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Abstract

We give the first deterministic algorithm that makes sub-quadratic queries to find the global
min-cut of a simple graph in the cut query model. Given an n-vertex graph G, our algorithm
makes Õ(n5/3) queries to compute the global min-cut in G. As a key ingredient, we also show

an algorithm for finding s-t max-flows of size Õ(n) in Õ(n5/3) queries. We also show efficient
cut-query implementations of versions of expander decomposition and isolating cuts, which may
be of independent interest.
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1 Introduction

Computing a global min-cut, also known as edge connectivity of a graph, is one of the most
extensively studied problems in algorithmic graph theory [GH61, Gab91, NI92, HO94, Kar94,
KS96, Kar00, KT18, HRW20, LP20, Li21, HLRW24]. In this problem, given an undirected graph
G = (V,E), we need to find a smallest set of edges F ⊂ E such that G \ F is not connected.
The problem has also been explored in various computational models, including dynamic algo-
rithms [Tho07, GHN+23, JST24], parallel algorithms [KM94, GG18, AB23], distributed algorithms
[DHNS19, MN20, DEMN21, GZ22], and streaming algorithms [MN20, AD21].

One model which has attracted significant attention recently is the cut-query model. In this
model, the edge set E is not known, instead we are allowed to make cut queries. A query is a set
S ⊆ V , and an oracle returns Cut(S), the number of edges across the cut (S, V \ S).

A straightforward algorithm is to learn the entire graph in Õ(n2) queries.1 Rubinstein, Schramm,
and Weinberg [RSW18] initiated the study of global min-cut in the cut-query model and showed a
cut-query algorithm for simple graphs with only Õ(n) queries. Mukhopadhyay and Nanongkai [MN20]
then matched this result for general weighted graphs. Recently, Apers et al. [AEG+22] improved
this result to only O(n) queries. However, all these algorithms are Monte Carlo randomized algo-
rithms.

Hence, both [RSW18] and [AEG+22] posed the question if their algorithms can be made de-
terministic – the only known lower bound for deterministic cut queries is Ω(n) [HMT88, Har08].
However, the best known deterministic algorithm for edge connectivity (or global min-cut) [GK00]
still takes O(n2/ log n) queries to learn the whole graph. This only slightly improves upon the trivial
algorithm, which makes Õ(n2) queries. Thus, there remains a big gap for deterministic algorithms,
and the following conceptual question is still open:

Can we deterministically compute the edge connectivity of a graph
without learning the whole graph?

In this work, we make significant progress towards this problem by showing two results. We show
the first deterministic cut-query algorithm for global min-cut in simple graphs with a sub-quadratic
number of queries.

Theorem 1.1. Given a simple undirected graph G, there is a deterministic algorithm that com-
putes the global minimum cut in G using Õ(n5/3) cut queries.

As a key ingredient, we show how to compute s-t max-flow using Õ(n5/3) queries.

Theorem 1.2. Given a capacitated undirected graph G with integral edge weights bounded by W ,
and two vertices s, t ∈ V , there exists a deterministic algorithm that computes an s, t max-flow in
Õ(n5/3W ) cut-queries.

In particular, Theorem 1.2 implies that we can deterministically compute s-t max-flow in simple
unweighted graphs in Õ(n5/3) cut queries. The previous algorithm for the same problem [RSW18]
obtained this bound using a randomized Monte Carlo algorithm.

Towards obtaining these results we show efficient deterministic cut-query implementation of
several tools: a version of expander decomposition, isolating cuts [LP20] and a deterministic algo-
rithm that obtains a dominating set of size Õ(nδ ) in a graph with minimum degree δ. We believe

1Throughout the paper, we use Õ(·) to hide a polylog(n) factor.
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that the cut-query version of these simple and powerful tools, some of which have formed the basis
for several fast algorithms in the last decade, may be of independent interest.

Other Query Models. Query models are widely studied in other settings as well. Many query
models can be viewed as learning the properties of a matrix M through vector-matrix-vector uTMv
queries. Different query models and the problems of concern within each model are introduced in
[RWZ20].

[ACK21] considered a different setting; they studied the query complexity when we cannot use
adaptive algorithms and can only perform a limited number of adaptive operations. [AAL21] gave

a quantum minimum s-t cut algorithms using Õ(
√
mn

2

3W
1

3 ) queries to the adjacency list of G,
with integral edge weights bounded by W . [AL21] studied the query complexity of the connectivity
problem for a graph G under the quantum query model.

Connectivity Edge Connectivity

Lower Upper Lower Upper

Deterministic
Ω(n)

[HMT88]

O( n logn
log logn)

[LC24]

Ω(n)
[HMT88]

Õ(n5/3)
(This paper)

Zero-error, Randomized
Ω(n log log(n)

logn )

[RS95]

O(n)
[AEG+22]

Ω(n)
Õ(n5/3)

(This paper)

Bounded Error, Randomized
Ω( n

logn)

[BFS86]

O(n)
[AEG+22]

Ω(n log log(n)
logn )

[AD21]

O(n)
[AEG+22]

Quantum Ω(1)
O(log5(n))
[AL21]

Ω(1)
Õ(

√
n)

[AEG+22]

Table 1: The cut query complexity of connectivity and edge connectivity on simple graphs in various
models. Before our work, the best deterministic and zero-error upper bound was from [GK00], they
use O(n2/ log n) queries by learning the entire graph. Additionally, the lower bound for zero-error
edge connectivity comes from an unpublished article by Troy Lee and Adi Shraibman: “On the
communication complexity of edge connectivity”. For more details, see [AEG+22].

2 Technical Overview

Maximum s-t flow: In this overview, we assume W = 1. That is, the input graph G has unit
capacities, and the value of s-t maximum flow is at most Õ(n). Our algorithm is based on the
classical Dinitz’s algorithm [Din06], which we recall below.

The algorithm maintains a flow f and proceeds in iterations. In each iteration, we first construct
the (directed) residual graph Gf for the flow f . Next, we obtain the layered graph GL from Gf .
The vertex set of GL is V . Define layers L0, L1 . . ., where Li is the set of vertices at distance i from
s in Gf . The edge set of the layered graph is the set of edges {u, v} in E(Gf ), such that u ∈ Li and
v ∈ Li+1 for some i. A blocking flow f ′ is then a flow from s to t in GL, such that on every flow
path, some edge is saturated (that is, the flow through the edge equals its capacity). Let dist(s, t)
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denote the length of the shortest (directed) path from s to t in GL. Finally, we find a blocking flow
f ′ and augment the flow f with f ′, and proceed to the next iteration. The crucial property of the
algorithm is that, after each iteration, dist(s, t) must strictly increase. Once we reach an iteration
where a blocking flow of non-zero value does not exist, the obtained flow f is maximum. We will
use the standard fact that once dist(s, t) ≥ n2/3, the total additional units of flow that can be sent
in subsequent iterations is at most O(n2/3).

To make only sub-quadratic cut queries, our key contribution is to show how to compute a
blocking flow f ′ using only Õ(n + val(f ′)dist(s, t)) queries where val(f ′) denotes the value of f ′.
Our algorithm then keeps augmenting the flow via our blocking flow subroutine until the resulting
flow is maximum.

To analyze the query complexity, we divide the algorithm into two phases. The first phase con-
tains all iterations when dist(s, t) ≤ n2/3, and the second phase contains all subsequent iterations.
In the first phase, we make Õ(n ·n2/3+n ·n2/3) = Õ(n5/3) queries because (1) there are at most n2/3

iterations since, after that, we must have dist(s, t) > n2/3, (2) the total value of flow augmented
during these iterations at most the maximum flow value, which we assumed to be at most Õ(n),
and (3) dist(s, t) ≤ n2/3. In the second phase, we again make Õ(n ·n2/3+n2/3 ·n) = Õ(n5/3) queries
because (1) there are at most n2/3 iterations since, after that, f must already be maximum, (2) the
total value of flow augmented during these iterations is at most O(n2/3), and (3) dist(s, t) ≤ n.

Global minimum cut: The starting point of our global min-cut algorithm is the algorithm of
[LP20]. We give a high-level description of this algorithm below.

Given a set of terminals T , a Steiner min-cut is a minimum cut that separates some pair of
terminals, i.e., a minimum size cut (C, V \C) that satisfies C∩T , T \C 6= ∅. Note that a Steiner min-
cut when T = V (G) is a global min-cut. Suppose (C, V \C) is the minimum Steiner Cut in the graph
G. The algorithm of [LP20] is divided into two cases: one where min{|T ∩C|, |T \C|} ≤ polylog(n),
and the other where min{|T ∩ C|, |T \ C|} ≥ polylog(n).

