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ABSTRACT2

Medical vision-language models (VLMs) combine computer vision (CV) and natural language3
processing (NLP) to analyze visual and textual medical data. Our paper reviews recent4
advancements in developing VLMs specialized for healthcare, focusing on publicly available5
models designed for medical report generation and visual question answering (VQA). We provide6
background on NLP and CV, explaining how techniques from both fields are integrated into VLMs,7
with visual and language data often fused using Transformer-based architectures to enable effective8
learning from multimodal data. Key areas we address include the exploration of 18 public medical9
vision-language datasets, in-depth analyses of the architectures and pre-training strategies of10
16 recent noteworthy medical VLMs, and comprehensive discussion on evaluation metrics for11
assessing VLMs’ performance in medical report generation and VQA. We also highlight current12
challenges facing medical VLM development, including limited data availability, concerns with data13
privacy, and lack of proper evaluation metrics, among others, while also proposing future directions to14
address these obstacles. Overall, our review summarizes the recent progress in developing VLMs to15
harness multimodal medical data for improved healthcare applications.16

Keywords: vision-language models, report generation, visual question answering, datasets, evaluation metrics, healthcare17

1 INTRODUCTION

The last decade has seen significant progress in artificial intelligence (AI) and machine learning (ML),18
including the development of foundation models (FMs), large language models (LLMs), and vision-19
language models (VLMs). These AI/ML developments have started transforming several aspects of our20
daily lives, including healthcare. AI/ML can potentially transform the healthcare continuum by significantly21
optimizing and improving disease screening, diagnostics, treatment planning, and post-treatment care22
Bajwa et al. (2021). Various computer vision (CV) and natural language processing (NLP) models,23
particularly LLMs, have been instrumental in driving this transformative trend He et al. (2023b); Zhou24
et al. (2023b). CV models have been trained and validated for various screening and diagnosis use cases25
leveraging radiology data from X-rays, mammograms, magnetic resonance imaging (MRI), computed26
tomography (CT), and others. Recently, AI models focused on digital pathology using histopathology and27
immunohistochemistry data have also shown significant advances in accurate disease diagnosis, prognosis,28
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and biomarker identification Waqas et al. (2023, 2024a). On the other hand, by training models using large29
datasets of medical literature, clinical notes, and other healthcare-related text, LLMs can extract insights30
from electronic health records (EHR) efficiently, assist healthcare professionals in generating concise31
summary reports, and facilitate the interpretation of patient information. Noteworthy examples of such32
LLMs include GatorTron Yang et al. (2022), ChatDoctor Li et al. (2023c), Med-PaLM (Medical Pathways33
Language Model) Singhal et al. (2023) and Med-Alpaca Han et al. (2023).34

The healthcare data is inherently multimodal, and consequently, the AI/ML models often need to be35
trained using multiple data modalities, including text (e.g., clinical notes, radiology reports, surgical36
pathology reports, etc.), imaging (e.g., radiology scans, digitized histopathology slides, etc.), and tabular37
data (e.g., numerical data such as vitals or labs and categorical data such as race, gender, and others)38
Acosta et al. (2022); Shrestha et al. (2023); Waqas et al. (2024b); Tripathi et al. (2024a); Mohsan et al.39
(2023); Waqas et al. (2024c,a); Tripathi et al. (2024b). In routine clinical practice, healthcare professionals40
utilize a combination of these data modalities for diagnosing and treating various conditions. Integrating41
information from diverse data modalities enhances the precision and thoroughness of disease assessments,42
diagnoses, treatment planning, and post-treatment surveillance. The need for AI/ML models to ingest,43
integrate, and learn from information stemming from varied data sources is the driving force for multimodal44
learning Huang et al. (2021); Waqas et al. (2024b).45

