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ABSTRACT2

Cancer research encompasses data across various scales, modalities, and resolutions,3
from screening and diagnostic imaging to digitized histopathology slides to various types4
of molecular data and clinical records. The integration of these diverse data types5
for personalized cancer care and predictive modeling holds the promise of enhancing6
the accuracy and reliability of cancer screening, diagnosis, and treatment. Traditional7
analytical methods, which often focus on isolated or unimodal information, fall short of8
capturing the complex and heterogeneous nature of cancer data. The advent of deep9
neural networks has spurred the development of sophisticated multimodal data fusion10
techniques capable of extracting and synthesizing information from disparate sources.11
Among these, Graph Neural Networks (GNNs) and Transformers have emerged as powerful12
tools for multimodal learning, demonstrating significant success. This review presents the13
foundational principles of multimodal learning including oncology data modalities, taxonomy14
of multimodal learning, and fusion strategies. We delve into the recent advancements in15
GNNs and Transformers for the fusion of multimodal data in oncology, spotlighting key16
studies and their pivotal findings. We discuss the unique challenges of multimodal learning,17
such as data heterogeneity and integration complexities, alongside the opportunities18
it presents for a more nuanced and comprehensive understanding of cancer. Finally,19
we present some of the latest comprehensive multimodal pan-cancer data sources. By20
surveying the landscape of multimodal data integration in oncology, our goal is to underline21
the transformative potential of multimodal GNNs and Transformers. Through technological22
advancements and the methodological innovations presented in this review, we aim to23
chart a course for future research in this promising field. This review may be the first that24
highlights the current state of multimodal modeling applications in cancer using GNNs25
and transformers, presents comprehensive multimodal oncology data sources, and sets26
the stage for multimodal evolution, encouraging further exploration and development in27
personalized cancer care.28
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1 INTRODUCTION

Cancer represents a significant global health challenge, characterized by the uncontrolled growth of30
abnormal cells, leading to millions of deaths annually. In 2023, the United States had around 1.931
million new cancer diagnoses, with cancer being the second leading cause of death and anticipated32
to result in approximately 1670 deaths daily (Siegel et al., 2023). However, advancements in33
oncology research hold the promise of preventing nearly 42% of these cases through early detection34
and lifestyle modifications. The complexity of cancer, involving intricate changes at both the35
microscopic and macroscopic levels, requires innovative approaches to its understanding and36
management. In recent years, the application of machine learning (ML) techniques, especially37
deep learning (DL), has emerged as a transformative force in oncology. DL employs deep neural38
networks to analyze vast datasets, offering unprecedented insights into cancer’s development39
and progression (Çalışkan and Tazaki, 2023; Chen et al., 2023; Siam et al., 2023; Muhammad40
et al., 2024; Talebi et al., 2024). This approach has led to the development of computer-aided41
diagnostic systems capable of detecting and classifying cancerous tissues in medical images, such42
as mammograms and MRI scans, with increasing accuracy. Beyond imaging, DL also plays a43
crucial role in analyzing molecular data, aiding in the prediction of treatment responses, and the44
identification of new biomarkers (Varlamova et al., 2024; Khan et al., 2023; Muhammad and Bria,45
2023; Dera et al., 2021, 2019; Waqas et al., 2021; Barhoumi et al., 2023). DL methods can be46
categorized based on the level of supervision involved. Supervised learning includes techniques47
like Convolutional Neural Networks (CNNs) for tumor image classification and Recurrent Neural48
Networks (RNNs) for predicting patient outcomes, both requiring labeled data (LeCun et al., 2015;49
Iqbal et al., 2022, 2019). Unsupervised deep learning methods, such as Autoencoders and Generative50
Adversarial Networks (GANs), learn from unlabeled data to perform tasks like clustering patients51
based on gene expression profiles or generating synthetic medical images. Semi-supervised deep52
learning methods, like Semi-Supervised GANs, leverage a mix of labeled and unlabeled data to53
enhance model performance when labeled medical data is limited. Self-supervised learning methods,54
such as BERT (Bidirectional Encoder Representations from Transformers) and GPT (Generative55
Pre-trained Transformer), use the structure of training data itself for supervision, enabling tasks56
like predicting patient outcomes or understanding the progression of cancer with limited labeled57
examples. Reinforcement learning in cancer studies, exemplified by Deep Q-Networks (DQN)58
and Proximal Policy Optimization (PPO), involves an agent learning optimal treatment strategies59
through rewards and penalties.60

As the volume of oncology data continues to grow, DL stands at the forefront of this field,61
enhancing our understanding of cancer, improving diagnostic precision, predicting clinical outcomes,62
and paving the way for innovative treatments. This review explores the latest advancements in DL63
applications within oncology, highlighting its potential to revolutionize cancer care (Ghaffari Laleh64
et al., 2023; Chan et al., 2020; Tripathi et al., 2024a; Ibrahim et al., 2022).65

Multimodal Learning (MML) enhances task accuracy and reliability by leveraging information66
from various data sources or modalities (Huang et al., 2021). This approach has witnessed a surge67
in popularity, as indicated by the growing body of MML-related publications (see Figure 1).68
By facilitating the fusion of multimodal data, such as radiological images, digitized pathology69
slides, molecular data, and electronic health records (EHR), MML offers a richer understanding70
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Figure 1. Number of publications involving DL, GNNs, GNNs in the medical domain, overall
multimodal and multimodal in biomedical and clinical sciences in the period 2015-2024 (Hook
et al., 2018).

of complex problems (Tripathi et al., 2024c). It enables the extraction and integration of relevant71
features that might be overlooked when analyzing data modalities separately. Recent advancements72
in MML, powered by Deep Neural Networks (DNNs), have shown remarkable capability in learning73
from diverse data sources, including computer vision (CV) and natural language processing (NLP)74
(Achiam et al., 2023; Bommasani et al., 2022). Prominent multimodal foundation models such as75
Contrastive Language-Image Pretraining (CLIP) and Generative Pretraining Transformer (GPT-4)76
by OpenAI have set new benchmarks in the field (Radford et al., 2021; Achiam et al., 2023).77
Additionally, the Foundational Language And Vision Alignment Model (FLAVA) represents another78
significant stride, merging vision and language representation learning to facilitate multimodal79
reasoning (Singh et al., 2022). Within the realm of oncology, innovative applications of MML80
are emerging. The RadGenNets model, for instance, integrates clinical and genomics data with81
Positron Emission Tomography (PET) scans and gene mutation data, employing a combination of82
Convolutional Neural Networks (CNNs) and Dense Neural Networks to predict gene mutations83
in Non-small cell lung cancer (NSCLC) patients (Tripathi et al., 2022). Moreover, GNNs and84
Transformers are being explored for a variety of oncology-related tasks, such as tumor classification85
(Khan et al., 2020), prognosis prediction (Schulz et al., 2021), and assessing treatment response86
(Joo et al., 2021).87
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Recent literature has seen an influx of survey and review articles exploring MML (Boehm et al.,88
2021; Xu et al., 2023; Baltrušaitis et al., 2018; Ektefaie et al., 2023b; Hartsock and Rasool, 2024).89
These works have provided valuable insights into the evolving landscape of MML, charting key90
trends and challenges within the field. Despite this growing body of knowledge, there remains a91
notable gap in the literature regarding the application of advanced multimodal DL models, such as92
Graph Neural Networks (GNNs) and Transformers, in the domain of oncology. Our article aims to93
fill this gap by offering the following contributions:94

1. Identifying large-scale MML approaches in oncology. We provide an overview of the state-of-95
the-art MML with a special focus on GNNs and Transformers for multimodal data fusion in96
oncology.97

2. Highlighting the challenges and limitations of MML in oncology data fusion. We discuss98
the challenges and limitations of implementing multimodal data-fusion models in oncology,99
including the need for large datasets, the complexity of integrating diverse data types, data100
alignment, and missing data modalities and samples.101

3. Providing a taxonomy for describing multimodal architectures. We present a comprehensive102
taxonomy for describing MML architectures, including both traditional ML and DL, to facilitate103
future research in this area.104

4. Identifying future directions for multimodal data fusion in oncology. We identify GNNs and105
Transformers as potential solutions for comprehensive multimodal integration and present the106
associated challenges.107

By addressing these aspects, our article seeks to advance the understanding of MML’s potential in108
oncology, paving the way for innovative solutions that could revolutionize cancer diagnosis and109
treatment through comprehensive data integration.110

Our paper is organized as follows. Section 2 covers the fundamentals of MML, including data111
modalities, taxonomy, data fusion stages, and neural network architectures. Section 3 focuses112
on GNNs in MML, explaining graph data, learning on graphs, architectures, and applications to113
unimodal and multimodal oncology datasets. Section 4 discusses Transformers in MML, including114
architecture, multimodal Transformers, applications to oncology datasets, and methods of fusing115
data modalities. Section 5 highlights challenges in MML, such as data availability, alignment,116
generalization, missing data, explainability, and others. Section 6 provides information on data117
sources. Finally, we conclude by emphasizing the promise of integrating data across modalities and118
the need for scalable DL frameworks with desirable properties.119

2 FUNDAMENTALS OF MULTIMODAL LEARNING (MML)

2.1 Data Modalities in Oncology120

A data modality represents the expression of an entity or a particular form of sensory perception,121
such as the characters’ visual actions, sounds of spoken dialogues, or the background music122
(Sleeman IV et al., 2022). A collective notion of these modalities is called multi-modality123
(Baltrušaitis et al., 2018). Traditional data analysis and ML methods to study cancer data use124
single data modalities (e.g., EHR (Miotto et al., 2016), radiology (Waqas et al., 2021), pathology125
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Figure 2a. An overview of data collected from population to a tissue.