In the first case, they find the Steiner min-cut using the isolating cuts technique and finish. In
the second case, they compute an expander decomposition and replace T by a smaller set T ′ ⊆ T
with |T ′| ≤ |T |

2 , such that some minimum Steiner cut C for T still separates T ′. Then they
recursively run the same procedure with T ′. Since they do not know which case actually happens,
they run the isolating cut subroutine at every recursion, while continuing to sparsify T . There can
be only O(log |T |) recursions since the size of T decreases by half after each recursion. Observe
that if the initial terminal set T = V (G), the algorithm must find a global mincut at some point.

Several challenges arise when implementing this algorithm in the cut-query model. First of all,
one needs to compute isolating cuts and expander decomposition in this model. But, superficially,
we can be hopeful because the common primitive for these techniques is a s-t max-flow algorithm,
and we have a new efficient algorithm when the max-flow value is at most Õ(n).

Unfortunately, the flow instances when computing isolating cuts and expander decomposition
may have max-flow value Ω(m), where m is the number of edges, even when the input graph is
simple. For example, the flow instances for computing isolating cuts have the following structure:
The super source s connects to many terminals v, and the capacity of edge (s, v) is the degree of
the vertex v. This is similar for the super sink t. When T = V (G), for example, the max-flow value
of this flow instance can be as large as Ω(m).

To overcome the above challenge, our solution is that we choose the initial terminal set T to be,
instead of the whole vertex set V (G), a dominating set D of size Õ(n/δ), where δ is the minimum
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degree. The correctness of this is based on our new and simple structural lemma (Lemma 5.3):
every cut (C, V \ C) of size at most δ − 1 must separate D, i.e., we must have D ∩ C,D \ C 6= ∅.
Therefore, assuming that global min-cut has size at most δ − 1 (otherwise, it has size δ, which is
trivial to compute), we conclude that the minimum Steiner Cut with respect to D is the global
min-cut. To initialize our terminal set as D, we show how to compute D using Õ(n) queries.

Why does starting with D help? This is because we will set up all flow instances such that only
vertices in D are connected to super source s or super sink t and the capacity of each edge incident
to s and t is at most δ + 1.2

So the max-flow value is only Õ(n/δ) · (δ+1) = Õ(n), but we prove that this new flow instance
can still be used for computing isolating cuts and expander decomposition (in Section 5.3 and ap-
pendix A respectively). Therefore, we can employ our max-flow algorithm with Õ(n5/3) queries to
compute both isolating cuts and a version of expander decomposition in only Õ(n5/3) queries.

3 Preliminaries

In this section, we will formally define terms and notations which we shall adopt throughout the
paper.

Graphs: Given an undirected simple graph G = (V (G), E(G)), we define δG to be the minimum
degree of G and λG to be the size of the minimum cut in G. For a vertex set S ⊆ V , we let G[S]
denote the subgraph induced on the set of vertices S. For a set of vertices S, we denote by ∂G(S) the
set of edges with exactly one endpoint in S. For a vertex u, we denote by NG(u) the set of vertices
v with {u, v} ∈ E(G). For a set of vertices U , we denote by NG(U) the set

⋃
u∈U NG(u) \ U , the

set of neighbors of vertices in U outside U . We denote a cut in G using the notation (S, V (G) \ S)
for S ⊆ V (G). For simplicity, we shall refer to V (G) \ S as S. We say that a vertex set S ⊆ V (G)
is a dominating set of G if, for any vertex v ∈ V (G), either v ∈ S or v has at least one neighbor in
S.

Given a directed graph H, we use distH(s, t) to represent the distance (length of the shortest
path) between two vertices s, t ∈ V (H). We drop the subscripts when the graph is clear from the
context.

Flows and residual graphs: For a flow f from s to t, we use val(f) to denote the size of
the flow f . We describe the flow by flow values f(u, v), f(v, u) for every edge {u, v} ∈ E with
f(u, v) = −f(v, u). Given a graph G with non-negative edge capacities c : E → R≥0 and a
flow f , we define the residual graph as the directed capacitated graph Gf , whose vertex set is
V (Gf ) = V . For an edge {u, v} ∈ E with flow 0 ≤ f(u, v) ≤ c(u, v), the residual capacity is defined
as cf (u, v) = c(u, v) − f(u, v) ≥ 0. We also define cf (v, u) = c(v, u) + f(u, v). Then we add two
edges in Gf : if cf (u, v) > 0, we add an edge from u to v with capacity cf (u, v) and if cf (v, u) > 0,
we add an edge from v to u with capacity cf (v, u).

Types of queries: Next, we formally define cut queries and bipartite independent set queries.

2 Strictly speaking, our max-flow algorithm takes Õ(n5/3) queries only if edges have unit capacity. But, we can
simulate an edge from super source s to vertex a of capacity τ by replacing it with τ paths: s → v1 → a, . . . , s →

vτ → a. We do similarly for the super sink t. The total number of newly added vertices is Õ(n/δ) · (δ + 1) = Õ(n).
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Definition 3.1 (Cut Query). For an undirected capacitated graph G with capacities c : E(G) →
R
+ ∪ {0}, given a set S ⊆ V (G), the cut query oracle for graph G returns the total capacity of

cut-edges Cut(S) := c(S, S) =
∑

a∈S,b∈S c(a, b).

Definition 3.2 (Bipartite Independent Set (BIS) Query). Given a (possibly directed) capacitated
graph H with capacities c : E(H) → R

+ ∪ {0} , sets A,B ⊆ V (H) as input such that A ∩ B = ∅,
the bipartite independent set query oracle returns the boolean value which indicates if c(A,B) =∑

a∈A,b∈B c(a, b) > 0.

BIS queries were introduced by [BHPNR+18] and have been extensively studied in the context
of problems on undirected graphs. In an undirected graph H, a BIS query between A and B can
be simulated with 3 cut queries since

c(A,B) =
1

2
(Cut(A) +Cut(B)−Cut(A ∪B))

We will require BIS queries on the residual graph for our maximum flow algorithm. The following
lemma demonstrates how to simulate BIS queries on the residual graph using cut queries.

Lemma 3.3. Given an undirected capacitated graph G and an explicit flow f , we can simulate a
BIS query on the residual graph Gf by using 3 cut queries in G.

Proof. Given A,B ⊆ V , the BIS query on Gf will return whether there exists a ∈ A, b ∈ B such
that cf (a, b) > 0. This is equivalent to

∑

a∈A

∑

b∈B

cf (a, b) > 0

Notice that

∑

a∈A

∑

b∈B

cf (a, b) =
∑

a∈A

∑

b∈B

c(a, b) − f(a, b)

=
∑

a∈A

∑

b∈B

c(a, b) −
∑

a∈A

∑

b∈B

f(a, b)

=
1

2
[Cut(A) +Cut(B)−Cut(A ∪B)]−

∑

a∈A

∑

b∈B

f(a, b)

We can use 3 cut queries to get Cut(A), Cut(B) and Cut(A ∪ B). Since f is explicit, we can
obtain

∑
a∈A

∑
b∈B f(a, b) in zero queries. Therefore, a BIS query in Gf can be simulated by 3 cut

queries in G.

4 Flow Algorithm

In this section, we prove our result on computing an s-t max flow of bounded size (Theorem 1.2).
Section 4.1 describes how to obtain simple primitives of the graph using BIS queries. Section 4.2
recalls Dinitz’s algorithm and its analysis. Section 4.3 describes how to implement Dinitz’s algorithm
via BIS queries.
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4.1 Simple Primitives using BIS Queries

Lemma 4.1. Given a graph G and a flow f in G, for two disjoint subsets A,B ⊆ V (G), if
EGf

(A,B) 6= ∅, we can find a neighbor of A in B (a vertex b ∈ B such that there exists a vertex
a ∈ A with (a, b) ∈ E(Gf )) in the residual graph Gf in O(log |B|) BIS queries on Gf .

Proof. Do a binary search on B. Divide B into two parts B1, B2 with roughly equal size, i.e.
|B1| ≈ |B2|. We know that either EGf

(A,B1) 6= ∅ or EGf
(A,B2) 6= ∅ because EGf

(A,B) 6= ∅. We
check which one of these is true using one BIS query. If EGf

(A,B1) 6= ∅, then we recursively find
a neighbor in B1. Otherwise, we recurse on B2. So, we use O(log |B|) BIS queries on Gf .

Corollary 4.2. For a vertex u ∈ V or a set of vertices U ⊆ V , we can learn NGf
(u) and NGf

(U)

in Õ(|NGf
(u)|) and Õ(|NGf

(U)|) BIS queries on Gf , respectively.