The recent progress in multimodal learning has been driven by the development of VLMs Gan et al.46
(2022); Chen et al. (2023); Mohsan et al. (2023). These models analyze, interpret, and derive insights from47
both visual and textual data. In the medical domain, these models contribute to a holistic understanding of48
patient information and improve ML model performance in clinical tasks. Many of these models, like CLIP49
(Contrastive Language–Image Pre-training) Radford et al. (2021), LLaVa (Large Language and Vision50
Assistant) Liu et al. (2023c), and Flamingo Alayrac et al. (2022) are tailored to healthcare domain through51
training on extensive medical datasets. Adapting VLMs for medical visual question-answering (VQA)52
Lin et al. (2023b) enables healthcare professionals to query medical images such as CT scans, MRIs,53
mammograms, ultrasounds, X-rays, and more. The question-answering capability elevates the interactive54
nature of the AI/ML models in healthcare, facilitating dynamic exchanges between healthcare providers55
and the AI system. Furthermore, adapting VLMs for medical report generation enables them to amalgamate56
information from visual and textual sources, producing detailed and contextually relevant reports. This57
enhances healthcare workflow efficiency by ensuring comprehensive and accurate reports.58

In contrast to previous related surveys Lin et al. (2023b); Ting et al. (2023); Shrestha et al. (2023), this59
review aims to provide a comprehensive update on how methods from CV and NLP are integrated to60
develop VLMs specifically designed for medical report generation and VQA. The specific objectives of61
this review are as follows:62

• Provide essential background on artificial neural networks, CV, and NLP, to ensure the accessibility63
of this review for readers from medical fields and promote collaboration and knowledge exchange64
between the AI/ML community and the medical professionals (see Section 2).65

• Explore the integration of CV and NLP in VLMs, including model architectures, training strategies,66
and downstream tasks (see Section 3).67

• Analyze recent advances in VLMs, datasets, and evaluation metrics relevant to medical report68
generation and VQA (see Section 4). Specifically:69

• Describe 18 publicly available vision-language datasets that encompass medical image-text pairs or70
question-answer pairs related to medical images (see Section 4.1).71
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• Outline over 10 metrics employed for evaluating VLMs in the context of report generation and VQA72
tasks (see Section 4.2).73

• Thoroughly review 16 recent medical VLMs, 15 of which are publicly available, with most models74
not previously covered in other surveys (see Section 4.3).75

• Discuss the current challenges within the field of medical VLMs, offering insights into potential76
research directions that could profoundly influence their future development (see Section 5).77

The overall structure of this review is shown in Figure 1. The list of medical VLMs and datasets can also78
be found on GitHub.79

2 MACHINE LEARNING (ML) - A BRIEF REVIEW

Deep learning (DL), a subfield of ML, involves algorithms that learn to recognize patterns and make80
decisions by analyzing large amounts of data. In this section, we review the fundamental principles of DL81
and explore two main areas of DL relevant to medical VLMs: CV and NLP. For more detailed information82
on DL, we refer the reader to LeCun et al. (2015); Goodfellow et al. (2016); Baldi (2021).83

2.1 Principles of Deep Learning (DL)84

ML and AI originated in the 1940s-1950s, with neural networks (NNs) emerging as classical models. The85
fundamental building block of an NN is an artificial neuron, which receives multiple inputs, aggregates them,86
applies nonlinear operations, and outputs a single scalar value. NNs consist of layers of interconnected87
artificial neurons, including input, output, and hidden layers. In feedforward NNs, connections are88
structured so that a connection from neuron i to neuron j exists only if i < j Baldi (2021). In any NN,89
the connections between artificial neurons carry weight, and neurons utilize “activation functions” on90
their inputs to introduce non-linearity. An activation function is a mathematical operation that transforms91
the weighted sum of inputs into an output, enabling the network to model complex patterns. Common92
activation functions include the sigmoid, hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU).93

