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ABSTRACT

Cancer research encompasses data across various scales, modalities, and resolutions,
from screening and diagnostic imaging to digitized histopathology slides to various types
of molecular data and clinical records. The integration of these diverse data types
for personalized cancer care and predictive modeling holds the promise of enhancing
the accuracy and reliability of cancer screening, diagnosis, and treatment. Traditional
analytical methods, which often focus on isolated or unimodal information, fall short of
capturing the complex and heterogeneous nature of cancer data. The advent of deep
neural networks has spurred the development of sophisticated multimodal data fusion
techniques capable of extracting and synthesizing information from disparate sources.
Among these, Graph Neural Networks (GNNs) and Transformers have emerged as powerful
tools for multimodal learning, demonstrating significant success. This review presents the
foundational principles of multimodal learning including oncology data modalities, taxonomy
of multimodal learning, and fusion strategies. We delve into the recent advancements in
GNNs and Transformers for the fusion of multimodal data in oncology, spotlighting key
studies and their pivotal findings. We discuss the unique challenges of multimodal learning,
such as data heterogeneity and integration complexities, alongside the opportunities
it presents for a more nuanced and comprehensive understanding of cancer. Finally,
we present some of the latest comprehensive multimodal pan-cancer data sources. By
surveying the landscape of multimodal data integration in oncology, our goal is to underline
the transformative potential of multimodal GNNs and Transformers. Through technological
advancements and the methodological innovations presented in this review, we aim to
chart a course for future research in this promising field. This review may be the first that
highlights the current state of multimodal modeling applications in cancer using GNNs
and transformers, presents comprehensive multimodal oncology data sources, and sets
the stage for multimodal evolution, encouraging further exploration and development in
personalized cancer care.

Keywords: Multimodal, Graph Neural Networks, Transformers, Oncology, Deep Learning




30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65

66
67
68
69
70

Waqas et al. Multimodal Oncology Data Integration using DNNs

1 INTRODUCTION

Cancer represents a significant global health challenge, characterized by the uncontrolled growth of
abnormal cells, leading to millions of deaths annually. In 2023, the United States had around 1.9
million new cancer diagnoses, with cancer being the second leading cause of death and anticipated
to result in approximately 1670 deaths daily (Siegel et al., 2023). However, advancements in
oncology research hold the promise of preventing nearly 42% of these cases through early detection
and lifestyle modifications. The complexity of cancer, involving intricate changes at both the
microscopic and macroscopic levels, requires innovative approaches to its understanding and
management. In recent years, the application of machine learning (ML) techniques, especially
deep learning (DL), has emerged as a transformative force in oncology. DL employs deep neural
networks to analyze vast datasets, offering unprecedented insights into cancer’s development
and progression (Caliskan and Tazaki, 2023; Chen et al., 2023; Siam et al., 2023; Muhammad
et al., 2024; Talebi et al., 2024). This approach has led to the development of computer-aided
diagnostic systems capable of detecting and classifying cancerous tissues in medical images, such
as mammograms and MRI scans, with increasing accuracy. Beyond imaging, DL also plays a
crucial role in analyzing molecular data, aiding in the prediction of treatment responses, and the
identification of new biomarkers (Varlamova et al., 2024; Khan et al., 2023; Muhammad and Bria,
2023; Dera et al., 2021, 2019; Waqas et al., 2021; Barhoumi et al., 2023). DL methods can be
categorized based on the level of supervision involved. Supervised learning includes techniques
like Convolutional Neural Networks (CNNs) for tumor image classification and Recurrent Neural
Networks (RNNs) for predicting patient outcomes, both requiring labeled data (LeCun et al., 2015;
Igbal et al., 2022, 2019). Unsupervised deep learning methods, such as Autoencoders and Generative
Adversarial Networks (GANSs), learn from unlabeled data to perform tasks like clustering patients
based on gene expression profiles or generating synthetic medical images. Semi-supervised deep
learning methods, like Semi-Supervised GANs, leverage a mix of labeled and unlabeled data to
enhance model performance when labeled medical data is limited. Self-supervised learning methods,
such as BERT (Bidirectional Encoder Representations from Transformers) and GPT (Generative
Pre-trained Transformer), use the structure of training data itself for supervision, enabling tasks
like predicting patient outcomes or understanding the progression of cancer with limited labeled
examples. Reinforcement learning in cancer studies, exemplified by Deep Q-Networks (DQN)
and Proximal Policy Optimization (PPO), involves an agent learning optimal treatment strategies
through rewards and penalties.

As the volume of oncology data continues to grow, DL stands at the forefront of this field,
enhancing our understanding of cancer, improving diagnostic precision, predicting clinical outcomes,
and paving the way for innovative treatments. This review explores the latest advancements in DL
applications within oncology, highlighting its potential to revolutionize cancer care (Ghaffari Laleh
et al., 2023; Chan et al., 2020; Tripathi et al., 2024a; Ibrahim et al., 2022).

Multimodal Learning (MML) enhances task accuracy and reliability by leveraging information
from various data sources or modalities (Huang et al., 2021). This approach has witnessed a surge
in popularity, as indicated by the growing body of MML-related publications (see Figure 1).
By facilitating the fusion of multimodal data, such as radiological images, digitized pathology
slides, molecular data, and electronic health records (EHR), MML offers a richer understanding
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Figure 1. Number of publications involving DL, GNNs, GNNs in the medical domain, overall
multimodal and multimodal in biomedical and clinical sciences in the period 2015-2024 (Hook
et al., 2018).

of complex problems (Tripathi et al., 2024c). It enables the extraction and integration of relevant
features that might be overlooked when analyzing data modalities separately. Recent advancements
in MML, powered by Deep Neural Networks (DNNs), have shown remarkable capability in learning
from diverse data sources, including computer vision (CV) and natural language processing (NLP)
(Achiam et al., 2023; Bommasani et al., 2022). Prominent multimodal foundation models such as
Contrastive Language-Image Pretraining (CLIP) and Generative Pretraining Transformer (GPT-4)
by OpenAl have set new benchmarks in the field (Radford et al., 2021; Achiam et al., 2023).
Additionally, the Foundational Language And Vision Alignment Model (FLAVA) represents another
significant stride, merging vision and language representation learning to facilitate multimodal
reasoning (Singh et al., 2022). Within the realm of oncology, innovative applications of MML
are emerging. The RadGenNets model, for instance, integrates clinical and genomics data with
Positron Emission Tomography (PET) scans and gene mutation data, employing a combination of
Convolutional Neural Networks (CNNs) and Dense Neural Networks to predict gene mutations
in Non-small cell lung cancer (NSCLC) patients (Tripathi et al., 2022). Moreover, GNNs and
Transformers are being explored for a variety of oncology-related tasks, such as tumor classification
(Khan et al., 2020), prognosis prediction (Schulz et al., 2021), and assessing treatment response
(Joo et al., 2021).
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Recent literature has seen an influx of survey and review articles exploring MML (Boehm et al.,
2021; Xu et al., 2023; Baltrusaitis et al., 2018; Ektefaie et al., 2023b; Hartsock and Rasool, 2024).
These works have provided valuable insights into the evolving landscape of MML, charting key
trends and challenges within the field. Despite this growing body of knowledge, there remains a
notable gap in the literature regarding the application of advanced multimodal DL models, such as
Graph Neural Networks (GNNs) and Transformers, in the domain of oncology. Our article aims to
fill this gap by offering the following contributions:

1. Identifying large-scale MML approaches in oncology. We provide an overview of the state-of-
the-art MML with a special focus on GNNs and Transformers for multimodal data fusion in
oncology.

2. Highlighting the challenges and limitations of MML in oncology data fusion. We discuss
the challenges and limitations of implementing multimodal data-fusion models in oncology,
including the need for large datasets, the complexity of integrating diverse data types, data
alignment, and missing data modalities and samples.

3. Providing a taxonomy for describing multimodal architectures. We present a comprehensive
taxonomy for describing MML architectures, including both traditional ML and DL, to facilitate
future research in this area.

4. Identifying future directions for multimodal data fusion in oncology. We identify GNNs and
Transformers as potential solutions for comprehensive multimodal integration and present the
associated challenges.

By addressing these aspects, our article seeks to advance the understanding of MML’s potential in
oncology, paving the way for innovative solutions that could revolutionize cancer diagnosis and
treatment through comprehensive data integration.

Our paper is organized as follows. Section 2 covers the fundamentals of MML, including data
modalities, taxonomy, data fusion stages, and neural network architectures. Section 3 focuses
on GNNs in MML, explaining graph data, learning on graphs, architectures, and applications to
unimodal and multimodal oncology datasets. Section 4 discusses Transformers in MML, including
architecture, multimodal Transformers, applications to oncology datasets, and methods of fusing
data modalities. Section 5 highlights challenges in MML, such as data availability, alignment,
generalization, missing data, explainability, and others. Section 6 provides information on data
sources. Finally, we conclude by emphasizing the promise of integrating data across modalities and
the need for scalable DL frameworks with desirable properties.