Figure 2b. Detailed look into data modalities acquired for cancer care.

Figure 2. We present various data modalities that capture specific aspects of cancer at different
scales. For example, radiological images capture organ or sub-organ level abnormalities, while
tissue analysis may provide changes in the cellular structure and morphology. On the other hand,
various molecular data types may provide insights into genetic mutations and epigenetic changes.

(Litjens et al., 2017), or molecular, including genomics (Angermueller et al., 2017), transcriptomics126
(Yousefi et al., 2017), proteomics (Wang et al., 2017), etc.). However, the data is inherently127
multimodal, as it includes information from multiple sources or modalities that are related in128
many ways. Figure 2a provides a view of multiple modalities of cancer at various scales, from the129
population level to single-cell analysis. Oncology data can be broadly classified into 3 categories:130
clinical, molecular, and imaging, where each category provides complementary information about131
the patient’s disease. Figure 2b highlights different clinical, molecular, and imaging modalities.132
Multimodal analysis endeavors to gain holistic insights into the disease process using multimodal133
data.134

2.1.1 Molecular Data135

Molecular data modalities provide information about the underlying genetic changes and136
alterations in the cancer cells (Liu et al., 2021). Efforts toward integrating molecular data resulted137
in the multi-omics research field (Waqas et al., 2024a). Two principal areas of molecular analysis138
in oncology are proteomics and genomics. Proteomics is the study of proteins and their changes139
in response to cancer, and it provides information about the biological processes taking place in140
cancer cells. Genomics is the study of the entire genome of cancer cells, including changes in141
DNA sequence, gene expression, and structural variations (Boehm et al., 2021). Other molecular142
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modalities include transcriptomics, pathomics, radiomics and their combinations, radiogenomics,143
and proteogenomics. Many publicly available datasets provide access to molecular data, including144
the Proteomics Data Commons for proteomics data and the Genome Data Commons for genetic145
data (Thangudu et al., 2020; Grossman et al., 2016).146

2.1.2 Imaging Data147

Imaging modalities play a crucial role in diagnosing and monitoring cancer. The imaging category148
can be divided into 2 main categories: (1) radiological imaging and (2) digitized histopathology149
slides, referred to as Whole Slide Imaging (WSI). Radiological imaging encompasses various150
techniques such as X-rays, CT scans, MRI, PET, and others, which provide information about the151
location and extent of cancer within the body. These images can be used to determine the size and152
shape of a tumor, monitor its growth, and assess the effectiveness of treatments. Histopathological153
imaging is the examination of tissue samples obtained through biopsy or surgery (Rowe and Pomper,154
2022; Waqas et al., 2023). Digitized slides, saved as WSIs, provide detailed information about155
the micro-structural changes in cancer cells and can be used to diagnose cancer and determine its156
subtype.157

2.1.3 Clinical Data158

Clinical data provides information about the patient’s medical history, physical examination,159
and laboratory results, saved in the patient’s electronic health records (EHR) at the clinic. EHR160
consists of digital records of a patient’s health information stored in a centralized database. These161
records provide a comprehensive view of a patient’s medical history, past diagnoses, treatments,162
laboratory test results, and other information, which helps clinicians understand the disease (Asan163
et al., 2018). Within EHR, time-series data may refer to the clinical data recorded over time, such as164
repeated blood tests, lab values, or physical attributes. Such data informs the changes in the patient’s165
condition and monitors the disease progression (Quinn et al., 2019).166

2.2 Taxonomy of MML167

We follow the taxonomy proposed by Sleeman IV et al. (2022) (see Figure 3), which defines 5168
main stages of multimodal classification: preprocessing, feature extraction, data fusion, primary169
learner, and final classifier, as given below:170

2.2.1 Pre-processing171

Pre-processing involves modifying the input data to a suitable format before feeding it into the172
model for training. It includes data cleaning, normalization, class balancing, and augmentation. Data173
cleaning removes unwanted noise or bias, errors, and missing data points (Al-jabery et al., 2020).174
Normalization scales the input data within a specific range to ensure that each modality contributes175
equally to the training (Gonzalez Zelaya, 2019). Class balancing is done in cases where one class176
may have a significantly larger number of samples than another, resulting in a model bias toward the177
dominant class. Data augmentation artificially increases the size of the dataset by generating new178
samples based on the existing data to improve the model’s robustness and generalizability (Al-jabery179
et al., 2020).180
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2.2.2 Feature Extraction181

Different data modalities may have different features, and extracting relevant features may182
improve model learning. Several manual and automated feature engineering techniques generate183
representations (or embeddings) for each data modality. Feature engineering involves designing184
features relevant to the task and extracting them from the input data. This can be time-consuming but185
may allow the model to incorporate prior knowledge about the problem. Text encoding techniques,186
such as bag-of-words, word embeddings, and topic models (Devlin et al., 2019; Zhuang et al., 2021),187
transform textual data into a numerical representation, which can be used as input to an ML model188
(Wang et al., 2020a). In DL, feature extraction is learned automatically during model training(Dara189
and Tumma, 2018).190

2.2.3 Data Fusion191

Data fusion combines raw features, extracted features, or class prediction vectors from multiple192
modalities to create a single data representation. Fusion enables the model to use the complementary193
information provided by each modality and improve its learning. Data fusion can be done using194
early, late, or intermediate fusion. Section 2.3 discusses these fusion stages. The choice of fusion195
technique depends on the characteristics of the data and the specific problem being addressed (Jiang196
et al., 2022a).197

2.2.4 Primary Learner198

The primary learner stage is training the model on the pre-processed data or extracted features.199
Depending on the problem and data, the primary learner can be implemented using various200
ML techniques. DNNs are a popular choice for primary learners in MML because they can201
automatically learn high-level representations from the input data and have demonstrated state-of-202
the-art performance in many applications. CNNs are often used for image and video data, while203
recurrent neural networks (RNNs) and Transformers are commonly used for text and sequential204
data. The primary learner can be implemented independently for each modality or shared between205
modalities, depending on the problem and data.206

2.2.5 Final Classifier207

The final stage of MML is the classifier, which produces category labels or class scores and208
can be trained on the output of the primary learner or the fused data. The final classifier can be209
implemented using a shallow neural network, a decision tree, or an ensemble model (Sleeman IV210
et al., 2022). Ensemble methods, such as stacking or boosting, are often used to improve and211
robustify the performance of the final classifier. Stacking involves training multiple models and then212
combining their predictions at the output stage, while boosting involves repeatedly training weak213
learners and adjusting their weights based on the errors made by previous learners (Borisov et al.,214
2022).215

2.3 Data Fusion Strategies216

Fusion in MML can be performed at different levels, including early (feature level), intermediate217
(model level), or late (decision level) stages, as illustrated in figure 3. Each fusion stage has its218
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advantages and challenges, and the choice of fusion stage depends on the characteristics of the data219
and the task.220

Figure 3. Taxonomy, stages, and techniques of multimodal data fusion are presented. Early, late,
cross-modality fusion methods integrate individual data modalities (or extracted features) before,
after, or at the primary learning step, respectively.

2.3.1 Early Fusion221

The early fusion involves merging features extracted from different data modalities into a single222
feature vector before model training. The feature vectors of the different modalities are combined223
into a single vector, which is used as the input to the ML model (Sleeman IV et al., 2022). This224
approach can be used when the modalities have complementary information and can be easily225
aligned, such as combining visual and audio features in a video analysis application. The main226
challenge with early fusion is ensuring that the features extracted from different modalities are227
compatible and provide complementary information.228

2.3.2 Intermediate Fusion229

Intermediate fusion involves training separate models for each data modality and then combining230
the outputs of these models for inference/prediction (Sleeman IV et al., 2022). This approach is231
suitable when the data modalities are independent of each other and cannot be easily combined232
at the feature level using average, weighted average, or other methods. The main challenge with233
intermediate fusion is selecting an appropriate method for combining the output of different models.234
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2.3.3 Late Fusion235

In late fusion, the output of each modality-specific model is used to make a decision independently.236
All decisions are later combined to make a final decision. This approach is suitable when the237
modalities provide complementary information but are not necessarily independent of each other.238
The main challenge with late fusion is selecting an appropriate method for combining individual239
predictions. This can be done using majority voting, weighted voting, or employing other ML240
models.241

2.4 MML for Oncology Datasets242

Syed et al. (2021) used a Random Forest classifier to fuse radiology image representations learned243
from the singular value decomposition method with the textual annotation representation learned244
from the fastText algorithm for prostate and lung cancer patients. Liu et al. (2022) proposed a245
hybrid DL framework for combining breast cancer patients’ genomic and pathology data using246
fully-connected (FC) network for genomic data, CNN for radiology data and a Simulated Annealing247
algorithm for late fusion. Multiview multimodal network (MVMM-Net) (Song et al., 2021a)248
combined 2 different modalities (low-energy and dual-energy subtracted) from contrast-enhanced249
spectral mammography images, each learned through CNN and late-fusion through FC network in250
breast cancer detection task. Yap et al. (2018) used a late-fusion method to fuse image representations251
from ResNet50 and clinical representations from a random forest model for a multimodal skin lesion252
classification task. An award-winning work (Ma and Jia, 2020) on brain tumor grade classification253
adopted the late-fusion method (concatenation) for fusing outputs from two CNNs (radiology and254
pathology images). SeNMo, a self-normalizing deep learning model has shown that integrative255
analysis on 33 cancers having five different molecular (multi-omics) data modalities can improve the256
patient outcome predictions and primary cancer type classification (Waqas et al., 2024a). Recently,257
GNNs-based pan-squamous cell carcinoma analysis on lung, bladder, cervicall, esophageal, and258
head and neck cancers has outperformed different classical and deep learning models (Waqas et al.,259
2024b).260