Proof. We first show this for a single vertex u. Let B = V \ {u}. By Lemma 4.1 we can find
a neighbor of u in B in Gf using O(log n) BIS queries. Next, delete v by setting B = B \ {v},
and invoke Lemma 4.1 to find another neighbor of u. Inductively, we learn the set NGf

(u) using
O(|NGf

(u)| log n) BIS queries.
The argument for a set of vertices U is obtained by treating the set U as one super vertex.

Corollary 4.3. Given graph G and a flow f , we can find a BFS tree in Gf with root s in Õ(n)
BIS queries on Gf .

Proof. We build the tree T in layers. Let V (T ) = {s}, and E(T ) = ∅. Additionally, we will
maintain the distance from s for each vertex u ∈ V , denoted by d(u). We initialize d(s) = 0, and
d(u) = ∞ for every other vertex.

In every iteration, we find a vertex in V (T ) with the smallest distance to s, say u. We find all
neighbors u′ of u in V \ V (T ) using Corollary 4.2. For each such neighbor u′ of u, we update the
distance as d(u′) = d(u)+1, and add u′ to V (T ) and the edge (u, u′) to E(T ). Let x be the number
of neighbors of u (in Gf ) in V \ V (T ). Then we spend Õ(x) queries for this step. We charge these
queries to the x vertices which are added to V (T ) in this step. Repeating the same process for at
most n− 1 iterations, we correctly obtain the BFS tree T .

Note that each vertex v ∈ V (T ) receives O(1) charge, and the number of vertices in T is n.
Therefore, the total query complexity is Õ(n).

4.2 Reminder of Dinitz’s Algorithm

Here we recall Dinitz’s blocking flow algorithm [Din06] and its analysis.

Definition 4.4 (Layered Graph). Let G be an undirected graph and let s and t be source and
sink vertices in V (G). Further, suppose that f is a s-t flow in G, and let Gf be the residual graph
of G with respect to f . The layered graph GL of G with respect to f is the decomposition of the
vertices of G into layers defined by their distance from the source in Gf . The i-th layer is defined
as Li = {v | distGf

(s, v) = i}. The vertex set of the layered graph is V (GL) = V (G), and the edge
set is the set of edges (u, v) of Gf such that u ∈ Li and v ∈ Li+1 for some layer i.

Note that we always have L0 = {s}. For simplicity, we will assume that the last layer contains
only the sink vertex t - if there are other vertices in this layer, we will drop them.

6



Definition 4.5 (Blocking Flow). Given a graph G, the source and sink vertices vertex s, t, and an
s-t flow f in G, let GL be the layered graph GL of G with respect to f . An s-t flow f ′ in GL is
called a blocking flow, if for every s-t path in GL, some edge is saturated by f ′

Algorithm 1 Dinitz’s blocking flow algorithm[Din06]

Input: Graph G, two vertices s and t
Output: An s-t maximum flow f in G
1: Initialize an empty flow f from s to t.
2: Construct the residual graph Gf from G and f
3: Construct the layered graph GL from Gf and the source vertex s.
4: if distGL

(s, t) > n then
5: Terminate and output the flow f .
6: else
7: Find a blocking flow f ′ from s to t in GL

8: Augment f by f ′ to obtain a new flow f ′′. Update f ← f ′′, and repeat step 2.
9: end if

The next lemma gives some simple facts about maximum flows which will be useful for the
subsequent analysis.

Fact 4.6. We have the following:

1. A flow f is maximum if and only if there is no augmenting path in the residual graph Gf .

2. If there is an s-t cut of capacity B in Gf , then

the maximum flow from s to t in G is at most val(f) +B.

Next, we need the following property of Dinitz’s algorithm (Algorithm 1).

Lemma 4.7 ([Din06]). After augmenting the flow f with a blocking flow f ′ to obtain a new flow
f ′′, the distance from s to t in the residual graph increases by at least 1. Concretely, distGf ′′

(s, t) ≥
distGf

(s, t) + 1.

Thus Dinitz’s algorithm must terminate after n iterations of blocking flow and give us a maxi-
mum flow, as after these many iterations, there cannot be an s-t path of length n. However, this
is too expensive for us. Instead, we will use a standard optimization that actually shows that the
algorithm terminates in O(n2/3W ) iterations. We provide the proof here for completeness.

Lemma 4.8. Given a capacitated graph G where each edge weight is an integer in the range [1,W ]
and two vertices s, t, Algorithm 1 finds an s-t maximum flow after O(n2/3W ) iterations of blocking
flow.

Proof. For the purpose of analysis, consider the s-t flow fi obtained after i iterations, where i is the
smallest subscript such that distGfi

(s, t) > d := n2/3. By Lemma 4.7, since the distance between
s and t in the residual graph after i iterations exceeds d, it follows that i ≤ d. This bounds the
number of iterations required.

Since the graph contains n vertices and there are at least d layers in the layered graph GL, by
the pigeonhole principle, there must exist a pair of consecutive layers Lj and Lj+1 such that |Lj |+

7



|Lj+1| ≤ O(nd ). Therefore, the total edge weight between these layers is bounded by O((nd )
2W ) =

O(n2/3W ). By the definition of the layered graph, the set of edges E(Lj , Lj+1) forms a cut between
s and t in Gfi . Thus, by Fact 4.6, the total flow from s to t is at most val(fi) +O(n2/3W ).

Consequently, the remaining flow size in the residual graph Gfi is at most O(n2/3W ). Since
each iteration of blocking flow increases the flow value by at least 1, it follows that the algorithm
can perform at most O(n2/3W ) additional iterations before termination. Therefore, the algorithm
terminates after at most O(n2/3W ) iterations in total.

4.3 Implementing Dinitz’s Algorithm via BIS Queries

Now we implement Dinitz’s blocking flow algorithm [Din06] in the cut query model.

Claim 4.9. Given a flow f such that distGf
(s, t) = d′, we can compute a blocking flow f ′, augment

the flow f with f ′, and recompute the residual graph using Õ(n+ d′ · val(f ′)) BIS queries on Gf .

Proof. We first construct the layered graph GL of Gf by running BFS in Õ(n) queries using
Corollary 4.3. This gives us L0 = {s}, ..., Ld′ = {t}. The goal is to find an s-t path in GL efficiently
using a stack-based method.

Next, we maintain a stack to track our search for an s-t path. Initially, the stack contains {s}.
At each step, let the top element of the stack be u, where u ∈ Li. We then attempt to find v ∈ Li+1

such that cf (u, v) > 0. If such v exists, we can find it using Õ(1) queries by Lemma 4.1, and we
push v onto the stack. If no such v exists, we pop u from the stack and remove u from the layered
graph, as u cannot send any flow to the next layer.

When the stack reaches a length of d′ + 1, this indicates that we have found an s-t path. We
add this flow path to f ′, adjust the residual capacities along the path, and then reset the stack to
{s} to search for another path. The process terminates when the stack is empty, meaning there is
no further flow from s to any vertex in the next layer.

Now we analyze the query complexity. In each step, we either push a new vertex onto the stack
or pop one off and remove it from the graph. Each push or pop requires Õ(1) queries. Whenever
the stack reaches length d′+1, we send flow from s to t, and the stack is reset, reducing its length by
d′. The total length of the stack can increase by at most n+O(d′) ·val(f ′), as this is the maximum
number of vertices and flow pushes in the layered graph. Therefore, the total number of queries is
at most Õ(n+ d′ · val(f ′)).

We are now ready to prove the main result, Theorem 1.2.

Proof of Theorem 1.2. By Claim 4.9, a single blocking flow iteration requires Õ(n + d′ · val(f ′))
queries, where val(f ′) represents the current flow value, and d′ is the distance from s to t in the
layered graph. Therefore, to analyze the algorithm’s query complexity, we should consider three
factors: the total number of iterations, the flow value, and the distance. Balancing these factors is
essential for optimizing the overall query complexity.

By Lemma 4.8, we know that the number of iterations is at most O(n2/3W ). When the distance
is less than n2/3, the flow value is at most O(nW ). Conversely, when the distance exceeds n2/3,
the remaining flow value is at most O(n2/3W ).

Thus, the total query complexity can be expressed as:

∑
Õ(n+ d′ · val(f ′)) ≤ O(n

2

3W ) · Õ(n) +
∑

Õ(d′ · val(f ′))

8



Breaking it down further:

= Õ(n
5

3W ) +
∑

d′<n
2

3

Õ(d′ · val(f ′)) +
∑

d′≥n
2

3

Õ(d′ · val(f ′))

For the two cases:

1. For d′ < n
2

3 , we have

∑

d′<n
2

3

Õ(d′ · val(f ′)) ≤ n
2

3 · O(nW ) = Õ(n
5

3W )

2. For d′ ≥ n
2

3 , we have

∑

d′≥n
2

3

Õ(d′ · val(f ′)) ≤ n ·O(n
2

3W ) = Õ(n
5

3W )

It now follows that the total query complexity is at most Õ(n5/3W ), which proves the result.