2 FUNDAMENTALS OF MULTIMODAL LEARNING (MML)
2.1 Data Modalities in Oncology

A data modality represents the expression of an entity or a particular form of sensory perception,
such as the characters’ visual actions, sounds of spoken dialogues, or the background music
(Sleeman IV et al., 2022). A collective notion of these modalities is called multi-modality
(Baltrusaitis et al., 2018). Traditional data analysis and ML methods to study cancer data use
single data modalities (e.g., EHR (Miotto et al., 2016), radiology (Wagqas et al., 2021), pathology
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Figure 2b. Detailed look into data modalities acquired for cancer care.

Figure 2. We present various data modalities that capture specific aspects of cancer at different
scales. For example, radiological images capture organ or sub-organ level abnormalities, while
tissue analysis may provide changes in the cellular structure and morphology. On the other hand,
various molecular data types may provide insights into genetic mutations and epigenetic changes.

(Litjens et al., 2017), or molecular, including genomics (Angermueller et al., 2017), transcriptomics
(Yousefi et al., 2017), proteomics (Wang et al., 2017), etc.). However, the data is inherently
multimodal, as it includes information from multiple sources or modalities that are related in
many ways. Figure 2a provides a view of multiple modalities of cancer at various scales, from the
population level to single-cell analysis. Oncology data can be broadly classified into 3 categories:
clinical, molecular, and imaging, where each category provides complementary information about
the patient’s disease. Figure 2b highlights different clinical, molecular, and imaging modalities.
Multimodal analysis endeavors to gain holistic insights into the disease process using multimodal
data.

2.1.1 Molecular Data

Molecular data modalities provide information about the underlying genetic changes and
alterations in the cancer cells (Liu et al., 2021). Efforts toward integrating molecular data resulted
in the multi-omics research field (Waqas et al., 2024a). Two principal areas of molecular analysis
in oncology are proteomics and genomics. Proteomics is the study of proteins and their changes
in response to cancer, and it provides information about the biological processes taking place in
cancer cells. Genomics is the study of the entire genome of cancer cells, including changes in
DNA sequence, gene expression, and structural variations (Boehm et al., 2021). Other molecular
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modalities include transcriptomics, pathomics, radiomics and their combinations, radiogenomics,
and proteogenomics. Many publicly available datasets provide access to molecular data, including
the Proteomics Data Commons for proteomics data and the Genome Data Commons for genetic
data (Thangudu et al., 2020; Grossman et al., 2016).

2.1.2 Imaging Data

Imaging modalities play a crucial role in diagnosing and monitoring cancer. The imaging category
can be divided into 2 main categories: (1) radiological imaging and (2) digitized histopathology
slides, referred to as Whole Slide Imaging (WSI). Radiological imaging encompasses various
techniques such as X-rays, CT scans, MRI, PET, and others, which provide information about the
location and extent of cancer within the body. These images can be used to determine the size and
shape of a tumor, monitor its growth, and assess the effectiveness of treatments. Histopathological
imaging is the examination of tissue samples obtained through biopsy or surgery (Rowe and Pomper,
2022; Wagqas et al., 2023). Digitized slides, saved as WSIs, provide detailed information about
the micro-structural changes in cancer cells and can be used to diagnose cancer and determine its
subtype.

2.1.3 Clinical Data

Clinical data provides information about the patient’s medical history, physical examination,
and laboratory results, saved in the patient’s electronic health records (EHR) at the clinic. EHR
consists of digital records of a patient’s health information stored in a centralized database. These
records provide a comprehensive view of a patient’s medical history, past diagnoses, treatments,
laboratory test results, and other information, which helps clinicians understand the disease (Asan
et al., 2018). Within EHR, time-series data may refer to the clinical data recorded over time, such as
repeated blood tests, lab values, or physical attributes. Such data informs the changes in the patient’s
condition and monitors the disease progression (Quinn et al., 2019).

2.2 Taxonomy of MML

We follow the taxonomy proposed by Sleeman IV et al. (2022) (see Figure 3), which defines 5
main stages of multimodal classification: preprocessing, feature extraction, data fusion, primary
learner, and final classifier, as given below:

2.2.1 Pre-processing

Pre-processing involves modifying the input data to a suitable format before feeding it into the
model for training. It includes data cleaning, normalization, class balancing, and augmentation. Data
cleaning removes unwanted noise or bias, errors, and missing data points (Al-jabery et al., 2020).
Normalization scales the input data within a specific range to ensure that each modality contributes
equally to the training (Gonzalez Zelaya, 2019). Class balancing is done in cases where one class
may have a significantly larger number of samples than another, resulting in a model bias toward the
dominant class. Data augmentation artificially increases the size of the dataset by generating new
samples based on the existing data to improve the model’s robustness and generalizability (Al-jabery
et al., 2020).
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2.2.2 Feature Extraction

Different data modalities may have different features, and extracting relevant features may
improve model learning. Several manual and automated feature engineering techniques generate
representations (or embeddings) for each data modality. Feature engineering involves designing
features relevant to the task and extracting them from the input data. This can be time-consuming but
may allow the model to incorporate prior knowledge about the problem. Text encoding techniques,
such as bag-of-words, word embeddings, and topic models (Devlin et al., 2019; Zhuang et al., 2021),
transform textual data into a numerical representation, which can be used as input to an ML model
(Wang et al., 2020a). In DL, feature extraction is learned automatically during model training(Dara
and Tumma, 2018).

2.2.3 Data Fusion

Data fusion combines raw features, extracted features, or class prediction vectors from multiple
modalities to create a single data representation. Fusion enables the model to use the complementary
information provided by each modality and improve its learning. Data fusion can be done using
early, late, or intermediate fusion. Section 2.3 discusses these fusion stages. The choice of fusion
technique depends on the characteristics of the data and the specific problem being addressed (Jiang
et al., 2022a).

2.2.4 Primary Learner

The primary learner stage is training the model on the pre-processed data or extracted features.
Depending on the problem and data, the primary learner can be implemented using various
ML techniques. DNNs are a popular choice for primary learners in MML because they can
automatically learn high-level representations from the input data and have demonstrated state-of-
the-art performance in many applications. CNNs are often used for image and video data, while
recurrent neural networks (RNNs) and Transformers are commonly used for text and sequential
data. The primary learner can be implemented independently for each modality or shared between
modalities, depending on the problem and data.

2.2.5 Final Classifier

The final stage of MML is the classifier, which produces category labels or class scores and
can be trained on the output of the primary learner or the fused data. The final classifier can be
implemented using a shallow neural network, a decision tree, or an ensemble model (Sleeman IV
et al., 2022). Ensemble methods, such as stacking or boosting, are often used to improve and
robustify the performance of the final classifier. Stacking involves training multiple models and then
combining their predictions at the output stage, while boosting involves repeatedly training weak
learners and adjusting their weights based on the errors made by previous learners (Borisov et al.,
2022).

2.3 Data Fusion Strategies

Fusion in MML can be performed at different levels, including early (feature level), intermediate
(model level), or late (decision level) stages, as illustrated in figure 3. Each fusion stage has its
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Figure 3. Taxonomy, stages, and techniques of multimodal data fusion are presented. Early, late,
cross-modality fusion methods integrate individual data modalities (or extracted features) before,
after, or at the primary learning step, respectively.

2.3.1 Early Fusion

The early fusion involves merging features extracted from different data modalities into a single
feature vector before model training. The feature vectors of the different modalities are combined
into a single vector, which is used as the input to the ML model (Sleeman IV et al., 2022). This
approach can be used when the modalities have complementary information and can be easily
aligned, such as combining visual and audio features in a video analysis application. The main
challenge with early fusion is ensuring that the features extracted from different modalities are
compatible and provide complementary information.

2.3.2 Intermediate Fusion

Intermediate fusion involves training separate models for each data modality and then combining
the outputs of these models for inference/prediction (Sleeman IV et al., 2022). This approach is
suitable when the data modalities are independent of each other and cannot be easily combined
at the feature level using average, weighted average, or other methods. The main challenge with
intermediate fusion is selecting an appropriate method for combining the output of different models.
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2.3.3 Late Fusion

In late fusion, the output of each modality-specific model is used to make a decision independently.
All decisions are later combined to make a final decision. This approach is suitable when the
modalities provide complementary information but are not necessarily independent of each other.
The main challenge with late fusion is selecting an appropriate method for combining individual
predictions. This can be done using majority voting, weighted voting, or employing other ML
models.

