õ(f)-Bit Labeling Scheme

In this section, we prove Theorem 2.5, which uses Õ(f)-bit labels. It is the basis for our final
Õ(
√
f)-bit labeling scheme presented in Theorem 2.1.

Theorem 2.5. Fix any undirected graph G = (V,E) and integer f ≥ 1. There are deterministic

labeling functions LV : V → {0, 1}logn and LE : E → {0, 1}O(fϕ−1 log2 n) such that given any
query ⟨s, t, F ⟩, F ⊂ E, |F | ≤ f , one can determine whether s and t are connected in G − F by
inspecting only LV (s), LV (t), {LE(e) | e ∈ F}. The construction time is exponential for ϕ = 1/2
and polynomial for ϕ = Ω(1/

√
log n).

At a very high level, Theorem 2.5 is proved by adapting Pǎtraşcu and Thorup’s [PT07] cen-
tralized edge-failure connectivity oracle to the distributed setting. Note that Theorem 2.5 already
improves the state-of-the-art polynomial-time computable Õ(f2)-bit labeling of [IEWM23].

Given a function level : E → [h], let {E1, . . . , Eh} be the corresponding edge partition, where
Eℓ = level−1(ℓ). Suppose {E1, . . . , Eh} induces an (h, ϕ)-expander hierarchy H. Define T ∗ to be a
minimum spanning tree with respect to level, and let Euler(T ∗) be its Euler tour, which is a list of
length n + 2(n − 1) that includes each vertex once (its first appearance) and each T ∗-edge {u, v}
twice, as (u, v) and (v, u), according to a DFS traversal of T ∗, starting from an arbitrary root
vertex. Each vertex u is identified by its position in Euler(T ∗), denoted DFS(u). We call each edge
in Euler(T ∗) an oriented edge. See Fig. 2 for a small example.

For each ℓ ≤ h, let T≤ℓ be the set of level-ℓ trees in the forest T ∗ ∩ E≤ℓ. Observe that for each
T ∈ T≤ℓ, Euler(T ) is a subsequence of Euler(T ∗), not necessarily contiguous. Furthermore, because
T ∗ is a minimum spanning tree with respect to level, each connected component Γ of G≤ℓ has a
unique level-ℓ tree T ∈ T≤ℓ such that T spans Γ.

Euler(T ∗) =

(
a, (a, b), b, (b, c), c, (c, b), (b, d), d, (d, e), e, (e, d),

(d, f), f, (f, d), (d, g), g, (g, d), (d, b), (b, a),

(a, h), h, (h, i), i, (i, h), (h, j), j, (j, h), (h, a)
)
.

Figure 2: Left: T ∗ on vertex set {a, b, c, . . . , j}, rooted at a. Right: Euler(T ∗).

Definition 2.6 (Simple Deterministic Edge Labels). For v ∈ V , the vertex label LV (v) is just
DFS(v). Each non-tree edge e = {u, v} ̸∈ E(T ∗) has a 2 log n-bit label LE(e) = (DFS(u),DFS(v)).
Each tree edge e = {u, v} ∈ E(T ∗) is assigned an O((f/ϕ) log2 n)-bit label, generated as follows.
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1. Store (LV (u), LV (v), level(e)).

2. For each ℓ ∈ [level(e), h], let Tℓ ∈ T≤ℓ be the tree containing e. Write Euler(Tℓ) as

Euler(Tℓ) = X · (u, v) · Y · (v, u) · Z.

For each W ∈ {X,Y, Z},

(a) Store the labels of the first and last elements of W , and store the labels of the first and
last vertices in W (i.e. minu∈W DFS(u) and maxv∈W DFS(v)).

(b) Store the first f/ϕ+1 level-ℓ non-tree edges incident to vertices in W . (Each such edge
{u, v} is encoded by LE({u, v}) = (DFS(u),DFS(v)).)

The Query Algorithm. For each level 1 ≤ ℓ ≤ h, let T≤ℓ,F ⊆ T≤ℓ collect all level-ℓ trees T such
that T intersects F . Recall that each connected component Γ of Gℓ has a unique T ∈ T≤ℓ as its
spanning tree. We define G≤ℓ,F to be a subgraph of Gℓ that only collects the connected components
of G≤ℓ whose spanning tree is in T≤ℓ,F .

Our goal is to sequentially build vertex partitions P1, . . . ,Ph, where Pℓ is a partition of V (G≤ℓ,F )
that reflects the connected components of G≤ℓ,F −F . In fact, we will compute, for each T ∈ T≤ℓ,F ,
a partition Pℓ[T ] of V (Γ) that reflects the connected component of Γ−F (where Γ is the connected
component of G≤ℓ that has T as its spanning tree), and then Pℓ is simply the union of Pℓ[T ] over
all T ∈ T≤ℓ,F . After Ph is computed, we can count the number of connected components in G−F ,
or answer s-t connectivity queries, given LV (s), LV (t).

Each Pℓ[T ] has a compact representation as follows. We start with defining intervals. Consider
a T ∈ T≤ℓ. We can detect whether T intersects F and if so, enumerate T ∩ F = {e1, . . . , ef0}
using Item 2a of the F labels. If we remove the oriented copies of T ∩ F , Euler(T ) breaks into
a set of 2f0 + 1 intervals J (T, F ). Note that from Item 2a, for each interval in J (T, F ), we can
obtain the labels of its first and last elements and its first and last vertices. Towards the compact
representation of Pℓ[T ], we can think of each J ∈ J (T, F ) as the vertex set J ∩ V (T ). Each part
P ∈ Pℓ[T ] is represented by a set of intervals JP ⊆ J (T, F ) such that P =

⋃
J∈JP J ∩ V (T ).

For the purposes of point location, we will write J ∈ J (T, F ) as [minu∈J∩T DFS(u),maxv∈J∩T DFS(v)].
Note that in general, an interval [DFS(u),DFS(v)] in J (T, F ) contains (the DFS numbers of) ver-
tices outside of T . Nonetheless, for vertices in V (T ), these intervals allow us to do correct point
location.

Observation 2.7 (Point Location). Suppose x ∈ V (T ), T ∈ T≤ℓ,F . If [DFS(u),DFS(v)] is the
(unique) interval in J (T, F ) containing DFS(x) then there is a component in T − F containing
u, x, and v.

The query algorithm only does point location on vertices x known to be in V (T ), so Observa-
tion 2.7 suffices for correctness.

Suppose Pℓ−1 has been computed. For each T ∈ T≤ℓ intersecting F , we enumerate T ∩ F =
{e1, . . . , ef0} and initialize Pℓ[T ] ← J (T, F ) (i.e. each part P ∈ Pℓ[T ] is only one interval), then
proceed to unify parts of Pℓ[T ] by applying rules R1–R4 and the operation UniteT (x, y). The x, y
in UniteT (x, y) can be vertices in V (T ), intervals in J (T, F ) or even parts in Pℓ[T ], and UniteT (x, y)
will unite the parts containing x and y in Pℓ[T ].
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R1. If J, J ′ are two intervals of Euler(T ) that share a common endpoint, say J ends with ‘u’ and
J ′ begins with ‘(u, v)’, call UniteT (J, J

′).

R2. For each call to UniteT ′(x, y) made in the construction of Pℓ−1[T ′], T ′ ⊂ T , call UniteT (x, y).

R3. For each non-tree edge {u, v} ∈ Eℓ encoded in the labels {LE(ei) | i ∈ [f0]}, if {u, v} ̸∈ F , call
UniteT (u, v).

Rule R1 is implemented with Item 2a of the F -labels. The enumeration of edges in R3 uses
Item 2b of the F -labels, but to implement UniteT (u, v) we need to locate the intervals in J (T, F )
containing u, v. Since level({u, v}) = ℓ, both u, v are in V (T ), and by Observation 2.7 we can locate
the intervals containing u, v, given DFS(u),DFS(v).

According to R2, every UniteT ′(x, y) performed at level ℓ − 1 on some T ′ ⊂ T is re-executed
verbatim as UniteT (x, y) if x, y are vertices. Since x, y ∈ V (T ′) ⊆ V (T ), Observation 2.7 lets us
identify the intervals in J (T, F ) containing x, y. If x, y were intervals from J (T ′, F ) we can pick
the first vertices from x and y, say x′, y′, and call UniteT (x

′, y′). Once again, x′, y′ ∈ V (T ′) ⊆ V (T ),
so Observation 2.7 applies.

After executing R1, Pℓ[T ] reflects the connected components of T − F . After executing R2,
Pℓ[T ] reflects the connected components of (G≤ℓ−1[V (T )]∪T )−F . If it were the case that R3 had
access to all level-ℓ non-tree edges, then it would be sufficient to find all connected components
of G≤ℓ[V (T )] − F . However, Item 2b of the F -labels are only guaranteed to reveal up to f/ϕ + 1
level-ℓ non-tree edges per interval in J (T, F ).

Lemma 2.8. If P1, . . . , Pk ∈ Pℓ[T ] are those parts with Degℓ(Pi) > f/ϕ, then
⋃k

i=1 Pi are contained
in a single connected component of G≤ℓ − F .

Proof. Suppose the claim is false, that there is some partition of {P1, . . . , Pk} into A and B which
are disconnected. Then

|E≤ℓ(A,B)|
min{Degℓ(A),Degℓ(B)}

<
f

f/ϕ
= ϕ,

contradicting the fact that H is an (h, ϕ)-expander hierarchy.

In light of Lemma 2.8, we continue to unify parts according to a fourth rule.

R4. If P, P ′ ∈ Pℓ[T ] have Degℓ(P ),Degℓ(P
′) > f/ϕ, call UniteT (P, P

′).

The full partition Pℓ is obtained by taking the union of all Pℓ[T ], for T ∈ T≤ℓ intersecting F ,
plus the trivial partitions Pℓ[T ] = {V (T )} for every T ∈ T≤ℓ disjoint from F .

Lemma 2.9 (Correctness). If P ∈ Pℓ, then P is a connected component in G≤ℓ − F .

Proof. Rules R1–R3 are clearly sound and Lemma 2.8 implies R4 is sound. We consider com-
pleteness. If there is a path between u, v ∈ V (T ) in G≤ℓ−1 − F then by induction on ℓ, u and v
will be in the same part of Pℓ after executing R1 and R2. Suppose u, v are joined by a path in
G≤ℓ − F , but u, v are in different parts Pu, Pv connected by a level-ℓ edge e′ = {u′, v′}. Because
R3 could not be applied, e′ is not contained in Item 2b of the F -edges bounding the intervals in
J (T, F ) containing u′, v′, implying Degℓ(Pu),Degℓ(Pv) > f/ϕ, but then by R4, Pu, Pv would have
been united.
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Once we have constructed Ph, a connectivity query ⟨s, t, F ⟩ works as follows. First, identify the
two intervals in Euler(T ∗) of the forest T ∗−F that contains s and t. This can be done using the pre-
decessor search over the endpoints of the intervals in O(min{ log logn

log log log n ,
log f

log logn}) time [PT06, PT14],
since there are O(f) intervals, each represented by O(log n)-bit numbers. Then we check whether
the two intervals are in the same part of Ph, corresponding to the same connected component of
G− F .

2.3 Second Tool: Code Shares

Theorem 2.10 gives the distributed coding scheme. We will only invoke it with d = 2.

Theorem 2.10 (Reed-Solomon Code Shares). Let m ∈ Fk
q be a message, with q > k. For any

integer parameter d ≥ 2, there are O(d log q)-bit code shares C1, . . . , Ck so that for any index set
J ⊂ [k] with |J | ≥ k/d, we can reconstruct m from the code shares {Cj | j ∈ J} in polynomial time.

Proof. One can regard m as the coefficients of a degree-(k − 1) polynomial g1 over Fq, or even as
a degree-(⌈k/d⌉ − 1) polynomial gd over Fqd . The code shares (Ci)1≤i≤k are defined to be distinct
evaluations of gd.

Ci = (i, gd(i)).

Given the code shares {Ci | i ∈ J} for |J | ≥ k/d, we can reconstruct gd and hence m in polynomial
time via polynomial interpolation.

2.4 An Õ(
√
f)-Bit Labeling Scheme

High-level Idea. The labeling scheme of Section 2.2 is non-constructive inasmuch as rule R4
infers that two P, P ′ are connected, not by finding a path between them, but by checking if their
volumes Degℓ(P ),Degℓ(P

′) > f/ϕ. In this section, we give a labeling scheme that is even more
non-constructive. We can sometimes infer that a part P with Degℓ(P ) < f/ϕ is nonetheless in
a connected component C of G≤ℓ − F with Degℓ(C) > f/ϕ without explicitly knowing an edge
incident to P .

A key idea in the construction is to store a large volume of information about an interval of an
Euler tour as code shares distributed across labels of “nearby” edges. Given a sufficient number of
code shares, we will be able to reconstruct the information about the interval.

Notations. We shall assume without loss of generality that the graph has degree 3. Given any
G′ = (V ′, E′) with irregular degrees, we form G = (V,E) by substituting for each v′ ∈ V a Deg(v′)-
cycle, then attach each edge incident to v′ to a distinct vertex in the cycle, hence |V | = |E′|/2. Given
labelings LV : V → {0, 1}∗, LE : E → {0, 1}∗, we let LE′(e′) = LE(ϕ(e

′)), LV ′(v′) = LV (ϕ(v
′)),

where ϕ(e′) ∈ E is the edge corresponding to e′ and ϕ(v′) ∈ V is any vertex in the Deg(v′)-cycle
of v′. Correctness is immediate, since F ′ ⊂ E′ disconnects s, t ∈ V ′ iff ϕ(F ′) ⊂ E disconnects
ϕ(s), ϕ(t) ∈ V .

Recall T ∗ is the minimum spanning tree of G with respect to the level function. Fix a level ℓ.
Let T ∈ T≤ℓ be a tree spanning a component of G≤ℓ. For each v ∈ V (T ), let

wtℓ(v) =

 1 if v is incident to a level-ℓ non-tree edge,

0 otherwise,

9



and for each oriented tree edge (u, v), let wtℓ(u, v) = 0. If S is an interval of vertices and oriented
edges in Euler(T ), wtℓ(S) =

∑
x∈S wtℓ(x).

Let [α, β] denote the interval of Euler(T ) starting at α and ending at β. Then distℓ(α, β) =

distℓ(β, α)
def
=
∑

γ∈[α,β]\{α,β} wtℓ(γ).
3 For any vertex/edge element α in Euler(T ), the set of all

vertices within distance r is:

Ballℓ(α, r) = {v ∈ V (T ) | distℓ(α, v) ≤ r}.

We overload the Ball-notation for edges e = {u, v}. Here (u, v), (v, u) refer to the oriented occur-
rences of e in an Euler tour, if e is a tree edge.

Ballℓ(e, r) =

 Ballℓ((u, v), r) ∪ Ballℓ((v, u), r) when e ∈ E(T ) is a tree edge,

Ballℓ(u, r) ∪ Ballℓ(v, r) when e ̸∈ E(T ) is a non-tree edge.

Henceforth, the only balls we consider have radius r,

r
def
= ⌈

√
f/ϕ⌉.

Assume, without loss of generality, that wt(Euler(T )) is a power of 2, by padding the end with

dummy weight-1 elements if necessary. For every j ≤ jmax
def
= ⌈log(f/ϕ)⌉, define Ij to be a partition

of Euler(T ) into consecutive intervals with weight 2j , each the union of two intervals from Ij−1.

The Scheme. The key idea of this labeling scheme is to focus on large gap edges. See Fig. 3.

Figure 3: An interval Ij ∈ Ij with wt(Ij) = 2j (j = 3). There are 12 level-ℓ edges in
E(Ij , Ij), {u1, v1}, . . . , {u12, v12}, ordered by their non-Ij endpoint. The large gap edges of Ij
are {u1, v1}, {u4, v4}, {u5, v5}, {u7, v7}, {u8, v8}, {u9, v9}, {u12, v12}.

Definition 2.11 (Large Gap Edges). Fix an interval Ij ∈ Ij and let Eℓ(Ij) := Eℓ(Ij , Ij) be all
level-ℓ edges with exactly one endpoint in Ij . We write Eℓ(Ij) = {{u1, v1}, {u2, v2}, . . . } such that,
for all i, ui ∈ Ij and vi ∈ Ij . Order the edges according to vi, so

DFS(v1) ≤ DFS(v2) ≤ · · · ≤ DFS(v|Eℓ(Ij)|). (1)

3We exclude the endpoints of the intervals from the sum just to avoid double counting at the endpoints when we
sum distances of two adjacent intervals.
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If, for q ∈ [1, |Eℓ(Ij)|), vq+1 ̸∈ Ballℓ(vq, r), then {uq, vq}, {uq+1, vq+1} are called large gap edges
w.r.t. ℓ and Ij . The first and last edges {u1, v1}, {u|Eℓ(Ij)|, v|Eℓ(Ij)|} are always large gap edges.
Define LGEℓ(Ij) ⊆ Eℓ(Ij) to be the set of large gap edges and lgeℓ(Ij) = |LGEℓ(Ij)| to be their
number.

Regard LGEℓ(Ij) as a message mℓ(Ij) ∈ Flgeℓ(Ij)
q , where q = poly(n) is large enough to encode

a single edge. We apply Theorem 2.10 with d = 2 to break mℓ(Ij) into code shares so that given
any set of lgeℓ(Ij)/2 shares we can reconstruct mℓ(Ij). If {u, v} ∈ LGEℓ(Ij) is a large gap edge

with u ∈ Ij and v ∈ Ij , let Cℓ,j(v, u) be the code share of {u, v} w.r.t. ℓ and Ij . Set Cℓ,j(v, u)
def
= ⊥

if {u, v} /∈ LGEℓ(Ij) is not a large gap edge. (Note that Cℓ,j(u, v) would be a different code share
w.r.t. some interval I ′j ∋ v.) To simplify notation, for each edge e = {u, v}, we define the level-ℓ
code share of e as a bundle Cℓ(e) = {Cℓ,j(u, v), Cℓ,j(v, u) | j ≤ jmax}. Note that Cℓ(e) also indicates
whether e is a large gap edge w.r.t. all intervals Ij ∋ u and I ′j ∋ v, for all j ≤ jmax.

Definition 2.12 (Shorter Deterministic Edge Labels). An O
(√

f/ϕ log(f/ϕ) log2 n
)
-bit label

LE(e) for each edge e = {u, v} is constructed as follows.

1. Store (LV (u), LV (v), level(e)).

2. For each ℓ ∈ [level(e), h] and all level-ℓ edges e′ = {u′, v′} incident to Ballℓ(e, r) vertices,

(a) store (DFS(u′),DFS(v′)),

(b) store the level-ℓ code share bundle Cℓ(e
′).

3. If e ∈ T ∗, then for each ℓ ∈ [level(e), h], let Tℓ ∈ T≤ℓ be the tree containing e. Write Euler(Tℓ)
as

Euler(Tℓ) = X · (u, v) · Y · (v, u) · Z.

(a) For each W ∈ {X,Y, Z}, store the labels of the first and last elements of W , and store
the labels of the first and last vertices in W (i.e. minu∈W DFS(u) and maxv∈W DFS(v)).

(b) For each j ≤ jmax, let I
(1)
j , I

(2)
j , I

(3)
j , I

(4)
j ∈ Ij be the closest intervals on either side of

(u, v), (v, u) that do not contain (u, v) or (v, u). For each k ∈ {1, . . . , 4}, store lgeℓ(I
(k)
j ),

and if lgeℓ(I
(k)
j ) ≤ 4r, store LGEℓ(I

(k)
j ).

The bit-length of the edge labeling is justified as follows. Item 1 has length O(log n). Since
Cℓ(e) uses O(jmax log n) bits by Theorem 2.10, we have that Item 2 has length O(hrjmax log n) =
O(
√

f/ϕ log(f/ϕ) log2 n). Item 3 has length h·(O(log n)+rjmaxO(log n)) = O(
√
f/ϕ log(f/ϕ) log2 n)

bits.

The Query Algorithm. We initialize Pℓ[T ], T ∈ T≤ℓ,F , exactly as in the proof of Theorem 2.5,
and proceed to apply rules R1–R3 as-is. Note that we can implement R1 using Item 3a and R3
using Item 2a. R2 is simply re-executing calls to UniteT ′ from those T ′ ∈ T≤ℓ−1,F such that T ′ ⊂ T .
We replace rule R4 with the similar rule R4’.

R4’. Suppose that Q ⊆ Pℓ[T ] is such that for each P ∈ Q, P must be in a connected component
C of Gℓ − F with Degℓ(C) > f/ϕ. Then, unite all parts of Q with calls to UniteT .
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To prove correctness, we recall the definition of J = J (T, F ). Let F ∩ E(T ) = {e1, . . . , ef0} be
the set of deleted tree edges of T , which we can enumerate using Item 3a of the edge labels. These
edges break Euler(T ) into a set of 2f0 + 1 intervals denoted by J (T, F ). Each part P ∈ Pℓ[T ]
consists of a collection of intervals from J (T, F ). Our goal is to prove the following.

Lemma 2.13. For each interval J ∈ J , we can either (i) list all other intervals J ′ ∈ J adjacent
to J , or (ii) infer that J is in a connected component C of G≤ℓ − F with Degℓ(C) > f/ϕ.

The above lemma implies correctness of the algorithm as we can keep applying R3 and R4’ to
obtain the correct Pℓ[T ] at the end.