5 Global Min-cut Algorithm

In this section, we present our algorithm for finding global min-cut, proving Theorem 1.1. We will
focus on obtaining the following threshold version of the result.

Theorem 5.1. Given a graph G and a parameter τ ≤ δ − 1, there is an algorithm that either

• returns a cut (C, V \ C) with size |∂C| at most τ , or

• certifies that the global min-cut in G must have a size larger than τ

in Õ(n5/3) cut queries.

Note that Theorem 1.1 now follows immediately by binary search. If the global min-cut has size
δ, we simply return the cut corresponding to of the minimum-degree vertex. We fix the parameter
τ throughout this section.

The rest of this section is dedicated to proving Theorem 5.1. We first give a crucial yet simple
observation that any dominating set must be separated by every cut of size at most δ − 1 in
Section 5.1, and show how to efficiently compute the dominating set in Section 5.2. Then, we show
how to efficiently compute minimum isolating cuts of size at most τ in the cut query model in
Section 5.3.

Given these three subsections, we are ready to implement the global minimum cut algorithm of
[LP20] in the cut query model. In high level, the algorithm starts by computing a dominating set
R and has two cases. If the minimum cut is unbalanced with respect to R, then we will compute
minimum isolating cuts with respect to subsets of R (Section 5.4). Otherwise, if the minimum cut
is balanced with respect to R, then we will compute expander decomposition with respect to R
in the cut query model (Appendix A) and use the decomposition to “sparsify” R to be a smaller
subset R′ ⊆ R that is still separated by minimum cuts (Section 5.5).

9



5.1 Dominating Sets are Separated by Small Cuts

Below, we show a simple and crucial observation: any dominating set must be separated by a cut
of size at most δ − 1.

Definition 5.2. Given a graph G, a vertex R ⊆ V is c-separated if for every cut (C, V \C) of size
|∂C| ≤ c, we have C ∩R,R \ C 6= ∅. That is, R hits both sides of the cut C.

Lemma 5.3. For any dominating set R ⊆ V , R is δ−1-separated, where δ is the minimum degree.

Proof. Suppose for contradiction that this is not the case. Then there is a cut (C1, C2 = V \ C1)
of size at most δ − 1 where R ⊆ C1. Now we have δ − 1 ≥ |E(C1, C2)| ≥ |E(R,C2)| ≥ |C2|
where the last inequality is because R is dominating. But every vertex in C2 has degree at least δ,
therefore we must have |E(C1, C2)| ≥ |C2|(δ − (|C2| − 1)) ≥ δ for 1 ≤ |C2| ≤ δ − 1, which leads to
a contradiction.

We remark that the above lemma is the crucial place where we exploit that the graph is simple.

5.2 Computing a Dominating Set

In this section, we show how to compute a dominating set efficiently in the cut-query model.

Theorem 5.4. There is a deterministic algorithm that finds a dominating set R ⊆ V of size
|R| ≤ Õ(nδ ) using Õ(n) cut-queries.

Proof. We will first state our algorithm, then prove its correctness, and finally analyze its complexity
under the cut query model.

Algorithm We construct R iteratively. Initially, we set G′ = G, R = ∅. We first apply the
following reduction rule – as long as there is a vertex in v ∈ G′ whose degree in G′ is larger than
δ
2 , we add it into R and delete v ∪NG′(v) from G′.

After exhaustively applying the above reduction rule, if V (G′) 6= ∅ and there is no vertex in
G′ with a degree larger than δ

2 , then we do the following. Consider the bipartite graph H whose
vertex set is the bipartition W1 ∪W2, where W1 = NG(R) and W2 = V (G′). The edge set of H is
the edge set of G restricted to the edges between W1 and W2.

First, observe that ∀u ∈ W2, |E(W1, u)| = deg(u)− |E(u,W2 \ {u})| ≥ δ
2 , otherwise, this vertex

would have been considered in the previous step. Thus, we have |E(W1,W2)| =
∑

u∈W2
|E(W1, u)| ≥∑

u∈W2

δ
2 ≥ |W2| δ2 . Then there exists a v ∈ W1 such that |E(v,W2)| ≥ |E(W1,W2))|

|W1|
≥ |W2|δ

2|W1|
≥ |W2|δ

2n .

We add v into R and delete all its neighbors in G′. We repeat until V (G′) = ∅, hence R must be a
dominating set.

Correctness It remains to bound the size of R. When there is a vertex in G′ with degree larger
than δ

2 , we reduce |V (G′)| by at least δ
2 each time. So we can add at most 2n

δ such vertices into R.

When no vertex in G has degree larger than δ
2 , we remove at least |V (G′)| δ

2n vertices from G′.

Thus the size of G′ reduces by at least a 1 − δ
2n fraction. Thus after O(nδ ) iterations, the size of

G′ reduces by a constant factor, and hence this step can happen at most O(nδ log n) = Õ(nδ ) many

times. In total, we have |R| ≤ 2n
δ +O(nδ log(

n
δ )) = Õ(nδ ).

10



Complexity First, we want to find a vertex v whose degree in G′ is at least δ
2 . Given a vertex

w, we can find the degree of w in G′ in O(1) queries. We enumerate each vertex w ∈ V (G′), and
find its degree deg(w). If deg(w) < δ

2 , then we mark w as irrelevant and continue. If deg(w) > δ
2 ,

then we find all its neighbors in G′ using Õ(deg(w)) queries using Lemma 4.1. Note that we delete
all these neighbors of w from G′. Let us charge the query cost uniformly to each vertex in deg(w),
and note that each vertex receives a charge of Õ(1). Observe that the degree of a vertex in G′ is
non-increasing, thus irrelevant vertices remain irrelevant.

Now it remains to analyze the case when no vertex of G′ has degree > δ
2 in G′. Recall that we

want to find a vertex v ∈ W1 such that |E(v,W2)| ≥ |E(W1,W2))|
|W1|

. We will use binary search. Divide

W1 into two (roughly) equal sized groups W11 and W12. By Lemma 4.1, using Õ(1) queries, we can

find both E(W11,W2) and E(W12,W2). By simple averaging, either E(W11,W2) ≥ |E(W1,W2))|
|W1|

|W11|
or E(W12,W2) ≥ |E(W1,W2))|

|W1|
|W12|. Without loss of generality, assume the former. We now recurse

on W11, and repeat the same process, till we reach a singleton vertex v ∈ W1, which must satisfy
|E(v,W2)| ≥ |E(W1,W2))|

|W1|
.

The total number of cut queries is at most Õ(1), since in each iteration we use Õ(1) queries and
there are at most Õ(1) iterations of the binary search. Therefore, the total query complexity of
finding the dominating set is dominated by the query complexity of the reduction rule, and hence
is at most Õ(n).

5.3 Computing Minimum Isolating Cuts

This section shows an efficient algorithm for computing a minimum isolating cut. Let us first recall
its definition below.

Definition 5.5 (Minimum Isolating Cut). For any set of vertices R ⊆ V and r ∈ R, the minimum
isolating cut of r is an {r}-(R \ {r}) min-cut. The minimum isolating cut (of R) is the minimum
sized cut among the minimum isolating cuts over all r ∈ R.

Theorem 5.6. Given an unweighted graph G and a set of vertices R ⊆ V such that |R| is at most
Õ(nτ ), there is an algorithm that either

• outputs a minimum isolating cut of R of size at most τ , or

• certifies that the minimum isolating cut of R has a size larger than τ

in Õ(n5/3) cut queries.

We remark that the algorithm can be modified easily to output an isolating cut for each r ∈ R
whose min-isolating cut has size at most τ .

Proof. First, we will state the algorithm, which follows the approach of [LP20], adapted to our
setting. Then we will discuss its correctness, and finally argue about implementation and the query
cost. We will use the concept of closest min-cuts. For two sets S and T , we say that an S-T min-cut
(X,V \X) is closest to S if for any other S-T min-cut (X ′, V \X ′), we have X ⊆ X ′.

11



Algorithm: Encode each vertex in R using a unique O(log |R|) dimensional bit vector. Next,
compute O(log |R|) different bi-partitions of the vertices in R, where each bi-partition is obtained
by selecting a coordinate c of the bit vector and grouping the vertices based on whether they have
0 or 1 in the cth coordinate. Let C be the set of these bi-partitions. Note that each pair of distinct
vertices u, v ∈ R will be separated by at least one bi-partition in C.