2.4 MML for Oncology Datasets

Syed et al. (2021) used a Random Forest classifier to fuse radiology image representations learned
from the singular value decomposition method with the textual annotation representation learned
from the fastText algorithm for prostate and lung cancer patients. Liu et al. (2022) proposed a
hybrid DL framework for combining breast cancer patients’ genomic and pathology data using
fully-connected (FC) network for genomic data, CNN for radiology data and a Simulated Annealing
algorithm for late fusion. Multiview multimodal network (MVMM-Net) (Song et al., 2021a)
combined 2 different modalities (low-energy and dual-energy subtracted) from contrast-enhanced
spectral mammography images, each learned through CNN and late-fusion through FC network in
breast cancer detection task. Yap et al. (2018) used a late-fusion method to fuse image representations
from ResNet50 and clinical representations from a random forest model for a multimodal skin lesion
classification task. An award-winning work (Ma and Jia, 2020) on brain tumor grade classification
adopted the late-fusion method (concatenation) for fusing outputs from two CNNs (radiology and
pathology images). SeNMo, a self-normalizing deep learning model has shown that integrative
analysis on 33 cancers having five different molecular (multi-omics) data modalities can improve the
patient outcome predictions and primary cancer type classification (Waqas et al., 2024a). Recently,
GNNs-based pan-squamous cell carcinoma analysis on lung, bladder, cervicall, esophageal, and
head and neck cancers has outperformed different classical and deep learning models (Waqas et al.,
2024b).

The single-cell unimodal data alignment is one technique in MML. Jansen et al. (2019) devised
an approach (SOMatic) to combine ATAC-seq regions with RNA-seq genes using self-organizing
maps. Single-Cell data Integration via Matching (SCIM) matched cells in multiple datasets in
low-dimensional latent space using autoencoder (AEs) (Stark et al., 2020). Graph-linked unified
embedding (GLUE) model learned regulatory interactions across omics layers and aligned the cells
using variational AEs (Cao and Gao, 2022). These aforementioned methods cannot incorporate high-
order interactions among cells or different modalities. Single-cell data integration using multiple
modalities is mostly based on AEs (scDART (Zhang et al., 2022b), Cross-modal Autoencoders
(Yang et al., 2021a), Mutual Information Learning for Integration of Single Cell Omics Data
(SMILE) (Xu et al., 2022)).

3 GRAPH NEURAL NETWORKS (GNNs) IN MULTIMODAL LEARNING

Graphs are commonly used to represent the relational connectivity of any system that has interacting
entities (Li et al., 2022a). Graphs have been used in various fields, such as to study brain
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Table 1. References Discussed in Section 2.

Sections References Discussed
Molecular Liu et al. (2021), Waqas et al. (2024a), Boehm et al.
Data Modalities in Oncology (2021), Thangudu et al. (2020), Grossman et al.
(2016)

Imaging Rowe and Pomper (2022), Waqas et al. (2023)
Clinical Asan et al. (2018), Quinn et al. (2019)

Taxonomy of MML Sleeman IV et al. (2022), Al-jabery et al. (2020),
Gonzalez Zelaya (2019), Devlin et al. (2019),
Zhuang et al. (2021), Wang et al. (2020a), Dara
and Tumma (2018), Jiang et al. (2022a), Borisov
et al. (2022)

Data Fusion Strategies Sleeman IV et al. (2022)

MML for Oncology Datasets Syed et al. (2021), Liu et al. (2022), Song et al.
(2021a), Yap et al. (2018), Ma and Jia (2020),
Wagas et al. (2024a), Wagqas et al. (2024b), Jansen
et al. (2019), Stark et al. (2020), Cao and Gao
(2022), Zhang et al. (2022b), Yang et al. (2021a),
Xu et al. (2022)

networks (Farooq et al., 2019), analyze driving maps (Derrow-Pinion et al., 2021), and explore the
structure of DNNs themselves (Waqas et al., 2022). GNNs are specifically designed to process data
represented as a graph (Waikhom and Patgiri, 2022), which makes them well-suited for analyzing
multimodal oncology data as each data modality (or sub-modality) can be considered as a single
node and the structures/patterns that exist between data modalities can be modeled as edges (Ektefaie
et al., 2023b).

3.1 The Graph Data

A graph is represented as G=(V, F) having node-set V'={vy, va, ..., v, }, Where node v has feature
vector X,,, and edge set E={(v;,v;) | vi,v; € V}. The neighborhood of node v is defined as
N@)={u| (u,v) € E}.

3.1.1  Graph Types

As illustrated in figure 4(a), the common types of graphs include undirected, directed,
homogeneous, heterogeneous, static, dynamic, unattributed, and attributed.Undirected graphs
comprise undirected edges, i.e., the direction of relation is not important between any ordered pair
of nodes. In the directed graphs, the nodes have a directional relationship(s). Homogeneous graphs
have the same type of nodes, whereas heterogeneous graphs have different types of nodes within a
single graph (Yang et al., 2021b). Static graphs do not change over time with respect to the existence
of edges and nodes. In contrast, dynamic graphs change over time, resulting in changes in structure,
attributes, and node relationships. Unattributed graphs have unweighted edges, indicating that the
weighted value for all edges in a graph is the same, i.e., 1 if present, O if absent. Attributed graphs
have different edge weights that capture the strength of relational importance (Waikhom and Patgiri,
2022).
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Figure 4. (a) The commonly occurring graph types are presented, including (1) undirected and
directed, (2) homogeneous and heterogeneous, (3) dynamic and static, (4) attributed (edges) and
unattributed. (b) Three different types of tasks performed using the graph data are presented
and include (1) node-level, (2) link-level, and (3) graph-level analyses. (¢) Various categories of
representation learning for graphs are presented.

3.1.2 Tasks for Graph Data

In figure 4(b), we present 3 major types of tasks defined on graphs, including (1) node-level
tasks - these may include node classification, regression, clustering, attributions, and generation, (2)
edge-level task - edge classification and prediction (presence or absence) are 2 common edge-level
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tasks, (3) graph-level tasks - these tasks involve predictions on the graph level, such as graph
classification and generation.

3.2 ML for Graph Data

Representing data as graphs can enable capturing and encoding the relationships among entities of
the samples (Wu et al., 2020). Based on the way the nodes are encoded, representation learning on
graphs can be categorized into the traditional (or shallow) and DNN-based methods, as illustrated
in Figure 4(c) (Jiao et al., 2022; Wu et al., 2020).

3.2.1 Traditional (Shallow) Methods

These methods usually employ classical ML methods, and their two categories commonly found
in the literature are graph embedding and probabilistic methods. Graph embedding methods
represent a graph with low-dimensional vectors (graph embedding and node embedding), preserving
the structural properties of the graph. The learning tasks in graph embedding usually involve
dimensionality reduction through linear (principal component or discriminant analysis), kernel
(nonlinear mapping), or tensor (higher-order structures) methods (Jiao et al., 2022). Probabilistic
graphical methods use graph data to represent probability distribution, where nodes are considered
random variables, and edges depict the probability relations among nodes (Jiao et al., 2022).
Bayesian networks, Markov’s networks, variational inference, variable elimination, and others are
used in probabilistic methods (Jiao et al., 2022).

3.2.2 DNN-based Methods - GNNs

GNN s are gaining popularity in the ML community, as evident from figure 1. In GNNs, the
information aggregation from the neighborhood is fused into a node’s representation. Traditional
DL methods such as CNNs and their variants have shown remarkable success in processing the
data in Euclidean space; however, they fail to perform well when faced with non-Euclidean or
relational datasets. Compared to CNNs, where the locality of the nodes in the input is fixed, GNNs
have no canonical ordering of the neighborhood of a node. They can learn the given task for any
permutation of the input data, as depicted in figure 5. GNNs often employ a message-passing
mechanism in which a node’s representation is derived from its neighbors’ representations via a
recursive computation. The message passing for a GNN is given as follows:

h)
[N(v)|

+ BhY (1)

where hq()lﬂ) is the updated embedding of node v after [+1 layer, o is the non-linear function (e.g.,

rectified linear unit or ReLLU), th ) and hq(,l) represent the embeddings of nodes u and v at layer [.
W; and B are the trainable weight matrices for neighborhood aggregation and (self)hidden vector
transformation, respectively. The message passing can encode high-order structural information in
node embedding through multiple aggregation layers. GNNs smooth the features by aggregating
neighbors’ embedding and filter eigenvalues of graph Laplacian, which provides an extra denoising
mechanism (Ma et al., 2021b). GNNs comprise multiple permutation equivariant and invariant
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functions, and they can handle heterogeneous data (Jin et al., 2022). As described earlier, traditional
ML models deal with Euclidean data. In oncology data, the correlations may not exist in Euclidean
space; instead, its features may be highly correlated in the non-Euclidean space (Yi et al., 2022).
Based on the information fusion and aggregation methodology, GNNs-based deep methods are
classified into the following:

Image Convolution

S 011
0 %« |1]o]1] = 2
0 [0 1]1fo

Canonical order is important

Graph Convolution

No canonical order for nodes

< >

f(Adj,, Xy) = f(Adj, X5)
Adj = Adjacency matrix

X = Node Feature matrix

Figure 5. Convolution operation for graphs vs. image data. The canonical order of the input is
important in CNNSs, whereas in GNNs, the order of the input nodes is not important. From the
convolution operation perspective, CNNs can be considered a subset of GNNs (Hamilton, 2020).