Consider an interval J ∈ J . Let the F -edges bounding J be α0, α1. Observe that we can
partition J into less than 2(jmax + 1) intervals from I0 ∪ · · · ∪ Ijmax . We consider each of these
intervals Ij ∈ Ij individually. Below, we say that F reveals e′ if e′ is incident to a vertex in
Ballℓ(e, r), for some failed edge e ∈ F . Whenever F reveals e′, Item 2 of the edge labels gives us
the position of its endpoints and the code share bundle for e′. The following lemma is crucial.

Figure 4: Illustration of Lemma 2.14. An interval Ij ⊆ J is incident to J ′. J, J ′ ∈ J are bounded
by α0, α1 ∈ F and α′0, α

′
1 ∈ F , respectively. Either β0 is a large gap edge, and stored in either

LE(α0) or LE(α1), or it is stored in LE(β1), where β1 = {x, y} ∈ F (if it exists), or β1 = α′0.

Lemma 2.14. Consider an interval Ij ⊆ J ∈ J where Ij ∈ Ij. If we have access to the set
LGEℓ(Ij) of large gap edges, then we can check if another interval J ′ ∈ J is adjacent to Ij.

Proof. Suppose that J ′ ∈ J is adjacent to Ij . Let β0 = {u, v} ∈ E − F be the first level-ℓ non-
deleted edge with u ∈ Ij , v ∈ J ′, when ordered by DFS number. We claim that either β0 ∈ LGEℓ(Ij)
is a large gap edge or β0 is revealed by F . In either case, we learn the endpoints of β0, which
certifies that J ′ is adjacent to Ij .

Let J ′ be bounded by F -edges α′0, α
′
1. Consider a level-ℓ edge {x, y} that is the predecessor of

β0 according to Equation (1). In particular, x ∈ Ij and y /∈ Ij has the largest DFS(y) such that
DFS(y) ≤ DFS(v). Suppose β0 /∈ LGEℓ(Ij). Then, v ∈ Ballℓ(y, r) by definition. Now, we claim there
is a β1 ∈ F where v ∈ Ballℓ(β1, r). Hence, β0 is revealed by F which would complete the proof.
There are just two cases.

• If y ∈ J ′, then {x, y} ∈ F since β0 is the first non-deleted edge. We choose β1 = {x, y} ∈ F
and therefore v ∈ Ballℓ(β1, r).

• If y /∈ J ′, then distℓ(v, α
′
0) ≤ distℓ(v, y) ≤ r and therefore v ∈ Ballℓ(α

′
0, r). We set β1 = α′0 ∈ F

so v ∈ Ballℓ(β1, r).
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We are now ready to prove Lemma 2.13.

Proof of Lemma 2.13. There are three cases.

Case 1: An Ij ⊆ J has lgeℓ(Ij) ≤ 4r. By Item 3b of the label LE(α0) or LE(α1), we can access
the whole set LGEℓ(Ij). So, by Lemma 2.14, we can list all intervals J ′ ∈ J adjacent to Ij .

Case 2: An Ij ⊆ J has lgeℓ(Ij) > 4r, and F reveals at least (lgeℓ(Ij))/2 large gap edges in
LGEℓ(Ij). Given (lgeℓ(Ij))/2 code shares, by Theorem 2.10, we can also reconstruct LGEℓ(Ij). So,
we can again list all intervals J ′ ∈ J adjacent to Ij , by Lemma 2.14.

Case 3: An Ij ⊆ J has lgeℓ(Ij) > 4r, and F reveals at most (lgeℓ(Ij))/2 large gap edges in
LGEℓ(Ij). In this case, we claim that the connected component C in G≤ℓ − F containing Ij has
Degℓ(C) > f/ϕ. Observe that for each unrevealed large gap edge {u, v} ∈ LGEℓ(Ij) with u ∈ Ij , it
must be that Ballℓ(v, r) ⊆ C because there is no failed edge e ∈ F within distance r from v. Each
Ballℓ(v, r) has weight at least 2r, and the sum of their weights can be at most four times the weight
of their union. So Degℓ(C) > (2r/4) · (lgeℓ(Ij)/2) > (2r/4) · (4r/2) = r2 ≥ f/ϕ as desired.

3 Deterministic Vertex Fault Connectivity Labels

This section is dedicated to proving Theorem 3.1 concerning labels for vertex faults.

Theorem 3.1 (Improved Deterministic Vertex Labels). Fix any undirected graph G = (V,E) with n

vertices and integer f ≥ 1. There are deterministic labeling functions LV : V → {0, 1}O(f4ϕ−1 log7 n)

such that given any query ⟨s, t, F ⟩, F ⊂ V , |F | ≤ f , one can determine whether s and t are
connected in G − F by inspecting only LV (s), LV (t), {LV (v) | v ∈ F}. The construction time is
exponential when ϕ = 1 and polynomial when ϕ = Ω(1/

√
log n). The query time is poly(f, log n).

To prove Theorem 3.1, we first describe the underlying hierarchical structure of the algorithm
in Section 3.2. This structure allows us to prove a divide-and-conquer lemma (Lemma 3.14) that
is crucial for answering connectivity queries under vertex failures in a bottom-up manner on the
hierarchy. Based on the divide-and-conquer lemma, in Section 3.3 we then describe how to answer
connectivity queries assuming access to primitives that return information about the hierarchy.
Finally, we describe how to implement these primitives in a distributed manner by providing the
labeling scheme in Section 3.4.

3.1 Overview and Challenges

We briefly discuss our approach at a very high level. We would like to highlight the specific
challenges that arise when tolerating vertex faults relative to edge faults.

The First Challenge. We start with the ideal scenario that the input graph is already a vertex
expander. The first challenge is how to obtain a stable connectivity certificate. Recall that in the
edge fault scenario (also assuming the graph is an edge expander), we can simply take a spanning
tree as a stable connectivity certificate. The removal of any f edges will only break the spanning
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tree into f + 1 subtrees. However, in general there is no upper bound on the number of subtrees
when removing f vertices.

This is a natural barrier to handling vertex faults, and several previous works, e.g. [DP20, LS22,
PPP24], follow the same idea to overcome it. Take a low-degree spanning tree as a stable connectiv-
ity certificate. A vertex expander indeed admits a low-degree spanning tree; this is formally stated
in Lemma 3.6.

Using this idea, one can easily generalize our edge fault connectivity labeling scheme to obtain
an Õ(f)-size vertex fault connectivity labeling scheme for vertex expander input graphs. Roughly
speaking, let F be the vertex faults. From the low-degree spanning tree T , we first obtain an initial
partition P of G \ F consisting of the connected components of T \ F . Then we exploit the nature
of a ϕ-vertex expander G: all sets A ∈ P s.t. |A ∪NG(A)| > f/ϕ—call them giant sets—must be
inside the same connected component of G \ F . On the other hand, for each non-giant set A ∈ P ,
its neighbor set NG(A) is of size at most f/ϕ and we can obtain NG(A) explicitly by designing
labels on the Euler tour of the low-degree spanning tree. Therefore, we first merge all the giant
sets of P together, and then merge further using NG(A) for each non-giant A ∈ P .

The Second Challenge. The second challenge arises when the input graph is not a vertex
expander. In fact, an input graph G admitting a two-level vertex expander hierarchy already
captures this challenge. A graph G admits a two-level ϕ-vertex expander hierarchy if there is a
separator X ⊆ V (G) s.t. X is ϕ-expanding in G, and each connected component C of G \X is a
ϕ-vertex expander.

Let F be the vertex faults. We assume that we are given an initial partition P of V (G) \ F
that captures (1) the connectivity of C \ F for each connected component C of G \X, and (2) the
connectivity of X in T \ F certified by the stable connectivity certificate T . For example, we can
think of

P = PX ∪
⋃

components C of G \X

{components of C \ F},

where PX is some partition of X \ F which is with respect to the connectivity of X in G \ F , but
may not fully capture the connectivity of X in G \ F .

Clearly, we are done if we can further merge sets in P using edges incident to X, call them
X-edges. Let us try the same algorithm and see how it breaks. The fact that X is ϕ-expanding in
G tells us that all sets A ∈ P s.t. |(A ∪NG(A)) ∩X| > f/ϕ (giant sets) must belong to the same
connected component of G \ F . Also, for each non-giant set A ∈ P , NG(A) ∩X is of size at most
f/ϕ and we can obtain it explicitly with Õ(f)-bit labels. Again, we first merge giant sets into one
giant group, and then for each A ∈ P , merge it with each group intersecting NG(A) ∩ X. Let us
try to confirm the correctness of this merging procedure. We use {x, v} to denote an X-edge with
x ∈ X.

1. Any two giant sets A1, A2 ∈ P are indeed merged.

2. Suppose an X-edge {x, v} joins A1, A2 ∈ P with x ∈ A1, v ∈ A2, where A2 is non-giant. Then
we will merge A1 and A2 because A1 intersects NG(A2) ∩X.

3. Suppose an X-edge {x, v} joins A1, A2 ∈ P with x ∈ A1, v ∈ A2, but now A1 is non-giant
and A2 is giant. Although A1 intersects NG(A2)∩X, we are not guaranteed that A1 and A2

are merged because A2 is giant . In other words, X-edges in case 3 will not be detected by
this method.
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This asymmetry is the major difference between the vertex-fault case and the edge-fault case.
To overcome it, the key observation is that if there exists a case-3 X-edge for a non-giant set A1,
i.e. there exists an X-edge {x, v} such that x ∈ A1 and v is in some giant set, then A1 must be
merged with the giant group. In other words, for a non-giant A1, instead of knowing all case-3
X-edges incident to A1, it suffices to check if any such case-3 X-edges exist.

Therefore, we will count the number of case-3 X-edges for each non-giant set A1. Roughly
speaking, this is possible because this number is exactly δall − δnon-giant − δF , where

δall = number of X-edges {x, v} s.t. x ∈ A1,

δnon-giant = number of X-edges {x, v} s.t. x ∈ A1 and v is in some non-giant A2,

δF = number of X-edges {x, v} s.t. x ∈ A1 and v ∈ F .

We will not elaborate now on how to count these numbers.

3.2 The Structure

3.2.1 The Basis: A Vertex Expander Hierarchy

In this section, we construct an expander hierarchy for vertex expansion similar to the edge expan-
sion version from Section 2.1. This will be the basis of our structure.

For any graph G = (V,E), a vertex cut (L, S,R) is a partition of V such that L,R ̸= ∅ and
there is no edge between L and R. For any vertex set X ⊆ V , we say that X is ϕ-vertex-expanding
in G if for every vertex cut (L, S,R) in G,

|S| ≥ ϕmin{|X ∩ (L ∪ S)|, |X ∩ (R ∪ S)|}.

Consider a partition {V1, . . . , Vh} of V . We denote V≤ℓ :=
⋃

i≤ℓ Vi and V>ℓ :=
⋃

i>ℓ Vi. Let G≤ℓ be
the graph induced by V≤ℓ.

Definition 3.2 (Vertex Expander Hierarchy). Given a graph G = (V,E), a vertex-partition P =
{V1, . . . , Vh} of V induces an (h, ϕ)-vertex-expander hierarchy if, for every level ℓ ≤ h and every
connected component Γ in G≤ℓ, Vℓ ∩ Γ is ϕ-vertex-expanding in Γ. That is, for every vertex cut
(L, S,R) of Γ,

|S| ≥ ϕmin{|Vℓ ∩ (L ∪ S)|, |Vℓ ∩ (R ∪ S)|}.

From P, the connected components Γ in G≤ℓ for all levels ℓ form a laminar family C. Let H be
the tree representation of C. We also call (C,H) an (h, ϕ)-vertex-expander hierarchy of G.

The following theorem is analogous to Theorem 2.3.

Theorem 3.3. There exists an algorithm that, given a graph G, computes an (h, ϕ)-vertex-expander
hierarchy with h ≤ log n and ϕ = 1 in exponential time, or h ≤ log n and ϕ ≥ Ω(1/

√
log n) in

polynomial time.

Long and Saranurak’s [LS22] vertex expander hierarchy is weaker, both qualitatively and struc-
tually. To be precise, the Long-Saranurak hierarchy only guarantees ϕ ≥ 1/no(1), but it admits
almost-linear construction time. Furthermore, the expander components in the Long-Saranurak
hierarchy may not form a laminar family. The proof of Theorem 3.3 follows immediately from the
lemma below.
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Lemma 3.4. There exists an exponential-time algorithm that, given a graph G = (V,E), computes
a vertex set X such that every connected component of G \ X contains at most n/2 vertices and
X is 1-vertex-expanding. In polynomial time, we instead guarantee that X is Ω(1/

√
log n)-vertex-

expanding.

The proofs of Theorem 3.3 and Lemma 3.4 follow in exactly the same way as how we proved
the analogous results in the edge version. We include them for completeness.

Proof. Initialize X ← V . If X is 1-expanding, we are done. Otherwise, we repeatedly update X as
follows. Since X is not 1-expanding, there exists a vertex cut (L, S,R) where |L| ≤ n/2 such that
|S| < min{|X ∩ (L ∪ S)|, |X ∩ (R ∪ S)|}. Update X ← X \ (X ∩ L) ∪ S.

Let X ′ denote X after the update. Observe that every connected component of G \ X ′ still
contains at most n/2 vertices because |L| ≤ n/2. Moreover, |X ′| < |X| because, while we added
at most |S \ X| new vertices to X, we removed |X ∩ L| > |S \ X| vertices from X where the
inequality holds because |S ∩X| + |S \X| = |S| < |X ∩ (L ∪ S)| = |X ∩ L| + |S ∩X|. Therefore,
there are at most |V | iterations before X is 1-vertex-expanding. This concludes the proof of the
exponential-time algorithm.

To get polynomial time, we instead apply the sparsest cut algorithm by [FHL05] that, given X,
either guarantees that X is Ω(1/

√
log n)-vertex-expanding or returns a vertex cut (L, S,R) where

|L| ≤ n/2 such that |S| < min{|X ∩ (L ∪ S)|, |X ∩ (R ∪ S)|}.

Proof of Theorem 3.3. Given G, compute the vertex set X from Lemma 3.4 and set Vh ← X.
To compute Vh−1, Vh−2, . . . , V1, we recurse on each connected component C of G \ X. We have
h ≤ log n because each component C has size |C| ≤ n/2.

Notation in subsequent sections. Let (C,H) be an (h, ϕ)-vertex-expander hierarchy of G.
For each level-ℓ component Γ ∈ C, we define γ := Vℓ ∩ Γ to be the core of Γ. The following
Observation 3.5 is straightforward from the definition.

Observation 3.5. We have the following.

1. There is no edge connecting two disjoint components in C.

2. For each component Γ ∈ C, its core γ is ϕ-vertex-expanding in Γ.

3. The cores {γ | Γ ∈ C} partition V (G).

By convention, the core of a Γ decorated with subscripts, superscripts, and diacritic marks
inherits those decorations, e.g., γ̂ji is the core of Γ̂j

i . For two components Γ,Γ′ s.t. Γ′ ⪯ Γ (resp.
Γ′ ≺ Γ), we also write γ′ ⪯ γ (resp. γ′ ≺ γ). For each component Γ, N(Γ) denotes the set of
neighbors of Γ in V − Γ. Define Nγ̂(Γ) = N(Γ) ∩ γ̂, which is only non-empty when γ ≺ γ̂. We
call such Nγ̂(Γ) neighbor sets. For each vertex v ∈ V (G), we use γv to denote the unique core
containing v, so Γv denotes the corresponding component of γv.

3.2.2 The Initial Structure: Low-Degree Steiner Trees and Shortcut Graphs

Based on the vertex expander hierarchy, we construct low-degree Steiner trees and shortcut graphs,
both of which will help answer connectivity queries.
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Low-Degree Steiner Trees. For each component Γ ∈ C, using Lemma 3.6, we will compute a
Steiner tree Tγ with maximum degree ∆ = O(1/ϕ) that spans the core γ in G[Γ]. Sometimes, we
will call the vertices in Steiner tree Tγ nodes, just to be consistent with the terminology of extended
Steiner trees introduced later. In particular, each node u ∈ γ ⊆ V (Tγ) is a terminal node, and the
other nodes V (Tγ) \ γ are Steiner nodes. Observe that each vertex in Γ will correspond to at most
one node in Tγ , and vertices in γ are in one-to-one correspondence with terminal nodes in Tγ .

A hierarchy with such low-degree Steiner trees but without the vertex-expanding property was
first introduced by Duan and Pettie [DP20] as the low-degree hierarchy, which has been shown
to be useful for the vertex-failure connectivity problem in both the centralized [DP20, LS22] and
labeling scheme [PPP24] settings. Roughly speaking, these Steiner trees are useful because they
serve as connectivity certificates. By the low-degree property, when f vertices fail, each Steiner tree
will be broken into at most O(f/ϕ) subtrees, each of them still being connected in the new graph.
The query algorithm need only look for edges that reconnect the subtrees rather than determine
connectivity from scratch.

Long and Saranurak [LS22] gave an almost linear time algorithm to compute an O(log n/ϕ)-
degree Steiner tree spanning a ϕ-vertex expanding set A in G. We give an improved algorithm that
computes an O(1/ϕ)-degree Steiner trees based on Fürer and Raghavachari [FR94], albeit with a
slower running time. This improvement to the degree will shave logarithmic factors off our final
label size. The algorithm below can be of independent interest. Its proof is deferred to Appendix A.

Lemma 3.6 (Low-degree Steiner Trees). Given a graph G such that a set A ⊆ V (G) is ϕ-vertex-
expanding in G, there is an algorithm that computes an O(1/ϕ)-degree Steiner tree that spans A in
G. The running time is O(mn log n).

The Neighborhood Hitter S. We want the Steiner trees to have low degree ∆ so that f vertex
failures generate at most f∆ subtrees. This argument only requires that failed vertices have low
degree. Following [PPP24], we generate a partition S = (S1, . . . , Sf+1) of the vertex set, and build
a version of the data structure for each Si ∈ S, which one can think of as vertices that are not
allowed to fail. By the pigeonhole principle, for any failure set F there exists an S = Si such that
S ∩ F = ∅. Thus, it is fine if, in the data structure with failure-free set S, all S-vertices have
unbounded degrees.

The main benefit of having a failure-free S is to effectively reduce neighborhood sizes, as follows.
If we were to generate the partition S randomly, then with high probability either (i) Nγ̂(Γ)∩S ̸= ∅
or (ii) |Nγ̂(Γ)| ≤ λnb

def
= O(f log n). In case (i) we can link Tγ̂ and Tγ without increasing the degrees

of non-S vertices by much (see extended cores below), and in case (ii) we have a good upper bound
on |Nγ̂(Γ)|. In fact, it is possible to achieve this guarantee deterministically using the method of
conditional expectations [PPP24]. Concretely, we just compute S by invoking Lemma 3.7 with all
such neighbor sets Nγ̂(Γ) as the inputs.

Lemma 3.7 ([PPP24, Lemma 8.1]). Given a graph G with a polynomial number of vertex sets
{Bk ⊆ V | 1 ≤ k ≤ poly(n)}, there is a deterministic algorithm that computes a partition S =
{S1, ..., Sf+1} of V (G) s.t. for each Si and Bk, either Si∩Bk ̸= ∅ or |Bk| ≤ O(f log n). The running
time is polynomial.

Henceforth we use S to refer to an arbitrary part of the partition S. In the preprocessing phase
we generate a data structure for each S ∈ S, but in the context of a query ⟨s, t, F ⟩, S refers to any
part for which S ∩ F = ∅.
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Extended Cores and Extended Steiner Trees. Each component Γ ∈ C has an extended core
γext defined as follows:

γext
def
= γ ∪

⋃
γ′≺γ

s.t. Nγ(Γ′) ∩ S ̸= ∅

γ′.

Observe that if γ′ ⊈ γext, then |Nγ(Γ
′)| ≤ λnb = O(f log n). Whenever Nγ̂(Γ)∩S ̸= ∅ is non-empty,

let sγ̂(Γ) ∈ Nγ̂(Γ) ∩ S be an arbitrary representative in its neighborhood set.
Just as each core γ has a Steiner tree Tγ , the extended core γext has an extended Steiner tree

Tγext . Each tree node in V (Tγext) is either a terminal node or Steiner node. As we will see in the
construction, the terminal nodes are one-one corresponding to vertices in γext. Each Steiner node
corresponds to exactly one vertex in Γ, while each vertex in Γ can correspond to arbitrary numbers
of Steiner node in V (Tγext).

Construction of Tγext . The construction of Tγext is as follows.

1. First, we make a copy of Tγ , and for each strict descendant γ′ ⊆ γext, make a copy of Tγ′ .

2. Let Pγ′→γ be a copy of an arbitrary simple path in the graph G[Γ′ ∪{sγ(Γ′)}] connecting the
vertex sγ(Γ

′) ∈ γ (which corresponds to the terminal node sγ(Γ
′) ∈ V (Tγ)) to some vertex

v′ ∈ Γ′ such that v′ corresponds to some tree node in V (Tγ′).

3. Finally, we obtain Tγext by attaching the copy of Tγ′ (for all strict descendants γ′ ⊆ γext)
to the copy of Tγ using the path Pγ′→γ . That is, we glue the endpoint sγ(Γ

′) of Pγ′→γ to
the terminal node sγ(Γ

′) ∈ V (Tγ), and glue the other endpoint v′ of Pγ′→γ to the tree node
v′ ∈ V (Tγ′).

By the construction, V (Tγext) is made up of V (Tγ), V (Tγ′) of each strict descendant γ′ ⊆ γext,
and the internal nodes of each path Pγ′→γ . We define the terminal nodes in V (Tγext) to be

• the terminal nodes in V (Tγ) (they one-one correspond to vertices in γ), and

• the terminal nodes in V (Tγ′) for each strict descendant γ′ ⊆ γext (they one-one correspond
to vertices in γ′).