For each of these O(log |R|) bi-partitions (A,B) ∈ C of R, A ∩B = ∅, set up the following flow
problem. Add two vertices ssource, ssink to the vertex set of G. For each vertex a ∈ A, add an edge
(ssource, a) with capacity τ +1. Similarly, for each b ∈ B, add an edge (b, ssink) with capacity τ +1.
Every edge of G has a capacity of 1. Call the modified graph H. Find an ssource-ssink max-flow in
H.

Let fA,B be this max-flow and (CA, CB = V (G) \ CA) be the restriction of the minimum cut
corresponding to this maximum flow to G (we simply remove s and t from the cut to obtain CA, CB).
Consider the graph G′ after deleting every such cut, that is, we delete the edges ∂CA for every
bi-partition (A,B) ∈ C. For each r ∈ R, define Tr ⊆ V (G) to be the set of vertices reachable from
r in G′. Further, let R′ ⊆ R be the set of r ∈ R which satisfy the following property – for every
bi-partition (A,B) ∈ C, if r ∈ A, then r ∈ CA, and if r ∈ B, then r ∈ CB . In other words, R′ is
the subset of R whose edges to ssource or ssink are not saturated in any max-flow fA,B across all
(A,B) ∈ C (see Claim 5.7).

Let T ′
r = {r}∪(Tr \R) for each r ∈ R′, we obtain a new capacitated graph Gr from G as follows.

Contract all vertices of V \ T ′
r into vertex sr while keeping parallel edges. Then, we compute the

min-cut between r and sr in Gr. We check if it is an isolating cut for r. Let λr be the size of this
cut (and let λr = ∞ if no such cut exists). Then we check if there exists an r ∈ R′ with λr ≤ τ . If
so, we output the corresponding cut. Otherwise, we declare that the minimum isolating cut for R
has a size larger than τ . This concludes the description of the algorithm.

Correctness: We now show the correctness of our algorithm. Note that our algorithm is similar
to [LP20], but we need to argue its correctness a bit more carefully since whenever we compute an
A,B min-cut for a bi-partition, we set the capacities of the edges incident to the source and sink
vertices as τ + 1 (instead of ∞ as in their setting). On a high level, this still works since we are
only interested in the isolating cuts of size at most τ ; if there is no isolating cut of size ≤ τ , we
will simply output that this is the case. The next few lemmas formally show that our algorithm is
indeed correct.

Claim 5.7. For any bipartition (A,B) ∈ C and any a ∈ A, we say that a is saturated if in the
maximum flow fA,B, the edge (ssource, a) is saturated. Then if a is not saturated by fA,B, then
a ∈ CA. The same holds analogously for any b ∈ B.

Proof. If a /∈ CA, then the edge (ssource, a) is cut by the (ssource, ssink) min-cut. But since a min-cut
is saturated in any max-flow, this means that a must be saturated, which is a contradiction.

Claim 5.8. For each bi-partition (A,B), (CA, CB) is a minimum cut in G that separates CA ∩ A
and CB ∩B.

Proof. Since (CA, CB) is a restriction of the ssource-ssink min-cut, it follows that there exists a
feasible flow in G from vertices of CA ∩A to vertices of CB ∩B saturating every edge of ∂CA. This
flow certifies that (CA, CB) must be a minimum cut between CA ∩A and CB ∩B in G.
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Claim 5.9. Consider some terminal r ∈ R and let (Cr, V \ Cr) be the min-cut between {r} and
R\{r} where r ∈ Cr, which is closest to r (that is, the closest isolating cut for r). If |E(Cr, V \Cr)| ≤
τ , then the following statements must hold for every bipartition (A,B) ∈ C.

• r cannot be saturated in the flow fA,B.

• If r ∈ A, Cr ⊆ CA. Likewise, if r ∈ B, we must have Cr ⊆ CB.

Proof. Consider a bi-partition (A,B) ∈ C. Let us assume without loss of generality that r ∈ A,
the other case is symmetric. Since (Cr, V \ Cr) is a cut of size at most τ between r and R \ {r}, r
cannot be saturated. Therefore, by Claim 5.7, we have r ∈ CA.

Now, we will show that Cr ⊆ CA. Suppose, for the sake of contradiction, that this is not the
case. Then by submodularity of cuts, we have:

∂(Cr) + ∂(CA) ≥ ∂(Cr ∩ CA) + ∂(Cr ∪ CA).

Since Cr is the minimum cut separating r and R\{r}, it follows that ∂(Cr) ≤ ∂(Cr∩CA). Similarly,
since (CA, CB = V \ CA) is the minimum cut separating CA ∩ A and CB ∩ B (see Claim 5.8), we
must have ∂(CA) ≤ ∂(Cr ∪ CA). Combining these results, we obtain the equalities:

∂(Cr) = ∂(Cr ∩ CA) and ∂(CA) = ∂(Cr ∪ CA).

This implies that Cr ∩ C(A), which is a subset of Cr, is also a minimum cut separating r from
R \{r}. This contradicts the fact that Cr is the minimum cut between r and R \{r} that is closest
to r.

The following lemma shows that across all vertices r ∈ R′, the sets Tr are disjoint.

Lemma 5.10. For every distinct vertices r, r′ ∈ R′, we have Tr ∩ Tr′ = ∅, r ∈ Tr, and r′ ∈ Tr′.

Proof. Recall that each pair of distinct vertices in R′ is separated by at least one of the bi-partitions
defined by bit vectors. Without loss of generality, we can assume that there exists a bi-partition
(A,B) ∈ C such that r ∈ A and r′ ∈ B. Since r and r′ are not saturated, by Claim 5.7, we have
r ∈ CA and r′ ∈ CB. But then the (CA, CB) min-cut separates r from r′, and hence Tr ⊆ CA ad
Tr′ ⊆ CB. It follows that Tr ∩ Tr′ = ∅.

We are now ready to prove the correctness of our algorithm. Suppose there exists a terminal
r∗ ∈ R whose minimum isolating cut (Cr∗ , V \Cr∗) satisfies E(Cr∗ , V \Cr∗) ≤ τ . Using Claim 5.9, it
follows that we must have Cr∗ ⊆ Tr∗ (Recall that Tr∗ is defined as the set of vertices reachable from
r∗ in the graph obtained after deleting the minimum cuts for every bi-partition in C). Furthermore,
by the definition of isolating cut, we know that Cr∗ ∩ R = {r∗}, therefore Cr∗ ⊆ T ′

r∗ Hence, the
minimum r∗-sr∗ cut in Gr∗ is of size at most τ . Also by the definition of R′, we must have r∗ ∈ R′.
Since our algorithm finds an r-sr min-cut for each r ∈ R′, and we have r∗ ∈ R′, the output cut
must be a minimum isolating cut for some r ∈ R of size at most τ .
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Query complexity: For each bi-partition (A,B) ∈ C, we construct the auxiliary graph H and
compute an ssource-ssink maximum flow. For each edge (ssource, a), a ∈ A with capacity τ + 1, we
replace it with τ + 1 parallel edges each with capacity 1. We then sub-divide each of these edges
by adding an additional vertex. For each edge (b, ssink) where b ∈ B, we do the same. Then the
resulting graph is simple, has at most O(n+ |R|τ) = O(n) nodes, and every edge has unit capacity.
By Theorem 1.2, we can compute an ssource-ssink max-flow in this graph using Õ(n5/3) queries.

The (restriction to G of the) min-cut (CA, CB) can be obtained as follows. Once we obtain a
maximum flow fA,B we let CA be the set of vertices reachable from s in the residual graph GfA,B

,
and let CB = V (G)\CA. We can obtain CA by applying Corollary 4.3 to find a BFS tree with root
node ssource in GfA,B

with Õ(n) queries. Once we know (CA, CB) for each bi-partition (A,B) ∈ C,
we can find the sets Tr for each r ∈ R. We can then identify the set R′. For each r ∈ R′ we
construct the graph Gr, and find an r-sr closest min-cut in Gr. To find this min-cut, we obtain a
max-flow and find the set of vertices reachable from r. The next lemma shows that we can do this
without using too many queries.

Lemma 5.11. We can compute r-sr max flow (min cut) in Gr using Õ(|T ′
r|5/3) queries.