3.2.2.1 Recurrent GNNs

RecGNNss are built on top of the standard Recurrent Neural Network (RNN) by combining with
GNN. RecGNNs can operate on graphs with variable sizes and topologies. The recurrent component
of the RecGNN captures temporal dependencies and learns latent states over time, whereas the GNN
component captures the local structure. The information fusion process is repeated a fixed number
of times until an equilibrium or the desired state is achieved (Hamilton et al., 2017). RecGNNs
employ the model given by:

h(*Y — RecNN (hgp, Msg%)(v)) : @)

where, RecNN is any RNN, and M sg](\l,)(v) is the neighborhood message-passing at layer /.
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3.2.2.2 Convolutional GNNs

ConvGNNs undertake the convolution operation on graphs by aggregating neighboring nodes’
embeddings through a stack of multiple layers. ConvGNNs use the symmetric and normalized
summation of the neighborhood and self-loops for updating the node embeddings given by:

= |wm Y

h,
ueN (v)Uv |N(?})||N(u)|

The ConvGNN can be spatial or spectral, depending on the type of convolution they
implement. Convolution in spatial ConvGNNs involves taking a weighted average of the
neighboring vertices. Examples of spatial ConvGNNs include GraphSAGE(Hamilton et al., 2017),
Message Passing Neural Network (MPNN)(Gilmer et al., 2017), and Graph Attention Network
(GAT) (Velickovic et al., 2017). The spectral ConvGNNs operate in the spectral domain by using
the eigendecomposition of the graph Laplacian matrix. The convolution operation is performed
on the eigenvalues, which can be high-dimensional. Popular spectral ConvGNNs are ChebNet
(Defferrard et al., 2016) and Graph Convolutional Network (GCN)(Kipf and Welling, 2016).
An interesting aspect of these approaches is representational containment, which is defined as:
convolution C attention C message passing.

3)

3.2.2.3 Graph Auto-Encoder Networks (GAEs)

GAEs are unsupervised graph learning networks for dimensionality reduction, anomaly detection,
and graph generation. They are built on top of the standard AEs to work with graph data. The
encoder component of the GAE maps the input graph to a low-dimensional latent space, while the
decoder component maps the latent space back to the original graph (Park et al., 2021).

3.2.2.4 Graph Adversarial Networks (GraphANSs)

Based on Generative Adversarial Networks, GraphANs are designed to work with graph-structured
data and can learn to generate new graphs with similar properties to the input data. The generator
component of the GraphAN maps a random noise vector to a new graph, while the discriminator
component tries to distinguish between the generated vs. the actual input. The generator generates
graphs to fool the discriminator, while the discriminator tries to classify the given graph as real or
generated.

3.2.2.5 Other GNNs

Other categories of GNNs may include scalable GNNs (Ma et al., 2019), dynamic GNNs (Sankar
et al., 2018), hypergraph GNNs (Bai et al., 2021), heterogeneous GNNs (Wei et al., 2019), and
many others (Ma and Tang, 2021).

3.2.3 Graph-based Reinforcement Learning

GNNs have been combined with Reinforcement Learning (RL) to solve complex problems
involving graph-structured data (Jiang et al., 2018). GNNs enable RL agents to effectively process
and reason about relational information in environments represented as graphs (Nie et al., 2023).
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This combination has shown promise in various domains, including multi-agent systems, robotics,
and combinatorial optimization (Fathinezhad et al., 2023; Almasan et al., 2022). However, the use
of Graph-based RL on cancer data is still less-explored area of research.

Node or edge
or graph-level

Intensity E E
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Downstream
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Radiology scans

Feature extraction Graph construction GNN model

Figure 6. (a) Data processing pipeline for histopathology images using GNNs (Chen et al., 2020).
(b) Graph processing pipeline on radiology data. Adapted from (Singh et al., 2021).

3.3 GNNs and ML using Unimodal Oncology Datasets
3.3.1 Pathology Datasets

Traditionally, CNN-based models are used to learn features from digital pathology data (Igbal et al.,
2022). However, unlike GNNs, CNNss fail to capture the global contextual information important
in the tissue phenotypical and structural micro and macro environment (Ahmedt-Aristizabal et al.,
2022). For using histology images in GNNS, the cells, tissue regions, or image patches are depicted
as nodes. The relations and interactions among these nodes are represented as (un)weighted edges.
Usually, a graph of the patient histology slide is used along with a patient-level label for training
a GNN, as illustrated in Figure 6(a). Here, we review a few GNN-based pathology publications
representative of a trove of works in this field. Histographs (Anand et al., 2020) used breast cancer
histology data to distinguish cancerous and non-cancerous images. Pre-trained VGG-UNet was
used for nuclei detection, micro-features of the nuclei were used as node features, and Euclidean
distance among nuclei was incorporated as edge features. The resulting cell graphs were used
to train the GCN-based robust spatial filtering (RSF) model, which performed superior to the
CNN-based classification. citewang2020weakly analyzed grade classification in tissue micro-arrays
of prostate cancer using the weakly-supervised technique on a variant of GraphSAGE with self-
attention pooling (SAGPool). Cell-Graph Signature (CG s;ignature) (Wang et al., 2022) predicted
patient survival in gastric cancer using cell-graphs of multiplexed immunohistochemistry images
processed through two types of GNNs (GCNs and GINs) with two types of pooling (SAGPool,
TopKPool). Besides the above-mentioned cell graphs, there is an elaborate review of GNN-based
tissue graphs or patch-graphs methods implemented on unimodal pathology cancer data given in
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(Ahmedt-Aristizabal et al., 2022). Instead of individual cell- and tissue-graphs, a combination of the
multilevel information in histology slides can help understand the intrinsic features of the disease.

3.3.2 Radiology Datasets

GNNs have been used in radiology-based cancer data for segmentation, classification, and
prediction tasks, especially on X-rays, mammograms, MRI, PET, and CT scans. Figure 6(b)
illustrates a general pipeline of using radiology-based data to train GNNs. Here we give a non-
exhaustive review of GNNs-based works on radiological oncology data as a single modality input.
Mo et al. (2020) proposed a framework that improved the liver cancer lesion segmentation in the
MRI-T1WI scans through guided learning of MRI-T2WI modality priors. Learned embeddings from
fully convolutional networks on separate MRI modalities are projected into the graph domain for
learning by GCNs through the co-attention mechanism and finally to get the refined segmentation
by re-projection. Radiologists usually review radiology images by zooming into the region of
interest (ROIs) on high-resolution monitors. Du et al. (2019) used a hierarchical GNN framework to
automatically zoom into the abnormal lesion region of the mammograms and classify breast cancer.
The pre-trained CNN model extracts image features, whereas a GAT model is used to classify the
nodes for deciding whether to zoom in or not based on whether it is benign or malignant. Based
on the established knowledge that lymph nodes (LNs) have connected lymphatic system and LNs
cancer cells spread on certain pathways, Chao et al. (2020) proposed a lymph node gross tumor
volume learning framework. The framework was able to delineate the LN appearance as well as
the inter-LN relationship. The end-to-end learning framework was superior to the state-of-the-art
on esophageal cancer radiotherapy dataset. Tian et al. (2020) suggested interactive segmentation
of MRI scans of prostate cancer patients through a combination of CNN and two GCNs. CNN
model outputs a segmentation feature map of MRI, and the GCNs predict the prostate contour from
this feature map. Saueressig et al. (2021) used GNNs to segment brain tumors in 3D MRI images,
formed by stacking different modalities of MRI (T1, T2, T1-CE, FLAIR) and representing them
as supervoxel graph. The authors reported that GraphSAGE-pool was best for segmenting brain
tumors. Besides radiology, a parallel field of radiomics has recently gained attraction. Radiomics is
the automated extraction of quantitative features from radiology scans. A survey of radiomics and
radiogenomic analysis on brain tumors is presented by Singh et al. (2021).

3.3.3 Molecular Datasets

Graphs are a natural choice for representing molecular data such as omic-centric (DNA, RNA, or
proteins) or single-cell centric. Individual modalities are processed separately to generate graph
representations that are then processed through GNNs followed by the classifier to predict the
downstream task, as illustrated in Figure 7. One method of representing proteins as graphs is
to depict the amino acid residue in the protein as the node and the relationship between residues
denoted by edge (Fout et al., 2017). The residue information is depicted as node embedding, whereas
the relational information between two residues is represented as the edge feature vector. Fout et al.
(2017) used spatial ConvGNNSs to predict interfaces between proteins which is important in drug
discovery problems. Deep predictor of drug-drug interactions (DPDDI) predicted the drug-drug
interactions using GCN followed by a 5-layer classical neural network (Feng et al., 2020). Molecular
pre-training graph net (MPG) is a powerful framework based on GNN and Bidirectional Encoder
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Representations from Transformers (BERT) to learn drug-drug and drug-target interactions (Li et al.,
2021b). Graph-based Attention Model (GRAM) handled the data inefficiency by supplementing
EHRs with hierarchical knowledge in the medical ontology (Choi et al., 2017). A few recent works
have applied GNNs to single-cell data. scGCN is a knowledge transfer framework in single-cell
omics data such as mRNA or DNA (Song et al., 2021b). scGNN processed cell-cell relations through
GNN s for the task of missing-data imputation and cell clustering on single-cell RNA sequencing
(scRNA-seq) data (Wang et al., 2021a).