Other tree nodes in V (Tγext) are Steiner nodes. By definition, the terminal nodes in V (Tγext)
one-one correspond to vertices in γext.

Properties of Tγext . First, Tγext has some kind of low degree guarantee of non-S vertices, as shown
in Lemma 3.8.

Lemma 3.8. For each vertex v ∈ Γ \ S, the tree nodes corresponding to v have total Tγext-degree
at most O(h∆).

Proof. Recall that V (Tγext) is made up of V (Tγ), V (Tγ′) of each strict descendant γ′ ⊆ γext, and
the internal nodes of each path Pγ′→γ .

• v can correspond to at most one tree node in V (Tγ). This tree node have degree at most ∆
in Tγext because it is not an endpoint of any path Pγ′→γ (since v /∈ S).
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• For each strict descendant γ′ ⊆ γext, if v ∈ Γ′, v can correspond to at most one tree node in
V (Tγ′) (note that if v /∈ Γ′, v must correspond to no tree node in V (Tγ′) since V (Tγ′) ⊆ Γ′).
This tree node have Tγext-degree at most ∆ + 1 because it has degree at most ∆ in Tγ′ and
it has degree 1 in Pγ′→γ if it is an endpoint of Pγ′→γ .

The number of such γ′ is at most h since the number of components containing v is at most
h. Therefore, this part contributes at most h(∆ + 1).

• For each path Pγ′→γ , if v ∈ Γ′, v can correspond to at most one internal node of Pγ′→γ (note
that if v /∈ Γ′, v will correspond to no internal node of Pγ′→γ since all internal nodes are in
Γ′). This node has Tγext-degree 2.

Again the number of such path Pγ′→γ is at most h, and this part contributes at most 2h.

The second property is the simple Observation 3.9. We will exploit it in the proof of Lemma 3.13
and Section 3.3.

Observation 3.9. For each γ′ ≺ γ such that γ′ ⊆ γext, its Steiner tree Tγ′, or even Tγ′ ∪ Pγ′→γ,
is a subtree of Tγext , where Tγ′ ∪ Pγ′→γ denote the tree obtained by gluing the endpoint v′ of Pγ′→γ

to the tree node v′ ∈ V (Tγ′).

Lemma 3.8 shows that when f vertices fail, they break Tγext into at most O(fh∆) = O(f log n/ϕ)
subtrees, since S-vertices are not allowed to fail. The analogue of Lemma 3.8 in [PPP24] creates
extended Steiner trees with degree ∆ + h rather than O(h∆), but might not satisfy the property
that Tγ′ is a subtree of Tγext , which is used in our labeling scheme.

The Shortcut Graphs. The global shortcut graph Ĝ is also defined w.r.t. an arbitrary S ∈ S. It
is formed by adding shortcut edges to G, each with an assigned type.4 For each component Γ ∈ C
and each strict ancestor Γ̂ of Γ, we define

N̂γ̂(Γ) =

 Nγ̂(Γ) if Nγ̂(Γ) is disjoint from S,

{sγ̂(Γ)} if Nγ̂(Γ) intersects S.

N̂(Γ) =
⋃
γ̂

N̂γ̂(Γ).

Ĝ is a typed multigraph with the same vertex set as G and

E(Ĝ) = E(G) ∪
⋃
Γ

Clique(N̂(Γ)),

where all edges in E(G) have type original and all edges in the clique Clique(N̂(Γ)) have type γ.
The shortcut graph w.r.t. Γ ∈ C, denoted by ĜΓ is the subgraph of Ĝ induced by edges with

both endpoints in Γ and at least one in the core γ.

4Previous papers call a shortcut edge an artificial edge and call a shortcut graph an auxiliary graph. We change
the names to make them more descriptive.
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The idea of adding shortcut edges has appeared in prior works [DP20, LS22, PPP24, CPR11]
on the vertex-failure connectivity problem. Intuitively, the simplest way to add shortcut edges is
to add a clique on N(Γ) for each component Γ. With the shortcut edges, when failed vertices
come, if some component Γ is unaffected (it has no failed vertices) the query algorithm can ignore
vertices in Γ, and use the shortcut edges to capture the connectivity provided by Γ. However,
generally the performance of the algorithm depends on the sparsity of the shortcut edges, so this
naive construction will not give good algorithms. Indeed, most prior work [DP20, LS22, PPP24]
introduced different sparsification techniques on shortcut edges. In our work, we sparsify the
shortcut edges by adding a clique on the sparsified neighbor set N̂(Γ) instead of the original one
N(Γ).

3.2.3 Structures Affected by Queries

In this subsection, we will define notations and terms related to a particular query ⟨s, t, F ⟩, and
then introduce the query strategy from a high level. Recall that S ∈ S represents any part of the
partition disjoint from F .

Affected Components/Cores, Affected Edges, and Query Graphs. We introduce the
following notations and terms.

• For each component Γ ∈ C, if Γ intersects F ∪ {s, t}, we say Γ is an affected component and
γ is an affected core, otherwise they are unaffected.

• For each edge e = {u, v} ∈ E(ĜΓ) in the shortcut graph w.r.t. Γ, it is an affected edge if the
type of e is γ′ for some affected γ′. Let ÊΓ,aff ⊆ E(ĜΓ) collect all affected edges in ĜΓ, and

let ÊΓ,unaff = E(ĜΓ) \ ÊΓ,aff be the set of unaffected edges.

• For each affected component Γ, its query set is QΓ = γ ∪
⋃

affected γ′≺γ γ
′ and its extended

query set is Qext
Γ = γext ∪

⋃
affected γ′≺γ γ

′.

• We define the query graph Ĝqry
Γ of Γ to be Ĝqry

Γ = ĜΓ[Q
ext
Γ ] \ ÊΓ,aff . Namely, the query graph

Ĝqry
Γ is the subgraph of ĜΓ induced by the extended query set Qext

Γ , excluding all affected
edges.

Observation 3.10. The number of affected components is at most h(f + 2).

3.2.4 A Divide-and-Conquer Lemma

Next, we state the key lemma, Lemma 3.11, saying the connectivity after failures can be captured
by the structure we defined in previous sections. Roughly, for any affected component Γ, the
connectivity between vertices can be captured by either (1) shortcut edges in Γ, (2) extended Steiner
trees Tγext , or (3) the recursive structure on affected children of Γ. Naturally, this equivalence hints
at a divide-and-conquer strategy by querying bottom-up from the hierarchy. We will formally
describe this strategy in Section 3.3.

Before stating Lemma 3.11, we introduce some notations. For an undirected graph H and a
subset of vertices A ⊆ V (H), we define Conn(A,H) to be an undirected graph on vertices A s.t. an
edge (u, v) exists in Conn(A,H) if and only if u and v are connected in H. We note that when H
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refers to an extended Steiner tree and A ⊆ V (G) refers to a set of original vertices, this notation
Conn(A,H) is still well-defined as long as each vertex in A corresponds to exactly one terminal
node in H. For an extended Steiner tree Tγext , we use Tγext \ F to denote the forest by removing
all nodes corresponding to vertices in F .

Lemma 3.11. Let Γ ∈ C be an affected component. Each pair of vertices x, y ∈ QΓ \ F are
connected in G[Γ] \ F if and only if they are connected in the union of

1. Conn(Qext
Γ \ F, Ĝ

qry
Γ \ F ),

2. Conn(γext \ F, Tγext \ F ), and

3.
⋃

Γchild
Conn(QΓchild

\ F,G[Γchild] \ F ), where the union is over all affected children Γchild of
Γ.

Proof. It is relatively simple to see that x, y are connected in GΓ \ F if they are connected in the
union, because each of Ĝqry

Γ \ F , Tγext \ F and G[Γchild] \ F only use valid connectivity in G[Γ] \ F .

To be precise, for the graph Ĝqry
Γ \ F , consider an edge e = {u, v} in it.

• If e has type original then e also exists in G[Γ] \ F .

• Otherwise, e is a shortcut edge with some type γ′ such that γ′ is unaffected. By definition,
u, v ∈ N(Γ′) and Γ′ is disjoint from F , hence u, v are connected in G[Γ] \ F .

Similarly, Tγext \ F is a subgraph of G[Γ] \ F and G[Γchild] \ F is obviously a subgraph of G[Γ] \ F .
From now we focus on proving the other direction. Let Pxy be a simple path connecting x and

y in G[Γ] \ F . We can write Pxy as Pxy = P1 ◦ P2 ◦ · · · ◦ Pℓ where the endpoints ui, vi of Pi are the
QΓ-vertices and each subpath Pi are internally disjoint with QΓ. It suffices to show that for each
subpath Pi, ui and vi are connected in the union.

Case (a). Suppose γui , γvi ≺ γ (recall that γui , γvi are the cores containing ui, vi respectively).
Then there is a child Γchild of Γ s.t. γui , γvi ⪯ γchild and all vertices in Pi are inside Γchild \F . To see
this, assume for contradiction that Pi contains two vertices from two different children Γchild,Γ

′
child

of Γ. However, by property 1 of the hierarchy, Pi must go through some vertex in γ under this
assumption, contradicting that Pi is internally disjoint from QΓ. Furthermore, we know γchild is
affected because γui and γvi are affected (since γui , γvi ⊆ QΓ and QΓ only collects affected cores).
Also, note that ui, vi ∈ QΓchild

\ F because QΓ ∩ Γchild = QΓchild
. Putting it all together, we know

ui and vi are connected in Conn(QΓchild
\ F,G[Γchild] \ F ) (i.e. Part 3) by the existence of Pi.

In what follows, we will argue that arbitrary two vertices u, v ∈ QΓ \ F are connected in the
union, if they satisfy

(i) u ∈ γ or v ∈ γ, and

(ii) there is an original edge e = {u, v} ∈ E(G[Γ]) or there is an unaffected component Γ′ ≺ Γ s.t.
u, v ∈ N(Γ′).

Indeed, for each above subpath Pi not in Case (a), its endpoints ui and vi must satisfy the conditions
(i) and (ii). Condition (i) is easy to see. For condition (ii), if Pi has only one edge, that this edge
e = {ui, vi} is an original edge in G[Γ]. If Pi has more than one edge, all internal vertices of Pi fall

21



in unaffected cores, because Pi is internally disjoint from QΓ. Again by property 1 of the hierarchy,
there exists an unaffected component Γ′ containing all internal vertices of Pi, so ui, vi ∈ N(Γ′).

Case (b). Suppose condition (ii) tells there is an original edge e = {u, v} ∈ E(G[Γ]). Then this
edge is added to ĜΓ because u ∈ γ or v ∈ γ, and it is inside Ĝqry

Γ because it has type original and

u, v ∈ QΓ \ F ⊆ Qext
Γ \ F . Therefore, u and v are connected in Conn(Qext

Γ \ F, Ĝ
qry
Γ \ F ) (i.e. Part

1).

From now on, we suppose condition (ii) tells there is an unaffected component Γ′ ≺ Γ s.t.
u, v ∈ N(Γ′). We can further assume u, v,Γ′ satisfy condition

(iii) there is a path P connecting u and v with all internal vertices inside Γ′, and P intersects the
core γ′.

This is without loss of generality by letting Γ′ be the minimal component s.t. u, v ∈ N(Γ′).

Case (c). Suppose u, v ∈ γ.

Subcase (c1). Suppose Nγ(Γ
′) is disjoint from S. Recall the way we add shortcut edges, we add

a clique on N̂(Γ′) ⊇ Nγ(Γ
′) with type γ′. Because u, v ∈ N(Γ′) ∩ γ = Nγ(Γ

′), there is a shortcut
edge e = {u, v} in this clique. Note that e will be added into ĜΓ because u ∈ γ or v ∈ γ, and e
will survive in Ĝqry

Γ \ F because u, v ∈ Qext
Γ \ F and the type γ′ is unaffected. Therefore, u and v

are connected in Conn(Qext
Γ \ F, Ĝ

qry
Γ \ F ) (i.e. Part 1).

Subcase (c2). Otherwise Nγ(Γ
′) intersects S. By definition, γ′ is in the extended core γext of

component Γ. Condition (iii) tells that P intersect γ′. Let wu, wv ∈ P ∩γ′ be the P -vertices closest
to u and v respectively. Claim 3.12 tells that wu and wv are connected in Conn(γext \ F, Tγext \ F )
(i.e. Part 2).

Claim 3.12. We have wu, wv ∈ γext \ F , and the terminal nodes wu and wv are connected in
Tγext \ F .

Proof. First, we have wu, wv ∈ γ′ \F ⊆ γext \F . Next, the terminal nodes wu and wv are connected
in Tγext \ F is because (1) the terminal nodes wu and wv fall in Tγ′ (since the vertices wu, wv are
inside γ′), (2) the Steiner tree Tγ′ connects wu and wv, (3) Tγ′ is a subtree of Tγext (since γ′ ⊆ γext)
and (4) Tγ′ is disjoint from F (since Γ′ is unaffected).

It remains to show that u ∈ γ and wu ∈ γ′ are connected in the union, and that wv ∈ γ′ and
v ∈ γ are connected in the union. Actually, these two claims can be derived from Lemma 3.13.
Here we show that u and wu satisfy the requirements of Lemma 3.13 (so do v and wv by a similar
argument). For u, trivially u /∈ F and u ∈ γ. For wu, recall that γwu denotes the core containing
wu, and we know γwu = γ′. Hence, as we mentioned above, γwu ≺ γ, γwu is unaffected and Nγ(Γwu)
intersects S. Because we take the wu ∈ P ∩ γ′ closest to u, the subpath of P from u to wu either
has one edge or has all interval vertices inside some γ′′ ≺ γwu , which means e = {u,wu} ∈ E(G[Γ])
or u,wu ∈ N(Γ′′).

Case (d). Suppose u ∈ γ and v ∈ γv ≺ γ. Note that u and v satisfy the requirements of
Lemma 3.13, so they are connected in the union.

Lemma 3.13. Let u, v be two vertices satisfying that

• u /∈ F and u ∈ γ;
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• v /∈ F , γv ≺ γ and either

– γv is affected or

– γv is unaffected and Nγ(Γv) intersects S;

• The edge e = {u, v} ∈ G[Γ], or there is an unaffected component γ′ ≺ γv s.t. u, v ∈ N(Γ′).

We have u and v are connected in the union.

Proof. First observe that γv belongs to the extended core γext of γ because Nγ(Γv) intersects S.
Similar to the Case (b) above, if there is an original edge e = {u, v} ∈ E(G[Γ]), then this edge

is added to ĜΓ because u ∈ γ, and it survives in Ĝqry
Γ \F because it has type original, u ∈ γ ∈ Qext

Γ

and v ∈ γv ⊆ γext ⊆ Qext
Γ . Therefore, u and v are connected in Conn(Qext

Γ \ F, Ĝ
qry
Γ \ F ) (i.e. Part

1).
From now we assume there is an unaffected component γ′ ≺ γv s.t. u, v ∈ N(Γ′). The following

argument is similar to the Case (d) above. Again, by choosing γ′ whose component Γ′ is the
minimal one that contains all internal vertices of P , we can assume there is a path P connecting u
and v with all internal vertices falling in Γ′, and P intersects γ′.

Case (1). Suppose Nγv(Γ
′) intersects S, and v ̸= sγv(Γ

′). We show that v and v′
def
= sγv(Γ

′) are
connected in the union.

• If γv is affected, the vertices v and v′ are connected by Part 3 by the following reasons. Let
Γchild be the child of Γ such that Γv ⪯ Γchild. First, γchild is affected because γv ⊆ QΓ (it
means γv is affected) and γv ⪯ γchild. Second, v, v

′ ∈ QΓchild
\F because v, v′ ∈ γv \F (v′ /∈ F

because v′ ∈ S and S is disjoint from F ), and γv ⊆ QΓ ∩ Γchild = QΓchild
. Third, v and

v′ are connected in G[Γchild] \ F because v, v′ ∈ N(Γ′), Γ′ is an unaffected component, and
Γ′ ≺ Γv ⪯ Γj .

• If γv is unaffected andNγ(Γv) intersects S, the terminal nodes v and v′ = sγv(Γ
′) are connected

in Conn(γext \ F, Tγext \ F ) (i.e. Part 2) by the following reasons. First, Tγv is a subtree of
Tγext (since γv ⊆ γext from Nγ(Γv) intersects S). Furthermore, Tγv has no vertex in F (since
γv is unaffected), and the terminal nodes in Tγext corresponding to vertices v, v′ are on the
subtree Tγv (since v, v′ ∈ γv).

Therefore, it suffices to show that u is connected to v′ in the union, which can be reduced to the
following cases.

Case (2). Suppose Nγv(Γ
′) is disjoint from S, or v = sγv(Γ

′). Further assume that Nγ(Γ
′) is disjoint

from S. Recall the construction of shortcut edges, we have u ∈ Nγ(Γ
′) ⊆ N̂(Γ′) and v ∈ N̂(Γ′) (if

Nγv(Γ
′) is disjoint from S, then v ∈ Nγv(Γ

′) ⊆ N̂(Γ′); if v = sγv(Γ
′), then v = sγv(Γ

′) ⊆ N̂(Γ′)), so
there is a shortcut edge connected u′ and v with type γ′. This edge is in ĜΓ because u ∈ γ, and it
survives in Ĝqry

Γ \ F because γ′ is unaffected, u ∈ γ ⊆ Qext
Γ and v ∈ γv ⊆ γext ⊆ Qext

Γ . Therefore, u

and v are connected in Conn(Qext
Γ \ F, Ĝ

qry
Γ \ F ) (i.e. Part 1).

Case (3). Suppose Nγv(Γ
′) is disjoint from S, or v = sγv(Γ

′). Further assume that Nγ(Γ
′) intersects

S. Let u′ = sγ(Γ
′). Let w be the P -vertex in γ′ closest to u.

First, v and u′ are connected in Conn(Qext
Γ \ F, Ĝ

qry
Γ \ F ) (i.e. Part 1) by the following reasons.

When adding shortcut edges, we have v, u′ ∈ N̂(Γ′) (by the same reason as above), so there is a
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shortcut edge connecting u′ and v with type γ′. This edge is in ĜΓ because u ∈ γ, and it survives
in Ĝqry

Γ \F because γ′ is unaffected, u′ ∈ γ ⊆ Qext
Γ , u′ /∈ F (since u′ ∈ S) and v ∈ γv ⊆ γext ⊆ Qext

Γ .
Next, u′ and w are connected in Conn(γext \ F, Tγext \ F ) (i.e. Part 2). This is because in

the extended Steiner tree Tγext , the terminal nodes u′ and w fall in subtree Tγ′ ∪ Pγ′→γ (from
Observation 3.9), and all vertices in Tγ′ ∪ Pγ′→γ are not in F (since all vertices in Tγ′ fall in the
unaffected component Γ′, and all vertices in Pγ′→γ also fall in Γ′ except one endpoint sγ(Γ

′), which
is in S).

It remains to show that w and u are connected in the union. We can reuse the argument in the
whole proof of Lemma 3.13. We now verify that u and w satisfy the conditions of Lemma 3.13.
Because u is unchanged, u /∈ F and u ∈ γ. For w (note that γw = γ′), because w ∈ γw ≺ γv ≺ γ
and γv is unaffected, we know w /∈ F , γw ≺ γ and γw is unaffected. Moreover, Nγ(γw) intersects S
is from the assumption of case (3). Next, consider the subpath of P from u to w, denoted by P ′.
If P ′ has only one edge e = {u,w}, then we are good. Otherwise, P ′ has some internal vertices.
Note that by our choice of w, the internal vertices of P ′ are all in Γ′ \γ′. By Property Item 1 of the
hierarchy, they must belong to Γ′child for some child γ′child of γ′. In other words, the unaffected core
γ′child ≺ γw has u,w ∈ N(Γ′child). In conclusion u,w indeed satisfy the conditions of Lemma 3.13.
Finally, this recursive argument will stop because when we reach Case (3) again, the γ′ this time
will have depth larger than the one of the last time, and the hierarchy has finite depth.

3.2.5 An Improved Divide-and-Conquer Lemma via Sparsified Shortcut Graphs

The goal of this section is to show an improved version Lemma 3.11 which proves precisely the
same statement except that the query graph Ĝqry

Γ is replaced by its sparsified version G̃qry
Γ .

Lemma 3.14. Let Γ ∈ C be an affected component. For each pair of vertices x, y ∈ QΓ \ F , they
are connected in G[Γ] \ F if and only if they are connected in the union of

1. Conn(Qext
Γ \ F, G̃

qry
Γ \ F ),

2. Conn(γext \ F, Tγext \ F ), and

3. Conn(QΓchild
\ F,G[Γchild] \ F ) for all affected children Γchild of Γ.

Working the sparsified query graph G̃qry
Γ is crucial for bounding the size of the vertex label to

be poly(f log n) in Section 3.4. This technique was also used in [PPP24]. However, sparsified query
graphs are not crucial for understanding the overall strategy of the algorithm in Section 3.3. Hence,
during the first read, we suggest readers assume G̃qry

Γ = Ĝqry
Γ , skip this section, and continue until

when sparsified query graphs are needed in Section 3.4.
Below, we define sparsified shortcut graphs and sparsified query graphs and then prove Lemma 3.14.