A loss function quantifies the disparity between predicted and actual outputs, with the goal of minimizing94
this scalar value during training. DL leverages NNs but extends them into deeper architectures with many95
hidden layers. Backpropagation, short for backward propagation of errors, is essential for training deep96
NNs. It involves calculating the gradient of the loss function with respect to the weights, using the chain rule97
for derivatives Baldi (2021). This gradient information updates the weights to minimize the loss. Common98
optimization methods include gradient descent, stochastic gradient descent (SGD) Robbins (1951), and99
Adam (Adaptive Moment Estimation) Kingma and Ba (2014). These methods iteratively update the weights100
to improve the model’s performance during training.101

2.2 Natural Language Processing (NLP)102

NLP is the analysis of linguistic data, most commonly in the form of textual data such as documents or103
publications, using computational methods Verspoor and Cohen (2013). NLP encompasses a variety of104
tasks aimed at understanding, processing, and generating human language. The common NLP tasks include105
machine translation, named entity recognition, text summarization, etc. In the following, we introduce106
terminology and fundamental concepts that will help the reader in the coming sections on modern NLP and107
medical VLMs.108
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Figure 1. Organization of the review paper. The structure begins with an introduction, followed by a
foundational review of ML and background on VLMs. It then delves into medical vision-language datasets,
evaluation metrics, and recent medical VLMs. Next, the paper addresses the current challenges of medical
VLMs and proposes possible future research directions. It ends with a conclusion summarizing key insights
and findings.

2.2.1 Markov Chain Model109

The Markov chain model has historically been significant in NLP, particularly for tasks involving sequence110
prediction and probabilistic modeling of text data Nadkarni et al. (2011). A Markov chain is a stochastic111
process that transitions from one state to another based on specific probabilistic rules, with the fundamental112
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property that the future state depends only on the current state and not on the sequence of events that113
preceded it. This property, known as the Markov property, allowed Markov chains to model the likelihood114
of sequences of words or characters by capturing statistical dependencies between adjacent elements.115
They facilitated tasks such as text generation, next-element prediction, and part-of-speech tagging in early116
NLP research and applications, providing a foundational framework for subsequent advanced techniques117
Nadkarni et al. (2011).118

2.2.2 Tokenization119

In contemporary NLP, tokenization is the initial step involving the splitting of sentences and words into120
their smallest morphemes, known as tokens Rai and Borah (2021). Subword tokenization methods are121
often preferred in many NLP applications due to their effectiveness in handling out-of-vocabulary words.122
WordPiece Wu et al. (2016) starts by treating each character as a token, forming an initial vocabulary. Using123
a flexible merging strategy, WordPiece considers adjacent characters or subword units that enhance the124
overall likelihood of the training data, aiming to accurately represent it given the model’s current state.125
Byte-Pair Encoding (BPE) Sennrich et al. (2016) shares similarities with WordPiece but follows a more126
deterministic merging strategy. BPE merges the most frequent pair of adjacent characters or subword units127
in each iteration, progressing toward a predefined vocabulary size. Byte-level BPE Wang et al. (2020)128
operates at an even finer granularity, considering individual bytes instead of characters. This extension129
allows it to capture more nuanced patterns at the byte level.130

2.2.3 Token Embeddings131

Tokens are often transformed into numerical vectors that capture semantic relationships between tokens,132
called word or token embeddings. Word2Vec Mikolov et al. (2013b) is a widely used word embedding133
technique employing two models: Skip-Gram Mikolov et al. (2013b) and Continuous Bag of Words134
(CBOW) Mikolov et al. (2013a). Skip-Gram predicts context words given a target word, capturing135
semantic associations, while CBOW predicts the target word based on context, emphasizing syntactic136
structures. Word2Vec is computationally efficient, making it suitable for large datasets and general-purpose137
applications. Global Vectors (GloVe) Pennington et al. (2014) focuses on capturing global semantic138
relationships by analyzing word pair statistics across the entire corpus. It generates word vectors reflecting139
co-occurrence probabilities, which is ideal for tasks requiring a holistic understanding of word connections.140
FastText Bojanowski et al. (2017) is effective for handling out-of-vocabulary words and morphologically141
rich languages. It adopts a sub-word approach, breaking words into n-grams, and uses a skip-gram training142
method similar to Word2Vec to learn embeddings for these sub-word units.143