3.4 MML - Data Fusion at the Pre-Learning Stage

The first and most primitive form of MML is the pre-learning fusion (see Figure 3), where
features extracted from individual modalities of data are merged, and the fused representations are
then used for training the multimodal primary learner model. In the context of GNNs being the
primary learning model, the extraction step of individual modality representations can be hand-
engineered (e.g., dimensionality reduction) or learned by DL models (e.g., CNNs, Transformers).
Cui et al. (2021) proposed a GNN-based early fusion framework to learn latent representations from
radiological and clinical modalities for Lymph node metastasis (LNM) prediction in esophageal
squamous cell carcinoma (ESCC). The extracted features from the two modalities using UNet and
CNN-based encoders were fused together with category-wise attention as node representation. The
message passing from conventional GAT and correlation-based GAT learned the neighborhood
weights. The attention attributes were used to update the final node features before classification
by a 3-layer fully connected network. For Autism spectrum disorder, Alzheimer’s disease, and
ocular diseases, a multimodal learning framework called Edge-Variational GCN (EV-GCN) fuses
the radiology features extracted from fMRI images with clinical feature vectors for each patient
(Huang and Chung, 2020). An MLP-based pairwise association encoder is used to fuse the input
feature vectors and to generate the edge weights of the population graph. The partially labeled
population graph is then processed through GCN layers to generate the diagnostic graph of patients.

3.5 MML - Data Fusion using Cross-Modality Learning

Cross-MML involves intermediate fusion and/or cross-links among the models being trained
on individual modalities (see Figure 3). For this survey, we consider the GNN-based hierarchical
learning mechanisms as the cross-MML methods. Hierarchical frameworks involve learning for one
modality and using the learned latent embeddings in tandem with other data modalities sequentially
to get the final desired low-dimensional representations. Lian et al. (2022) used a sequential learning
framework where tumor features learned from CT images using the ViT model were used as node
features of the patient population graph for subsequent processing by the GraphSAGE model. The
hierarchical learning from radiological and clinical data using Transformer-GNN outperformed
the ResNet-Graph framework in survival prediction of early-stage NSCLC. scMoGNN is the first
method to apply GNNs in multimodal single-cell data integration using a cross-learning fusion-
based GNN framework (Wen et al., 2022). Officially winning first place in modality prediction
task at the NeurIPS 2021 competition, sScMoGNN showed superior performance on various tasks
by using paired data to generate cell-feature graphs. Hierarchical cell-to-tissue-graph network
(HACT-Net) combined the low-level cell-graph features with the high-level tissue-graph features
through two hierarchical GINs on breast cancer multi-class prediction (Pati et al., 2020). Data
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Figure 7. Graph data processing pipeline for non-imagery data, including molecular and textual
data. Adapted from (Wang et al., 2021b). Abbreviations used: GNN - graph neural network, FC -
Fully-Connected, MLP - Multi-Layer Perception.

imputation, a method of populating the missing values or false zero counts in single-cell data
mostly done using DL autoencoders (AE) architecture, has recently been accomplished using
GNNs. scGNN (Wang et al., 2021a) used imputation AE and graph AE in an iterative manner for
imputation, and GraphSCI (Rao et al., 2021) used GCN with AE to impute the single-cell RNA-seq
data using the cross-learning fusion between the GCN and the AE networks. Clustering is a method
of characterizing cell types within a tissue sample. Graph-SCC clustered cells based on scRNA-seq
data through self-supervised cross-learning between GCN and a denoising AE network (Zeng et al.,
2020). Recently, a multilayer GNN framework, Explainable Multilayer GNN (EMGNN), has been
proposed for cancer gene prediction tasks using multi-omics data from 16 different cancer types
(Chatzianastasis et al., 2023).

3.6 MML - Data Fusion in Post-Learning Regime

Post-learning fusion methods include processing individual data modalities and later fusing them
for the downstream predictive task (Tortora et al., 2023). In the post-learning fusion paradigm,
the hand-crafted features perform better than the deep features when the dimensionality of input
data is low, and vice versa (Tortora et al., 2023). Many interesting GNN-based works involving
the post-learning fusion mechanism have recently been published. Decagon used a multimodal
approach on GCNs using proteins and drug interactions to predict exact side effects as a multi-
relational link prediction task (Zitnik et al., 2018). Drug—target affinity (DTA) experimented with
four different flavors of GNNs (GCN, GAT, GIN, GAT-GCN) along with a CNN to fuse together
molecular embeddings and protein sequences for predicting drug-target affinity (Nguyen et al., 2021).
PathomicFusion combined the morphological features extracted from image patches (using CNNs),
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cell-graph features from cell-graphs of histology images (GraphSAGE-based GCNs), and genomic
features (using a feed-forward network) for survival prediction on glioma and clear cell renal cell
carcinoma (Chen et al., 2020). Shi et al. (2019) proposed a late-fusion technique to study screening
of cervical cancer at early stages by using CNNss to extract features from histology images, followed
by K-means clustering to generate graphs which are processed through two-layer GCN. BDR-CNN-
GCN (batch normalized, dropout, rank-based pooling) used the same mammographic images to
extract image-level features using CNN and relation-aware features using GCN (Zhang et al., 2021).
The two feature sets are fused using a dot product followed by a trainable linear projection for breast
cancer classification. Under the umbrella of multi-omics data, many GNN-based frameworks have
been proposed recently. Molecular omics network(MOOMIN), a multi-modal heterogeneous GNN
to predict oncology drug combinations, processed molecular structure, protein features, and cell
lines through GCN-based encoders, followed by late-fusion using a bipartite drug-protein interaction
graph (Rozemberczki et al., 2022). Multi-omics graph convolutional networks (MOGONET) used
a GCN-GAN late fusion technique for the classification of four different diseases, including
three cancer types: breast, kidney, and glioma (Wang et al., 2021b). Leng et al. (2022) extended
MOGONET to benchmark three multi-omics datasets on two different tasks using sixteen DL
networks and concluded that GAT-based GNN had the best classification performance. Multi-Omics
Graph Contrastive Learner(MOGCL) used graph structure and contrastive learning information
to generate representations for improved downstream classification tasks on the breast cancer
multi-omics dataset using late-fusion (Rajadhyaksha and Chitkara, 2023). Similar to MOGCL, Park
et al. (2022) developed a GNN-based multi-omics model that integrated mRNA expression, DNA
methylation, and DNA sequencing data for NSCLC diagnosis.

4 TRANSFORMERs IN MML

Transformers are attention-based DNN models originally proposed for NLP (Vaswani et al., 2017).
Transformers implement scaled dot-product of the input with itself and can process various types of
data in parallel (Vaswani et al., 2017). Transformers can handle sequential data and learn long-range
dependencies, making them well-suited for tasks such as language translation, language modeling,
question answering, and many more (Otter et al., 2021). Unlike Recurrent Neural Networks (RNNs)
and CNNs, Transformers use self-attention operations to weigh the importance of different input
tokens (or embeddings) at each time step. This allows them to handle sequences of arbitrary length
and to capture dependencies between input tokens that are far apart in the sequence (Vaswani et al.,
2017). Transformers can be viewed as a type of GNN (Xu et al., 2023). Transformers are used
to process other data types, such as images (Dosovitskiy et al., 2020), audio (Zhang, 2020), and
time-series analysis (Ahmed et al., 2022b), resulting in a new wave of multi-modal applications.
Transformers can handle input sequences of different modalities in a unified way, using the same
self-attention mechanism, which processes the inputs as a fully connected graph (Xu et al., 2023).
This allows Transformers to capture complex dependencies between different modalities, such as
visual and textual information in visual question-answering (VQA) tasks (Ma et al., 2021a).