The single-cell unimodal data alignment is one technique in MML. Jansen et al. (2019) devised261
an approach (SOMatic) to combine ATAC-seq regions with RNA-seq genes using self-organizing262
maps. Single-Cell data Integration via Matching (SCIM) matched cells in multiple datasets in263
low-dimensional latent space using autoencoder (AEs) (Stark et al., 2020). Graph-linked unified264
embedding (GLUE) model learned regulatory interactions across omics layers and aligned the cells265
using variational AEs (Cao and Gao, 2022). These aforementioned methods cannot incorporate high-266
order interactions among cells or different modalities. Single-cell data integration using multiple267
modalities is mostly based on AEs (scDART (Zhang et al., 2022b), Cross-modal Autoencoders268
(Yang et al., 2021a), Mutual Information Learning for Integration of Single Cell Omics Data269
(SMILE) (Xu et al., 2022)).270

3 GRAPH NEURAL NETWORKS (GNNs) IN MULTIMODAL LEARNING

Graphs are commonly used to represent the relational connectivity of any system that has interacting271
entities (Li et al., 2022a). Graphs have been used in various fields, such as to study brain272
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Table 1. References Discussed in Section 2.
Sections References Discussed

Data Modalities in Oncology
Molecular Liu et al. (2021), Waqas et al. (2024a), Boehm et al.

(2021), Thangudu et al. (2020), Grossman et al.
(2016)

Imaging Rowe and Pomper (2022), Waqas et al. (2023)
Clinical Asan et al. (2018), Quinn et al. (2019)

Taxonomy of MML Sleeman IV et al. (2022), Al-jabery et al. (2020),
Gonzalez Zelaya (2019), Devlin et al. (2019),
Zhuang et al. (2021), Wang et al. (2020a), Dara
and Tumma (2018), Jiang et al. (2022a), Borisov
et al. (2022)

Data Fusion Strategies Sleeman IV et al. (2022)
MML for Oncology Datasets Syed et al. (2021), Liu et al. (2022), Song et al.

(2021a), Yap et al. (2018), Ma and Jia (2020),
Waqas et al. (2024a), Waqas et al. (2024b), Jansen
et al. (2019), Stark et al. (2020), Cao and Gao
(2022), Zhang et al. (2022b), Yang et al. (2021a),
Xu et al. (2022)

networks (Farooq et al., 2019), analyze driving maps (Derrow-Pinion et al., 2021), and explore the273
structure of DNNs themselves (Waqas et al., 2022). GNNs are specifically designed to process data274
represented as a graph (Waikhom and Patgiri, 2022), which makes them well-suited for analyzing275
multimodal oncology data as each data modality (or sub-modality) can be considered as a single276
node and the structures/patterns that exist between data modalities can be modeled as edges (Ektefaie277
et al., 2023b).278

3.1 The Graph Data279

A graph is represented as G=(V,E) having node-set V ={v1, v2, ..., vn}, where node v has feature280
vector xv, and edge set E={(vi, vj) | vi, vj ∈ V }. The neighborhood of node v is defined as281
N(v)={u | (u, v) ∈ E}.282

3.1.1 Graph Types283

As illustrated in figure 4(a), the common types of graphs include undirected, directed,284
homogeneous, heterogeneous, static, dynamic, unattributed, and attributed.Undirected graphs285
comprise undirected edges, i.e., the direction of relation is not important between any ordered pair286
of nodes. In the directed graphs, the nodes have a directional relationship(s). Homogeneous graphs287
have the same type of nodes, whereas heterogeneous graphs have different types of nodes within a288
single graph (Yang et al., 2021b). Static graphs do not change over time with respect to the existence289
of edges and nodes. In contrast, dynamic graphs change over time, resulting in changes in structure,290
attributes, and node relationships. Unattributed graphs have unweighted edges, indicating that the291
weighted value for all edges in a graph is the same, i.e., 1 if present, 0 if absent. Attributed graphs292
have different edge weights that capture the strength of relational importance (Waikhom and Patgiri,293
2022).294
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Figure 4. (a) The commonly occurring graph types are presented, including (1) undirected and
directed, (2) homogeneous and heterogeneous, (3) dynamic and static, (4) attributed (edges) and
unattributed. (b) Three different types of tasks performed using the graph data are presented
and include (1) node-level, (2) link-level, and (3) graph-level analyses. (c) Various categories of
representation learning for graphs are presented.

3.1.2 Tasks for Graph Data295

In figure 4(b), we present 3 major types of tasks defined on graphs, including (1) node-level296
tasks - these may include node classification, regression, clustering, attributions, and generation, (2)297
edge-level task - edge classification and prediction (presence or absence) are 2 common edge-level298
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tasks, (3) graph-level tasks - these tasks involve predictions on the graph level, such as graph299
classification and generation.300

3.2 ML for Graph Data301

Representing data as graphs can enable capturing and encoding the relationships among entities of302
the samples (Wu et al., 2020). Based on the way the nodes are encoded, representation learning on303
graphs can be categorized into the traditional (or shallow) and DNN-based methods, as illustrated304
in Figure 4(c) (Jiao et al., 2022; Wu et al., 2020).305

3.2.1 Traditional (Shallow) Methods306

These methods usually employ classical ML methods, and their two categories commonly found307
in the literature are graph embedding and probabilistic methods. Graph embedding methods308
represent a graph with low-dimensional vectors (graph embedding and node embedding), preserving309
the structural properties of the graph. The learning tasks in graph embedding usually involve310
dimensionality reduction through linear (principal component or discriminant analysis), kernel311
(nonlinear mapping), or tensor (higher-order structures) methods (Jiao et al., 2022). Probabilistic312
graphical methods use graph data to represent probability distribution, where nodes are considered313
random variables, and edges depict the probability relations among nodes (Jiao et al., 2022).314
Bayesian networks, Markov’s networks, variational inference, variable elimination, and others are315
used in probabilistic methods (Jiao et al., 2022).316

3.2.2 DNN-based Methods - GNNs317

GNNs are gaining popularity in the ML community, as evident from figure 1. In GNNs, the318
information aggregation from the neighborhood is fused into a node’s representation. Traditional319
DL methods such as CNNs and their variants have shown remarkable success in processing the320
data in Euclidean space; however, they fail to perform well when faced with non-Euclidean or321
relational datasets. Compared to CNNs, where the locality of the nodes in the input is fixed, GNNs322
have no canonical ordering of the neighborhood of a node. They can learn the given task for any323
permutation of the input data, as depicted in figure 5. GNNs often employ a message-passing324
mechanism in which a node’s representation is derived from its neighbors’ representations via a325
recursive computation. The message passing for a GNN is given as follows:326

h
(l+1)
v =σ

Wl

∑
u∈N(v)

h
(l)
u

|N(v)|
+Blh

(l)
v

 (1)

where h(l+1)
v is the updated embedding of node v after l+1 layer, σ is the non-linear function (e.g.,327

rectified linear unit or ReLU), h(l)u and h
(l)
v represent the embeddings of nodes u and v at layer l.328

Wl and Bl are the trainable weight matrices for neighborhood aggregation and (self)hidden vector329
transformation, respectively. The message passing can encode high-order structural information in330
node embedding through multiple aggregation layers. GNNs smooth the features by aggregating331
neighbors’ embedding and filter eigenvalues of graph Laplacian, which provides an extra denoising332
mechanism (Ma et al., 2021b). GNNs comprise multiple permutation equivariant and invariant333
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functions, and they can handle heterogeneous data (Jin et al., 2022). As described earlier, traditional334
ML models deal with Euclidean data. In oncology data, the correlations may not exist in Euclidean335
space; instead, its features may be highly correlated in the non-Euclidean space (Yi et al., 2022).336
Based on the information fusion and aggregation methodology, GNNs-based deep methods are337
classified into the following:338

Figure 5. Convolution operation for graphs vs. image data. The canonical order of the input is
important in CNNs, whereas in GNNs, the order of the input nodes is not important. From the
convolution operation perspective, CNNs can be considered a subset of GNNs (Hamilton, 2020).