Specialized embeddings are available for biomedical and clinical terms. BioWordVec Zhang et al. (2019)144
incorporates MeSH terms and text from PubMed abstracts to learn improved biomedical word embeddings.145
Cui2vec Beam et al. (2020) utilizes multi-modal data from medical publications and clinical notes, mapping146
terms onto a common Concept Unique Identifier (CUI) space. Additionally, positional encodings, often147
based on sinusoidal functions, are commonly added to capture the order of tokens in a sequence. These148
vectors systematically encode token positions, enriching embeddings with positional information for149
tailored NLP tasks Ahmed et al. (2023).150

2.2.4 Recurrent Neural Networks (RNNs)151

RNNs are widely employed for pattern detection in sequential data like genomic sequences, text, or152
numerical time series Schmidt (2019). Operating on the principle of preserving a form of memory, RNNs153
incorporate a cyclic structure by looping the output of a specific layer back to the input, facilitating the154
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prediction of subsequent layer outputs. This mechanism empowers RNNs to adeptly model sequential and155
temporal dependencies, capturing information from preceding time steps within hidden states. However,156
they face challenges in retaining long-term dependencies due to the vanishing gradient problem. To address157
this, variants like Long Short-Term Memory (LSTM) Hochreiter and Schmidhuber (1997) and Gated158
Recurrent Unit (GRU) Cho et al. (2014) have been developed to better capture and utilize long-range159
dependencies in sequential data Ahmed et al. (2023).160

2.2.5 Transformers161

In recent years, there has been a remarkable advancement in NLP mainly due to the development of the162
Transformer models Vaswani et al. (2017). Beyond incorporating embeddings and positional encodings, the163
Transformer architecture consists of an encoder that processes input data, represented by vectors obtained164
from embedded and positionally encoded tokens. The encoder-generated representation then serves as165
the input for the subsequent decoder, transforming these vector representations into a relevant output166
tailored to the specific task. A defining characteristic of the Transformer lies in its self-attention mechanism,167
particularly the scaled dot-product attention, which proves instrumental in capturing intricate dependencies168
within sequences.169

The synergy between enhanced computational power provided by Graphical Processing Units (GPUs)170
and advancements in attention mechanisms has been pivotal in developing large language models (LLMs).171
These models are meticulously trained on vast datasets with many parameters. BERT (Bidirectional172
Encoder Representations from Transformers) Devlin et al. (2019) marked the inception of LLMs. The era173
of even larger LLMs began in 2020 with the introduction of models like GPT-3 (the 3rd generation of the174
Generative Pre-trained Transformer model) Brown et al. (2020) and PaLM (Pathways Language Model)175
Chowdhery et al. (2022). Some recent LLMs include LLaMA (Large Language Model Meta AI) Touvron176
et al. (2023a,b), Vicuna Chiang et al. (2023), and Mistral Jiang et al. (2023).177

2.3 Computer Vision (CV)178

CV involves interpreting and understanding the world from their images or videos Ji (2020). Data in179
CV is encoded as numerical values representing the intensity or brightness of pixels. The extraction of180
visual patterns like edges, textures, and objects in images or video frames serves as building blocks for181
various CV tasks like image classification, object detection, and semantic segmentation. In the following,182
we introduce fundamental concepts and terms essential for understanding VLMs presented in the later183
parts of the paper.184

2.3.1 Convolutional Neural Networks (CNNs)185

CNNs represent a significant advancement in CV Yamashita et al. (2018). Besides pooling and fully186
connected layers, CNNs also have convolution layers, which apply convolution operations to input data. A187
small filter or kernel slides over the input data during a convolution operation, performing element-wise188
multiplications with local regions of the input at each position. The results are summed to create a new189
value in the output feature map. This process is repeated across the entire input, capturing patterns and190
features at different spatial locations. The well-known CNNs include Residual Network (ResNet) He et al.191
(2016), Dense Convolutional Network (DenseNet) Huang et al. (2022), Efficient Network (EfficientNet)192
Tan and Le (2020) and others.193
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2.3.2 Vision Transformers (ViTs)194