Sparsified Shortcut Graphs. Here, we define the sparsified shortcut graph G̃Γ of the shortcut
graph ĜΓ with respect to each component Γ ∈ C. Roughly speaking but not precisely, we will
sparsify the subgraph ĜΓ[γ

ext], abbreviated as Ĝγext , into a graph G̃γext with arboricity Õ(f2)

while keeping the (pairwise) connectivity unchanged under Õ(f2) vertex failures. We will see later
why it should tolerate Õ(f2) failures rather than f . Let us recall the guarantees of the Nagamochi-
Ibaraki [NI92] sparsifiers.

24



Lemma 3.15 (Nagamochi and Ibaraki [NI92]). Given a simple undirected graph R and a parameter
d, there is a deterministic algorithm that computes a subgraph R̃ of R with V (R̃) = V (R) satisfying
the following.

1. R̃ has arboricity d.

2. Given arbitrary vertex failures F ⊆ V (R) s.t. |F | < d, each pair of vertices u, v ∈ V (R) \ F
are connected in R \ F if and only if they are connected in R̃ \ F .

A graph with arboriticy d is one whose edge-set can be partitioned into d forests and as a con-
sequence, the edge-set can be oriented so that the maximum out-degree is d. Parter et al. [PPP24]
also computed low-arboricity sparsifiers deterministically, but used hit-miss hash families [KP21]
rather than Nagamochi-Ibaraki sparsification.

Finally, we are ready to formally describe how to sparsify ĜΓ into G̃Γ.

1. Let Ĝγext = ĜΓ[γ
ext] be the subgraph of ĜΓ induced by the extended core γext, and let Ĝsp

γext

be the simple graph corresponding to Ĝγext , i.e., a bundle of edges with the same endpoints
but different types collapse to one edge.

2. We obtain the sparsified graph G̃sp
γext of Ĝsp

γext by applying Lemma 3.15 with parameter d =

λarbo
def
= f + h2fλnb + 1 = O(f2 log3 n).

3. Obtain G̃γext by including, for each {u, v} ∈ E(G̃sp
γext), all edges with endpoints {u, v} in Ĝγext

(such edges may have various types).

4. Lastly, obtain G̃Γ by substituting G̃γext for Ĝγext in ĜΓ. Namely, E(G̃Γ) = (E(ĜΓ) \
E(Ĝγext)) ∪ E(G̃γext). By this definition, G̃Γ[γ

ext] = G̃γext .

Sparsified Query Graphs. Recall that we define the query graph Ĝqry
Γ of Γ to be Ĝqry

Γ =

ĜΓ[Q
ext
Γ ] \ ÊΓ,aff . Naturally, we define a sparsified query graph G̃qry

Γ = G̃Γ[Q
ext
Γ ] \ ÊΓ,aff . That is,

the sparsified query graph Ĝqry
Γ is the subgraph of G̃Γ induced by the extended query set Qext

Γ ,
excluding all affected edges.

Now, we proceed to prove Lemma 3.14.

Lemma 3.16. Let Γ ∈ C be an affected component. Two vertices x, y ∈ γext \ F are connected in
Ĝqry

Γ [γext] \ F if and only if they are connected in G̃qry
Γ [γext] \ F .

Proof. By definition, Ĝqry
Γ [γext] = ĜΓ[γ

ext]\ ÊΓ,aff and G̃qry
Γ [γext] = G̃Γ[γ

ext]\ ÊΓ,aff , because γ
ext ⊆

Qext
Γ . Recall that when sparsifying ĜΓ into G̃Γ, we construct G̃γext = G̃Γ[γ

ext] from Ĝγext = ĜΓ[γ
ext]

by the following way.

• First let Ĝsp
γext be the corresponding simple graph of Ĝγext .

• G̃sp
γext is the sparsified simple graph from applying Lemma 3.15 on Ĝsp

γext with parameter

d = f + h2fλnb + 1.

• Lastly let G̃γext = Ĝγext ∩ E(G̃sp
γext).
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Trivially, x and y are connected in Ĝqry
Γ [γext] if they are connected in G̃qry

Γ [γext], because

G̃qry
Γ [γext] is a subgraph of Ĝqry

Γ [γext] by definition.

From now we focus on the other direction. It suffices to show that, for each edge ê ∈ E(Ĝqry
Γ [γext]) =

E(Ĝγext) \ ÊΓ,aff with endpoints u, v /∈ F , we have u and v are connected in G̃qry
Γ [γext] \ F =

(G̃γext \ ÊΓ,aff) \ F . First, if {u, v} ∈ E(G̃sp
γext), then trivially e ∈ E(G̃γext) by the construction,

which immediately gives u and v are connected in (G̃γext \ ÊΓ,aff) \ F .

Hence, we assume u and v are not adjacent in G̃sp
γext from now. Recall the construction of

shortcut graphs, for each γ′ ≺ γ, the shortcut edges with type γ′ must have their endpoints in
N̂(Γ′), and we know that |N̂(Γ′)| ≤ h · λnb. Let

VF = ((F ∪
⋃

affected γ′

N̂(Γ′)) ∩ γext) \ {u, v}.

That is, VF collects all γext-vertices which are failed or incident to some affected edges, excluding u
and v. We have that |VF | ≤ f +h2(f +2)λnb, because the number of affected γ′ is at most h(f +2)
by Observation 3.10.

Let G̃sp
γext,valid be the corresponding simple graph of (G̃γext \ ÊΓ,aff) \ F . Because ê ∈ E(Ĝγext),

we have {u, v} ∈ E(Ĝsp
γext), and furthermore {u, v} ∈ E(Ĝsp

γext \ VF ) because u, v /∈ VF . This means

u and v are connected in G̃sp
γext \ VF by Lemma 3.15 and the fact that |VF | ≤ d − 1. Finally, by

Claim 3.17, u and v are connected in G̃sp
γext,valid, so they are also connected in (G̃γext \ ÊΓ,aff) \F as

desired.

Claim 3.17. G̃sp
γext \ VF is a subgraph of G̃sp

γext,valid.

Proof. Consider an edge {x, y} ∈ E(G̃sp
γext \ VF ), and we will show that {x, y} ∈ E(G̃sp

γext,valid).

Because we have assumed that u and v are not adjacent in G̃sp
γext , we have either x or y is not

in {u, v}, say x /∈ {u, v}. From the construction of G̃γext , there must be an edge ẽ ∈ E(G̃γext)
connecting x, y.

We now show that ẽ is an unaffected edge. Assume for contradiction that ẽ is affected. Let
γ′ be the type of ẽ. Then γ′ is affected, and x ∈ N̂Γ′ . Because we also have x /∈ {u, v} and
V (G̃sp

γext) = γext, we know x ∈ (N̂Γ′ ∩ γext) \ {u, v} ⊆ VF , a contradiction.

Now because ẽ ∈ E(G̃γext) is an unaffected edge connecting x, y /∈ F (because F ⊆ VF ), ẽ shows

up in (G̃γext \ ÊΓ,aff) \ F , and {x, y} ∈ E(G̃sp
γext,valid).

Corollary 3.18. Let Γ ∈ C be an affected component. Two vertices x, y ∈ Qext
Γ \ F are connected

in Ĝqry
Γ \ F if and only if they are connected in G̃qry

Γ \ F .

Proof. Note that the edge set E(ĜΓ)\E(ĜΓ[γ
ext]) is exactly the same as E(G̃Γ)\E(G̃Γ[γ

ext]). This
means E(Ĝqry

Γ ) \ E(Ĝqry
Γ [γext]) is exactly the same as E(G̃qry

Γ ) \ E(G̃qry
Γ [γext]), because Ĝqry

Γ , G̃qry
Γ

are just constructed from ĜΓ, G̃Γ by removing affected edges and taking the restriction on vertices
Qext

Γ . Combining Lemma 3.16, we get this corollary immediately.

Combining Lemma 3.11 and Corollary 3.18, we get Lemma 3.14 immediately.

26



3.3 The Strategy for Handling Queries

In this section, we will describe the query algorithm, but we will assume some interfaces along the
way. The labeling scheme for these interfaces will be deferred to the next subsection.

As we discussed above, the query algorithm will solve the connectivity of QΓ \ F on G[Γ] \ F
for all affected components Γ in a bottom-up order. In fact, here we already need an interface
ListAffectedComps() which lists all the affected components in a bottom-up order.

At a particular step Γ, naturally the output is a partition PΓ of QΓ \ F which capture the
connectivity (i.e. two vertices x, y ∈ QΓ \ F are in the same group of PΓ if and only if they are
connected in G[Γ] \ F ). However, in our implementation, we will represent PΓ implicitly by a
partition KΓ of subtrees on the Steiner trees.

Definition 3.19 (Subtrees w.r.t. F ). For each affected core γ, we break the Steiner tree Tγ into
subtrees by removing failed vertices F , and let Tγ be the set of these subtrees. Similarly, for the
extended Steiner tree Tγext , we define the subtrees Tγext by removing all nodes corresponding to
failed vertices. For each subtree τ , we let V tmn(τ) denote the terminal nodes in τ , and without
ambiguity, V tmn(τ) also refers to the vertices in G corresponding to the terminal nodes in V tmn(τ).

For each affected component Γ, we define

TΓ =
⋃

affected γ′⪯γ
Tγ′

Note that {V tmn(τ) | τ ∈ TΓ} partitions QΓ \F , because {γ′ \F | affected γ′ ⪯ γ} partitions QΓ \F
(by Observation 3.5 and the definition of QΓ), and for each affected γ′ ⪯ γ, {V tmn(τ) | τ ∈ Tγ′}
partitions γ′ \F . Moreover, each subtree τ ∈ TΓ certifies that vertices in V tmn(τ) are connected in
G[Γ] \ F . Therefore, we can indeed represent the partition PΓ of vertices QΓ \ F using a partition
KΓ of subtrees TΓ. More precisely, the output of the step at Γ is a partition KΓ of TΓ s.t. its
mapping PΓ = {

⋃
τ∈K V tmn(τ) | K ∈ KΓ} on QΓ \F capture the connectivity of QΓ \F in G[Γ]\F .

Solving New Connectivity at Γ. As shown in Lemma 3.14, the new connectivity at step Γ
is the connectivity of Qext

Γ \ F in G̃qry
Γ \ F and the connectivity of (terminal nodes) γext \ F in

Tγext \ F . Again, we want a partition Pext
Γ of Qext

Γ \ F that captures the new connectivity, and in
the implementation we will represent Pext

Γ implicitly by a partition Kext
Γ of subtrees of extended

Steiner subtrees.
Formally, we define

T ext
Γ = Tγext ∪

⋃
affected γ′≺γ

s.t. γ′ is not in γext

Tγ′ .

We also have
{
V tmn(τ) | τ ∈ T ext

Γ

}
partitions Qext

Γ \ F . Our goal is to compute a partition Kext
Γ of

T ext
Γ with its mapping Pext

Γ = {
⋃

τ∈K V tmn(τ) | K ∈ Kext
Γ } satisfying the following.

1. Each u, v ∈ Qext
Γ \ F in the same part of Pext

Γ are connected in G[Γ] \ F .

2. Each u, v ∈ Qext
Γ \ F connected in G̃qry

Γ \ F are in the same part of Pext
Γ .

3. Each u, v ∈ γext \ F ⊆ Qext
Γ \ F whose terminal nodes are connected in Tγext \ F are in the

same part of Pext
Γ .
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Note that requirement 3 is automatically satisfied because each pair of terminal nodes u, v ∈ γext\F
connected in Tγext \ F must belong to V tmn(τ) for the same subtree τ ∈ Tγext .

To compute a partition Kext
Γ satisfying requirements 1 and 2, we will exploit the following key

observation, Lemma 3.20, from the vertex expander hierarchy. Roughly speaking, those subtrees
with too many γ-vertices inside and surrounding must belong to the same connected component of
GΓ \ F .

Before stating Lemma 3.20, we introduce some notations. For a graph G′ and a vertex set
A ⊆ V (G′), we let NG′

(A) denote the neighbors of A in G′. For each subtree τ ∈ T ext
Γ , let

V tmn
γ (τ) = V tmn(τ) ∩ γ be the γ-vertices inside V tmn(τ),5 and let Nγ(τ) = N G̃qry

Γ (V tmn(τ)) ∩ γ be

the intersection of γ and the neighbors of V tmn(τ) in G̃qry
Γ .

Lemma 3.20. Let τ1, τ2 ∈ T ext
Γ be two subtrees such that |Nγ(τ1)|+|V tmn

γ (τ1)| > f/ϕ and |Nγ(τ2)|+
|V tmn

γ (τ2)| > f/ϕ. Then V tmn(τ1) and V tmn(τ2) are contained in the same connected component of
G[Γ] \ F .

Proof. Assume for contradiction that τ1 and τ2 belong to two different connected components C1

and C2 of G[Γ] \ F . It must be that NG[Γ](Ci) ⊆ F for i ∈ {1, 2}.
We clearly have V tmn

γ (τ1)∪Nγ(τ1) ⊆
(
C1 ∪NG[Γ](C1)

)
∩ γ. V tmn

γ (τ1) is contained in C1 ∩ γ by

assumption. A y ∈ Nγ(τ1) is joined by an edge {x, y} ∈ E(G̃qry
Γ ) s.t. x ∈ τ1. This edge can have

type original, or type γ′ for some unaffected γ′ ⪯ γ. Either way, there is a path from x to y whose
internal vertices are in Γ′. Note that Γ′ is disjoint from F , so y ∈ C1 ∪NG[Γ](C1). We have shown
that for i ∈ {1, 2}, ∣∣∣(Ci ∪NG[Γ](Ci)) ∩ γ

∣∣∣ ≥ ∣∣V tmn(τi)
∣∣+ |Nγ(τi)| > f/ϕ.

Because γ is ϕ-vertex-expanding in G[Γ], we have∣∣∣NG[Γ](C1)
∣∣∣ ≥ ϕ ·min

{∣∣∣(C1 ∪NG[Γ](C1)) ∩ γ
∣∣∣ , |(Γ \ C1) ∩ γ|

}
> ϕ · (f/ϕ) = f.

However, |NG[Γ](C1)| > f contradicts the fact that NG[Γ](C1) ⊆ F .

We say a subtree τ ∈ T ext
Γ is giant if |V tmn

γ (τ)|+ |Nγ(τ)| > f/ϕ, otherwise it is non-giant. We
start from a trivial partition of T ext

Γ in which each subtree forms a singleton group, and then merge
the groups according to the following rules.

R1. Put all giant subtrees into the same group, called the giant group. Whenever a connected
group {τi} of subtrees collectively has |V tmn

γ ({τi})| + |Nγ({τi})| > f/ϕ, merge it with the
giant group.

R2. Let τx ∈ T ext
Γ be non-giant and τy ∈ T ext

Γ be such that Nγ(τx) intersects V tmn(τy). Then
merge the groups containing τx and τy.

R3. Let τy ∈ T ext
Γ be non-giant and τx ∈ T ext

Γ be giant such that Nγ(τx) intersects V tmn(τy).
Then merge τy with the giant group.

5In fact, V tmn
γ (τ) is not empty only when τ ∈ Tγext .
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Before we move on to discuss the implementation of these rules, we first show that the partition
Kext

Γ generated as above will satisfy requirements 1 and 2. The requirement 1 is satisfied because
the rules are using valid connectivity in G[Γ]\F . In particular, R1 is safe according to Lemma 3.20.
For each of R2 and R3, Nγ(τx) intersects V

tmn(τy) means there is an edge in E(G̃qry
Γ ) connecting

x ∈ V tmn(τx) and y ∈ V tmn(τy), which means x and y are connected in G[Γ] \ F because this edge
is unaffected and x, y /∈ F (note that V tmn(τx) and V tmn(τy) are disjoint from F ). To show that

requirement 2 is satisfied, we will show that for each edge {x, y} ∈ E(G̃qry
Γ \F ) connecting V tmn(τ1)

and V tmn(τ2), the subtrees τ1 and τ2 will be merged by one of the rules. Recall that the edges in
graph Ĝqry

Γ must be incident to γ, and G̃qry
Γ is a subgraph of Ĝqry

Γ . Hence we have either x ∈ γ or
y ∈ γ, and without loss of generality, we assume y ∈ γ.

• When both τ1 and τ2 are giant they will be merged by R1.

• When both τ1 and τ2 are non-giant they will be merged by R2.

• When τ1 is non-giant and τ2 is giant, they will be merged by either R2 or R3 (depending on
whether y ∈ V tmn(τ2) or y ∈ V tmn(τ1)).

The following primitives will allow us to implement rules R1, R2, and R3. Here Γ is an affected
component and τ ∈ T ext

Γ .

ListSubtreesext(Γ): List all subtrees of T ext
Γ .

ListSubtrees(Γ): List all subtrees of TΓ.

ListTerminals(τ,Γ): Return up to f/ϕ+ 1 elements of V tmn
γ (τ).

ListNeighbors(τ,Γ): Return up to f/ϕ+ 1 elements of Nγ(τ).

IsTerminal(v, τ): Return true iff v is a terminal in τ .

PickTerminal(τ): Return any element of V tmn(τ).

EnumFromGiant(τ,Γ): Requirement: τ ∈ Tγext , and τ is non-giant. Return the number of edges in

E(G̃qry
Γ \ F ) joining V tmn

γ (τ) and
⋃

giant τx∈T ext
Γ

V tmn(τx).

Clearly ListSubtreesext(Γ), ListTerminals(τ,Γ), and ListNeighbors(τ,Γ) can be used to list all
subtrees and determine which are giant. This suffices to implement rule R1. ListNeighbors and
IsTerminal suffice to implement rule R2. We implement rule R3 non-constructively. In other
words, we do not find a specific giant τx such that Nγ(τx) ∩ V tmn(τy) ̸= ∅, but merely infer that
there exists such a τx, if EnumFromGiant(τy,Γ) > 0. Observe that the condition of rule R3 is
τy ∈ T ext

Γ . If τy ̸∈ Tγext then we cannot call EnumFromGiant, but in this case τy ∈ T ext
Γ \ Tγext

implies V tmn
γ (τy) = ∅, so R3 cannot be applied anyway.

Obtain KΓ from Kext
Γ and all KΓchild

. Next, we discuss how to compute KΓ for a particular
affected component Γ, assuming we have already got the Kext

Γ above (capturing the new connectivity
at Γ) and the KΓchild

of all affected children Γchild of Γ.
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We call ListSubtrees(Γ) and form their initialize partition KΓ as:

K0
Γ = {{τ} | τ ∈ Tγ} ∪

⋃
Γ’s affected children Γchild

KΓchild
.

That is, any subtrees grouped in KΓchild
are initially grouped in K0

Γ. It remains to group subtrees
according to the connectivity learned from Kext

Γ .
For each group Kext ∈ Kext

Γ , we merge all the groups K0 ∈ K0
Γ such that V tmn(K0) intersects

V tmn(Kext). By Observation 3.9, V tmn(τ) is either contained in or disjoint from V tmn(τ ext), for
τ ∈ K0 ∈ K0

Γ and τ ext ∈ Kext ∈ Kext
Γ . Thus we can detect whether they intersect by calling

v ← PickTerminal(τ) and IsTerminal(v, τ ext). After all grouping, the final partition is KΓ.

Answering Query ⟨s, t, F ⟩. We compute the partitions {KΓ} for all affected Γ in postorder,
culminating in the root partition KΓroot . Then s and t are connected iff there exists a K ∈ KΓroot

and τs, τt ∈ K such that IsTerminal(s, τs) = IsTerminal(t, τt) = true.

3.4 The Labeling Scheme: Implementing the Strategy

Finally, we describe a labeling scheme that supports the interfaces required by the query algorithm.
Note that we still fix an Si ∈ S and assume that vertices in Si will never fail, and the labeling
scheme we describe is only for this Si. At the very end, we will discuss our final labeling scheme
and how to find a non-failed Si for a query.

We restate the interfaces in a formal way as follows.

• ListAffectedComps() outputs the identifiers of affected components in a bottom-up order.

• ListSubtrees(Γ), ListSubtreesext(Γ) receive the identifier of an affected component Γ, and list
the profiles of subtrees in TΓ and T ext

Γ respectively.

• ListTerminals(τ,Γ) receives the identifier of an affected component Γ and the profile of a
subtree τ ∈ T ext

Γ , and either detects |V tmn
γ (τ)| > f/ϕ or outputs the profiles of all vertices in

V tmn
γ (τ).

• ListNeighbors(τ,Γ) receives the identifier of an affected component Γ and the profile of a
subtree τ ∈ T ext

Γ , and either detects |V tmn
γ (τ)| + |Nγ(τ)| > f/ϕ or outputs the profiles of all

vertices in Nγ(τ).

• IsTerminal(v, τ) receives the profile of a vertex v and the profile of a subtree τ (an arbitrary
one from Definition 3.19), and outputs whether v is in V tmn(τ) or not.

• PickTerminal(τ) receives the profile of a subtree τ ∈ Tγ of some affected γ, and outputs the
profile of an arbitrary vertex in V tmn(τ).

• EnumFromGiant(τy,Γ) receives the profile of a non-giant subtree τy ∈ Tγext , and outputs the

number of edges in E(G̃qry
Γ \ F ) connecting

⋃
giant τx∈T ext

Γ
V tmn(τx) and V tmn

γ (τy).

We make some remarks on the terms identifiers and profiles. For those objects defined in the
preprocessing phase (i.e. vertices in G, components/cores6, Steiner trees and extended Steiner

6A component Γ and its core γ has the same identifier.

30



trees), we assign each of them a distinct O(log n)-bit integer as its identifier, denoted by id(·). Note
that O(log n) bits suffice because the number of such objects is polynomial. During the query phase,
we may further generate profiles for the objects (including those defined in the query phase, e.g.
subtrees from Definition 3.19). A profile is something that representing this object and generally
it is not only a single integer.