3.2.2.1 Recurrent GNNs339

RecGNNs are built on top of the standard Recurrent Neural Network (RNN) by combining with340
GNN. RecGNNs can operate on graphs with variable sizes and topologies. The recurrent component341
of the RecGNN captures temporal dependencies and learns latent states over time, whereas the GNN342
component captures the local structure. The information fusion process is repeated a fixed number343
of times until an equilibrium or the desired state is achieved (Hamilton et al., 2017). RecGNNs344
employ the model given by:345

h
(l+1)
v = RecNN

(
h
(l)
u ,Msg

(l)
N(v)

)
, (2)

where, RecNN is any RNN, and Msg
(l)
N(v)

is the neighborhood message-passing at layer l.346
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3.2.2.2 Convolutional GNNs347

ConvGNNs undertake the convolution operation on graphs by aggregating neighboring nodes’348
embeddings through a stack of multiple layers. ConvGNNs use the symmetric and normalized349
summation of the neighborhood and self-loops for updating the node embeddings given by:350

h
(l+1)
v = σ

Wl

∑
u∈N(v)∪v

hv√
|N(v)||N(u)|

 . (3)

The ConvGNN can be spatial or spectral, depending on the type of convolution they351
implement. Convolution in spatial ConvGNNs involves taking a weighted average of the352
neighboring vertices. Examples of spatial ConvGNNs include GraphSAGE(Hamilton et al., 2017),353
Message Passing Neural Network (MPNN)(Gilmer et al., 2017), and Graph Attention Network354
(GAT) (Veličković et al., 2017). The spectral ConvGNNs operate in the spectral domain by using355
the eigendecomposition of the graph Laplacian matrix. The convolution operation is performed356
on the eigenvalues, which can be high-dimensional. Popular spectral ConvGNNs are ChebNet357
(Defferrard et al., 2016) and Graph Convolutional Network (GCN)(Kipf and Welling, 2016).358
An interesting aspect of these approaches is representational containment, which is defined as:359
convolution ⊆ attention ⊆ message passing.360

3.2.2.3 Graph Auto-Encoder Networks (GAEs)361

GAEs are unsupervised graph learning networks for dimensionality reduction, anomaly detection,362
and graph generation. They are built on top of the standard AEs to work with graph data. The363
encoder component of the GAE maps the input graph to a low-dimensional latent space, while the364
decoder component maps the latent space back to the original graph (Park et al., 2021).365

3.2.2.4 Graph Adversarial Networks (GraphANs)366

Based on Generative Adversarial Networks, GraphANs are designed to work with graph-structured367
data and can learn to generate new graphs with similar properties to the input data. The generator368
component of the GraphAN maps a random noise vector to a new graph, while the discriminator369
component tries to distinguish between the generated vs. the actual input. The generator generates370
graphs to fool the discriminator, while the discriminator tries to classify the given graph as real or371
generated.372

3.2.2.5 Other GNNs373

Other categories of GNNs may include scalable GNNs (Ma et al., 2019), dynamic GNNs (Sankar374
et al., 2018), hypergraph GNNs (Bai et al., 2021), heterogeneous GNNs (Wei et al., 2019), and375
many others (Ma and Tang, 2021).376

3.2.3 Graph-based Reinforcement Learning377

GNNs have been combined with Reinforcement Learning (RL) to solve complex problems378
involving graph-structured data (Jiang et al., 2018). GNNs enable RL agents to effectively process379
and reason about relational information in environments represented as graphs (Nie et al., 2023).380
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This combination has shown promise in various domains, including multi-agent systems, robotics,381
and combinatorial optimization (Fathinezhad et al., 2023; Almasan et al., 2022). However, the use382
of Graph-based RL on cancer data is still less-explored area of research.383
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Figure 6. (a) Data processing pipeline for histopathology images using GNNs (Chen et al., 2020).
(b) Graph processing pipeline on radiology data. Adapted from (Singh et al., 2021).

3.3 GNNs and ML using Unimodal Oncology Datasets384

3.3.1 Pathology Datasets385

Traditionally, CNN-based models are used to learn features from digital pathology data (Iqbal et al.,386
2022). However, unlike GNNs, CNNs fail to capture the global contextual information important387
in the tissue phenotypical and structural micro and macro environment (Ahmedt-Aristizabal et al.,388
2022). For using histology images in GNNs, the cells, tissue regions, or image patches are depicted389
as nodes. The relations and interactions among these nodes are represented as (un)weighted edges.390
Usually, a graph of the patient histology slide is used along with a patient-level label for training391
a GNN, as illustrated in Figure 6(a). Here, we review a few GNN-based pathology publications392
representative of a trove of works in this field. Histographs (Anand et al., 2020) used breast cancer393
histology data to distinguish cancerous and non-cancerous images. Pre-trained VGG-UNet was394
used for nuclei detection, micro-features of the nuclei were used as node features, and Euclidean395
distance among nuclei was incorporated as edge features. The resulting cell graphs were used396
to train the GCN-based robust spatial filtering (RSF) model, which performed superior to the397
CNN-based classification. citewang2020weakly analyzed grade classification in tissue micro-arrays398
of prostate cancer using the weakly-supervised technique on a variant of GraphSAGE with self-399
attention pooling (SAGPool). Cell-Graph Signature (CGsignature) (Wang et al., 2022) predicted400
patient survival in gastric cancer using cell-graphs of multiplexed immunohistochemistry images401
processed through two types of GNNs (GCNs and GINs) with two types of pooling (SAGPool,402
TopKPool). Besides the above-mentioned cell graphs, there is an elaborate review of GNN-based403
tissue graphs or patch-graphs methods implemented on unimodal pathology cancer data given in404
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(Ahmedt-Aristizabal et al., 2022). Instead of individual cell- and tissue-graphs, a combination of the405
multilevel information in histology slides can help understand the intrinsic features of the disease.406

3.3.2 Radiology Datasets407

GNNs have been used in radiology-based cancer data for segmentation, classification, and408
prediction tasks, especially on X-rays, mammograms, MRI, PET, and CT scans. Figure 6(b)409
illustrates a general pipeline of using radiology-based data to train GNNs. Here we give a non-410
exhaustive review of GNNs-based works on radiological oncology data as a single modality input.411
Mo et al. (2020) proposed a framework that improved the liver cancer lesion segmentation in the412
MRI-T1WI scans through guided learning of MRI-T2WI modality priors. Learned embeddings from413
fully convolutional networks on separate MRI modalities are projected into the graph domain for414
learning by GCNs through the co-attention mechanism and finally to get the refined segmentation415
by re-projection. Radiologists usually review radiology images by zooming into the region of416
interest (ROIs) on high-resolution monitors. Du et al. (2019) used a hierarchical GNN framework to417
automatically zoom into the abnormal lesion region of the mammograms and classify breast cancer.418
The pre-trained CNN model extracts image features, whereas a GAT model is used to classify the419
nodes for deciding whether to zoom in or not based on whether it is benign or malignant. Based420
on the established knowledge that lymph nodes (LNs) have connected lymphatic system and LNs421
cancer cells spread on certain pathways, Chao et al. (2020) proposed a lymph node gross tumor422
volume learning framework. The framework was able to delineate the LN appearance as well as423
the inter-LN relationship. The end-to-end learning framework was superior to the state-of-the-art424
on esophageal cancer radiotherapy dataset. Tian et al. (2020) suggested interactive segmentation425
of MRI scans of prostate cancer patients through a combination of CNN and two GCNs. CNN426
model outputs a segmentation feature map of MRI, and the GCNs predict the prostate contour from427
this feature map. Saueressig et al. (2021) used GNNs to segment brain tumors in 3D MRI images,428
formed by stacking different modalities of MRI (T1, T2, T1-CE, FLAIR) and representing them429
as supervoxel graph. The authors reported that GraphSAGE-pool was best for segmenting brain430
tumors. Besides radiology, a parallel field of radiomics has recently gained attraction. Radiomics is431
the automated extraction of quantitative features from radiology scans. A survey of radiomics and432
radiogenomic analysis on brain tumors is presented by Singh et al. (2021).433

3.3.3 Molecular Datasets434

Graphs are a natural choice for representing molecular data such as omic-centric (DNA, RNA, or435
proteins) or single-cell centric. Individual modalities are processed separately to generate graph436
representations that are then processed through GNNs followed by the classifier to predict the437
downstream task, as illustrated in Figure 7. One method of representing proteins as graphs is438
to depict the amino acid residue in the protein as the node and the relationship between residues439
denoted by edge (Fout et al., 2017). The residue information is depicted as node embedding, whereas440
the relational information between two residues is represented as the edge feature vector. Fout et al.441
(2017) used spatial ConvGNNs to predict interfaces between proteins which is important in drug442
discovery problems. Deep predictor of drug-drug interactions (DPDDI) predicted the drug-drug443
interactions using GCN followed by a 5-layer classical neural network (Feng et al., 2020). Molecular444
pre-training graph net (MPG) is a powerful framework based on GNN and Bidirectional Encoder445
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Representations from Transformers (BERT) to learn drug-drug and drug-target interactions (Li et al.,446
2021b). Graph-based Attention Model (GRAM) handled the data inefficiency by supplementing447
EHRs with hierarchical knowledge in the medical ontology (Choi et al., 2017). A few recent works448
have applied GNNs to single-cell data. scGCN is a knowledge transfer framework in single-cell449
omics data such as mRNA or DNA (Song et al., 2021b). scGNN processed cell-cell relations through450
GNNs for the task of missing-data imputation and cell clustering on single-cell RNA sequencing451
(scRNA-seq) data (Wang et al., 2021a).452