Pre-training Transformers on large amounts of data, using unsupervised or self-supervised learning,
and then fine-tuning for specific downstream tasks, has led to the development of foundation
models Boehm et al. (2021), such as BERT (Devlin et al., 2019), GPT (Radford et al., 2018),
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Table 2. References Discussed in Section 3.
Sections References Discussed

Graphs and GNNs Li et al. (2022a), Farooq et al. (2019), Derrow-Pinion
etal. (2021), Wagqas et al. (2022), Waikhom and Patgiri
(2022), Ektefaie et al. (2023b), Yang et al. (2021b),
Waikhom and Patgiri (2022), Wu et al. (2020), Jiao
et al. (2022), Wu et al. (2020), Jiao et al. (2022),
Ma et al. (2021b), Jin et al. (2022), Yi et al. (2022),
Hamilton et al. (2017), Hamilton et al. (2017), Gilmer
et al. (2017), Velickovi¢ et al. (2017), Defferrard et al.
(2016), Kipf and Welling (2016), Park et al. (2021),
Ma et al. (2019), Sankar et al. (2018), Bai et al. (2021),
Wei et al. (2019), Ma and Tang (2021), Jiang et al.
(2018), Nie et al. (2023), Fathinezhad et al. (2023),
Almasan et al. (2022)

GNNs and ML Pathology Igbal et al. (2022), Ahmedt-Aristizabal et al. (2022),

using Unimodal Anand et al. (2020), Wang et al. (2020b), Wang et al.

Oncology (2022), Ahmedt-Aristizabal et al. (2022)

Datasets Radiology Mo et al. (2020), Du et al. (2019), Chao et al. (2020),
Tian et al. (2020), Saueressig et al. (2021), Singh et al.
(2021)

Molecular Fout et al. (2017), Feng et al. (2020), Li et al. (2021b),
Choi et al. (2017), Song et al. (2021b), Wang et al.
(2021a)

MML Data Fusion Stages Cui et al. (2021), Huang and Chung (2020), Lian et al.
(2022), Wen et al. (2022), Pati et al. (2020), Wang
et al. (2021a), Rao et al. (2021), Zeng et al. (2020),
Chatzianastasis et al. (2023), Tortora et al. (2023),
Tortora et al. (2023), Zitnik et al. (2018), Nguyen
et al. (2021), Chen et al. (2020), Shi et al. (2019),
Zhang et al. (2021), Rozemberczki et al. (2022), Wang
et al. (2021b), Leng et al. (2022), Rajadhyaksha and
Chitkara (2023), Park et al. (2022)

RoBERTa (Zhuang et al., 2021), CLIP (Radford et al., 2021), TS5 (Raffel et al., 2020), BART
(Lewis et al., 2019), BLOOM (Scao et al., 2022), ALIGN (Jia et al., 2021), CoCa (Yu et al.,
2022) and more. Multimodal Transformers are a recent development in the field of MML, which
extends the capabilities of traditional Transformers to handle multiple data modalities. The inter-
modality dependencies are captured by the cross-attention mechanism in multimodal Transformers,
allowing the model to jointly reason and extract rich data representations. There are various types
of multimodal Transformers, such as Unified Transformer (UniT) (Hu and Singh, 2021), Multi-
way Multimodal Transformer (MMT) (Tang et al., 2022), CLIP (Radford et al., 2021), Flamingo
(Alayrac et al., 2022), CoCa (Yu et al., 2022), Perceiver 10 (Jaegle et al., 2021), and GPT-4(Achiam
et al., 2023).
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Figure 8. The original Transformer architecture is presented (Vaswani et al., 2017). A Transformer
can have multiple encoder and decoder blocks, as well as some additional layers.

4.1 Model Architecture

The original Transformer (Figure 8) was composed of multiple encoder and decoder blocks,
each made up of several layers of self-attention and feed-forward neural networks. The encoder
takes the input sequence and generates hidden representations, which are then fed to the decoder.
The decoder generates the output sequence by attending to the encoder’s hidden representations
and the previous tokens (i.e., auto-regressive). The self-attention operation (or scaled dot-product)
is a crucial component of the Transformer. It determines the significance of each element in the
input sequence with respect to the whole input. Self-attention operates by computing a weighted
sum of the input sequence’s hidden representations, where the weights are determined by the dot
product between the query vector and the key vector, followed by a scaling operation to stabilize
the gradients. The resulting weighted sum is multiplied by a value vector to obtain the output of
the self-attention operation. There has been a tremendous amount of work on various facets of
Transformer architecture. The readers are referred to relevant review papers (Otter et al., 2021; Xu
et al., 2023; Han et al., 2023; Galassi et al., 2021).

4.2 Multimodal Transformers

Self-attention allows a Transformer model to process each input as a fully connected graph
and attend to (or equivalently learn from) the global patterns present in the input. This makes
Transformers compatible with various data modalities by treating each token (or its embedding) as a
node in the graph. To use Transformers for a data modality, we need to tokenize the input and select
an embedding space for the tokens. Tokenization and embedding selections are flexible and can be
done at multiple granularity levels, such as using raw features, ML-extracted features, patches from

Frontiers 21



579
580
581
582
583
584

585

586
587
588
589
590
591
592

593

594
595
596
597
598

599

600
601
602
603
604

Waqas et al. Multimodal Oncology Data Integration using DNNs

Table 3. Oncology data modalities and their respective tokenization and embeddings selection
techniques

Data Modalities | Tokenization Level | Token Embeddings Model

Pathology images | Patch CNNs (Chen et al., 2021)
Radiology images | Patch CNNs (Xie et al., 2021)
GNNs (Shang et al., 2019),
EHR data ICD code ML mo(dels (%Qasmy et al.,)2021)
_Omics Graphs GNNs (Kaczmarek et al., 2021)
K-mers ML model (Ji et al., 2020)
BERT (Devlin et al., 2019),
Clinical notes Word RoBERTa (Zhuang et al., 2021),

BioBERT (Lee et al., 2019)

the input image, or graph nodes. Table 3 summarizes some common practices used for various types
of data in cancer data sets. Handling inter-modality interactions is the main challenge in developing
multimodal Transformer models. Usually, it is done through one of these fusion methods: early
fusion of data modalities, cross-attention, hierarchical attention, and late fusion, as illustrated in
Figure 9. In the following, we present and compare data processing steps for these four methods
using two data modalities as an example. The same analysis can be extended to multiple modalities.

4.2.1 Early Fusion

Early fusion is the simplest way to combine data from multiple modalities. The data from different
modalities are concatenated to a single input before being fed to the Transformer model, which
processes the input as a single entity. Mathematically, the concatenation operation is represented as
Teqt=|T1, 2], where x1 and z are the inputs from two data modalities, and x4, is the concatenated
input to the model. Early fusion is simple and efficient. However, it assumes that all modalities are
equally important and relevant for the task at hand (Kalfaoglu et al., 2020), which may not always
be practically true (Zhong et al., 2023).

4.2.2 Cross-Attention Fusion

Cross-attention is a relatively more flexible approach to modeling the interactions between data
modalities and learning their joint representations. The self-attention layers attend to different
modalities at different stages of data processing. Cross-attention allows the model to selectively
attend to different modalities based on their relevance to the task (Li et al., 2021a) and capture
complex interactions between the modalities (Rombach et al., 2022).

4 2.3 Hierarchical Fusion

Hierarchical fusion is a complex approach to combining multiple modalities. For instance, the
Depth-supervised Fusion Transformer for Salient Object Detection (DFTR) employs hierarchical
feature extraction to improve salient object detection performance by fusing low-level spatial
features and high-level semantic features from different scales (Zhu et al., 2022). Yang et al.
(2020) introduced a hierarchical approach to fine-grained classification using a fusion Transformer.
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Furthermore, the Hierarchical Multimodal Transformer (HMT) for video summarization can capture
global dependencies and multi-hop relationships among video frames (Zhao et al., 2022).

4.2.4 Late Fusion

In late fusion, each data modality is processed independently by its own Transformer model, the
branch outputs are concatenated and passed through the final classifier. Late fusion allows the model
to capture the unique features of each modality while still learning their joint representation. Sun
et al. (2021) proposed a multi-modal adaptive late fusion Transformer network for estimating the
levels of depression. Their model extracts long-term temporal information from audio and visual
data independently and then fuses weights at the end to learn a joint representation of data.

. I
(a) Early Fusion ) {b) Late Fusion
| Transformer ‘ Dara
T T ? Fusion
[ Q I K I V J | Transformer ] | Transformer |
R t t 1
(o] x V) (o] «x [V
Fusion f T
\. VAN J
fc) Hierarchical Attention h /d} Cross Attention A
Final Classifier
Final Classifier
Transformer
f T f Data
[ Q I K I v ] Fusion
*
Data
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Transformer Transformer Transformer Transformer
.
J

Figure 9. Four different strategies of fusing information from various data modalities in multimodal

Transformers are presented.