3.4.1 The Euler Tours of (Extended) Steiner Trees

Like what we did for the edge fault connectivity labels, we will exploit the Euler tour to “linearize”
the (extended) Steiner trees. However, the Euler tours here are slightly different from the definition
in Section 2.

Definition 3.21 (Euler Tours). For each (extended) Steiner tree T , we define Euler(T ) to be its
Euler tour, which is a list that includes all occurrence of nodes according to a DFS traversal of T ,
starting from an arbitrary root node. For convenience, we add two virtual occurences start(T ) and
end(T ) at the front and the end of Euler(T ) as the “guards”. See Figure 5 for a small example.

Euler(T ) =

(
start(T ), a, b, c, b, d, e, d, f, d, g, d, b,

a, h, i, h, j, h, a, end(T )
)

Figure 5: Left: an (extended) Steiner tree T , rooted at a. Right: Euler(T ).

For each occurrence voc ∈ Euler(T ), we say a node vnd ∈ V (T ) owns voc if voc is an occurrence of
vnd, and naturally the vertex that owns voc is the the vertex in G corresponding to the node in V (T )
that owns voc. We let pos(voc) denote the position of voc in Euler(T ). In particular, pos(start(T )) = 0
and pos(end(T )) = 2|V (T )|, since the number of non-virtual occurrences in Euler(T ) is 2|V (T )|−1.
The profile of an occurrence voc ∈ Euler(T ) is defined as profile(voc) = (id(v), id(T ), pos(voc)),
where v is the vertex that owns voc. Exceptionally, profile(start(T )) = (⊥, id(T ), pos(start(T ))) and
profile(end(T )) = (⊥, id(T ), pos(end(T ))).

Label occurrences(v, T ). For each vertex v /∈ S and each (extended) Steiner tree T ∈ {Tγ | v ∈
V (Tγ)} ∪ {Tγext | v ∈ V (Tγext)}, the label occurrences(v, T ) stores the profiles of occurrences in
Euler(T ) owned by v, i.e. occurrences(v, T ) = (profile(voc,1), profile(voc,2), ...), where voc,1, voc,2, · · · ∈
Euler(T ) are owned by v.

3.4.2 Profiles of Vertices, Components and Subtrees

We define the profiles of vertices, components and subtrees, and use them to implement interfaces
ListAffectedComps(), ListSubtrees(Γ), ListSubtreesext(Γ) and IsTerminal(v, τ).

Label profile(Γ). The profile of a component Γ ∈ C, denoted by profile(Γ), is constructed as follows,
and we will store profile(Γ) at each vertex v ∈ Γ.

• Store id(Γ), id(Tγ) and id(Tγext).
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• For each ancestor Γ̂ s.t. Γ ≺ Γ̂, store id(Γ̂) and a one-bit indicator indicating whether Nγ̂(Γ)
intersects S.

Label profile(v). The profile of a vertex v ∈ V (G), denoted by profile(v), is constructed as follows,
and we will store profile(v) at vertex v.

• Store id(v).

• For each (extended) Steiner tree T ∈ {Tγv} ∪ {Tγext | v ∈ γext} (i.e. v has a corresponding
terminal node in T ), let π(v, T ) denote the occurrence Euler(T ) owned by the terminal node
(corresponding to the vertex) v with the least pos(voc)

7, called the principal occurrence of the
vertex v on T , and we store profile(π(v, T )).

Implement ListAffectedComps(). Note that we can already implement the interface ListAffectedComps()
by inspecting the profiles of components storing at vertices {s, t}∪F . In fact, we can even support
the basic operations in Observation 3.22.

Observation 3.22. By inspecting the profiles of components storing at vertices {s, t} ∪ F , we can
suport the following.

• List id(Γ) of all affected components Γ.

• Given id(Γ) of an affected component Γ, get id(Tγ) and id(Tγext).

• Given id(T ) of an (extended) Steiner tree of some (unknown) affected component Γ, decide
whether it is a Steiner tree or an extended Steiner tree and get id(Γ).

• Given id(Γ1), id(Γ2) of two affected components Γ1,Γ2, distinguish among (1) Γ1 ⪯ Γ2, (2)
Γ2 ⪯ Γ1, and (3) no ancestral relation between Γ1 and Γ2.

• Given id(Γ′), id(Γ) of two affected components Γ′,Γ s.t. Γ′ ≺ Γ, decide if γ′ ⊆ γext.

Profiles of Subtrees. For an (extended) Steiner tree T ∈ {Tγ , Tγext | γ is affected}, we will represent
a subtree τ ∈ T (T is the set of subtrees of T w.r.t. F from Definition 3.19) by a collection of
intervals on Euler(T ).

Definition 3.23 (Intervals). For each (extended) Steiner tree T ∈ {Tγ , Tγext | γ is affected}, we
break Euler(T ) into intervals by removing start(T ), end(T ) and all occurrences owned by failed
vertices, and let IT denote these intervals. For each interval I, we use ℓoc,I and roc,I to denote
the left and right outer endpoints of I. To be precise, for an interval including occurrences from
position a to b, the outer endpoints of I are the occurrences at position a− 1 and b+1. The profile
of an interval I ∈ IT is profile(I) = (profile(ℓoc,I), profile(roc,I)). Furthermore, we define V tmn(I) to
be the set of vertices with its principal occurrences π(v, T ) falling in I.

Observation 3.24. There is an assignment that assigns a subset of interval Iτ ⊆ IT to each
subtree τ ∈ T , satisfying the following.

• For each subtree τ ∈ T , V tmn(τ) =
⋃

I∈Iτ V
tmn(I).

7In fact, we can fix π(v, T ) to be an arbitrary occurrence owned by the terminal node v (no need to be the one
with the least pos(voc)).
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• {Iτ | τ ∈ T } forms a partition of IT .

We state the relations between intervals IT and subtrees T in Observation 3.24. These are
well-known facts from the nature of DFS traversals. Furthermore, by inspecting only profile(v) for
vertices v ∈ F , we can obtain profile(I) for all I ∈ IT explicitly. Furthermore, it is an easy exercise
to compute such a partition {Iτ | τ ∈ T } of IT with properties in Observation 3.24 (roughly
speaking, we can just simulate the DFS traversal using a stack).

Finally, for each subtree τ ∈ T , we define its profile to be profile(τ ) = {profile(I) | I ∈ Iτ}, i.e.
we collect profile(I) of all I ∈ Iτ into profile(τ ).

Implement ListSubtrees(Γ) and ListSubtreesext(Γ). We take ListSubtrees(Γ) as an example, and we

can implement ListSubtreesext(Γ) in a similar way. We have already computed the profiles of all
subtrees in Definition 3.19. We just scan all subtrees τ and output profile(τ ) if τ ∈ TΓ. To check
whether τ ∈ TΓ, recall that TΓ collect subtrees from Steiner tree Tγ′ for all affected Γ′ ⪯ Γ. Note
that from profile(τ ), we can obtain id(T ) of the (extended) Steiner tree T s.t. τ ∈ T , so using
Observation 3.22, we can get the id(Γ′) of the affected Γ′ s.t. Tγ′ = T (or know such Γ′ does not
exist), and check whether Γ′ ⪯ Γ.

Implement IsTerminal(v, τ). Note that V tmn(τ) =
⋃

I∈Iτ V
tmn(I) by Observation 3.24, so to check

whether v ∈ V tmn(τ), it suffices to check whether v ∈ V tmn(I) for each I ∈ Iτ . From profile(I)
(stored in profile(τ )), we can get id(T ) of the (extended) Steiner tree T s.t. I is on Euler(T ),
and further get the position of the outer endpoints of I, i.e. pos(ℓoc,I) and pos(roc,I). Lastly, we
look at profile(π(v, T )) (stored in profile(v)) of the principal occurrence of v on T , and check if
pos(ℓoc,I) < pos(π(v, T )) < pos(roc,I).

3.4.3 Labels on Euler Tours

We introduce some labels related to Euler tours, and then use them to implement the interfaces
PickTerminal(τ), ListTerminals(τ,Γ) and ListNeighbors(τ,Γ).

Label SuccTerminal(voc, T ). For each component Γ ∈ C and each occurrence voc ∈ Euler(Tγ), we
construct a label SuccTerminal(voc, Tγ). Let x ∈ γ be the vertex whose principal occurrence
π(x, Tγ) is to the right of voc and has the least pos(π(x, Tγ)). We store profile(x) in the label
SuccTerminal(voc, Tγ), and without ambiguity, SuccTerminal(voc, Tγ) also refers to this vertex x in
our analysis. We store the label SuccTerminal(voc, Tγ) at the vertex v owning voc. Exceptionally,
when voc is start(Tγ) or end(Tγ), we store SuccTerminal(voc, Tγ) at all vertices inside Γ.

Implement PickTerminal(τ). Note that the input guarantees that τ ∈ Tγ for some affected γ. By

Observation 3.24, we have V tmn(τ) =
⋃

I∈Iτ V
tmn(I), so it suffices to obtain a vertex of V tmn(I) of

some I ∈ Iτ . For a particular I ∈ Iτ , if V tmn(I) is not empty, the vertex x = SuccTerminal(ℓoc,I)
must be inside V tmn(I) by definition. Hence, we just need to check whether x ∈ V tmn(I), or
equivalently, whether pos(ℓoc,I) < pos(π(x, Tγ)) < pos(roc,I). Indeed, this is doable because we can
obtain pos(ℓoc,I), pos(roc,I), id(Tγ) from profile(τ ) and obtain pos(π(x, Tγ)) from profile(x) (profile(x)
is obtained from the label SuccTerminal(ℓoc,I , Tγ) by Observation 3.25).

Observation 3.25. Given profile(I) of some interval I ∈ Iτ of some τ ∈ Tγ, we can access
SuccTerminal(ℓoc,I , Tγ).
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Proof. We can obtain profile(ℓoc,I) from profile(I). If ℓoc,I is owned by some vertex v (i.e. ℓoc,I is not
start(Tγ) or end(Tγ)), v must be inside F , so the label SuccTerminal(ℓoc,I , Tγ) stored at v is accessible
and we can locate it using profile(ℓoc,I). If ℓoc,I is start(Tγ) or end(Tγ), SuccTerminal(voc, Tγ) is
accessible from an arbitrary vertex v ∈ Γ ∩ ({s, t} ∪ F ). Such v exists because Γ is affected (Tγ is
well-defined only when Γ is affected).

Label InnerTerminals→γ (voc, Tγext). For each component Γ ∈ C and each occurrence voc ∈ Euler(Tγext)

not owned by S-vertices, we construct the label InnerTerminals→γ (voc, Tγext) as follows.
Let V→voc collect all vertices x ∈ γ with principal occurrence π(x, Tγext) to the right of voc. We sort

vertices x ∈ V→voc in order of π(x, Tγext) from leftmost to rightmost. The label InnerTerminals→γ (voc, Tγ⋆)
will take the first f/ϕ + 1 vertices in V→voc , and for each vertex v ∈ InnerTerminals→γ (voc, Tγ⋆), we
store profile(v) in the label InnerTerminals→γ (voc, Tγ⋆).

We will store the label InnerTerminals→γ (voc, Tγext) at the vertex v owning voc. Exceptionally,
when voc is a virtual occurrence (i.e. start(Tγext) or end(T ext

γ )), we store InnerTerminals→γ (voc, Tγext)
at all vertices v ∈ Γ.

Implement ListTerminals(τ,Γ). Recall that the input guarantees that τ ∈ T ext
Γ . By definition,

V tmn
γ (τ) is not empty only when τ ∈ Tγext . Using id(τ) and Observation 3.22, we can easily check if

τ ∈ Tγext , so from now we assume τ ∈ Tγext . For each interval I ∈ Iτ , we define V tmn
γ (I) = V tmn(I)∩

γ to be the γ-vertices in V tmn(I). From Observation 3.24, we know V tmn
γ (τ) =

⋃
I∈Iτ V

tmn
γ (I). By

Lemma 3.27, it suffices to inspect InnerTerminals(ℓoc,I , Tγext) for all I ∈ Iτ . Note that we can access
InnerTerminals(ℓoc,I , Tγext) by Observation 3.26.

Observation 3.26. Given profile(τ ) of some τ ∈ Tγext , we can access InnerTerminals→γ (ℓoc,I , Tγext)
for all I ∈ Iτ .

Proof. This is similar to Observation 3.25. For each I ∈ Iτ , we can obtain profile(ℓoc,I) from
profile(τ ). If ℓoc,I is owned by some vertex v, we can access InnerTerminals→γ (ℓoc,I , Tγext) from the
vertex v. Otherwise, ℓoc,I is start(Tγ) or end(Tγ), and we can access InnerTerminals→γ (ℓoc,I , Tγext)
from the vertex v from an arbitrary vertex v ∈ Γ ∩ ({s, t} ∪ F ) because Γ is affected (Tγext is
well-defined only when γ is affected).

Lemma 3.27. Given profile(I) of an interval I ∈ Iτ of some τ ∈ Tγext , we can either detect
|V tmn

γ (I)| > f/ϕ or output the profiles of all vertices in V tmn
γ (I), if we can access InnerTerminals→γ (ℓoc,I , Tγext).

Proof. We consider a candidate Ṽ tmn
γ (I) of V tmn

I (I) defined as

Ṽ tmn
γ (I) = {x ∈ InnerTerminals→γ (ℓoc,I , Tγext) | pos(ℓoc,I , Tγext) < pos(π(x, Tγext)) < pos(roc,I , Tγext)}.

By definition, we have Ṽ tmn
γ (I) ⊆ V tmn

γ (I). Thus, if |Ṽ tmn
γ (I)| > f/ϕ, we detect |V tmn

γ (I)| > f/ϕ.

From now, assume |Ṽ tmn
γ (I)| ≤ f/ϕ, and we claim that Ṽ tmn

γ (I) = V tmn
γ (I). Assume for

contradiction that there exists a vertex x ∈ V tmn
γ (I) \ Ṽ tmn

γ (I). Note that when construct-
ing InnerTerminals→γ (ℓoc,I , Tγext), the vertex x is inside V→ℓoc,I because π(x, Tγext) ∈ I is indeed

to the right of ℓoc,I . The only scenario in which x is not selected in Ṽ tmn
γ (I) is when the size

of InnerTerminals→γ (ℓ, Tγext) reaches f/ϕ + 1 and each vertex x′ ∈ InnerTerminals→γ (ℓ, Tγext) has
pos(ℓoc,I) < pos(π(x′, Tγ⋆)) ≤ pos(π(x, Tγ⋆)). However, this means these f/ϕ+1 vertices x′ will be

picked into Ṽ tmn
γ (I), contradicting |Ṽ tmn

γ (I)| ≤ f/ϕ.
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Corollary 3.28. Given an interval I ∈ Iτ of some non-giant subtree τ ∈ Tγext , we have V tmn
γ (I) ⊆

InnerTerminals→γ (ℓoc,I , Tγext).

Proof. Recall the candidate Ṽ tmn
γ (I) in the proof of Lemma 3.27. By definition, Ṽ tmn

γ (I) ⊆
InnerTerminals→γ (ℓoc,I , Tγext). Furthermore, because τ is non-giant, we have V tmn

γ (I) = Ṽ tmn
γ (I).

Labels NeighborEdge→γ (voc, T ) and NeighborVertex→γ (voc, T ). For each component Γ ∈ C, each (ex-

tended) Steiner tree T ∈ {Tγext}∪ {Tγ′ | γ′ ≺ γ}, and each occurrence voc ∈ Euler(T ) not owned by
S-vertices, we construct the label NeighborEdge→γ (voc, T ) and NeighborVertex→γ (voc, T ) as follows.

For each undirected edge {u, v} ∈ E(G̃Γ) with type η, we treat it as two directed edges (u, v, η)
and (v, u, η). Then we let E→voc be a list collecting all directed edges e = (x, y, η) ∈ E(G̃Γ) s.t. y ∈ γ
and x has a principal occurrence π(x, T ) to the right of voc. We sort edges e = (x, y, η) ∈ E→voc in
order of π(x, T ) from leftmost to rightmost.

In what follows, we construct a list NeighborEdge→γ (voc, T ) of edges in E→voc by considering edges
in E→voc one by one according to the order. Meanwhile, we will maintain another list

NeighborVertex→γ (voc, T ) = {y | (x, y, η) ∈ NeighborEdge→γ (voc, T )}.

Each edge (x, y, η) in NeighborEdge→γ (voc, T ) is stored in the form (pos(π(x, T )), id(y), id(η)), and
each vertex y in NeighborVertex→γ (voc, T ) is stored as profile(y).

Let e = (x, y, η) ∈ E→voc be the current edge, and we add e into NeighborEdge→γ (voc, T ) if all the
following three conditions hold at this moment.

1. There is no edge e′ = (x′, y′, η′) ∈ NeighborEdge→γ (voc, T ) s.t. y
′ = y and η′ = η.

2. The number of edges e′ = (x′, y′, η′) ∈ NeighborEdge→γ (voc, T ) s.t. y′ = y is smaller than
h(f + 2) + 1.

3. The size of NeighborVertex→γ (voc, T ) should be smaller than h(f + 2)λnb + f/ϕ+ 1.

Note that conditions 2 and 3 guarantee that the number of edges in NeighborEdge→γ (voc, T ) is at
most (h(f + 2) + 1)(h(f + 2)λnb + f/ϕ+ 1).

We will store the labels NeighborEdge→γ (voc, T ) and NeighborVertex→γ (voc, T ) at the vertex v
owning voc. Exceptionally, when voc is start(T ) or end(T ), we store NeighborEdge→γ (voc, T ) and
NeighborVertex→γ (voc, T ) at all vertices v ∈ Γ̄, where Γ̄ = Γ if T = Tγext and Γ̄ = Γ′ if T = Tγ′ for
some γ′ ≺ γ.

Implement ListNeighbors(τ,Γ). From id(τ), we can obtain id(T ) where T is the (extended) Steiner
tree owning τ . For each interval I ∈ Iτ , we let

Nγ(I) = N G̃qry
Γ (V tmn(I)) ∩ γ

be the neighbors of V tmn(I) in graph G̃qry
Γ falling in γ. Furthermore, let

N inc
γ (I) = {y | {x, y} ∈ E(G̃qry

Γ ), x ∈ V tmn(I)} ∩ γ (2)

denote the vertices in γ adjacent to some x ∈ V tmn(I) in the graph G̃qry
Γ . By definition, N inc

γ (I)

may include vertices in V tmn(I), and Nγ(I) = N inc
γ (I) \ V tmn(I) is exactly the set by excluding

V tmn(I) from N inc
γ (I). Therefore,

Nγ(I) ⊆ N inc
γ (I) ⊆ Nγ(I) ∪ V tmn

γ (I).
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To answer ListNeighbors(τ,Γ), it suffices to apply Lemma 3.29 (with access guarantee from
Observation 3.30) on each I ∈ Iτ by the following reasons. By Observation 3.24, we have V tmn(τ) =⋃

I∈Iτ V
tmn(I). Therefore, we have

Nγ(τ) ⊆
⋃
I∈Iτ

N inc
γ (I) ⊆ Nγ(τ) ∪ V tmn

γ (τ).

If Lemma 3.29 detect |N inc
γ (I)| > f/ϕ for some I ∈ Iτ , it means |V tmn

γ (τ)| + |Nγ(τ)| > f/ϕ.

Otherwise, Lemma 3.29 outputs (the identifiers of) all vertices in N inc
γ (I) for all I ∈ Iτ . To get

Nγ(τ), we just need to remove from
⋃

I∈Iτ N
inc
γ (I) vertices in V tmn

γ (τ). Note that we can check
whether a vertex v ∈

⋃
I∈Iτ Nγ(I) is in V tmn

γ (τ) using IsTerminal(v, τ), or even just get V tmn
γ (τ)

explicitly using ListTerminals(τ,Γ).

Lemma 3.29. Given profile(I) of an interval I ∈ Iτ of some τ ∈ T ext
Γ , we can either detect

|N inc
γ (I)| > f/ϕ or output the profiles of all vertices in N inc

γ (I), if we can access NeighborEdge→γ (ℓoc,I , T )
and NeighborVertex→γ (ℓoc,I , T ), where T is the (extended) Steiner tree owning τ .

Proof. We consider a candidate Ñ inc
γ (I) of N inc

γ (I) defined as

Ñ inc
γ (I) = {y |(x, y, η) ∈ NeighborEdge→γ (ℓ, T )

s.t. pos(ℓoc,I , T ) < pos(π(x, T )) < pos(roc,I , T ) and η is not affected}.

Note that pos(ℓoc,I , T ) and pos(roc,I , T ) are stored in profile(I), pos(π(x, T )) is stored in NeighborEdge→γ (ℓoc,I , T ),
and we can obtain profile(y) from NeighborVertex→(ℓoc,I , T ).

By the construction of NeighborEdge→γ (ℓ, T ), we have Ñ inc
γ (I) ⊆ N inc

γ (I). Thus if |Ñ inc
γ (I)| >

f/ϕ, we detect |N inc
γ (I)| > f/ϕ. From now we assume |Ñ inc

γ (I)| ≤ f/ϕ, and we will show that

N inc
γ (I) = Ñ inc

γ (I).