3.4 MML - Data Fusion at the Pre-Learning Stage453

The first and most primitive form of MML is the pre-learning fusion (see Figure 3), where454
features extracted from individual modalities of data are merged, and the fused representations are455
then used for training the multimodal primary learner model. In the context of GNNs being the456
primary learning model, the extraction step of individual modality representations can be hand-457
engineered (e.g., dimensionality reduction) or learned by DL models (e.g., CNNs, Transformers).458
Cui et al. (2021) proposed a GNN-based early fusion framework to learn latent representations from459
radiological and clinical modalities for Lymph node metastasis (LNM) prediction in esophageal460
squamous cell carcinoma (ESCC). The extracted features from the two modalities using UNet and461
CNN-based encoders were fused together with category-wise attention as node representation. The462
message passing from conventional GAT and correlation-based GAT learned the neighborhood463
weights. The attention attributes were used to update the final node features before classification464
by a 3-layer fully connected network. For Autism spectrum disorder, Alzheimer’s disease, and465
ocular diseases, a multimodal learning framework called Edge-Variational GCN (EV-GCN) fuses466
the radiology features extracted from fMRI images with clinical feature vectors for each patient467
(Huang and Chung, 2020). An MLP-based pairwise association encoder is used to fuse the input468
feature vectors and to generate the edge weights of the population graph. The partially labeled469
population graph is then processed through GCN layers to generate the diagnostic graph of patients.470

3.5 MML - Data Fusion using Cross-Modality Learning471

Cross-MML involves intermediate fusion and/or cross-links among the models being trained472
on individual modalities (see Figure 3). For this survey, we consider the GNN-based hierarchical473
learning mechanisms as the cross-MML methods. Hierarchical frameworks involve learning for one474
modality and using the learned latent embeddings in tandem with other data modalities sequentially475
to get the final desired low-dimensional representations. Lian et al. (2022) used a sequential learning476
framework where tumor features learned from CT images using the ViT model were used as node477
features of the patient population graph for subsequent processing by the GraphSAGE model. The478
hierarchical learning from radiological and clinical data using Transformer-GNN outperformed479
the ResNet-Graph framework in survival prediction of early-stage NSCLC. scMoGNN is the first480
method to apply GNNs in multimodal single-cell data integration using a cross-learning fusion-481
based GNN framework (Wen et al., 2022). Officially winning first place in modality prediction482
task at the NeurIPS 2021 competition, scMoGNN showed superior performance on various tasks483
by using paired data to generate cell-feature graphs. Hierarchical cell-to-tissue-graph network484
(HACT-Net) combined the low-level cell-graph features with the high-level tissue-graph features485
through two hierarchical GINs on breast cancer multi-class prediction (Pati et al., 2020). Data486
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Figure 7. Graph data processing pipeline for non-imagery data, including molecular and textual
data. Adapted from (Wang et al., 2021b). Abbreviations used: GNN - graph neural network, FC -
Fully-Connected, MLP - Multi-Layer Perception.

imputation, a method of populating the missing values or false zero counts in single-cell data487
mostly done using DL autoencoders (AE) architecture, has recently been accomplished using488
GNNs. scGNN (Wang et al., 2021a) used imputation AE and graph AE in an iterative manner for489
imputation, and GraphSCI (Rao et al., 2021) used GCN with AE to impute the single-cell RNA-seq490
data using the cross-learning fusion between the GCN and the AE networks. Clustering is a method491
of characterizing cell types within a tissue sample. Graph-SCC clustered cells based on scRNA-seq492
data through self-supervised cross-learning between GCN and a denoising AE network (Zeng et al.,493
2020). Recently, a multilayer GNN framework, Explainable Multilayer GNN (EMGNN), has been494
proposed for cancer gene prediction tasks using multi-omics data from 16 different cancer types495
(Chatzianastasis et al., 2023).496

3.6 MML - Data Fusion in Post-Learning Regime497

Post-learning fusion methods include processing individual data modalities and later fusing them498
for the downstream predictive task (Tortora et al., 2023). In the post-learning fusion paradigm,499
the hand-crafted features perform better than the deep features when the dimensionality of input500
data is low, and vice versa (Tortora et al., 2023). Many interesting GNN-based works involving501
the post-learning fusion mechanism have recently been published. Decagon used a multimodal502
approach on GCNs using proteins and drug interactions to predict exact side effects as a multi-503
relational link prediction task (Zitnik et al., 2018). Drug–target affinity (DTA) experimented with504
four different flavors of GNNs (GCN, GAT, GIN, GAT-GCN) along with a CNN to fuse together505
molecular embeddings and protein sequences for predicting drug-target affinity (Nguyen et al., 2021).506
PathomicFusion combined the morphological features extracted from image patches (using CNNs),507
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cell-graph features from cell-graphs of histology images (GraphSAGE-based GCNs), and genomic508
features (using a feed-forward network) for survival prediction on glioma and clear cell renal cell509
carcinoma (Chen et al., 2020). Shi et al. (2019) proposed a late-fusion technique to study screening510
of cervical cancer at early stages by using CNNs to extract features from histology images, followed511
by K-means clustering to generate graphs which are processed through two-layer GCN. BDR-CNN-512
GCN (batch normalized, dropout, rank-based pooling) used the same mammographic images to513
extract image-level features using CNN and relation-aware features using GCN (Zhang et al., 2021).514
The two feature sets are fused using a dot product followed by a trainable linear projection for breast515
cancer classification. Under the umbrella of multi-omics data, many GNN-based frameworks have516
been proposed recently. Molecular omics network(MOOMIN), a multi-modal heterogeneous GNN517
to predict oncology drug combinations, processed molecular structure, protein features, and cell518
lines through GCN-based encoders, followed by late-fusion using a bipartite drug-protein interaction519
graph (Rozemberczki et al., 2022). Multi-omics graph convolutional networks (MOGONET) used520
a GCN-GAN late fusion technique for the classification of four different diseases, including521
three cancer types: breast, kidney, and glioma (Wang et al., 2021b). Leng et al. (2022) extended522
MOGONET to benchmark three multi-omics datasets on two different tasks using sixteen DL523
networks and concluded that GAT-based GNN had the best classification performance. Multi-Omics524
Graph Contrastive Learner(MOGCL) used graph structure and contrastive learning information525
to generate representations for improved downstream classification tasks on the breast cancer526
multi-omics dataset using late-fusion (Rajadhyaksha and Chitkara, 2023). Similar to MOGCL, Park527
et al. (2022) developed a GNN-based multi-omics model that integrated mRNA expression, DNA528
methylation, and DNA sequencing data for NSCLC diagnosis.529

4 TRANSFORMERs IN MML

Transformers are attention-based DNN models originally proposed for NLP (Vaswani et al., 2017).530
Transformers implement scaled dot-product of the input with itself and can process various types of531
data in parallel (Vaswani et al., 2017). Transformers can handle sequential data and learn long-range532
dependencies, making them well-suited for tasks such as language translation, language modeling,533
question answering, and many more (Otter et al., 2021). Unlike Recurrent Neural Networks (RNNs)534
and CNNs, Transformers use self-attention operations to weigh the importance of different input535
tokens (or embeddings) at each time step. This allows them to handle sequences of arbitrary length536
and to capture dependencies between input tokens that are far apart in the sequence (Vaswani et al.,537
2017). Transformers can be viewed as a type of GNN (Xu et al., 2023). Transformers are used538
to process other data types, such as images (Dosovitskiy et al., 2020), audio (Zhang, 2020), and539
time-series analysis (Ahmed et al., 2022b), resulting in a new wave of multi-modal applications.540
Transformers can handle input sequences of different modalities in a unified way, using the same541
self-attention mechanism, which processes the inputs as a fully connected graph (Xu et al., 2023).542
This allows Transformers to capture complex dependencies between different modalities, such as543
visual and textual information in visual question-answering (VQA) tasks (Ma et al., 2021a).544

Pre-training Transformers on large amounts of data, using unsupervised or self-supervised learning,545
and then fine-tuning for specific downstream tasks, has led to the development of foundation546
models Boehm et al. (2021), such as BERT (Devlin et al., 2019), GPT (Radford et al., 2018),547
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Table 2. References Discussed in Section 3.
Sections References Discussed
Graphs and GNNs Li et al. (2022a), Farooq et al. (2019), Derrow-Pinion

et al. (2021), Waqas et al. (2022), Waikhom and Patgiri
(2022), Ektefaie et al. (2023b), Yang et al. (2021b),
Waikhom and Patgiri (2022), Wu et al. (2020), Jiao
et al. (2022), Wu et al. (2020), Jiao et al. (2022),
Ma et al. (2021b), Jin et al. (2022), Yi et al. (2022),
Hamilton et al. (2017), Hamilton et al. (2017), Gilmer
et al. (2017), Veličković et al. (2017), Defferrard et al.
(2016), Kipf and Welling (2016), Park et al. (2021),
Ma et al. (2019), Sankar et al. (2018), Bai et al. (2021),
Wei et al. (2019), Ma and Tang (2021), Jiang et al.
(2018), Nie et al. (2023), Fathinezhad et al. (2023),
Almasan et al. (2022)

GNNs and ML
using Unimodal
Oncology
Datasets

Pathology Iqbal et al. (2022), Ahmedt-Aristizabal et al. (2022),
Anand et al. (2020), Wang et al. (2020b), Wang et al.
(2022), Ahmedt-Aristizabal et al. (2022)

Radiology Mo et al. (2020), Du et al. (2019), Chao et al. (2020),
Tian et al. (2020), Saueressig et al. (2021), Singh et al.
(2021)

Molecular Fout et al. (2017), Feng et al. (2020), Li et al. (2021b),
Choi et al. (2017), Song et al. (2021b), Wang et al.
(2021a)