Frontiers

23



614

615
616
617
618
619
620
621
622
623
624
625
626
627
628

629
630
631
632
633
634
635
636
637
638
639

640
641
642
643
644

645

646
647
648
649
650
651

Waqas et al. Multimodal Oncology Data Integration using DNNs

4.3 Transformers for Processing Oncology Datasets

Transformers have been successfully applied to various tasks in oncology, including cancer
screening, diagnosis, prognosis, treatment selection, and prediction of clinical variables (Boehm
et al., 2021; Shao et al., 2021; Liang et al., 2022a; Lian et al., 2022; Chen et al., 2021). For instance,
a Transformer-based model was used to predict the presence and grade of breast cancer using a
combination of imaging and genomics data (Boehm et al., 2021). TransMIL (Shao et al., 2021), a
Transformer model, was proposed to process histopathology images using self-attention to learn
and classify histopathology slides by overcoming the challenges faced by multi-instance learning
(MIL). Recently, a Transformer and convolution parallel network, TransConv (Liang et al., 2022a),
was proposed for automatic brain tumor segmentation using MRI data. Transformers and GNNs
have also been combined in MML for early-stage NSCLC prognostic prediction using the patient’s
clinical and pathological features and by modeling the patient’s physiological network (Lian et al.,
2022). Similarly, a multimodal co-attention Transformer was proposed for survival prediction using
WSIs and genomic sequences (Chen et al., 2021). The authors used a co-attention mechanism to
learn the interactions between the two data modalities.

Reinforcement learning with human feedback (RLHF) has emerged as a promising technique
to infuse large language models with domain knowledge and human preferences for healthcare
applications. Sun et al. (2023) proposed an approach to continuously improve a conversational agent
for behavioral interventions by integrating few-shot generation, prompt engineering, and RLHF to
leverage human feedback from therapists and clients. Giuffre et al. (2024) discussed strategies to
optimize large language models for digestive disease by using RLHF to infuse domain knowledge
through supervised fine-tuning. Basit et al. (2024) introduced MedAide, an on-premise healthcare
chatbot that employs RLHF during training to enhance its medical diagnostic capabilities on edge
devices. Dai et al. (2023) presented Safe RLHF, a novel algorithm that decouples human preferences
for helpfulness and harmlessness during RLHF to improve the safety and value alignment of large
language models in sensitive healthcare domains.

5 MML - CHALLENGES AND OPPORTUNITIES

Learning from multimodal oncology data is a complex and rapidly growing field that presents both
challenges and opportunities. While MML has shown significant promise, there are many challenges
owing to the inductive biases of the ML models (Ektefaie et al., 2023a). In this context, we present
major challenges of MML in oncology settings that, if addressed, could unlock the full potential of
this emerging field.

5.1 Large Amounts of High-quality Data

DL models are traditionally trained on large datasets with enough samples for training, validation,
and testing, such as JFT-300M (Sun et al., 2017) and YFCC100M (Thomee et al., 2016), which are
not available in the cancer domain. For example, the largest genomics data repository, the Gene
Expression Omnibus (GEO) database, has approximately 1.1 million samples with the keyword
‘cancer’ compared to 3 billion images in JFT-300M (Jiang et al., 2022b). Annotating medical and
oncology data is a time-consuming and manual process that requires significant expertise in many
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Table 4. References Discussed in Section 4.
Sections References Discussed

Multimodal Transformers Vaswani et al. (2017), Otter et al. (2021), Xu et al.
(2023), Dosovitskiy et al. (2020), Zhang (2020),
Ahmed et al. (2022b), Ma et al. (2021a), Boehm et al.
(2021), Devlin et al. (2019), Radford et al. (2018),
Zhuang et al. (2021), Radford et al. (2021), Raffel
et al. (2020), Lewis et al. (2019), Scao et al. (2022),
Jia et al. (2021), Yu et al. (2022), Hu and Singh (2021),
Tang et al. (2022), Radford et al. (2021), Alayrac et al.
(2022), Yu et al. (2022), Jaegle et al. (2021), Achiam
et al. (2023), Otter et al. (2021), Xu et al. (2023), Han
et al. (2023), Galassi et al. (2021)

MML Data Fusion Stages Kalfaoglu et al. (2020) , Zhong et al. (2023), Li et al.
(2021a), Rombach et al. (2022), Zhu et al. (2022),
Yang et al. (2020), Zhao et al. (2022), Sun et al. (2021)

Transformers for Oncology Datasets Boehm et al. (2021), Shao et al. (2021), Liang et al.
(2022a), Lian et al. (2022), Chen et al. (2021), Sun
et al. (2023), Giuffre et al. (2024), Basit et al. (2024),
Dai et al. (2023)

different areas of medical sciences. Factors like heterogeneity of the disease, noise in data recording,
background, and training of medical professionals leading to inter- and intra-operator variability
cause lack of reproducibility and inconsistent clinical outcomes (Lipkova et al., 2022).

5.2 Data Registration and Alignment

Data alignment and registration refer to the process of combining and aligning data from different
modalities in a useful manner (Zhao et al., 2023). In multimodal oncology data, this process involves
aligning data from multiple modalities such as CT, MRI, PET, and WSIs, as well as genomics,
transcriptomics, and clinical records. Data registration involves aligning the data modalities to a
common reference frame and may involve identifying common landmarks or fiducial markers. If the
data is not registered or aligned correctly, it may be difficult to fuse the information from different
modalities (Liang et al., 2022b).

5.3 Pan-Cancer Generalization and Transference

Transference in MML aims to transfer knowledge between modalities and their representations to
improve the performance of a model trained on a primary modality (Liang et al., 2022b). Because of
the unique characteristics of each cancer type and site, it is challenging to develop models that can
generalize across different cancer sites. Furthermore, models trained on a specific modality, such as
radiology images, will not perform well with other imaging modalities, such as histopathology slides.
Fine-tuning the model on a secondary modality, multimodal co-learning, and model induction are
techniques to achieve transference and generalization (Wei et al., 2020). To overcome this challenge,
mechanisms for improved universality of ML models need to be devised.
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5.4 Missing Data Samples and Modalities

The unavailability of one or more modalities or the absence of samples in a modality affects the
model learning, as most of the existing DL models cannot process the “missing information”. This
requirement, in turn, constrains the already insufficient size of datasets in oncology. Almost all
publicly available oncology datasets have missing data for a large number of samples (Jiang et al.,
2022b). Various approaches for handling missing data samples and modalities are gradually gaining
traction. However, this is still an open challenge (Mirza et al., 2019).

5.5 Imbalanced Data

Class imbalance refers to the phenomenon when one class (e.g., cancer negative/positive) is
represented significantly more in the data than another class. Class imbalance is common in oncology
data (Mirza et al., 2019). DL models struggle to classify underrepresented classes accurately.
Techniques such as data augmentation, ensemble, continual learning, and transfer learning are used
to counter the class imbalance challenge (Mirza et al., 2019).

5.6 Explainability and Trustworthiness

The explainability in DL, e.g., how GNNs and Transformers make a specific decision, is still an
area of active research (Li et al., 2022b; Nielsen et al., 2022). GNNExplainer (Ying et al., 2019),
PGM-Explainer (Vu and Thai, 2020), and SubgraphX (Yuan et al., 2021) are some attempts to
explain the decision-making process of GNNs. The explainability methods for Transformers have
been analyzed in (Remmer, 2022). Existing efforts and a roadmap to improve the trustworthiness of
GNNs have been presented in the latest survey (Zhang et al., 2022a). However, the explainability
and trustworthiness of multimodal GNNs and Transformers is an open challenge.

5.7 Over-smoothing in GNNs

One particular challenge in using GNNs is over-smoothing, which occurs when the GNN is trained
for too long, causing the node representations to become almost similar (Wu et al., 2020). This
leads to a loss of information, a decrease in the model’s performance, and a lack of generalization
(Valsesia et al., 2021). Regularization techniques such as dropout, weight decay, skip-connection,
and incorporating higher-order structures, such as motifs and graphlets, have been proposed.
However, building deep architectures that can scale and adapt to varying structural patterns of
graphs is still an open challenge.

5.8 Modality Collapse

Modality collapse is a phenomenon that occurs in MML, where a model trained on multiple
modalities may become over-reliant on a single modality, to the point where it ignores or neglects
the other modalities (Javaloy et al., 2022). Recent work explored the reasons and theoretical
understanding of modality collapse (Huang et al., 2022). However, the counter-actions needed to
balance model dependence on data modalities require active investigation by the ML community.
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5.9 Dynamic and Temporal Data

Dynamic and temporal data refers to the data that changes over time (Wu et al., 2020). Tumor
surveillance is a well-known technique to study longitudinal cancer growth over multiple data
modalities (Waqas et al., 2021). Spatio-temporal methods such as multiple instance learning, GNNs,
and hybrid of multiple models can capture complex change in the data relationships over time;
however, learning from multimodal dynamic data is very challenging and an active area of research
(Fritz et al., 2022).

5.10 Data Privacy

Given the sensitive nature of medical data, privacy and security are critical considerations in
the development and deployment of MML models for oncology applications. With the increased
adoption of MML in healthcare settings, it is essential to adapt these techniques to enable local data
processing and protect patient privacy while fostering collaborative research and analysis across
different sites and institutions. Federated learning (FL) has emerged as a promising approach to
train large multimodal models across various sites without the need for direct data sharing (Pati
et al., 2022). In an FL setup, each participating site trains a local model on its own data and shares
only the model updates with a central server, which aggregates the updates and sends the updated
global model back to the sites. This allows for collaborative model development while keeping the
raw data securely within each site’s premises.