Proof. All flow goes from r to sr can be divided into two cases

1. Directly goes from r to sr through edge (r, sr)

2. First go through an edge (r, u), where u ∈ T ′
r \ {r}, and then goes from u to sr

It’s relatively easy to compute the flow in the first case by calculating the weight of (r, sr),
which is |E(r, V \Tr)| and can be determined with O(1) queries. Notice that in the residual graph,
all flows are the second case. The flow size of the second case is at most |E(r, T ′

r \ {r})| ≤ |T ′
r| − 1,

since each flow must use an edge between r to Cr \ {r}. Then by Theorem 1.2, we can compute it
in Õ(|T ′

r + 1|5/3) = Õ(|Tr|5/3) queries.

By Lemmas 5.10 and 5.11, the total query complexity for finding r-sr min-cuts for every r ∈ R′

is bounded by
∑

r∈R′ Õ(|Tr|5/3) = Õ(n5/3). The final equality holds since the sets Tr, r ∈ R′, are
disjoint from each other, ensuring

∑
r |Tr| ≤ n. This concludes the proof of Theorem 5.6.

5.4 Unbalanced Case

In this section, we show how to find a cut of size at most τ when this cut is unbalanced with respect
to a given terminal set R ⊆ V that is τ -separated.

Definition 5.12 (Unbalanced/Balanced Cut). For any set of vertices R ⊆ V , a cut C = (C1, C2 =
V \C1) with size at most τ , and a parameter φ ≥ poly( 1

logn), we say that C is φ-unbalanced for R

if min{|C1 ∩R|, |C2 ∩R|} ≤ ( 1φ)
3 + 1

φ , otherwise we say that C is φ-balanced for R.

The goal of this subsection is to prove the following theorem.

Lemma 5.13. Let R ⊆ V be τ -separated and |R| ≤ Õ(nτ ). If there is a cut (C, V \ C) of size at
most τ that is φ-unbalanced for R for some φ ≥ poly( 1

logn), then we can find a cut with size at

most τ in Õ(n5/3) queries.

We need the following tool called splitter for essentially deterministic subsampling vertices.
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Lemma 5.14 (Theorem 4.3 from [LP20]). For every positive integer n and k < n, there is a
deterministic algorithm that constructs a family F of subsets of [n] such that, for each subset
S ⊆ [n] of size at most k, there exists a set S′ ∈ F with |S ∩ S′| = 1. The family F has size
kO(1) log n and contains only sets of size at least 2.

Proof of Lemma 5.13. Let F be the family of subsets of R from Lemma 5.14 such that, for any
unbalanced cut C, there is a R∗ ∈ F with |R∗∩C| = 1. Note that |F| = [( 1φ )

3+ 1
φ ]

O(1) log |R| = Õ(1).
Then we run the algorithm of Theorem 5.6 for each set in F . Since R∗ ∈ F , the algorithm will

successfully conclude that the isolating cut for R∗ is of size at most τ . The total number of queries
is |F| · Õ(n5/3) = Õ(n5/3).

5.5 Balanced Case

We say that R is φ-balanced if every cut (C, V \ C) of size |∂C| ≤ τ is φ-balanced for R. In the
previous section, if R is τ -separated, but not φ-balanced, then Lemma 5.13 will find a cut of size
at most τ for us. In this section, we handle the case when R is τ -separated and φ-balanced using
the following lemma.

Lemma 5.15. Suppose that R is τ -separated and φ-balanced. Then, we can make Õ(n5/3) cut
queries and either

• find a set R̃ such that |R̃| ≤ O(φ|R| log6 n) + |R|
logn and R̃ is τ -separated, or

• find a cut in G with cut-size at most τ .

Towards proving this key lemma, we begin by introducing the notion of expanders and expander
decomposition that we need.

Definition 5.16 ((φ,R)-expander). Given a graph G and a terminal set R ⊆ V , G is a (φ,R)-
expander if for every cut (S, V \ S), we have

Φ(S) =
|∂S|

min{|R ∩ S|, |R \ S|} ≥ φ(τ + 1)

We work with graphs with a slightly weaker notion of expansion, which we call (φ,R)-almost
expanders.

Definition 5.17. Given a graph G = (V,E) and a terminal set R ⊆ V , G is a (φ,R) almost-
expander with core R′ if R′ ⊆ R, |R′| ≥ |R|(1− 1

logn), and for any cut (S, V \ S) in G, we have

Φ(S) =
|∂S|

min{|R′ ∩ S|, |R′ \ S|} ≥ φ(τ + 1)

Our next and crucial step in this section is to obtain a decomposition into (φ,R)-almost ex-
panders. We defer this proof to Appendix A since this proof is mostly standard.

At a high level, the algorithm combines an implementation of the cut-matching game [KKOV07]
together with the expander pruning technique [SW19]. The cut player trivially needs zero queries
since the auxiliary graph will be explicitly maintained. The matching player applies our algorithm
for s-t maximum flow. This takes Õ(n5/3) queries. Similar to the flow instance in Theorem 5.6,
we send flow between terminal set R of size Õ(nτ ) and each terminal sends at most τ + 1 units of

flow. So the maximum flow is at most Õ(n) and, hence, our flow algorithm from Theorem 1.2 uses
Õ(n5/3) queries. The formal statement is summarized below:
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Lemma 5.18. Given a graph G = (V,E) and a terminal set R ⊆ V with |R| ≤ Õ(nτ ) and a
parameter φ = poly( 1

logn), one can find a partition of the vertex set V into subsets V1, V2, . . . , Vk,

where Ri = Vi ∩ R for each i ∈ [k], and further obtain sets R′
1 ⊆ R1, R

′
2 ⊆ R2, . . . , R

′
k ⊆ Rk using

Õ(n5/3) queries such that

1. Each G[Vi] is a (φ,Ri) almost expander with core R′
i.

2. The number of crossing edges
∑

i6=j E(Vi, Vj) = O(φ|R|(τ + 1) log6 n).

After obtaining this decomposition, we classify each part as follows.

Definition 5.19. For each set Vi, i ∈ [k], we say that Vi is

1. empty, if R′
i = ∅

2. small, if 1 ≤ |R′
i| ≤ ( 1φ )

2

3. large, if |R′
i| > ( 1φ)

2

Now, we construct R̃ as follows:

1. Include every vertex of Ri \R′
i in R̃, for each i ∈ [k].

2. For each Vi, i ∈ [k],

• if it is empty, do nothing;

• if it is small, add an arbitrary vertex of R′
i to R̃;

• else if it is large, add 1 + 1
φ arbitrary vertices of R′

i to R̃.

Lemma 5.20. Suppose that R is τ -separated and φ-balanced. If |∂Vi| ≥ τ + 1 for each Vi, then

|R̃| ≤ O(φ|R| log6 n) + |R|
logn and R̃ is τ -separated.

Proof. Since |∂Vi| ≥ τ + 1 and
∑

i6=j E(Vi, Vj) = O(φ|R|(τ + 1) log6 n), the number of subsets is

bounded by k ≤ O(φ|R| log6 n). Therefore, the total number of vertices in R̃ ∩ R′
i across all small

Vi is at most O(φ|R| log6 n).
For each large Vi, observe that we pick only an O(φ) fraction of R′

i to add to R̃. Additionally,

for each i, we have |Ri \R′
i| ≤ |Ri|

logn . Combining these results, we have

|R̃| ≤ |R|
log n

+O(φ|R| log6 n)

as desired. Now we show that R̃ must be τ -separated.
Assume, for the sake of contradiction, that R̃ is not τ -separated. This implies the existence of

a cut C = (C1, C2 = V (G) \C1) with cut-size ∂C ≤ τ such that R̃ ⊆ C1. We will demonstrate that
this cut C must be φ-unbalanced for R, contradicting our assumption that R is φ-balanced.

Before we proceed further, we will show that, in this case, C2 must contain the “smaller” side
of every large Vi. The next lemma will clarify this point.

Claim 5.21. If C2 ∩ R̃ = ∅, then for any large Vi, i ∈ [k], we must have |R′
i ∩ C2| ≤ |R′

i ∩C1|.
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Proof. Since Vi is a (φ,Ri) almost-expander with core R′
i and (C1, C2) is a cut with cut-size at

most τ , we must have min{|R′
i ∩C1|, |R′

i ∩ C2|} ≤ τ
φ(τ+1) ≤ 1

φ .

Thus if |R′
i ∩ C1| ≤ |R′

i ∩ C2|, then |R′
i ∩ C1| ≤ 1

φ . Recall that we picked 1 + 1
φ vertices from

R′
i and added them to R̃. It then follows that at least one vertex of R′

i ∩ C2 was added to R̃, and

hence R̃ ∩ C2 6= ∅, which is a contradiction.