MML Data Fusion Stages Cui et al. (2021), Huang and Chung (2020), Lian et al.
(2022), Wen et al. (2022), Pati et al. (2020), Wang
et al. (2021a), Rao et al. (2021), Zeng et al. (2020),
Chatzianastasis et al. (2023), Tortora et al. (2023),
Tortora et al. (2023), Zitnik et al. (2018), Nguyen
et al. (2021), Chen et al. (2020), Shi et al. (2019),
Zhang et al. (2021), Rozemberczki et al. (2022), Wang
et al. (2021b), Leng et al. (2022), Rajadhyaksha and
Chitkara (2023), Park et al. (2022)

RoBERTa (Zhuang et al., 2021), CLIP (Radford et al., 2021), T5 (Raffel et al., 2020), BART548
(Lewis et al., 2019), BLOOM (Scao et al., 2022), ALIGN (Jia et al., 2021), CoCa (Yu et al.,549
2022) and more. Multimodal Transformers are a recent development in the field of MML, which550
extends the capabilities of traditional Transformers to handle multiple data modalities. The inter-551
modality dependencies are captured by the cross-attention mechanism in multimodal Transformers,552
allowing the model to jointly reason and extract rich data representations. There are various types553
of multimodal Transformers, such as Unified Transformer (UniT) (Hu and Singh, 2021), Multi-554
way Multimodal Transformer (MMT) (Tang et al., 2022), CLIP (Radford et al., 2021), Flamingo555
(Alayrac et al., 2022), CoCa (Yu et al., 2022), Perceiver IO (Jaegle et al., 2021), and GPT-4(Achiam556
et al., 2023).557
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Figure 8. The original Transformer architecture is presented (Vaswani et al., 2017). A Transformer
can have multiple encoder and decoder blocks, as well as some additional layers.

4.1 Model Architecture558

The original Transformer (Figure 8) was composed of multiple encoder and decoder blocks,559
each made up of several layers of self-attention and feed-forward neural networks. The encoder560
takes the input sequence and generates hidden representations, which are then fed to the decoder.561
The decoder generates the output sequence by attending to the encoder’s hidden representations562
and the previous tokens (i.e., auto-regressive). The self-attention operation (or scaled dot-product)563
is a crucial component of the Transformer. It determines the significance of each element in the564
input sequence with respect to the whole input. Self-attention operates by computing a weighted565
sum of the input sequence’s hidden representations, where the weights are determined by the dot566
product between the query vector and the key vector, followed by a scaling operation to stabilize567
the gradients. The resulting weighted sum is multiplied by a value vector to obtain the output of568
the self-attention operation. There has been a tremendous amount of work on various facets of569
Transformer architecture. The readers are referred to relevant review papers (Otter et al., 2021; Xu570
et al., 2023; Han et al., 2023; Galassi et al., 2021).571

4.2 Multimodal Transformers572

Self-attention allows a Transformer model to process each input as a fully connected graph573
and attend to (or equivalently learn from) the global patterns present in the input. This makes574
Transformers compatible with various data modalities by treating each token (or its embedding) as a575
node in the graph. To use Transformers for a data modality, we need to tokenize the input and select576
an embedding space for the tokens. Tokenization and embedding selections are flexible and can be577
done at multiple granularity levels, such as using raw features, ML-extracted features, patches from578
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Table 3. Oncology data modalities and their respective tokenization and embeddings selection
techniques

Data Modalities Tokenization Level Token Embeddings Model
Pathology images Patch CNNs (Chen et al., 2021)
Radiology images Patch CNNs (Xie et al., 2021)

EHR data ICD code GNNs (Shang et al., 2019),
ML models (Rasmy et al., 2021)

-Omics Graphs
K-mers

GNNs (Kaczmarek et al., 2021)
ML model (Ji et al., 2020)

Clinical notes Word
BERT (Devlin et al., 2019),
RoBERTa (Zhuang et al., 2021),
BioBERT (Lee et al., 2019)

the input image, or graph nodes. Table 3 summarizes some common practices used for various types579
of data in cancer data sets. Handling inter-modality interactions is the main challenge in developing580
multimodal Transformer models. Usually, it is done through one of these fusion methods: early581
fusion of data modalities, cross-attention, hierarchical attention, and late fusion, as illustrated in582
Figure 9. In the following, we present and compare data processing steps for these four methods583
using two data modalities as an example. The same analysis can be extended to multiple modalities.584

4.2.1 Early Fusion585

Early fusion is the simplest way to combine data from multiple modalities. The data from different586
modalities are concatenated to a single input before being fed to the Transformer model, which587
processes the input as a single entity. Mathematically, the concatenation operation is represented as588
xcat=[x1, x2], where x1 and x2 are the inputs from two data modalities, and xcat is the concatenated589
input to the model. Early fusion is simple and efficient. However, it assumes that all modalities are590
equally important and relevant for the task at hand (Kalfaoglu et al., 2020), which may not always591
be practically true (Zhong et al., 2023).592

4.2.2 Cross-Attention Fusion593

Cross-attention is a relatively more flexible approach to modeling the interactions between data594
modalities and learning their joint representations. The self-attention layers attend to different595
modalities at different stages of data processing. Cross-attention allows the model to selectively596
attend to different modalities based on their relevance to the task (Li et al., 2021a) and capture597
complex interactions between the modalities (Rombach et al., 2022).598

4.2.3 Hierarchical Fusion599

Hierarchical fusion is a complex approach to combining multiple modalities. For instance, the600
Depth-supervised Fusion Transformer for Salient Object Detection (DFTR) employs hierarchical601
feature extraction to improve salient object detection performance by fusing low-level spatial602
features and high-level semantic features from different scales (Zhu et al., 2022). Yang et al.603
(2020) introduced a hierarchical approach to fine-grained classification using a fusion Transformer.604
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Furthermore, the Hierarchical Multimodal Transformer (HMT) for video summarization can capture605
global dependencies and multi-hop relationships among video frames (Zhao et al., 2022).606

4.2.4 Late Fusion607

In late fusion, each data modality is processed independently by its own Transformer model, the608
branch outputs are concatenated and passed through the final classifier. Late fusion allows the model609
to capture the unique features of each modality while still learning their joint representation. Sun610
et al. (2021) proposed a multi-modal adaptive late fusion Transformer network for estimating the611
levels of depression. Their model extracts long-term temporal information from audio and visual612
data independently and then fuses weights at the end to learn a joint representation of data.613

Figure 9. Four different strategies of fusing information from various data modalities in multimodal
Transformers are presented.
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4.3 Transformers for Processing Oncology Datasets614

Transformers have been successfully applied to various tasks in oncology, including cancer615
screening, diagnosis, prognosis, treatment selection, and prediction of clinical variables (Boehm616
et al., 2021; Shao et al., 2021; Liang et al., 2022a; Lian et al., 2022; Chen et al., 2021). For instance,617
a Transformer-based model was used to predict the presence and grade of breast cancer using a618
combination of imaging and genomics data (Boehm et al., 2021). TransMIL (Shao et al., 2021), a619
Transformer model, was proposed to process histopathology images using self-attention to learn620
and classify histopathology slides by overcoming the challenges faced by multi-instance learning621
(MIL). Recently, a Transformer and convolution parallel network, TransConv (Liang et al., 2022a),622
was proposed for automatic brain tumor segmentation using MRI data. Transformers and GNNs623
have also been combined in MML for early-stage NSCLC prognostic prediction using the patient’s624
clinical and pathological features and by modeling the patient’s physiological network (Lian et al.,625
2022). Similarly, a multimodal co-attention Transformer was proposed for survival prediction using626
WSIs and genomic sequences (Chen et al., 2021). The authors used a co-attention mechanism to627
learn the interactions between the two data modalities.628

Reinforcement learning with human feedback (RLHF) has emerged as a promising technique629
to infuse large language models with domain knowledge and human preferences for healthcare630
applications. Sun et al. (2023) proposed an approach to continuously improve a conversational agent631
for behavioral interventions by integrating few-shot generation, prompt engineering, and RLHF to632
leverage human feedback from therapists and clients. Giuffrè et al. (2024) discussed strategies to633
optimize large language models for digestive disease by using RLHF to infuse domain knowledge634
through supervised fine-tuning. Basit et al. (2024) introduced MedAide, an on-premise healthcare635
chatbot that employs RLHF during training to enhance its medical diagnostic capabilities on edge636
devices. Dai et al. (2023) presented Safe RLHF, a novel algorithm that decouples human preferences637
for helpfulness and harmlessness during RLHF to improve the safety and value alignment of large638
language models in sensitive healthcare domains.639

5 MML - CHALLENGES AND OPPORTUNITIES

Learning from multimodal oncology data is a complex and rapidly growing field that presents both640
challenges and opportunities. While MML has shown significant promise, there are many challenges641
owing to the inductive biases of the ML models (Ektefaie et al., 2023a). In this context, we present642
major challenges of MML in oncology settings that, if addressed, could unlock the full potential of643
this emerging field.644

5.1 Large Amounts of High-quality Data645

DL models are traditionally trained on large datasets with enough samples for training, validation,646
and testing, such as JFT-300M (Sun et al., 2017) and YFCC100M (Thomee et al., 2016), which are647
not available in the cancer domain. For example, the largest genomics data repository, the Gene648
Expression Omnibus (GEO) database, has approximately 1.1 million samples with the keyword649
‘cancer’ compared to 3 billion images in JFT-300M (Jiang et al., 2022b). Annotating medical and650
oncology data is a time-consuming and manual process that requires significant expertise in many651
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Table 4. References Discussed in Section 4.
Sections References Discussed
Multimodal Transformers Vaswani et al. (2017), Otter et al. (2021), Xu et al.