Transformer models, originally proposed for NLP tasks, have also found valuable applications in CV.195
For instance, the ViT model Dosovitskiy et al. (2021) can capture intricate relationships and dependencies196
across the entire image. This is achieved by leveraging the Transformer architecture and treating images as197
sequences of smaller patches. Each image patch undergoes flattening into a vector, followed by passage198
through an embedding layer, enriching the patches for a more expressive representation. Positional199
encodings are then incorporated to convey spatial arrangement information. ViTs also introduce a200
special token capturing global image information, represented by a learnable token embedding with201
unique parameters. ViTs have excelled in semantic segmentation Ranftl et al. (2021), anomaly detection202
Mishra et al. (2021), medical image classification Manzari et al. (2023); Barhoumi et al. (2023) and even203
outperformed CNNs in some cases Tyagi et al. (2021); Xin et al. (2022).204

3 VISION-LANGUAGE MODELS (VLMS)

Many real-world scenarios inherently involve multiple data modalities, prompting the development of205
VLMs capable of simultaneously handling and understanding both NLP and CV data. In this section, we206
build on the basic concepts described earlier and present VLMs, their architectures, training and fine-tuning207
methods, and various downstream tasks facilitated by these multimodal models.208

3.1 Model Architecture209

3.1.1 Single-Stream vs. Dual-Stream VLMs210

Based on how different data modalities are fused together in VLMs, they are generally categorized211
into two groups Chen et al. (2023): (1) single-stream (e.g., VisualBERT Li et al. (2019) and UNITER or212
UNiversal Image-TExt Representation Learning Chen et al. (2020b)), and (2) dual-stream models (e.g.,213
ViLBERT or Vision-and-Language BERT Lu et al. (2019) and CLIP or Contrastive Language-Image214
Pre-training Radford et al. (2021)).215

A single-stream VLM adopts an efficient architecture for processing visual and textual information216
within a unified module (see Figure 2 A and and Figure 3 A). This architecture incorporates an early fusion217
of distinct data modalities, concatenating feature vectors from various data sources into a single vector (e.g.,218
MedViLL Moon et al. (2022)). Subsequently, this combined representation is fed into a single stream. One219
notable advantage of the single-stream design is its parameter efficiency, achieved by employing the same220
set of parameters for all modalities. This simplifies the model and contributes to computational efficiency221
during training and inference phases Chen et al. (2023).222

A dual-stream VLM extracts visual and textual representations separately in parallel streams without223
parameter sharing (see Figure 2 B and Figure 3 B). This architecture typically exhibits higher computational224
complexity than single-stream architectures. Visual features are generated from pre-trained vision encoders,225
such as CNNs or ViTs, and textual features are obtained from pre-trained text encoders, usually based on the226
Transformer architecture (e.g., PubMedCLIP Eslami et al. (2023)). These features are then integrated using227
a multimodal fusion module, often leveraging attention mechanisms, to capture cross-modal dependencies.228

3.1.2 Encoder vs. Encoder-Decoder VLMs229

The learned cross-modal representations can be optionally processed by a decoder before producing230
the final output. Consequently, VLMs are classified into two groups: (1) encoder-only (e.g., ALIGN (A231

Frontiers 7



Hartsock, Rasool A Review of Medical VLMs

Figure 2. Two main types of VLM architectures, single-steam and dual-stream, are presented. The model
inputs and outputs are indicated. The rectangular boxes inside the grey areas indicate the components of
the VLM that typically undergo pre-training and fine-tuning, i.e., the model parameters are updated using
labeled or unlabeled data. The top row (A) shows the single-stream VLM architecture, and the bottom row
shows the (B) dual-stream. Each block indicated in these architectures can be designed using different
AI/ML models as indicated in these blocks.