Now, we show that C is φ-unbalanced for R. First, observe that
∑

large Vi
|R′

i ∩ C2| ≤ 1
φ ;

otherwise,

|∂C| ≥
∑

large Vi

φ(τ + 1)min{|R′
i ∩C1|, |R′

i ∩ C2|} = φ(τ + 1)
∑

large Vi

|R′
i ∩ C2| ≥ τ + 1.

where equality holds by Claim 5.21.
Second, the number of small Vi satisfying R′

i ∩ C2 6= ∅ must be at most 1
φ ; otherwise,

|∂C| ≥
∑

small Vi

φ(τ + 1)min{|R′
i ∩ C1|, |R′

i ∩ C2|} ≥
∑

small Vi,R′

i∩C2 6=∅

φ(τ + 1) ≥ τ + 1

where we use the fact that |R′
i ∩C1| ≥ 1, otherwise we must pick a vertex in R′

i ∩C2 into R̃, which
is a contradiction.

In total, we have

|R ∩ C2| =
∑

i∈[k]

|R′
i ∩ C2| ≤

∑

large Vi

|R′
i ∩ C2|+

∑

small Vi,|R′

i∩C2|6=∅

|R′
i ∩ C2| ≤

1

φ
+ (

1

φ
)3

where the equality holds because (Ri \R′
i)∩C2 = ∅ for any i ∈ [k]; otherwise, we have C2 ∩ R̃ 6= ∅.

This implies that C is φ-unbalanced for R, contradicting that R is φ-balanced.

We are now ready to prove Lemma 5.15.

Proof of Lemma 5.15. First, we compute a (φ,R) almost-expander decomposition using Lemma 5.18,
which results in the sets V1, V2, . . . , Vk, R1, R2, . . . , Rk and the cores R′

i ⊆ Ri for each i ∈ [k].

Next, we make Õ(n) queries to determine if there exists a set Vi such that |∂Vi| ≤ τ . If such a
set exists, we return this cut and terminate.

If no such set exists, we construct R̃ ⊆ R as described previously. In this case, since |∂Vi| ≥ τ+1

for each i ∈ [k], Lemma 5.20 guarantees that |R̃| ≤ O( 1φ |R| log6 n)+ |R|
logn and that R̃ is τ -separated.

Then, we can return R̃ as desired.

Theorem 5.1 now follows by combining Lemma 5.13 and Lemma 5.15.

Proof of Theorem 5.1. We begin by computing a dominating set R using Theorem 5.4.
Now let φ = 1/ log10 n. Using both Lemmas 5.13 and 5.15 with the set R as the terminal set,

we proceed in one of two ways: if we find a cut with size at most τ in Õ(n5/3) queries, then we are
done. Otherwise, if we find a subset R′ ⊆ R such that |R′| ≤ 1

2 |R| and R′ is still τ -separated. We
replace R by R′ and recursively continue the algorithm till we either find a cut of size at most τ ,
or confirm that no such cut exists.
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Since at each step |R′| ≤ 1
2 |R| by the choice of φ, so the recursion can proceed for at most

O(log |R|) = Õ(1) iterations. This process guarantees that we will eventually find a cut of size at
most τ or declare that no such cut exists. Finally, note that the total query complexity is Õ(n5/3)
since we make at most Õ(1) calls to the subroutines in Lemmas 5.13 and 5.15.

6 Conclusion

We show the first subquadratic deterministic algorithms for the s-t minimum cut and global mini-
mum cut problems in simple graphs, both using Õ(n5/3) cut queries. Nevertheless, there remains
a considerable gap between our results and the current lower bound of Ω(n) [HMT88]. Improving
the lower bound to ω(n) is very interesting as it would separate deterministic and randomized cut
query complexity for the global min-cut problem.

For the upper bound side, algorithms using Õ(n) queries would be exciting. This algorithm
must be very different from ours because we explicitly compute a maximum s-t flow and the flow
of value ν may have representation size as large as Ω(n

√
ν) = Ω(n1.5) even on simple unweighted

graphs. In fact, it is known that, given any simple unweighted graph G where the maximum s-t
flow value is ν, there exists a subgraph H ⊆ G with O(n

√
ν) edges such that the maximum s-t flow

in H has the same value as the one in G and this bound is tight (see, e.g., [KL98, RSW18]). Thus,
it is interesting whether there is a (near-optimal) algorithm for explicitly computing maximum s-t
flow in a simple unweighted graph using Õ(n

√
ν) cut queries. Through our framework, this would

immediately imply a global min-cut algorithm using Õ(n1.5) cut queries, reaching the barrier of
this approach.

It is interesting to generalize our result to weighted graphs or just non-simple unweighted graphs.
Our technique does not work because Lemma 5.3 is specific to simple unweighted graphs.
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A Computing Expander Decomposition: Proof of Lemma 5.18

Definitions. Given a graph H = (V (H), E(H)), define the sparsity of a cut (S, V (H) \ S) as
|E(H,V (H)\S)|

min{|S|,|V (H)\S|} . Further, given a terminal set R, we define the sparsity with respect to R of a cut

(S, V (H) \ S) as |E(H,V (H)\S)|
min{|S∩R|,|(V (H)\S)∩R|} . We say that the set R is φ-expanding in H if there is no

cut (S, V (H) \S) in H which has sparsity at most φ with respect to R. Further, H is φ-expanding
if V (H) is φ-expanding in H. We say that a cut (S, V (H) \ S) is b-balanced with respect to R if
both S ∩R and (V (H) \ S) ∩R have size at least b|R|. For a set of vertices S ⊆ V (H), we define
the volume of S, volH(S), as the sum of the degrees of the vertices in S in H. The conductance

of a cut (S, V \ S) in H is defined as E(S,V \S)
min{volH(S),volH(V \S)} . The conductance of H is the minimum

conductance across all such cuts. We drop the subscripts when the graph H is clear from the
context.
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The following is the key subroutine we need for finding a decomposition into (φ,R) almost-
expanders.

Lemma A.1 (One-step of Expander Decomposition). Given a graph G = (V,E), terminal set

R ⊆ V and parameters φ = poly( 1
logn) and τ ≥ 1 such that |R| ≤ Õ(nτ ), using Õ(n

5

3 ) queries we
can either

• return a cut (S, S) that is ( 1
log5 n

)-balanced and (φτ)-sparse with respect to R.

• return a set R′ ⊆ R of size |R′| ≥ (1− 1
logn)|R| such that R′ is φτ

log5 n
-expanding in G.

Before showing this crucial lemma, let us first show why it implies Lemma 5.18.

Proof of Lemma 5.18. We start with the input graph G and run the algorithm of Lemma A.1.
If Lemma A.1 returns a cut (S, S), then we recursively apply Lemma A.1 on G[S] and G[S]. On
the other hand, if Lemma A.1 returns a set R′, then G is a (φ,R) almost expander with core R′.
The recursion depth for the first case is at most log5 n log |R|, and every leaf of the recursion tree,
where the second case occurs, together give us the decomposition into (φ,R) almost expanders.

The argument about the number of crossing edges is a standard charging argument: Every time
we obtain a cut (S, S), that is 1

log5 n
balanced and φ(τ +1) sparse with respect to R, we charge the

number of cut edges to the terminals on the side of the cut with smaller number of terminals. Since
each cut is φ(τ + 1) sparse, each terminal r ∈ R receives a charge of at most φ(τ + 1). Since every
cut we find is 1

log5 n
balanced, the recursion depth is at most log5 n log |R|, and hence a terminal is

charged at most log5 n log |R| ≤ log6 n times. It follows that the number of cut edges is at most
O(φ|R|(τ + 1) log6 n).

We now proceed to prove Lemma A.1. The key ingredient is the cut-matching game of
[KKOV07]. Here, we state the cut-matching game where in each round the matching player returns
a perfect b-matching instead of a perfect matching. A perfect b-matching is a set of edges such that
each vertex v has exactly b edges in the set containing v. A perfect b-matching between two sets A
and B is a perfect b-matching in which every edge is between a vertex of A and a vertex of B. We
now describe the cut-matching framework.

• Start with an empty graph X with n vertices.

• In round i, the cut player chooses a bisection (A,B) of V (X).

• Then, the matching player returns an arbitrary perfect b-matching Mi between A and B, and
the edges in Mi are added to E(X).

The goal of the cut player is to guarantee that, after a few rounds, the graph X (whose edge
set is the union

⋃
i Mi) has sparsity at least b, i.e., for every S ⊆ V (X), we have

EX(S, V (X) \ S) ≥ b ·min{|S|, |V (X) \ S|}.