Assume for contradiction that there exists y s.t. y ∈ N inc
γ (I) and y /∈ Ñ inc

γ (I). Let e = {x, y} ∈
E(G̃qry

Γ ) be an edge with endpoints x ∈ V tmn(I) and y and type η (η must be unaffected since we

exclude edges with affected types from G̃qry
Γ ). Because π(x, T ) is to the right of ℓoc,I and y ∈ γ,

when constructing NeighborEdge→γ (ℓoc,I , T ), we will add the edge (x, y, η) into E→ℓoc,I . However, we

know (x, y, η) /∈ NeighborEdge→γ (ℓoc,I , T ), because otherwise y will be added in Ñ inc
γ (I). Namely,

when we try to add (x, y, η) into NeighborEdge→γ (ℓoc,I , T ), at least one of the three conditions is
violated.

Suppose Condition 1 is violated, i.e. there is an edge (x′, y′, η′) ∈ NeighborEdge→γ (ℓoc,I , T )
s.t. y′ = y and η′ = η. Furthermore, we have pos(ℓoc,I) < pos(π(x′, T )) ≤ pos(π(x, T )) because

(x′, y′, η′) is added before. This means y′ = y will be selected into Ñ inc
γ (I), a contradiction.

Suppose Condition 2 is violated, i.e. there are at least h(f + 2) + 1 many edges (x′, y′, η′) ∈
NeighborEdge→γ (ℓ, T ) with y′ = y, and all of them satisfy pos(ℓoc,I) < pos(π(x′, T )) ≤ π(x, T ).
Furthermore, all these edges have different types η′ by Condition 1. Because the number of affected
types is at most h(f + 2) by Observation 3.10, at least one of these edges has an unaffected type
η′. Then y′ = y will be selected into Ñ inc

γ (I), a contradiction.
Suppose Condition 3 is violated, i.e. the number of vertices in NeighborVertex→γ (ℓ, T ) reaches

hfλnb + f/ϕ + 1. We know that at most hfλnb vertices in γ can be incident to affected edges,
because (1) the number of affected components is at most h(f +2) by Observation 3.10, and (2) for
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each affected component, the shortcut edges it created will be incident to at most λnb vertices in γ
(recall the construction of shortcut edges). Thus, at least f/ϕ+1 vertices in NeighborVertex→γ (ℓ, T )

will be incident to only unaffected edges. All these vertices will be picked into Ñ inc
γ (I), which means

|Ñ inc
γ (I)| > f/ϕ, a contradiction.

Labels NeighborEdge←γ (voc, T ) and NeighborVertex←γ (voc, T ). Symmetrically, for each component

Γ ∈ C, each (extended) Steiner tree T ∈ {Tγext} ∪ {Tγ′ | γ′ ≺ γ}, and each occurrence voc ∈
Euler(T ) not owned by S-vertices, we work on the reversed Euler(T ), and construct and store labels
NeighborEdge←γ (voc, T ) and NeighborVertex←γ (voc, T ) in the same way as NeighborEdge→γ (voc, T ) and
NeighborVertex→γ (voc, T ). Observation 3.30 below can be proved using an argument similar to
Observation 3.26.

We will use labels NeighborEdge←γ (voc, T ) and NeighborVertex←γ (voc, T ) in Section 3.4.4.

Observation 3.30. Given id(Γ) and profile(τ ) of some τ ∈ T ext
Γ , we can access NeighborEdge→γ (ℓoc,I , T ),

NeighborVertex→γ (ℓoc,I , T ), NeighborEdge
←
γ (roc,I , T ), and NeighborVertex←γ (roc,I , T ) for all I ∈ Iτ ,

where T is the (extended) Steiner tree owning τ .

Corollary 3.31. Given an interval I ∈ Iτ of some non-giant subtree τ ∈ T ext
Γ , we have N inc

γ (I) ⊆
NeighborVertex→γ (ℓoc,I , T ) and N inc

γ (I) ⊆ NeighborVertex←γ (roc,I , T ), where T is the (extended)
Steiner tree owning τ .

Proof. This corollary follows the proof of Lemma 3.29. Recall the definition of the candidate
Ñ inc

γ (I). When τ is non-giant, we have |Ñ inc
γ (I)| ≤ f/ϕ and N inc

γ (I) = Ñ inc
γ (I). By defini-

tion, Ñ inc
γ (I) ⊆ NeighborVertex→γ (ℓoc,I , T ), so N inc

γ (I) ⊆ NeighborVertex→γ (ℓoc,I , T ). N inc
γ (I) ⊆

NeighborVertex←γ (roc,I , T ) can be proved similarly.

3.4.4 Labels for Implementing EnumFromGiant(τy,Γ)

Before introducing the labels, we first discuss the high level idea. For an undirected (multi-)graph
H and two vertex set X,Y ⊆ V (H) (X,Y may intersect), we use δH(X,Y ) to denote the number
of edges with one endpoint in X and the other one in Y , but an edge with both endpoints in X ∩Y
will be counted twice. Namely, δH(X,Y ) =

∑
x∈X,y∈Y δH(x, y).

Our goal is to compute δ
G̃qry

Γ \F
(
⋃

giant τx∈T ext
Γ

V tmn(τx), V
tmn
γ (τy)) for a non-giant subtree τy ∈

Tγext . We first rewrite it to get rid of the affected shortcut edges. Precisely, we have

δ
G̃qry

Γ \F
(

⋃
giant τx∈T ext

Γ

V tmn(τx), V
tmn
γ (τy)) =

∑
giant τx∈T ext

Γ

δ
G̃Γ

(V tmn(τx), V
tmn
γ (τy))

−
∑

giant τx∈T ext
Γ

δaff
G̃Γ

(V tmn(τx), V
tmn
γ (τy)),

where δaff
G̃Γ

(V tmn(τx), V
tmn
γ (τy)) is the number of affected edges in Γ̃ connecting V tmn(τx) and

V tmn
γ (τy). This equation holds because each τ ∈ T ext

Γ has V tmn(τx) ⊆ Qext
Γ \ F and by defini-

tion G̃qry
Γ = G̃Γ[Q

ext
Γ ] \ {e ∈ E(G̃Γ) | e is affected}. For each term δaff

G̃Γ
(V tmn(τx), V

tmn
γ (τy)), its

value is given by Lemma 3.32.
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Therefore, it remains to compute
∑

giant τx∈T ext
Γ

δ
G̃Γ

(V tmn(τx), V
tmn
γ (τy)). We further have∑

giant τx∈T ext
Γ

δ
G̃Γ

(V tmn(τx), V
tmn
γ (τy)) =

∑
x∈Qext

Γ

δ
G̃Γ

(x, V tmn
γ (τy))−

∑
x∈Qext

Γ ∩F

δ
G̃Γ

(x, V tmn
γ (τy))

−
∑

non-giant
τx∈T ext

Γ

δ
G̃Γ

(V tmn(τx), V
tmn
γ (τy)),

because {V tmn(τ) | τ ∈ T ext
Γ } partitions Qext

Γ \ F . The second equation basically says that, to
compute the number of edges from giant subtrees to V tmn

γ (τy), we can first compute the number
of edges from all vertices in Qext

Γ to V tmn
γ (τy), and then subtract those edges starting from failed

vertices and non-giant subtrees. We will compute the three terms on the right hand side using
Lemmas 3.33, 3.35 and 3.36 respectively.

Label ArtificialEdge(γ ′, G̃Γ). For each component Γ and each strict descendant Γ′ ≺ Γ, we construct

a label ArtificialEdge(γ ′, G̃Γ) which, for each artificial edges {x, y} with type γ′ in G̃Γ, stores a tuple
(profile(x), profile(y), id(Γ′)). We store ArtificialEdge(γ ′, G̃Γ) at each vertex v ∈ Γ′.

Lemma 3.32. Given id(Γ) and profile(τx), profile(τy) of τx ∈ T ext
Γ and non-giant τy ∈ Tγext , we can

access ArtificialEdge(γ ′, G̃Γ) for each affected γ′ ≺ γ, and then compute δaff
G̃Γ

(V tmn(τx), V
tmn
γ (τy)).

Proof. First, we can get id(Γ′) for all affected component Γ′ ≺ Γ. For each affected Γ′ ≺ Γ, we then
access ArtificialEdge

G̃Γ
(γaff) from an arbitrary vertex in Γ′ ∩ (F ∪{s, t}) (such vertex exists because

Γ′ is affected). In other words, we can obtain (profile(u), profile(v)) for all affected shortcut edges
{u, v} in G̃Γ.

Therefore, we just need to scan each affected G̃Γ-edge {u, v}, and decide the membership of each
u, v at each V tmn(τx), V

tmn
γ (τy). The membership at V tmn

γ (τy) can be easily decided because we can
obtain V tmn

γ (τy) explicitly by ListTerminals(τy,Γ) (note that τy is non-giant). To decide whether u ∈
V tmn(τx) (resp. v ∈ V tmn(τx)), we just need to invoke IsTerminal(u, τx) (resp. IsTerminal(v, τx)).

Label Degree(x, G̃Γ[γ
ext]). For each component Γ ∈ C and each occurrence voc ∈ Euler(Tγext) not

owned by S-vertices, we construct the following labels.
For each vertex x ∈ InnerTerminals→γ (voc, Tγext), we let Degree(x, G̃Γ[γ

ext]) denote the degree

of vertex x in graph G̃Γ[γ
ext] (i.e. the subgraph of the sparsified shortcut graph G̃Γ induced

by the extended core γext). We store Degree(x, G̃Γ[γ
ext]) along with the vertex x in the label

InnerTerminals→γ (voc, Tγext).

Labels Enum(γ′, y, G̃Γ) and Enum(x, y, G̃Γ). For each component Γ ∈ C and each Γ′ ⪯ Γ s.t. γ′ is

not in γext, we construct the following labels. Note that |Nγ(Γ
′)| ≤ λnb because γ′ is not in γext.

• For each vertex y ∈ Nγ(Γ
′), we let Enum(γ′, y, G̃Γ) be the total number of G̃Γ-edges connecting

some vertex x ∈ γ′ and the vertex γ. We store Enum(γ′, y, G̃Γ) at each vertex v ∈ Γ′.

• For each vertex x ∈ γ′ and vertex y ∈ Nγ(Γ
′), let Enum(x, y, G̃Γ) be the number of G̃Γ-edges

connecting x and y (recall that G̃Γ is a multigraph, so Enum(x, y, G̃Γ) may be larger than 1),
and store it at vertex x.
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Lemma 3.33. Given id(Γ) and profile(τy) of some non-giant subtree τy ∈ Tγext , we can compute
δ
G̃Γ

(Qext
Γ , V tmn

γ (τy)).

Proof. We further decompose the expression to be

δ
G̃Γ

(Qext
Γ , V tmn

γ (τy)) =
∑

x∈γext

δ
G̃Γ

(x, V tmn
γ (τy)) +

∑
affected γ′≺γ

s.t. γ′ is not in γext

δ
G̃Γ

(γ′, V tmn
γ (τy)),

because {γ′ | γ′ ≺ γ, γ′ is affected and γ′ is not in γext} ∪ {γext} forms a partition of Qext
Γ .

For the first term on the right hand side, we can rewrite it as∑
x∈γext

δ
G̃Γ

(x, V tmn
γ (τy)) =

∑
x∈γext

δ
G̃Γ[γext]

(x, V tmn
γ (τy)) =

∑
y∈V tmn

γ (τy)

Degree(y, G̃Γ[γ
ext]).

To compute it, we first obtain (the profiles of) all vertices in V tmn
γ (τy) using ListTerminals(τy,Γ)

(because τy is non-giant). By Corollary 3.28, we have

V tmn
γ (τy) =

⋃
I∈Iτy

V tmn
γ (I) ⊆

⋃
I∈Iτy

InnerTerminals(ℓoc,I , Tγext).

By Observation 3.26, we can access all these InnerTerminals(ℓoc,I , Tγext), so we can further access

Degree(y, G̃Γ[γ
ext]) for all y ∈ V tmn

γ (τy).
Regarding the second term on the right hand side, note that for each vertex y ∈ γ s.t. y /∈

Nγ(Γ
′), there is no G̃Γ-edge connecting γ′ and y. Therefore, we can compute

δ
G̃Γ

(γ′, V tmn
γ (τ)) =

∑
y∈V tmn

γ (τ)∩Nγ(Γ′)

Enum
G̃Γ

(γ′, y),

because we can access Enum
G̃Γ

(γ′, y) for each y ∈ Nγ(Γ
′) at any vertex in Γ′ ∩ (F ∪ {s, t}) (note

that Γ′ ∩ (F ∪ {s, t}) is not empty because γ′ is affected).

Labels IncidentEdge(x, G̃Γ[γ
ext]). For each component Γ ∈ C, we construct the following labels.

Recall the construction of the sparsified shortcut graph G̃Γ in Section 3.2.5, where we use G̃sp
γext to

denote the simple graph corresponding to G̃Γ[γ
ext]. Furthermore, it is guaranteed that G̃sp

γext has

arboricity λarbo. Namely, we have an orientation of G̃sp
γext-edges s.t. each vertex x ∈ γext = V (G̃sp

γext)
has at most λarbo incident edges oriented outwards.

For each vertex x ∈ γext, we define a label IncidentEdge(x, G̃Γ[γ
ext]) which, for all its inci-

dent edges (x, y) ∈ E(G̃sp
γext) with orientation x → y, stores id(x), id(y) along with the number of

E(G̃Γ[γ
ext])-edges connecting x and y (i.e. δ

G̃Γ[γext]
(x, y)).

For each vertex x ∈ γext, we will store IncidentEdge(x, G̃Γ[γ
ext]) at x. Besides, for each occur-

rence voc ∈ Euler(Tγext) not owned by S-vertices and each vertex y ∈ InnerTerminals→γ (voc, Tγext) ⊆
γext, we store IncidentEdge(y, G̃Γ[γ

ext]) along with the vertex y in the label InnerTerminals→γ (voc, Tγext).

Observation 3.34. Given id(x), id(y) of two vertices x, y ∈ γext, if we can access IncidentEdge(x, G̃Γ[γ
ext])

and IncidentEdge(y, G̃Γ[γ
ext]), we can compute δ

G̃Γ[γext]
(x, y).
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Lemma 3.35. Given id(Γ), profile(τy), id(x) of some non-giant subtree τy ∈ Tγext and some vertex
x ∈ γext ∩ F , we can compute δ

G̃Γ
(x, V tmn

γ (τy)).

Proof. Because τy is non-giant, we can obtain the identifiers of all vertices in V tmn
γ (τy) using

ListTerminals(τy, γ). We consider the following two cases.
Suppose x ∈ γext ∩ F . Then

δ
G̃Γ

(x, V tmn
γ (τy)) = δ

G̃Γ[γext]
(x, V tmn

γ (τy)) =
∑

y∈V tmn
γ (τy)

δ
G̃Γ[γext]

(x, y).

since x ∈ γext and V tmn
γ (τy) ⊆ γext, so it suffices to compute the latter. We enumerate (the identi-

fiers of) vertices y ∈ V tmn
γ (τy), and then compute δ

G̃Γ[γext]
(x, y) using Observation 3.34. Note that

we can access IncidentEdge(x, G̃Γ[γ
ext]) because x ∈ F , and access IncidentEdge(y, G̃Γ[γ

ext]) because
y ∈ V tmn

γ (τy) ⊆
⋃

I∈Iτy InnerTerminals→γ (ℓoc,I , Tγext) and for all I ∈ Iτy , InnerTerminals→γ (ℓoc,I , Tγext)

are accessible by Observation 3.26.
Suppose x ∈ (Qext

Γ \γext)∩F , which implies γx (the core containing x) satisfies γx ≺ γ and γx is

not in γext. Thus, we can access Enum(x, y′, G̃Γ) for all y
′ ∈ Nγ(Γ

′) at vertex x. Again, enumerate
(the identifiers of) all vertices y ∈ V tmn

γ (τy). If y ∈ Nγ(Γx), then δ
G̃Γ

(x, y) = Enum
G̃Γ

(x, y) by

definition, otherwise δ
G̃Γ

(x, y) = 0 (for implementation, just compare id(y) with the id(y′) in each

entry Enum(x, y, G̃Γ)). Finally, we compute δ
G̃Γ

(x, V tmn
γ (τ)) =

∑
y∈V tmn

γ (τ) δG̃Γ
(x, y).

Labels PrefixEnuminc
γ (voc, T, y) and PrefixEnumexc

γ (voc, T, y). For each component Γ ∈ C, each (ex-

tended) Steiner tree T ∈ {Tγext} ∪ {Tγ′ | γ′ ≺ γ}, and each occurrence voc ∈ Euler(Tγ) not owned
by S-vertices, we construct the following labels. Let γ̄ be the set of vertices with terminal nodes in
T (i.e. γ̄ = γext if T = Tγext , and γ̄ = γ′ if T = Tγ′ for some γ′ ≺ γ).

For each vertex y ∈ NeighborVertex→γ (voc, T ), we define label PrefixEnuminc
γ (voc, T, y) to be

the total number of edges in E(G̃Γ) that connect a vertex x ∈ γ̄ and the vertex y, summing
over all x whose principal occurrence π(x, T ) is to the left of voc or exactly voc. We store
PrefixEnuminc

γ (voc, T, y) along with the vertex y in the label NeighborVertex→γ (voc, T ).
Similarly, for each vertex y ∈ NeighborVertex←γ (voc, T ), we define PrefixEnumexc

γ (voc, T, y) to be

the total number of edges in E(G̃Γ) that connect a vertex x ∈ γ̄ and the vertex y, summing over all
x whose π(x, T ) is to the left of voc (excluding voc). We store PrefixEnumexc

γ (voc, T, y) along with
the vertex y in the label NeighborVertex←γ (voc, T ).

Lemma 3.36. Given id(Γ), profile(τx), profile(τy) of two non-giant subtrees τx ∈ T ext
Γ and τy ∈ Tγext

(τx and τy can be the same subtree), we can compute δ
G̃Γ

(V tmn(τx), V
tmn
γ (τy)).

Proof. Because τx, τy are non-giant subtrees, we can obtain the identifiers of vertices in V tmn
γ (τy)

using ListTerminals(τy,Γ). Because we have

δ
G̃Γ

(V tmn(τx), V
tmn
γ (τy)) =

∑
y∈V tmn

γ (τy)

δ
G̃Γ

(V tmn(τx), y),

it suffices to compute δ
G̃Γ

(V tmn(τx), y) for each y ∈ V tmn
γ (τx). We can further rewrite

δ
G̃Γ

(V tmn(τx), y) =
∑
I∈Iτx

δ
G̃Γ

(V tmn(I), y)
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and compute δ
G̃Γ

(V tmn(I), y) for each I ∈ Iτx .
In what follows, we focus on compute δ

G̃Γ
(V tmn(τx), y) for a fixed I ∈ Iτx and a fixed vertex

y ∈ V tmn
γ (τy). We consider two cases.

• If y ∈ N inc
γ (I), we will compute

δ
G̃Γ

(V tmn(I), y) = PrefixEnumexc
γ (roc,I , T, y)− PrefixEnuminc

γ (ℓoc,I , T, y).

The reason is that, by Corollary 3.31, N inc
γ (I) ⊆ NeighborVertex→γ (ℓoc,I , T ) and N inc

γ (I) ⊆
NeighborVertex←γ (roc,I , T ), we can access PrefixEnuminc

γ (ℓoc,I , T, y) and PrefixEnumexc
γ (roc,I , T, y)

because we have id(y) and we can access NeighborVertex→γ (ℓoc,I , T ) and NeighborVertex←γ (roc,I , T )
by Observation 3.30.

• If y /∈ N inc
γ (I), we claim that all edges in G̃Γ connecting y and V tmn(τx) are affected. To see

this, assume for contradiction that there is an unaffected edge e ∈ E(G̃Γ) connecting y and
V tmn(τx). Recall that G̃

qry
Γ = G̃Γ[Q

ext
Γ ] \ ÊΓ,aff (the subgraph of G̃Γ induced by vertices Qext

Γ

excluding all affected edges). Because V tmn(I) ⊆ Qext
Γ and y ∈ Qext

Γ , this edge e is in G̃qry
Γ ,

so y ∈ N inc
γ (I) by its definition (see Equation (2)), a contradiction.

Therefore, we can use a strategy similar to the proof of Lemma 3.32. Concretely, we can
obtain (profile(u), profile(v)) for all affected shortcut edges {u, v} in G̃Γ, and for each of them,
check if it contributes to δ

G̃Γ
(V tmn(I), y) using IsTerminal.

3.4.5 Space Analysis

Finally, we analyse the space of our labeling schemes. First, we bound the size of one label for all
different types of labels.

• id(·). It takes O(log n) bits.

• pos(voc) of occurrences. It takes O(log n) bits because the length of each Euler(T ) is polyno-
mial.

• profile(voc) of occurrences. It takes O(log n) bits because it stores two id(·) and one pos(voc).

• occurrences(v, T ). It takesO(h∆ log n) bits because it stores O(h∆) occurrence-profiles. Recall
that each vertex v /∈ S owns at most O(h∆) occurrences in Euler(T ) by Lemma 3.8.

• profile(Γ) of components. It takes O(h log n) bits because it stores h id(·) and h one-bit indi-
cators. Note that the number of ancestors of Γ is h.

• profile(v) of vertices. It takes O(h log n) bits because it stores h occurrence-profiles. Note that

the number of (extended) Steiner trees T ∈ {Tγv} ∪ {Tγext | v ∈ γext} is h.

• SuccTerminal(voc, T ). It takes O(log n) bits because it stores one occurrence-profile.

• InnerTerminals→γ (voc, Tγext). It takesO(hf log n/ϕ) bits because it stores f/ϕ+1 vertex-profiles.
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• NeighborEdge→γ (voc, T ) and NeighborEdge←γ (voc, T ). It takes

(h(f + 2) + 1)(h(f + 2)λnb + f/ϕ+ 1) ·O(log n) bits,

because the number of edges in NeighborEdge→γ (voc, T ) is at most (h(f +2)+1)(h(f+2)λnb+
f/ϕ+ 1), and for each edge we store one occurrence-position and two id(·).