(2023), Dosovitskiy et al. (2020), Zhang (2020),
Ahmed et al. (2022b), Ma et al. (2021a), Boehm et al.
(2021), Devlin et al. (2019), Radford et al. (2018),
Zhuang et al. (2021), Radford et al. (2021), Raffel
et al. (2020), Lewis et al. (2019), Scao et al. (2022),
Jia et al. (2021), Yu et al. (2022), Hu and Singh (2021),
Tang et al. (2022), Radford et al. (2021), Alayrac et al.
(2022), Yu et al. (2022), Jaegle et al. (2021), Achiam
et al. (2023), Otter et al. (2021), Xu et al. (2023), Han
et al. (2023), Galassi et al. (2021)

MML Data Fusion Stages Kalfaoglu et al. (2020) , Zhong et al. (2023), Li et al.
(2021a), Rombach et al. (2022), Zhu et al. (2022),
Yang et al. (2020), Zhao et al. (2022), Sun et al. (2021)

Transformers for Oncology Datasets Boehm et al. (2021), Shao et al. (2021), Liang et al.
(2022a), Lian et al. (2022), Chen et al. (2021), Sun
et al. (2023), Giuffrè et al. (2024), Basit et al. (2024),
Dai et al. (2023)

different areas of medical sciences. Factors like heterogeneity of the disease, noise in data recording,652
background, and training of medical professionals leading to inter- and intra-operator variability653
cause lack of reproducibility and inconsistent clinical outcomes (Lipkova et al., 2022).654

5.2 Data Registration and Alignment655

Data alignment and registration refer to the process of combining and aligning data from different656
modalities in a useful manner (Zhao et al., 2023). In multimodal oncology data, this process involves657
aligning data from multiple modalities such as CT, MRI, PET, and WSIs, as well as genomics,658
transcriptomics, and clinical records. Data registration involves aligning the data modalities to a659
common reference frame and may involve identifying common landmarks or fiducial markers. If the660
data is not registered or aligned correctly, it may be difficult to fuse the information from different661
modalities (Liang et al., 2022b).662

5.3 Pan-Cancer Generalization and Transference663

Transference in MML aims to transfer knowledge between modalities and their representations to664
improve the performance of a model trained on a primary modality (Liang et al., 2022b). Because of665
the unique characteristics of each cancer type and site, it is challenging to develop models that can666
generalize across different cancer sites. Furthermore, models trained on a specific modality, such as667
radiology images, will not perform well with other imaging modalities, such as histopathology slides.668
Fine-tuning the model on a secondary modality, multimodal co-learning, and model induction are669
techniques to achieve transference and generalization (Wei et al., 2020). To overcome this challenge,670
mechanisms for improved universality of ML models need to be devised.671
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5.4 Missing Data Samples and Modalities672

The unavailability of one or more modalities or the absence of samples in a modality affects the673
model learning, as most of the existing DL models cannot process the “missing information”. This674
requirement, in turn, constrains the already insufficient size of datasets in oncology. Almost all675
publicly available oncology datasets have missing data for a large number of samples (Jiang et al.,676
2022b). Various approaches for handling missing data samples and modalities are gradually gaining677
traction. However, this is still an open challenge (Mirza et al., 2019).678

5.5 Imbalanced Data679

Class imbalance refers to the phenomenon when one class (e.g., cancer negative/positive) is680
represented significantly more in the data than another class. Class imbalance is common in oncology681
data (Mirza et al., 2019). DL models struggle to classify underrepresented classes accurately.682
Techniques such as data augmentation, ensemble, continual learning, and transfer learning are used683
to counter the class imbalance challenge (Mirza et al., 2019).684

5.6 Explainability and Trustworthiness685

The explainability in DL, e.g., how GNNs and Transformers make a specific decision, is still an686
area of active research (Li et al., 2022b; Nielsen et al., 2022). GNNExplainer (Ying et al., 2019),687
PGM-Explainer (Vu and Thai, 2020), and SubgraphX (Yuan et al., 2021) are some attempts to688
explain the decision-making process of GNNs. The explainability methods for Transformers have689
been analyzed in (Remmer, 2022). Existing efforts and a roadmap to improve the trustworthiness of690
GNNs have been presented in the latest survey (Zhang et al., 2022a). However, the explainability691
and trustworthiness of multimodal GNNs and Transformers is an open challenge.692

5.7 Over-smoothing in GNNs693

One particular challenge in using GNNs is over-smoothing, which occurs when the GNN is trained694
for too long, causing the node representations to become almost similar (Wu et al., 2020). This695
leads to a loss of information, a decrease in the model’s performance, and a lack of generalization696
(Valsesia et al., 2021). Regularization techniques such as dropout, weight decay, skip-connection,697
and incorporating higher-order structures, such as motifs and graphlets, have been proposed.698
However, building deep architectures that can scale and adapt to varying structural patterns of699
graphs is still an open challenge.700

5.8 Modality Collapse701

Modality collapse is a phenomenon that occurs in MML, where a model trained on multiple702
modalities may become over-reliant on a single modality, to the point where it ignores or neglects703
the other modalities (Javaloy et al., 2022). Recent work explored the reasons and theoretical704
understanding of modality collapse (Huang et al., 2022). However, the counter-actions needed to705
balance model dependence on data modalities require active investigation by the ML community.706

Frontiers 26



Waqas et al. Multimodal Oncology Data Integration using DNNs

5.9 Dynamic and Temporal Data707

Dynamic and temporal data refers to the data that changes over time (Wu et al., 2020). Tumor708
surveillance is a well-known technique to study longitudinal cancer growth over multiple data709
modalities (Waqas et al., 2021). Spatio-temporal methods such as multiple instance learning, GNNs,710
and hybrid of multiple models can capture complex change in the data relationships over time;711
however, learning from multimodal dynamic data is very challenging and an active area of research712
(Fritz et al., 2022).713

5.10 Data Privacy714

Given the sensitive nature of medical data, privacy and security are critical considerations in715
the development and deployment of MML models for oncology applications. With the increased716
adoption of MML in healthcare settings, it is essential to adapt these techniques to enable local data717
processing and protect patient privacy while fostering collaborative research and analysis across718
different sites and institutions. Federated learning (FL) has emerged as a promising approach to719
train large multimodal models across various sites without the need for direct data sharing (Pati720
et al., 2022). In an FL setup, each participating site trains a local model on its own data and shares721
only the model updates with a central server, which aggregates the updates and sends the updated722
global model back to the sites. This allows for collaborative model development while keeping the723
raw data securely within each site’s premises.724

To further enhance privacy protection in FL and other distributed learning scenarios, differential725
privacy (DP) can be integrated into the model training process. DP is a rigorous mathematical726
framework that involves adding carefully calibrated noise to data or model updates before sharing,727
in order to protect individual privacy while preserving the utility of the data for analysis (Nampalle728
et al., 2023; Islam et al., 2022; Akter et al., 2022). Secure multi-party computation (SMPC) is729
another powerful technique for enabling joint analysis and model training on private datasets730
held by different healthcare providers or research institutions, without revealing the raw data to731
each other (Şahinbaş and Catak, 2021; Alghamdi et al., 2023; Yogi and Mundru, 2024). SMPC732
protocols leverage advanced cryptographic techniques to allow multiple parties to compute a733
function over their combined data inputs securely, such that each party learns only the output734
of the computation and nothing about the other parties’ inputs. In addition to these solutions,735
implementing appropriate access control and authentication mechanisms is crucial for restricting736
access to sensitive healthcare data to only authorized individuals and entities (Orii et al., 2024). This737
involves defining and enforcing strict policies and procedures for granting, managing, and revoking738
access privileges based on the principle of least privilege and the need-to-know basis. Regular739
security risk assessments should also be conducted to identify and mitigate potential vulnerabilities740
proactively, ensuring the ongoing protection of patient data.741

5.11 Other Challenges742

MML requires extensive computational resources to train models on a variety of datasets and tasks.743
Robustness and failure detection (Ahmed et al., 2022a) are critical aspects of MML, particularly744
in applications such as oncology. Uncertainty quantification techniques, such as Bayesian neural745
networks (Dera et al., 2021), are still under-explored avenues in the MML. By addressing these746
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challenges, it is possible to develop MML models that are able to surpass the performance offered747
by single-modality models.748

5.12 Potential Future Directions749

The future of MML in oncology holds immense potential. A critical direction is the integration of750
large amounts of high-quality data from diverse modalities, such as imaging, genomic, and clinical751
data, to enhance the accuracy and comprehensiveness of cancer diagnostics and treatment predictions752
in an end-to-end manner. Overcoming challenges in data registration and alignment is crucial to753
ensure seamless integration and accurate interpretation of multimodal data. Developing robust754
models capable of pan-cancer generalization and transference can enable more universal applications755
across different cancer types. Addressing issues of missing data samples and modalities, and756
tackling imbalanced datasets, will be essential to improve model robustness and fairness. Enhancing757
explainability and trustworthiness in these models is vital for clinical adoption, necessitating758
transparent and interpretable AI systems. Preventing modality collapse is important for maintaining759
the distinct contributions of each data modality. Moreover, leveraging dynamic and temporal data760
can offer deeper insights into cancer progression and treatment responses. Ensuring data privacy761
and ethical considerations will be paramount as the field advances, balancing innovation with the762
protection of patient information. Lastly, implementing MML applications in clinical settings is763
crucial to fully realize the benefits of MML in cancer research.764