To further enhance privacy protection in FL and other distributed learning scenarios, differential
privacy (DP) can be integrated into the model training process. DP is a rigorous mathematical
framework that involves adding carefully calibrated noise to data or model updates before sharing,
in order to protect individual privacy while preserving the utility of the data for analysis (Nampalle
et al., 2023; Islam et al., 2022; Akter et al., 2022). Secure multi-party computation (SMPC) is
another powerful technique for enabling joint analysis and model training on private datasets
held by different healthcare providers or research institutions, without revealing the raw data to
each other (Sahinbas and Catak, 2021; Alghamdi et al., 2023; Yogi and Mundru, 2024). SMPC
protocols leverage advanced cryptographic techniques to allow multiple parties to compute a
function over their combined data inputs securely, such that each party learns only the output
of the computation and nothing about the other parties’ inputs. In addition to these solutions,
implementing appropriate access control and authentication mechanisms is crucial for restricting
access to sensitive healthcare data to only authorized individuals and entities (Orii et al., 2024). This
involves defining and enforcing strict policies and procedures for granting, managing, and revoking
access privileges based on the principle of least privilege and the need-to-know basis. Regular
security risk assessments should also be conducted to identify and mitigate potential vulnerabilities
proactively, ensuring the ongoing protection of patient data.

5.11 Other Challenges

MML requires extensive computational resources to train models on a variety of datasets and tasks.
Robustness and failure detection (Ahmed et al., 2022a) are critical aspects of MML, particularly
in applications such as oncology. Uncertainty quantification techniques, such as Bayesian neural
networks (Dera et al., 2021), are still under-explored avenues in the MML. By addressing these
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challenges, it is possible to develop MML models that are able to surpass the performance offered
by single-modality models.

5.12 Potential Future Directions

The future of MML in oncology holds immense potential. A critical direction is the integration of
large amounts of high-quality data from diverse modalities, such as imaging, genomic, and clinical
data, to enhance the accuracy and comprehensiveness of cancer diagnostics and treatment predictions
in an end-to-end manner. Overcoming challenges in data registration and alignment is crucial to
ensure seamless integration and accurate interpretation of multimodal data. Developing robust
models capable of pan-cancer generalization and transference can enable more universal applications
across different cancer types. Addressing issues of missing data samples and modalities, and
tackling imbalanced datasets, will be essential to improve model robustness and fairness. Enhancing
explainability and trustworthiness in these models is vital for clinical adoption, necessitating
transparent and interpretable Al systems. Preventing modality collapse is important for maintaining
the distinct contributions of each data modality. Moreover, leveraging dynamic and temporal data
can offer deeper insights into cancer progression and treatment responses. Ensuring data privacy
and ethical considerations will be paramount as the field advances, balancing innovation with the
protection of patient information. Lastly, implementing MML applications in clinical settings is
crucial to fully realize the benefits of MML in cancer research.

5.13 Limitations of the Study

MML is a broad research field that has recently gained traction. In this review, we have focused on
the application of MML on oncology data. However, MML is widely being adopted in applications
such as autonomous vehicles, education, earth science, climate change, and space exploration (Xiao
et al., 2020; Li et al., 2024; Hadid et al., 2024; Sanders et al., 2023). Moreover, beyond GNNs and
Transformers, MML has been explored using encoder-decoder methods, constraint-based methods,
canonical correlations, Restricted Boltzmann Machines (RBMs), and many more (Zhao et al., 2024;
Qi et al., 2020). Each of these topics require an extensive review of the literature in the form of
separate articles.

6 MULTIMODAL ONCOLOGY DATA SOURCES

Unifying the various collections of oncology data into central archives necessitates a focused
effort. We have assembled a list of datasets from data portals maintained by the National
Institute of Health and other organizations, although this list is not exhaustive. The goal of this
compilation is to offer machine learning researchers in oncology a consolidated data resource. The
collection, which is updated regularly, can be accessed at https://lab-rasool.github.
io/pan-cancer-dataset—-sources/ (Tripathi et al., 2024a). The compilation of pan-
cancer datasets from sources such as The Cancer Imaging Archive (TCIA), Genomic Data Commons
(GDC), and Proteomic Data Commons (PDC) serves as a valuable resource for cancer research.
By providing a unified view of multimodal data that includes imaging, genomics, proteomics, and
clinical records, this compilation facilitates the development of adaptable and scalable datasets
specifically designed for machine learning applications in oncology (Tripathi et al., 2024a). The
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Table 5. References Discussed in Section 5.

Sections

References Discussed

Large Amounts of High-quality Data

Ektefaie et al. (2023a), Sun et al. (2017),
Thomee et al. (2016), Jiang et al. (2022b),
Lipkova et al. (2022)

Data Registration and Alignment

Zhao et al. (2023), Liang et al. (2022b)

Pan-Cancer Generalization and Transference

Liang et al. (2022b), Wei et al. (2020)

Missing Data Samples and Modalities

Jiang et al. (2022b), Mirza et al. (2019)

Imbalanced Data

Mirza et al. (2019)

Explainability and Trustworthiness

Li et al. (2022b), Nielsen et al. (2022), Ying
et al. (2019), Vu and Thai (2020), Yuan et al.
(2021), Remmer (2022), Zhang et al. (2022a)

Over-smoothing in GNN5s

Wau et al. (2020), Valsesia et al. (2021)

Modality Collapse

Javaloy et al. (2022), Huang et al. (2022)

Dynamic and Temporal Data

Wu et al. (2020), Wagqas et al. (2021), Fritz
et al. (2022)

Data Privacy

Pati et al. (2022), Nampalle et al. (2023),

Islam et al. (2022), Akter et al. (2022),
Sahinbag and Catak (2021), Alghamdi et al.
(2023), Yogi and Mundru (2024), Orii et al.
(2024)

Ahmed et al. (2022a), Dera et al. (2021)

Xiao et al. (2020), Li et al. (2024), Hadid
et al. (2024), Sanders et al. (2023), Zhao et al.
(2024), Qi et al. (2020)

Other Challenges
Limitations of the Study

compiled datasets encompass a broad spectrum of data modalities, such as radiology images (CT,
MRI, PET), pathology slides, genomic data (DNA, RNA), proteomics, and clinical records. This
multimodal nature enables the integration of different data types to capture the intricacies of cancer.
Moreover, the compilation covers 32 cancer types, ranging from prevalent cancers like breast, lung,
and colorectal to less common forms such as mesothelioma and uveal melanoma. The inclusion
of hundreds to thousands of cases for each cancer type provides a substantial resource for training
machine learning models, especially deep learning algorithms.

Standardizing the diverse data formats, annotations, and metadata across different sources is
essential for creating datasets that are suitable for machine learning. The HoneyBee framework, a
modular system designed to streamline the creation of machine learning-ready multimodal oncology
datasets from diverse sources, can help address this challenge (Tripathi et al., 2024b). HoneyBee
supports data ingestion from various sources, handles different data formats and modalities, and
ensures consistent data representation. It also facilitates the integration of multimodal data, enabling
the creation of datasets that combine imaging, genomics, proteomics, and clinical data for a holistic
view of each patient case. Furthermore, HoneyBee incorporates pre-trained foundational embedding
models for different data modalities, such as image encoders, genomic sequence embedders, and
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clinical text encoders. These embeddings can serve as input features for downstream machine
learning models, leveraging transfer learning and reducing the need for extensive labeled data.
The framework’s scalable and modular architecture allows for efficient processing of large-scale
datasets and easy integration of new data sources, preprocessing techniques, and embedding models.
By utilizing the HoneyBee framework, researchers can create high-quality, multimodal oncology
datasets tailored to their specific research objectives, promoting collaboration and advancing
machine learning applications in cancer research.

7 CONCLUSION

Existing research into the integration of data across various modalities has already yielded promising
outcomes, highlighting the potential for significant advancements in cancer research. However, the
lack of a comprehensive framework capable of encompassing the full spectrum of cancer dataset
modalities presents a notable challenge. The synergy between diverse methodologies and data
across different scales could unlock deeper insights into cancer, potentially leading to more accurate
prognostic and predictive models than what is possible through single data modalities alone. In our
survey, we have explored the landscape of multimodal learning applied to oncology datasets and the
specific tasks they can address. Looking ahead, the key to advancing this field lies in the development
of robust, deployment-ready MML frameworks. These frameworks must not only scale efficiently
across all modalities of cancer data but also incorporate capabilities for uncertainty quantification,
interpretability, and generalizability. Such advancements will be critical for effectively integrating
oncology data across multiple scales, modalities, and resolutions. The journey towards achieving
these goals is complex, yet essential for the next leaps in cancer research. By focusing on these
areas, future research has the potential to significantly enhance our understanding of cancer, leading
to improved outcomes for patients through more informed and personalized treatment strategies.
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