• NeighborVertex→γ (voc, T ) and NeighborVertex←γ (voc, T ). It takes O((hfλnb + f/ϕ)h log n) bits

because the number of vertices in NeighborVertex→γ (voc, T ) is at most h(f + 2)λnb + f/ϕ+ 1,
and for each vertex we store its profile.

• ArtificialEdge(γ ′, G̃Γ). It takes O(h2λ2
nb log n) bits by the following reasons. Because G̃Γ is

a subgraph of ĜΓ, the number of γ′-type edges in G̃Γ is at most that in ĜΓ. Recall the
construction of shortcut edges. The γ′-type edges in ĜΓ forms a biclique between N̂(Γ′) ∩ Γ
and N̂γ(Γ

′). Combining |N̂(Γ′)∩Γ| ≤ |N̂(Γ′)| ≤ hλnb and |N̂γ(Γ
′)| ≤ λnb, we have the number

of γ′-type edges in G̃Γ is O(hλ2
nb). Lastly, for each such edge, we store two vertex-profiles

and one id(·).

• IncidentEdge(x, G̃Γ[γ
ext]). It takes O(λarbo log n) bits because there are λarbo edges and for

each edge we store two id(·) and one polynomially bounded number.

• Degree(x, G̃Γ[γ
ext]), Enum(γ′, y, G̃Γ), Enum(x, y, G̃Γ), PrefixEnum

inc
γ (voc, T, y), PrefixEnum

exc
γ (voc, T, y).

Each of them takes O(log n) bits because they are polynomially bounded number.

Next, fixing a vertex v ∈ V (G), we bound the number of labels at v for each label-type.

• occurrences(v, T ). The number is O(h) because the number of (extended) Steiner trees T s.t.
V (T ) has nodes corresponding to v /∈ S is O(h) (recall that this label requires v /∈ S).

• profile(Γ) of components. The number is h because the number of components containing v
is at most h.

• profile(v) of vertices. The number is one.

• SuccTerminal(voc, T ). The number is O(h2∆ + h) because the number of (extended) Steiner
trees T s.t. V (T ) has nodes corresponding to v is O(h), and each Euler(T ) has at most O(h∆)
occurrences owned by v /∈ S (recall that this label requires voc not owned by S-vertices). The
vertex v will additionally store O(h) such labels with voc = start(T ) or end(T ), because v is
in at most h components, and each component Γ corresponds to two (extended) Steiner trees
Tγ and Tγext .

• InnerTerminals→γ (voc, Tγext). The number is O(h2∆+h) because the number of extended Steiner

trees T s.t. V (T ) has nodes corresponding to v is at most h, and each Euler(T ) has at most
O(h∆) occurrences owned by v /∈ S (recall that this label requires voc not owned by S-
vertices). The additional term O(h) is due to the case voc = start(Tγext) or end(Tγext).
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• NeighborEdge→γ (voc, T ), NeighborEdge
←
γ (voc, T ), NeighborVertex

→
γ (voc, T ) and NeighborVertex←γ (voc, T ).

For each of them, the number is O((h2∆ + h)h) by the following reasons. First, the num-
ber of (extended) Steiner trees T s.t. V (T ) has nodes corresponding to v is O(h). Sec-
ond, each Euler(T ) has at most O(h∆) occurrences owned by v /∈ S (recall that this la-
bel requires voc not owned by S-vertices). The additional term O(h2) is due to the case
voc = start(Tγext) or end(Tγext). Finally, fixing voc and T , the number of eligible γ is h.

• ArtificialEdge(γ ′, G̃Γ). The number is O(h2), because v is in at most h component Γ′, and each
Γ′ has h ancestors.

• IncidentEdge(x, G̃Γ[γ
ext]). The number is O(h + (h2∆ + h)(f/ϕ + 1)) by the following rea-

sons. The first term h is because we store IncidentEdge(v, G̃Γ[γ
ext]) at v for each γext ∋ v,

and there are h such γext. The second term (h2∆ + h)(f/ϕ + 1) is because we store a la-
bel IncidentEdge(x, G̃Γ[γ

ext]) along with each vertex in InnerTerminals→γ (voc, Tγext). We have
shown that there are O(h2∆ + h) InnerTerminals→γ (voc, Tγext) stored at v, and each of them
has f/ϕ+ 1 vertices.

• Degree(x, G̃Γ[γ
ext]). The number is O((h2∆ + h)(f/ϕ + 1)) because each Degree(x, G̃Γ) is

stored along with a vertex in InnerTerminals→γ (voc, Tγext).

• Enum(γ′, y, G̃Γ). The number is O(h2λnb) by the following reasons. First, there are at most
h components Γ′ containing v. Second, each Γ′ has at most h ancestor Γ. Finally, fixing Γ′

and Γ, the number of eligible y is |Nγ(Γ
′)| ≤ λnb.

• Enum(x, y, G̃Γ). The number is O(hλnb) by the following reasons. First, v is in exactly one
γ′. Second, the number of component Γ s.t. Γ′ ⪯ Γ is at most h. Finally, fixing Γ′ and Γ, the
number of eligible y is |Nγ(Γ

′)| ≤ λnb.

• PrefixEnuminc
γ (voc, T, y) and PrefixEnumexc

γ (voc, T, y). For each of them, the number is O((h2∆+

h)h ·(hfλnb+f/ϕ+1)) by the following reasons. Take PrefixEnuminc
γ (voc, T, y) as an example.

Recall that we store this label along with each vertex y ∈ NeighborVertex→γ (voc, T ). We have
shown that there are O((h2∆+ h)h) NeighborVertex→γ (voc, T ) stored at v, and each of them
has hfλnb + f/ϕ+ 1 vertices.

Regarding the total space at an vertex v ∈ V (G), observe that the bottleneck is the label
NeighborEdge→γ (voc, T ) (also NeighborEdge←γ (voc, T )) and the label IncidentEdge(x, G̃Γ[γ

ext]). The
former takes total bits

(h(f +2)+1)(h(f +2)λnb+ f/ϕ+1) ·O(log n) ·O((h2∆+h)h) = O((h5f2λnb∆+h4f2∆/ϕ) log n),

and the latter takes total bits

O(λarbo log n) ·O(h+ (h2∆+ h)(f/ϕ+ 1)) = O(h2fλarbo∆ log n/ϕ).

Plugging in h = O(log n),∆ = O(1/ϕ), λnb = O(f log n) and λarbo = O(f2 log3 n), the total number
of bits is O(f3(log7 n/ϕ+ log6 n/ϕ2)).
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3.4.6 The Final Labeling Scheme

Recall that the labeling scheme described above is for one Si ∈ S. In fact, our final labeling scheme
will be made up of f + 1 separated (sub-)labeling schemes for the f + 1 groups Si in S. For each
sub-scheme (corresponding to Si) and each vertex v ∈ V (G), we add the index i to the labels at v
belonging to this sub-scheme (view these labels as a whole, so the index i will only be added once),
so that we can locate the correct sub-scheme if we know (the index i) of a valid Si for a query
⟨s, t, F ⟩. Note that such indices takes O((f + 1) log f) extra bits at v because each index i takes
O(log f) bits and there are f + 1 sub-schemes.

Furthermore, we store a label color(v) at each vertex v, where color(v) is the unique index i s.t.
v ∈ Si. For a query ⟨s, t, F ⟩, to find a valid Si (i.e. Si is disjoint from F ), it suffices to look at
color(v) of all v ∈ F and pick an index i different from any of such color(v). This label color(v)
takes extra O(log f) bits at a vertex v.

In summary, the space of our final labeling scheme is O(f4(log7 n/ϕ + log6 /ϕ2)). The query
time is poly(f, log n).

4 Randomized Edge Fault Connectivity Labels

Dory and Parter [DP21] presented two Monte Carlo labeling schemes for f edge faults. The
first uses O(f + log n) bits, which is optimal for f ≤ log n, while the second is an O(log3 n)-bit
sketch based on ℓ0-samplers, following Ahn, Guha, and McGregor [AGM12] and Kapron, King, and
Mountjoy [KKM13]. In Section 4.1 we present a simpler proof of the O(f + log n)-bit sketch, with
a slightly faster construction time O(m(1 + f/ log n)), rather than O(m(f + log n)) [DP21], and
in Section 4.2 we combine the two sketches to yield an O(log2 n log(f/ log2 n))-bit sketch, which
improves on [DP21] whenever f = no(1).

4.1 A Simple Labeling Scheme

Theorem 4.1 (Cf. Dory and Parter [DP21]). Fix any undirected graph G = (V,E) and integer f ≥
1. There are randomized labeling functions LV : V → {0, 1}O(logn) and LE : E → {0, 1}f+O(logn)

such that given any query ⟨s, t, F ⟩, F ⊂ E, |F | ≤ f , with high probability we can determine if s and
t are connected in G− F , by inspecting the labels LV (s), LV (t), and {LE(e) | e ∈ F}. The labeling
can be constructed in O(m(1 + f/ log n)) time.

Let T ∗ be any spanning tree of G, rooted at an arbitrary vertex root(T ∗), and let T ∗v be the
set of vertices in the subtree rooted at v. Let LV (v) = (minu∈T ∗

v
DFS(u),maxu∈T ∗

v
DFS(u)) contain

the first and last DFS-numbers in the subtree rooted at v. Given LV (u), LV (v), we can determine
whether u, v have an ancestor/descendant relationship. Let sk0 : E → {0, 1}c logn+f be a uniformly
random labeling of the edges. This notation is overloaded for vertices and vertex-sets as follows.

sk0
Ê
(v) =

⊕
e∈Ê−E(T ∗)
s.t. v ∈ e

sk0(e) bitwise XOR of Ê − E(T ) edges incident to v

sk0
Ê
(S) =

⊕
v∈S

sk0
Ê
(v) for S ⊂ V .
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Definition 4.2 (Edge Fault Tolerant Labels for Theorem 4.1). Fix any edge e = {u, v} ∈ E. The
label LE(e) contains

• LV (u), LV (v), and a bit indicating whether e ∈ E(T ∗).

• Either sk0(e), if e ̸∈ T ∗, or sk0E(T
∗
v ), if e ∈ E(T ∗) with v being the child of u in T ∗.

Note that since sk0(e)⊕sk0(e) = 0, this last component of LE({u, v}) is the XOR of all sk0-labels
of edges crossing the cut (T ∗v , V − T ∗v ). As a special case, sk0E(T

∗
root(T ∗)) = sk0E(V ) = 0.8

Observation 4.3 (Homomorphism from Sets to Sketches). We also let ⊕ be the symmetric differ-
ence of sets, i.e., A⊕B = (A−B) ∪ (B −A). If A,B ⊂ V , sk0(A⊕B) = sk0(A)⊕ sk0(B).

Proof of Theorem 4.1. To answer a query ⟨s, t, F ⟩ we first identify those tree edges F ∩ E(T ∗) =
{e1, . . . , ef0}, and let T ∗0 , . . . , T

∗
f0

be the connected components of T ∗ − F . We then compute

sk0E(T
∗
i ) for all i ∈ [0, f0] as follows. Suppose the deleted tree edges incident to T ∗i are Fi =

{{u1, v1}, . . . , {ut, vt}}, with vj the child of uj . We claim that sk0E(T
∗
i ) is

sk0E(T
∗
i ) =

⊕
j∈[t]

sk0E(T
∗
vj ),

which can be calculated from the labels of F . If T ∗i is rooted at v1, then

T ∗i = T ∗v1 − (T ∗v2 ∪ · · · ∪ T ∗vt) =
⊕
j∈[t]

T ∗vj ,

and if T ∗i is rooted at root(T ∗), then T ∗i = T ∗v1 ∪ · · · ∪ T ∗vt =
⊕

j∈[t] T
∗
vj . Correctness follows from

Observation 4.3, and the fact that sk0(S) = sk0(S)⊕0 = sk0(S)⊕ sk0(V ) = sk0(S), for any S ⊂ V .
See Fig. 6.

…

Figure 6:

We can then delete the contribution of edges from F − E(T ∗) by setting

sk0E−F (T
∗
i ) = sk0E(T

∗
i )⊕

⊕
{u,v}∈F−E(T ∗)

u∈T ∗
i ,v ̸∈T ∗

i

sk0({u, v}).

8Here 0 refers to a zero-vector of the appropriate length.
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Consider a set S ⊂ V , which is the union of some strict subset of {T ∗0 , . . . , T ∗f0}. Then sk0E−F (S) =⊕
T ∗
i ⊆S

sk0E−F (T
∗
i ) is the XOR of the sk0-labels of edges crossing the cut (S, S). Thus, if S is the

union of some connected components in G − F , then sk0E−F (S) = 0. The converse is true with
high probability, since the expected number of false positive zeros (over all non-trivial partitions of
{T ∗0 , . . . , T ∗f0}) is (2

f0 − 1)2−(c logn+f) < n−c.
Using Gaussian elimination, we find a subset I ⊂ [f0+1] for which S =

⋃
i∈I T

∗
i and skE−F (S) =

0, then recursively look for more such subsets in I and [f0 + 1] − I. The leaves of this recursion
tree enumerate all connected components of G − F , assuming no false positives. We can then
answer connectivity queries w.r.t. G − F in O(min{ log logn

log log log n ,
log f

log logn}) time using predecessor
search [PT06, PT14] over the set of DFS-numbers of endpoints of edges in F ∩ E(T ∗).

Dory and Parter’s [DP21] preprocessing algorithm takes linear time O(m) to generate each bit
of the labeling, or O(m(f + log n)) time in total. Assuming a machine with (log n)-bit words,
the random edge labels {sk0(e) | e ∈ E} can be generated in O(m(1 + f/ log n)) time. It takes
O(m(1+f/ log n)) to form {sk0(v) | v ∈ V }, then another O(n(1+f/ log n)) to generate {sk0(T ∗v ) |
v ∈ V } with a postorder traversal of T ∗.

4.2 A Smaller Labeling Scheme

Theorem 4.4. Fix any undirected graph G = (V,E) and integer f ≥ 2 log2 n. There are randomized

labeling functions LV : V → {0, 1}O(logn) and LE : E → {0, 1}O(log2 n log(f/ log2 n)) such that given
any query ⟨s, t, F ⟩, F ⊂ E, |F | ≤ f , with high probability one can determine whether s and t are
connected in G− F by inspecting only LV (s), LV (t), {LE(e) | e ∈ F}.

The vertex labeling function LV of Theorem 4.4 is the same as Theorem 4.1; only the edge-labels
will be different. As in [DP21], the edge-label sketches contain the names of a set of edges XORed
together. We need to be able to decide (w.h.p.) when this set has cardinality zero, one, or greater
than one. Lemma 4.5 improves the seed-length of the singleton-detection schemes of Ghaffari and
Parter [GP16] and Gibb, Kapron, King, and Thorn [GKKT15] from O(log2 n) bits to O(log n) bits.
See Appendix B for proof.

Lemma 4.5. There are functions uid : {0, 1}O(logn)×E → {0, 1}O(logn) and singleton : {0, 1}O(logn)×
{0, 1}O(logn) → {0, 1}O(logn) ∪ {⊥} with the following properties.

• Given uids(e) where e = {u, v} and any seed s ∈ {0, 1}O(logn), we can recover LV (u), LV (v)
with probability 1.

• For any single-edge set E′ = {e∗} ⊂ E and any seed s ∈ {0, 1}O(logn), singletons(
⊕

e∈E′ uids(e)) =
uids(e

∗) with probability 1.

• When |E′| > 1, Pr[singletons(
⊕

e∈E′ uids(e)) =⊥] = 1−1/poly(n). With probability 1/poly(n),
it may return a false positive uid(e), where e may or may not be in E′. (These probabilities
are over the choice of the random seed s.)

For brevity the subscript s is always omitted.
We construct an ℓ0-sampling sketch as in [KKM13, AGM12] as follows. Let B = Θ(log(f/ log2 n)).

For each i ∈ [B], ranki : E → Z+ is a random rank assignment such that Pr(ranki(e) = j) = 2−j ,

46



independent of other edges. Define sk(e) to be a B × logm matrix where

sk(e)[i, j] =

 uid(e) if ranki(e) = j,

0 otherwise.

Overloading the notation to vertices and vertex sets,

skÊ(v) =
⊕

e∈Ê−E(T )
s.t. v ∈ e

skÊ(e),

skÊ(S) =
⊕
v∈S

skÊ(v).

Here ⊕ is applied entrywise to the sketch array.

Definition 4.6 (Edge Fault Tolerant Labels for Theorem 4.4). The label LE(e), e = {u, v} has
bit-length O(log2 n log(f/ log2 n)). It consists of:

• The random O(log n)-bit seed s.

• The sketch from Theorem 4.1, where sk0 : E → {0, 1}log2 n assigns log2 n-bit labels, indepen-
dent of f . Specifically, it includes LV (u), LV (v), and either sk0(e), if e ̸∈ T ∗, or sk0(T ∗(v)),
where v is the child of u, if e ∈ T ∗.

• Either sk(e), if e ̸∈ T ∗, or skE(T
∗
v ), if e = {u, v} ∈ T ∗, where v is the child of u in T ∗.

Theorem 4.4 is proved in the remainder of this section.

Consider a query ⟨s, t, F ⟩. Removing the faulty tree edges {e1, . . . , ef0} = F ∩E(T ∗) results in a
set of trees {T ∗0 , . . . , T ∗f0}. Suppose the deleted tree edges incident to T ∗i are {{u1, v1}, . . . , {ut, vt}},
with vj the child of uj , and let Fi ⊂ F be the set of non-tree edges with exactly one endpoint in
T ∗i . Then

skE−F (T
∗
i ) =

⊕
j∈[t]

skE(T
∗
vj )⊕

⊕
e∈Fi

sk(e), and sk0E−F (T
∗
i ) =

⊕
j∈[t]

sk0E(T
∗
vj )⊕

⊕
e∈Fi

sk0(e),

which can be computed directly from the labels {LE(e) | e ∈ F}.
At this point we run B = O(log(f/ log2 n)) probabilistic Bor̊uvka steps. We begin with the

partition P0 = {T ∗0 , . . . , T ∗f0} of V and maintain the loop invariant that after i Bor̊uvka steps, for

each part P ∈ Pi, we have the sketches skE−F (P ) and sk0E−F (P ). Here Pi is a coarsening of Pi−1.
In the (i+1)th Bor̊uvka step we attempt, for each P ∈ Pi, to extract from skE−F (P ) the uid(e)

of an edge e = {u, u′}, with u ∈ P and u′ ∈ P ′ ̸= P , then unify P and P ′ in Pi+1.

Lemma 4.7 (Cut Sketch [AGM12, KKM13]). For any i and P ∈ Pi, with constant probability
there exists a j such that singleton(skE−F (P )[i, j]) = uid(e). Conditioned on singleton returning a
uid(e), e ∈ E − F is an edge crossing the cut (P, P ), with probability 1− 1/poly(n).

Proof. Suppose the number of edges in E − F crossing the cut (P, P ) is in the range [2j−1, 2j),
then with constant probability there is exactly one such e with ranki(e) = j, in which case
singleton(skE−F (P )[i, j]) = uid(e). By Lemma 4.5, the probability that singleton(skE−F (P )[i, j′])
returns a false positive, for any j′ ∈ [logm], is logm/poly(n) = 1/poly(n).
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Let XP ∈ {0, 1} be an indicator for the event that skE−F (P ) reports a valid edge in the (i+1)th
Bor̊uvka step. If the {XP }P∈Pi were independent then Chernoff-Hoeffding bounds would imply that∑

P XP is concentrated around its expectation, meaning the number of non-isolated parts in the
partitions would drop by a constant factor, w.h.p., so long as there are Ω(log n) non-isolated parts.
However, the {XP } are not independent, so we require a more careful analysis.

Lemma 4.8. Let P∗i ⊂ Pi be the parts that are not already connected components of G− F . With
probability 1− exp(−Ω(|P∗i |)), |P∗i+1| < 0.94|P∗i |.

Before proving Lemma 4.8 let us briefly explain how queries are handled. We use the sk-sketches
to implement B = O(log(f/ log2 n)) Bor̊uvka steps. The success of these steps are independent, as
step i only uses skE−F (P )[i, ·], which depends only on ranki. Lemma 4.8 guarantees that the number
of non-isolated components drops by a constant factor in each step, hence after B Bor̊uvka steps
the number of non-isolated parts is at most f ′ = (log2 n)/2 with probability 1− exp(−Ω(log2 n)).

We declare P isolated if sk0E−F (P ) = 0, then determine the connected components of the remain-
ing components using Gaussian elimination on the sk0-sketches {sk0E−F (P ) | P ∈ PB, P non-isolated},
exactly as in Theorem 4.4. This last step succeeds with probability 1 − exp(−Ω(log2 n)) as sk0 as-
signs edge labels with log2 n = f ′ + (log2 n)/2 bits.

The proof of Lemma 4.8 uses the following martingale concentration inequality.

Theorem 4.9 (See [DP09] or [CL06]). Let f = f(Ym) be some function of independent random
variables Ym = (Y1, . . . , Ym). Define ∆i = E(f | Yi)−E(f | Yi−1), vi = lim supYi−1

V(∆i | Yi−1),
V =

∑
i vi, and M be such that ∀i.∆i ≤M . Then for any λ > 0,

Pr(E(f)− f ≥ λ),Pr(f − E(f) ≥ λ) ≤ exp

(
− λ2

2(V + λM/3)

)
.