Theorem A.2 ([KKOV07]). In the cut-matching game where the matching player always returns a
perfect b-matching in each round, there exists an algorithm for the cut player that, after r = O(log n)
rounds, guarantees that X has sparsity at least b.
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We remark that the running time of Theorem A.2 is exponential, but since we will know the
entire graph X along with its edge set E(X) whenever we invoke this theorem, we spend zero cut
queries to run this algorithm, and hence it does not affect the query complexity of our algorithm.
However, if we insist on a polynomial time implementation, we can still guarantee that

⋃r
i=1 Mi

has sparsity at least b/O(
√
log n) using [ARV09]. For the rest of the section, for simplicity, we work

with the exponential time cut player as in Theorem A.2.
Before we prove Lemma A.1, we need an implementation for the matching player. Towards

this, let us define the notion of an almost perfect b-matching.

Definition A.3. Given sets A,B, parameters β, b and a graph H, a set of edges F is a β-almost
perfect A-B b-matching, if there exists a set of βb edges F ′, such that F ∪F ′ is a perfect b-matching
between A and B.

The matching player, in each round, either finds a sufficiently balanced and sparse cut with
respect to the terminal set R, or returns an embedding of an almost perfect b-matching. In every
round, if we find a balanced and sparse cut, we return this cut. Else, we use the almost perfect
matching, together with a small number of fake edges, to obtain a perfect matching and make
progress for the cut-matching game.

Before stating this theorem, we define the notion of a flow embedding. Given a set of edges M ,
we say that M �flow 1

φG to mean that there is a multicommodity flow in G that can simultaneously

send one unit of flow across each edge in M with congestion 1
φ .

Theorem A.4 (Matching Player). Suppose we are given a graph G = (V,E), integers τ, β ≥ 1,
a terminal set R ⊆ V such that |R| ≤ Õ(nτ ) and a parameter φ = poly( 1

logn). Given a bisection

(A,B) of R, s.t. |A| = |B| = |R|
2 there is an algorithm that either

(1) finds a cut (S∗, V \ S∗) with min{|S∗ ∩ A|, |(V \ S∗) ∩ B|} ≥ β, such that (S∗, V \ S∗) is
φ(τ + 1) sparse with respect to R.

(2) obtains a flow embedding of a β-almost perfect A-B (τ+1)-matching M such that M �flow 1
φG

using Õ(n
5

3 ) queries.

Proof. Add two vertices ssource and ssink to the original graph. Connect ssource to all vertices in A
with capacity τ + 1, and ssink to all vertices in B with capacity τ + 1, and we give all edges in G
with capacity 1

φ .

Then since |R| ≤ Õ(nτ ), the max-flow from s to t is at most Õ(n). We can then compute

an ssource-ssink max flow in Õ(n
5

3 ) queries by Theorem 1.23. If the maximum flow is of size
≥ (|A| − β)(τ + 1), then using the set of flow paths from the flow algorithm, we obtain a β-almost
perfect A-B (τ + 1) matching M such that M ≺flow 1

φG. Otherwise, after finding the max flow f∗

from ssource to ssink, we run BFS (see Corollary 4.3) from ssource in the residual graph Gf∗ and
find all vertices that can be reached by ssource, denoted as S∗. Then |S∗ ∩ A| ≥ β, since there are
at least β vertices in A not sending all the demands. Similarly we can show that |S∗ ∩ B| ≥ β,
where S∗ = V \ S∗. Now we show that (S∗, S∗) is φ(τ + 1) sparse with respect to R. Without loss
of generality, let us assume that |S∗ ∩R| ≤ |S∗ ∩R|. Recall that the capacity of every edge in E is

3As in previous instances, we can add parallel edges and subdivide the edges incident to the source and sink to
ensure that all edges have unit capacity
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set to be 1
φ . Since the flow is feasible, and every edge of the min-cut is saturated in the maximum

flow, we must have |∂S∗|
φ ≤ |S ∩ R|(τ + 1), which means that |∂S∗| ≤ φ|S ∩ R|(τ + 1). It follows

that (S∗, S∗) is a φ(τ + 1)-sparse cut with respect to R.

Proof of Lemma A.1. We run the cut player algorithm in Theorem A.2, and the matching player
algorithm in Theorem A.4 with β = |R|

log5 n
. If in any round the matching player returns a cut

that is φ(τ + 1) sparse with respect to R with both sides having at least β terminals, we simply
return this cut as this cut satisfies the requirement of Lemma A.1. Otherwise, in every round, the
matching player returns an β-almost perfect (τ +1)-matching F , so that there exists a set F ′ with
|F ′| ≤ β(τ + 1) such that F ∪ F ′ is a perfect b-matching and we add the edges in F ∪ F ′ to X to
continue the cut-matching game. Mark the edges F ′ as fake edges.

After r = O(log n) rounds of the cut-matching game, if the matching player did not return
a balanced and sparse cut in any round, Theorem A.2 guarantees that X has sparsity at least
b = τ +1. Note that the total number of fake edges is at most β(τ +1)r. Also, since each matching

flow embeds in 1
φG, and there are at most O(log n) rounds, we must have X �flow O(logn)

φ G.
Consider any cut (S, V (X) \ S) with |S| ≤ |V (X) \ S| in X. Since the sparsity is at least

(τ + 1), it follows that |E(S, V (X) \ S)| ≥ (τ + 1)|S|. Note that in X, every vertex has degree
(τ + 1)r = O((τ + 1) log n).

This means that vol(S) ≤ O(|S|(τ+1) log n), and hence the conductance of every cut (S, V (X)\
S) is at least Ω( 1

logn).

We will now show that there exists a set R′ such that R′ ⊆ R, |R′| ≥ |R|(1 − 1
logn), and R′ is

φ(τ + 1) expanding in X. The construction of R′ is simple. On a high level, our goal is to try to
certify the expansion of X after removing the fake edges F ′. Therefore, a natural step is to apply
expander pruning to the graph X after deleting the set of fake edges F ′.

Theorem A.5 ([SW19], Theorem 1.3). Given a graph H in which every cut has conductance at
least φ′, and a set of deletion edges F ′, there exists a prune set P ⊆ V (H) with volH(P ) ≤ 8

φ′ |F ′|,
such that in the induced subgraph on V (H) \ P after removing F ′, in H[V (H) \ P ] \ F ′, every cut

(S, (V (H) \ P ) \ S) has conductance at least φ′

6 .

Apply expander pruning to graph X, with the set of fake edges F ′ as the deletion set, and the
conductance parameter φX = Ω( 1

logn) to obtain a prune set P . Here we recall that the graph X

is explicitly known, so we spend zero queries to obtain this set P . Note that vol(P ) ≤ 8|F ′|
φX

≤
O(β(τ + 1)r log n) = O(β(τ + 1) log2 n) ≤ |R|(τ+1)

log2 n
since β = |R|

log5 n
. But each vertex has degree

r(τ + 1) in H, hence the size of P , |P | ≤ vol(P )
r(τ+1) ≤ O(β log n) ≤ |R|

log2 n
. We define R′ as all the

vertices v ∈ R \ P , which have a combined at most τ+1
10 number of edges incident to P and edges

incident in F ′. Note that |F ′|+ vol(P ) ≤ 2vol(P ) ≤ 2|R|(τ+1)

log2 n
.

By Markov’s inequality, the number of v ∈ R for which there are more than τ+1
10 edges in

F or whose other endpoint is in P , must be at most 20 |R|

log2 n
≤ |R|

2 logn . But this means |R′| ≥
|R|(1− 1

2 logn)− |P | ≥ |R|(1− 1
logn) since |P | ≤ |R|

log2 n
.

Since each vertex v ∈ R has degree r(τ +1), it follows that each vertex in R′ has degree at least
r
10(τ + 1) in X[V (X) \ P ] \ F ′. The next lemma proves the desired expansion property of R′.

Lemma A.6. R′ is φ(τ+1)

log5 n
expanding in G.
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Proof. Consider a cut (S, V \ S) in G with |S ∩ R′| ≤ |(V \ S) ∩ R′|. Let R1 = S ∩ (R \ P ) and
R2 = (V (X) \ S) ∩ (R \ P ). Since the induced subgraph on V (X) \ P \ F is a Ω( 1

6 logn) ≥ 1
log2 n

conductance expander, there are at least min(vol(R1),vol(R2))

6 log2 n
≥ |S∩R′|(τ+1)

60 log2 n
edges in E(X) between

the sets R1 and R2, where the inequality follows since each vertex of R′ has degree at least τ+1
10 in

X[V (X) \P ] \ F ′. Recall that X �flow O( lognφ )G. Thus the number of edges across (S, V \S) in G

is at least Ω
(
|S∩R′|φ(τ+1)

log3 n

)
≥ φ(τ+1)|S∩R′|

log5 n
.
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