5.13 Limitations of the Study765

MML is a broad research field that has recently gained traction. In this review, we have focused on766
the application of MML on oncology data. However, MML is widely being adopted in applications767
such as autonomous vehicles, education, earth science, climate change, and space exploration (Xiao768
et al., 2020; Li et al., 2024; Hadid et al., 2024; Sanders et al., 2023). Moreover, beyond GNNs and769
Transformers, MML has been explored using encoder-decoder methods, constraint-based methods,770
canonical correlations, Restricted Boltzmann Machines (RBMs), and many more (Zhao et al., 2024;771
Qi et al., 2020). Each of these topics require an extensive review of the literature in the form of772
separate articles.773

6 MULTIMODAL ONCOLOGY DATA SOURCES

Unifying the various collections of oncology data into central archives necessitates a focused774
effort. We have assembled a list of datasets from data portals maintained by the National775
Institute of Health and other organizations, although this list is not exhaustive. The goal of this776
compilation is to offer machine learning researchers in oncology a consolidated data resource. The777
collection, which is updated regularly, can be accessed at https://lab-rasool.github.778
io/pan-cancer-dataset-sources/ (Tripathi et al., 2024a). The compilation of pan-779
cancer datasets from sources such as The Cancer Imaging Archive (TCIA), Genomic Data Commons780
(GDC), and Proteomic Data Commons (PDC) serves as a valuable resource for cancer research.781
By providing a unified view of multimodal data that includes imaging, genomics, proteomics, and782
clinical records, this compilation facilitates the development of adaptable and scalable datasets783
specifically designed for machine learning applications in oncology (Tripathi et al., 2024a). The784
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Table 5. References Discussed in Section 5.
Sections References Discussed
Large Amounts of High-quality Data Ektefaie et al. (2023a), Sun et al. (2017),

Thomee et al. (2016), Jiang et al. (2022b),
Lipkova et al. (2022)

Data Registration and Alignment Zhao et al. (2023), Liang et al. (2022b)
Pan-Cancer Generalization and Transference Liang et al. (2022b), Wei et al. (2020)
Missing Data Samples and Modalities Jiang et al. (2022b), Mirza et al. (2019)
Imbalanced Data Mirza et al. (2019)
Explainability and Trustworthiness Li et al. (2022b), Nielsen et al. (2022), Ying

et al. (2019), Vu and Thai (2020), Yuan et al.
(2021), Remmer (2022), Zhang et al. (2022a)

Over-smoothing in GNNs Wu et al. (2020), Valsesia et al. (2021)
Modality Collapse Javaloy et al. (2022), Huang et al. (2022)
Dynamic and Temporal Data Wu et al. (2020), Waqas et al. (2021), Fritz

et al. (2022)
Data Privacy Pati et al. (2022), Nampalle et al. (2023),

Islam et al. (2022), Akter et al. (2022),
Şahinbaş and Catak (2021), Alghamdi et al.
(2023), Yogi and Mundru (2024), Orii et al.
(2024)

Other Challenges Ahmed et al. (2022a), Dera et al. (2021)
Limitations of the Study Xiao et al. (2020), Li et al. (2024), Hadid

et al. (2024), Sanders et al. (2023), Zhao et al.
(2024), Qi et al. (2020)

compiled datasets encompass a broad spectrum of data modalities, such as radiology images (CT,785
MRI, PET), pathology slides, genomic data (DNA, RNA), proteomics, and clinical records. This786
multimodal nature enables the integration of different data types to capture the intricacies of cancer.787
Moreover, the compilation covers 32 cancer types, ranging from prevalent cancers like breast, lung,788
and colorectal to less common forms such as mesothelioma and uveal melanoma. The inclusion789
of hundreds to thousands of cases for each cancer type provides a substantial resource for training790
machine learning models, especially deep learning algorithms.791

Standardizing the diverse data formats, annotations, and metadata across different sources is792
essential for creating datasets that are suitable for machine learning. The HoneyBee framework, a793
modular system designed to streamline the creation of machine learning-ready multimodal oncology794
datasets from diverse sources, can help address this challenge (Tripathi et al., 2024b). HoneyBee795
supports data ingestion from various sources, handles different data formats and modalities, and796
ensures consistent data representation. It also facilitates the integration of multimodal data, enabling797
the creation of datasets that combine imaging, genomics, proteomics, and clinical data for a holistic798
view of each patient case. Furthermore, HoneyBee incorporates pre-trained foundational embedding799
models for different data modalities, such as image encoders, genomic sequence embedders, and800
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clinical text encoders. These embeddings can serve as input features for downstream machine801
learning models, leveraging transfer learning and reducing the need for extensive labeled data.802
The framework’s scalable and modular architecture allows for efficient processing of large-scale803
datasets and easy integration of new data sources, preprocessing techniques, and embedding models.804
By utilizing the HoneyBee framework, researchers can create high-quality, multimodal oncology805
datasets tailored to their specific research objectives, promoting collaboration and advancing806
machine learning applications in cancer research.807

7 CONCLUSION

Existing research into the integration of data across various modalities has already yielded promising808
outcomes, highlighting the potential for significant advancements in cancer research. However, the809
lack of a comprehensive framework capable of encompassing the full spectrum of cancer dataset810
modalities presents a notable challenge. The synergy between diverse methodologies and data811
across different scales could unlock deeper insights into cancer, potentially leading to more accurate812
prognostic and predictive models than what is possible through single data modalities alone. In our813
survey, we have explored the landscape of multimodal learning applied to oncology datasets and the814
specific tasks they can address. Looking ahead, the key to advancing this field lies in the development815
of robust, deployment-ready MML frameworks. These frameworks must not only scale efficiently816
across all modalities of cancer data but also incorporate capabilities for uncertainty quantification,817
interpretability, and generalizability. Such advancements will be critical for effectively integrating818
oncology data across multiple scales, modalities, and resolutions. The journey towards achieving819
these goals is complex, yet essential for the next leaps in cancer research. By focusing on these820
areas, future research has the potential to significantly enhance our understanding of cancer, leading821
to improved outcomes for patients through more informed and personalized treatment strategies.822

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial823
relationships that could be construed as a potential conflict of interest.824

AUTHOR CONTRIBUTIONS

A.W, A.A., R.R, P.S., and G.R. conceived the manuscript. A.W., A.A. reviewed the literature and825
wrote the initial draft. All authors reviewed, improved, and contributed to the manuscript.826

FUNDING

This work has been supported in part by the National Science Foundation awards 1903466, 2008690,827
2234836, and 2234468, and in part by the Biostatistics and Bioinformatics Shared Resource at828
the H. Lee Moffitt Cancer Center & Research Institute, an NCI-designated Comprehensive Cancer829
Center (P30-CA076292).830

Frontiers 30



Waqas et al. Multimodal Oncology Data Integration using DNNs

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in the pan-cancer-dataset-sources repository831
https://lab-rasool.github.io/pan-cancer-dataset-sources/.832

REFERENCES

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., et al. (2023). Gpt-4833
technical report. arXiv preprint arXiv:2303.08774834

Ahmed, S., Dera, D., Hassan, S. U., Bouaynaya, N., and Rasool, G. (2022a). Failure detection in835
deep neural networks for medical imaging. Frontiers in Medical Technology 4836

Ahmed, S., Nielsen, I. E., Tripathi, A., Siddiqui, S., Rasool, G., and Ramachandran, R. P. (2022b).837
Transformers in time-series analysis: A tutorial. arXiv preprint arXiv:2205.01138838

Ahmedt-Aristizabal, D., Armin, M. A., Denman, S., Fookes, C., and Petersson, L. (2022). A survey839
on graph-based deep learning for computational histopathology. Computerized Medical Imaging840
and Graphics 95, 102027. doi:https://doi.org/10.1016/j.compmedimag.2021.102027841

Akter, M., Moustafa, N., and Lynar, T. (2022). Edge intelligence-based privacy protection framework842
for iot-based smart healthcare systems. In IEEE INFOCOM 2022-IEEE Conference on Computer843
Communications Workshops (INFOCOM WKSHPS) (IEEE), 1–8844

Al-jabery, K. K., Obafemi-Ajayi, T., Olbricht, G. R., and Wunsch II, D. C. (2020). Data845
preprocessing. In Computational Learning Approaches to Data Analytics in Biomedical846
Applications, eds. K. K. Al-jabery, T. Obafemi-Ajayi, G. R. Olbricht, and D. C. Wunsch II847
(Academic Press). 7–27. doi:https://doi.org/10.1016/B978-0-12-814482-4.00002-4848

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., et al. (2022). Flamingo: a849
visual language model for few-shot learning. Advances in neural information processing systems850
35, 23716–23736851

Alghamdi, W., Salama, R., Sirija, M., Abbas, A. R., and Dilnoza, K. (2023). Secure multi-party852
computation for collaborative data analysis. In E3S Web of Conferences (EDP Sciences), vol.853
399, 04034854
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