Proof of Lemma 4.8. We order the edges in E−F with endpoints in distinct components arbitrarily
as e1, . . . , em and let Yj = ranki(ej). Define f(Ym) =

∑
P∈Pi

XP , where XP is an indicator for
the event that exactly one edge e incident to P has ranki(e) ≥ ⌊logDeg(P )⌋ + 1, where Deg(P ) is
the number of E − F edges with exactly one endpoint in P . Clearly f is an underestimate for the
number of components P that isolate a single incident edge in skE−F (P )[i, ·].

For p = Pr(ranki(e) ≥ ⌊logDeg(P )⌋ + 1) = 2−⌊logDeg(P )⌋, we have E(XP ) = Deg(P )p(1 −
p)Deg(P )−1 ≥ Deg(P )pe−Deg(P )p. In the interval [1, 2) this is minimized when Deg(P )p → 2, so
E(XP ) ≥ 2e−2 > 0.27.

Suppose ej joins parts P, P ′ ∈ Pi. Note that revealing Yj = ranki(ej) can only change the

conditional probability of XP and XP ′ . In particular, ∆j ≤M
def
= 2 and

V(∆j | Yj−1) = E((XP − E(XP | Yj−1))
2 | Yj−1) + E((XP ′ − E(XP ′ | Yj−1))

2 | Yj−1)

+ 2E((XP − E(XP | Yj−1))(XP ′ − E(XP ′ | Yj−1)) | Yj−1), (3)

where the expectations are over choice of Yj . Suppose that Yj−1 reveals the levels of all but g
edges incident to P , and among those revealed, b are at level at least ⌊logDeg(P )⌋+ 1.

Case b ≥ 2. Then it is already known that XP = 0.
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Case b = 1. Then XP = 1 iff the remaining g edges choose levels at most ⌊logDeg(P )⌋.

E((XP − E(XP | Yj−1))
2 | Yj−1)

= p · (0− (1− p)g)2 + (1− p) · ((1− p)g−1 − (1− p)g)2

≤ p(1− p)2 + (1− p)p2 = p(1− p) (maximized at g = 1.)

Case b = 0. Then XP = 1 iff exactly one of the remaining g edges chooses a level at least
⌊logDeg(P )⌋+ 1.

E((XP − E(XP | Yj−1))
2 | Yj−1)

= p · ((1− p)g−1 − gp(1− p)g−1)2 + (1− p) · ((g − 1)p(1− p)g−2 − gp(1− p)g−1)2

≤ p · (1− p)2 + (1− p)p2 = p(1− p) (maximized at g = 1.)

Let p = 2−⌊logDeg(P )⌋ and q = 2−⌊logDeg(P ′)⌋ where q ≤ p. From the calculations above, which
are maximized at g = 1, we can upper bound the last term of Eq. (3) as follows. Note: Yj ∈
[1, ⌊logDeg(P )⌋], (⌊logDeg(P )⌋, ⌊logDeg(P ′)⌋], and (⌊logDeg(P ′)⌋,∞) with probability 1−p, p−q,
and q, respectively.

E((XP − E(XP | Yj−1))(XP ′ − E(XP ′ | Yj−1)) | Yj−1)

= q(1− p)(1− q) + (p− q)(1− p)q + (1− p)pq

= (1− p)q(1− 2q + 2p)

and therefore

V(∆j | Yj−1) ≤ p(1− p) + q(1− q) + 2(1− p)q(1− 2q + 2p)

< 4p.

In other words, V(∆j | Yj−1) < 4/2⌊min{logDeg(P ),logDeg(P ′)}⌋ < 8/min{Deg(P ),Deg(P ′)}, and
therefore V =

∑
j V(∆j | Yj−1) < 8|P∗i |. By Theorem 4.9,

Pr(f < E(f)− λ) < exp

(
− λ2

2(V + λM/3)

)
= exp

(
− λ2

16|P∗i |+ 4λ/3

)
.

Setting λ = E(f)/2 > 0.13|P∗i |, we conclude that Pr(f ≥ E(f)/2 > 0.13|P∗i |) > 1− exp(−Ω(|P∗i |)).
This implies the number of distinct edges reported in the ith Bor̊uvka step is at least 0.13|P∗i |/2 =
0.065|P∗i |, as each edge can be reported twice, by either endpoint. Hence |P∗i+1| ≤ 0.935|P∗i |.

5 Randomized Vertex Fault Connectivity Labels

We improve the size of labeling scheme under f vertex faults from Õ(f3) [PPP24] to Õ(f2) bits.

Theorem 5.1. Fix any undirected graph G = (V,E) and integer f ≥ 1. There are randomized

labeling functions LV : V → {0, 1}O(f2 log6 n) such that given any query ⟨s, t, F ⟩, F ⊂ V , |F | ≤ f ,
with high probability one can determine whether s and t are connected in G− F by inspecting only
LV (s), LV (t), {LV (v) | v ∈ F}.
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Our scheme is a small modification to that of Parter, Petruschka, and Pettie [PPP24]. Fix
a collection of vertex sets N1, N2, . . . , Nk ⊂ V where k ≤ n.9 We say that a neighborhood hitter
S ⊂ V is good for a fault set F ⊂ V of size |F | ≤ f if

S ∩ F = ∅ and S ∩Nj ̸= ∅ for all Nj where |Nj | ≥ cf log n,

where c is a constant. A collection of neighborhood hitters S = {S1, . . . , Ss} is good for F if there
exists Si ∈ S that is good for F . Parter et al. [PPP24] reduces the labeling problem to constructing
a collection of neighborhood hitters as follows.

Lemma 5.2 (Section 5.2 of [PPP24]). Suppose we can construct a collection of neighborhood hitters
S = {S1, . . . , Ss} such that, for each fault set F of size at most |F | ≤ f , S is good for F with
high probability, then there exists a randomized vertex labeling of size O(sf2 log5 n) satisfying the
guarantee in the setting of Theorem 5.1.

We construct S = {S1, . . . , Ss} as follows. Set s = O(c log n). For each i, sample each vertex
into Si with probability 1/f . Observe that Si is good for F with constant probability. Indeed,

Pr[Si ∩ F = ∅] = (1− 1/f)|F | ≥ Ω(1).

Also, for each Nj where |Nj | ≥ cf log n,

Pr[Si ∩Nj = ∅] = (1− 1/f)|Nj | ≤ 1/nΩ(c).

Thus, by a union bound, Pr[∃j s.t. Si ∩ Nj = ∅] ≤ n−Ω(c). Hence, for any fixed F , S is not good
for F with probability at most (1 − Ω(1))s ≤ n−Ω(c). By plugging S into Lemma 5.2, we obtain
Theorem 5.1.10

6 Lower Bound for Global Connectivity under Vertex Faults

In this section, we show that any vertex labeling scheme that supports global connectivity queries
under f vertex faults requires Ω(n1−1/f/f) bits. This improves on an Ω(min{n/f, 4f/f3/2}) lower
bound of Parter et al. [PPP24], and gives a negative answer to the open problem by [PPP24], which
asks for an Õ(1)-size labeling scheme for global connectivity queries when f = O(1). In contrast,
under edge faults it is easy to answer global connectivity queries with previous schemes [DP21,
IEWM23] or Theorems 2.1 and 4.4.

The lower bound is stated below. The proof closely follows [PPP24, Theorem 9.2] but with
different parameters.

Theorem 6.1. Let L : V → {0, 1}b be a b-bit vertex labeling scheme such that, given {L(v) | v ∈ F}
where |F | ≤ f , reports whether G− F is still connected. Then b = Ω(n1−1/f/f).

9In [PPP24], each Nj = N(Γj) is a neighborhood for some component Γj in the low-degree hierarchy, which is
deterministically constructed and fixed. Here, we can think of each Nj as some arbitrary vertex set.

10Parter et al. [PPP24] gave the same construction of S, but set s = f + 1 so that the criterion that there
exists Si ∈ S with Si ∩ F = ∅ holds with probability 1, which is necessary for a deterministic labeling scheme. Our
observation is simply that in a Monte Carlo labeling scheme, we only need this property to hold with high probability.
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Proof. First, construct a “base” bipartite graph G0 = (L ∪ R,E0) as follows. Set L = {v∗} ∪
{v1, . . . , vn} and R = {u1, . . . , ur} where r =

⌈
fn1/f

⌉
. Connect v∗ to all vertices in R. For each

i ∈ [n], Fi ⊆ R is a neighbor set of vi where |Fi| = f . We make sure that the {Fi} are all distinct,
i.e., Fi ̸= Fj for all i ̸= j ∈ [n]. This is possible because

(
r
f

)
≥ (r/f)f ≥ n by the choice of r.

Finally, we create a family G of 2n graphs from a fixed graph G0 as follows: For each vi, we can
choose to add new edges into G0 so that vi is connected to all vertices in R.

Suppose an unknown graph G is promised to be from G. Observe that G − Fi is disconnected
if and only if we did not add new edges incident to vi into G0. So, by reading the labels on Fi, we
can check what choice was made for vi. Thus, the labels of all vertices in R can determine G ∈ G.
Thus, 2rb ≥ |G|, implying that b ≥ n/

⌈
fn1/f

⌉
.

7 Conclusion and Open Problems

In this paper we gave improved constructions of expander hierarchies (w.r.t. both vertex and edge
cuts) and developed shorter labeling schemes for f -fault connectivity queries, in all four quadrants
of {vertex faults, edge faults} × {randomized, deterministic}.

Our deterministic labeling scheme for edge faults has size Õ(
√
f), but it is not clear that there

must be a polynomial dependence on f .

Open Question 7.1. Is there a deterministic, f -edge-fault connectivity labeling scheme with Õ(1)-
bit labels?

In the case of randomized edge-labeling schemes, we improved Dory and Parter [DP21] from
O(log3 n) to O(log2 n log f). An interesting problem is to prove a non-trivial lower bound on edge
labels, randomized or not. There are natural targets around f = ω(log n) and f = poly(n).

Open Question 7.2. Concerning the f -edge fault connectivity problem:

• When f = ω(log n), are ω(log n)-bit edge labels necessary? (See [DP21] and Theorem 4.1.)

• When f = poly(n), are Θ(log3 n)-bit edge labels optimal? (See Ω(log3 n)-bit lower bounds of
Nelson and Yu [NY19] and Yu [Yu21] for similar problems.)

We actually know how to improve the randomized label length to O(log n log2(f log n)) if the
following conjecture holds.

Conjecture 7.3. Given a graph G and spanning tree T , define cutsizeT (e) to be 0 if e ̸∈ T and
the number of (non-tree) edges crossing the cut defined by T − e otherwise. For any c0 > 0, there
exists a c1 > 0, such that for any graph G and integer f ≫ log n, there is a distribution T of its
spanning trees such that for any F = {e1, . . . , ef} ⊂ E,

Pr
T∼T

(|{i ∈ [f ] : cutsizeT (ei) > (f log n)c1}| ≥ c1 log n) < n−c0 .

If Conjecture 7.3 were true, we would pick the spanning tree T ∼ T used in the labeling
scheme of Theorem 4.4. Since, with probability 1 − nc0 , the cut sizes for all but O(log n) trees
of T − F would be bounded by f(f log n)c1 , we would only need to store O(log(f log n)) rows in
the sketch-matrix sk, rather than O(log n), in order to implement Bor̊uvka steps. The remaining
c1 log n trees with large cut-sizes would be handled using the sk0 sketch, just as we handle the
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residual trees in Theorem 4.4. Using spanning trees [AN19] in Räcke’s tree distribution R [Räc08]
guarantees that for any e ∈ E(G), PrT∼R(cutsizeT (e) > fpoly(log n)) < 1/f . Conjecture 7.3 can
be viewed as asserting that there is a distribution where these events are sufficiently independent,
for any F ⊂ E(G) with |F | = f , so that we can get a Chernoff-like tail bound on the event
|{i ∈ [f ] : cutsizeT (ei) > (f log n)c1}| ≥ c1 log n.

The state-of-the-art for connectivity labels under vertex faults are now Õ(f2) for randomized
schemes, by Theorem 5.1, and Õ(f4) for deterministic schemes, by Theorem 3.1, while there is a
simple lower bound of Ω(f + log n) [PPP24]. We believe the correct exponent is likely 2, but any
non-trivial lower bound would be welcome.

Open Question 7.4. Is there an Ω(f1.1) lower bound for f -vertex fault connectivity labels? What
is the optimal exponent?

Theorem 6.1 strongly separated pairwise connectivity and global connectivity for vertex-labeling
schemes under vertex faults. Can we match the lower bound for global connectivity?

Open Question 7.5. Show a labeling scheme for global connectivity under vertex faults whose size
matches the lower bound by Theorem 6.1.

The (edge) expander hierarchy of Theorem 2.3 improves the expansion of Pǎtraşcu and Tho-
rup’s [PT07] by a Θ(log n)-factor. The O(f log2 n log log n) query time of their f -edge-failure
connectivity oracle contains some O(log2 n) terms unrelated to the expander hierarchy parame-
ters, so it may be worth revisiting the complexity of this problem in the deterministic setting.
See [DP20, GKKT15] for smaller and faster randomized data structures.
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A Low-Degree Steiner Trees Spanning Tough Sets

In this section, we prove that there exists a O(1/ϕ)-degree Steiner tree spanning any ϕ-vertex-
expanding set.

Lemma 3.6 (Low-degree Steiner Trees). Given a graph G such that a set A ⊆ V (G) is ϕ-vertex-
expanding in G, there is an algorithm that computes an O(1/ϕ)-degree Steiner tree that spans A in
G. The running time is O(mn log n).

In fact, we will show that the statement holds even for ϕ-tough sets, which we define now. For
any graph G and vertex set X ⊆ V (G), let cG(X) count the number of connected components C
in G containing some vertex of X. In particular, if G is connected, then cG(X) = 1 for every X.
We say that X is ϕ-tough in G if, for every vertex set S ⊆ V (G), we have

|S| ≥ ϕ · cG−S(X)

whenever cG−S(X) > 1, i.e., X is not connected in G− S.
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We say that G has toughness τ(G) = ϕ if V (G) is ϕ-tough. The toughness of graphs is a well-
studied measure of the robustness of graphs with many connections to other graph properties (see,
e.g., [Chv73, EJKS85, Win89, BBS06, Gu21]). Most literature considers the toughness of V (G),
but here, we will focus on the toughness of an arbitrary vertex subset X.

Observe that any vertex-expanding set is tough with the same parameter to up a constant.

Fact A.1. If X is 3ϕ-vertex-expanding in G, then X is ϕ-tough.

Proof. Suppose that X is not ϕ-tough, i.e. there exists S where |S| < ϕ·cG−S(X). Let c = cG−S(X)
and C1, . . . , Cc be different connected components in G− S where |Ci ∩X| > 0 for all i. Let C ′ be
the union of other connected components in G− S disjoint from X. Let L = C1 ∪ · · · ∪ C⌈c/2⌉ and
R = C⌈c/2⌉+1 ∪ · · · ∪ Cc ∪ C ′. We have that |X ∩ L| ≥ ⌈c/2⌉ ≥ c/3, |X ∩R| ≥ c− ⌈c/2⌉c/3. So

|S| < ϕc ≤ 3ϕmin{|X ∩ (L ∪ S)|, |X ∩ (R ∪ S)|},

meaning that X is not 3ϕ-vertex-expanding.

The following theorem stating that there exists a O(1/ϕ)-degree Steiner tree spanning any
ϕ-tough set immediately implies Lemma 3.6.

Theorem A.2. Given a graph G such that a set X ⊆ V (G) is ϕ-tough in G, there is an algorithm
that computes a (2/ϕ+ 3)-degree Steiner tree spanning X. The running time is O(mn log n).

The weaker statement of this theorem was shown by Win [Win89], who gave a non-algorithmic
version of this theorem when A = V , i.e., a spanning tree case.

To prove Theorem A.2, we apply the additive-1 approximation algorithm by [FR94] for finding
a minimum degree Steiner trees. The structural guarantees of their algorithm can be summarized
as follows.

Lemma A.3 ([FR94]). There is an algorithm that, given a graph G with n vertices and m edges
and a vertex X, in O(mn log n) time returns a tree T in G with maximum degree ∆ and a vertex
set B ⊆ V (T ) such that

1. Every leaf of T is a vertex in X,

2. Each vertex v ∈ B has degree DegT (v) ≥ ∆− 1, and

3. For any two vertices s, t ∈ X − B, s and t are connected in G − B if and only if they are
connected in T −B.

The last property says that the connectivity between vertices of X in G − B and T − B are
preserved exactly.

Proof of Theorem A.2. We claim that |B| < 2cT−B(X)/(∆ − 3). Since cG−B(X) = cT−B(X)
because of Property 3 and X is ϕ-tough, it must be that 2

(∆−3) > ϕ, meaning that ∆ < 2/ϕ + 3.

That is, T is a (2/ϕ + 3)-degree Steiner tree spanning X as desired and T can be computed in
O(mn log n) time.

Now we prove the claim. Just for analysis, consider the set EB of all edges incident to B. If
we delete edges in EB, observe that T −EB contains exactly |EB|+ 1 connected components. We
classify these connected components in T − EB into three types:
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1. (Trivial components): Components that contain of a single vertex v ∈ B,

2. (Internal components): Components that contains no vertex in B or X,

3. (Leaf components): Components that contains no vertex in B, but contains a vertex in X.

The number trivial components is clearly |B|. The number of internal components is at most
|EB|/2. This is because each deleted edge in EB has at most one endpoint in non-trivial components
(internal or leaf components.) But, crucially, each internal component must be incident to at least
2 deleted edges (otherwise, it will contain a leaf, which is a vertex in X). The number of leaf
components is precisely cT−B(X). Since the total number of components is |EB|+1, we have that

|EB|+ 1 ≤ |B|+ |EB|/2 + cT−B(X).

So,
cT−B(X) ≥ |EB|/2− |B|+ 1 ≥ |B|(∆− 1)/2− |B|+ 1 > |B|(∆− 3)/2

where the second inequality is because B has minimum degree ∆− 1.

B Improved Singleton-Detection Scheme: Proof of Lemma 4.5

Let a be a uniformly random odd w-bit integer and t a uniformly random w-bit integer. Tho-
rup [Tho18] proved that the function Sample : [2w] → {0, 1}, Samplea,t(x) = 1 (ax mod 2w < t)
(written a*x < t in C++ notation) is a distinguisher with probability 1/8. In other words, for any
non-empty set S ⊂ [2w],

Pr

(∑
x∈S

Samplea,t(x) ≡ 1 (mod 2)

)
≥ 1/8.

We identify the edge-set E with {0, 1}2 logn. Suppose uid : {0, 1}2 logn → {0, 1}2 logn × {0, 1}c logn
is defined so that uid(x) = (x, Sig(x)), where the signature

Sig(x) =
(
Samplea1,t1(x), . . . , Sampleac logn,tc logn(x)

)
consists of c log n independent invocations of the distinguisher. In this case uid would satisfy the
singleton-detection properties of Lemma 4.5, but with a O(log2 n)-bit seed. To see why, consider
an arbitrary set S ⊂ E of edges. Let e∗ =

⊕
e∈S e be the XOR of the names of all edges in S. If

|S| > 2, then the probability that we mistakenly believe S to be the singleton set {e∗} is

Pr

(⊕
e∈S

uid(e) = (e∗, Sig(e∗))

)
= Pr

 ⊕
e∈(S⊕{e∗})

uid(e) = (0,0)

 ≤ (7/8)c logn = 1/poly(n).

Like [GKKT15, GP16], this scheme uses a O(log2 n)-bit seed, but it is simpler than both of
[GKKT15, Gha16]. The seed-length can be reduced to O(log n) bits by taking a random walk on
an expander of length O(log n).
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Theorem B.1 (Hitting Property of Random Walks; see Vadhan [Vad12, Theorem 4.17]). If G is
a regular digraph with spectral expansion 1−λ, then for any B ⊂ V (G) of density µ, the probability
that a random walk (v1, . . . , vt) of t− 1 steps in G starting at a uniformly random vertex v1 always
remains in B is

Pr

∧
i∈[t]

(vi ∈ B)

 ≤ (µ+ λ(1− µ))t.

In our case V (G) corresponds to the set of possible seeds (a, t) for Sample, so |V (G)| = poly(n),
and µ = 7/8. Whenever λ < 1, t = O(log n) suffices to reduce the error probability to 1/poly(n).
If G is d-regular, the cost of encoding the random walk is O(log n) + t log d = O(log n) bits.
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[PP22] Merav Parter and Asaf Petruschka. Õptimal dual vertex failure connectivity labels. In
Proceedings of the 36th International Symposium on Distributed Computing (DISC),
volume 246 of LIPIcs, pages 32:1–32:19. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2022. , 1, 2

[PPP24] Merav Parter, Asaf Petruschka, and Seth Pettie. Connectivity labeling and routing
with multiple vertex failures. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing (STOC), pages 823–834, 2024. , 1, 2, 3, 14, 17, 19, 20, 24, 25,
49, 50, 52

[PSS+22] Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and
Alexandre Vigny. Algorithms and data structures for first-order logic with connectiv-
ity under vertex failures. In Proceedings of the 49th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), volume 229 of LIPIcs, pages 102:1–
102:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. 3

[PSY22] Seth Pettie, Thatchaphol Saranurak, and Longhui Yin. Optimal vertex connectivity
oracles. In Proceedings of the 54th Annual ACM Symposium on Theory of Computing
(STOC), pages 151–161, 2022. 1
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