Large-scale ImaGe and Noisy-text embedding) Jia et al. (2021)), and (2) encoder-decoder models (e.g.,232
SimVLM (Simple Visual Language Model) Wang et al. (2022c)).233

Encoder-only VLMs are advantageous in scenarios where the primary objective is efficient representation234
learning. They often exhibit streamlined processing and reduced computational complexity, making them235
suitable for tasks requiring compact and informative representations. However, these models might lack236
the capability to generate intricate and detailed outputs, limiting their use in tasks demanding nuanced237
responses or creative generation.238

Encoder-decoder VLMs offer the flexibility to generate complex and diverse outputs, making them239
well-suited for tasks like image captioning, translation, or any application requiring creative responses. The240
decoding step allows for the transformation of joint representations into meaningful outputs. However, this241
versatility comes at the cost of increased computational demand and complexity.242

3.2 Model Training243

3.2.1 Transfer Learning244

A widely used strategy in ML is transfer learning, where pre-trained models are customized for specific245
downstream tasks. This involves fine-tuning the model’s parameters using smaller task-specific datasets to246
address the intricacies of the target task rather than starting with random initialization Bommasani et al.247
(2022). Transfer learning often entails modifying the original model’s architecture, such as adjusting final248
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Figure 3. Comparison of (A) single-stream and (B) dual-stream VLMs in terms of their advantages,
disadvantages, and healthcare applications, to guide the selection of the appropriate architecture for various
medical scenarios. In some cases, the optimal choice between architectures remains uncertain and may
depend on specific task requirements.

layers or introducing new ones, like classification or regression layers, to align with the task requirements249
Bommasani et al. (2022). The goal is to adapt the pre-trained model to the new task while leveraging the250
knowledge it gained during initial pre-training. Almost all VLMs use transfer learning during training in251
one way or another.252

3.2.2 Curriculum Learning253

Curriculum learning offers a novel approach for tasks or data with inherent progressions or hierarchies. It254
strategically presents training examples or tasks in a designed order, often based on difficulty or complexity255
measures Soviany et al. (2021). For instance, LLaVa-Med, a recent medical VLM Li et al. (2023a), employs256
curriculum learning during training. This gradual learning approach starts with simpler examples and257
progresses to more complex ones, enhancing the model’s adaptability and performance.258

3.2.3 Self-Supervised Learning (SSL)259

SSL provides a potent alternative to traditional supervised learning by enabling models to generate their260
own labels from data Rani et al. (2023). This approach is especially advantageous when acquiring labeled261
data is difficult or costly. In self-supervised learning for VLMs, models formulate tasks that leverage262
inherent data structures, allowing them to learn meaningful representations across modalities without263
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external labels. Examples of such tasks include contrastive learning, masked language modeling, and264
masked image modeling (further detailed in the subsequent sub-section).265

3.2.4 Pre-Training Process and Tasks266

The pre-training process is crucial for providing VLMs with a foundational understanding of the complex267
relationship between visual and textual data. A common approach involves extensive pre-training on268
datasets pairing images/videos with their corresponding textual descriptions. Throughout pre-training,269
the model engages in various tasks to acquire versatile representations for downstream applications. The270
following paragraphs describe commonly used pre-training techniques.271

Contrastive Learning (CL) trains the model to distinguish positive pairs from negative pairs of visual272
and textual data Li et al. (2021). Positive pairs contain related visual and textual content, like an image273
with its corresponding description. Negative pairs contain unrelated content, such as an image paired with274
a randomly chosen description. The goal is to bring positive pairs closer and push negative pairs apart in a275
shared embedding space. Various contrastive loss functions are used, with InfoNCE (Noise-Contrastive276
Estimation) loss van den Oord et al. (2019) being a common choice. CLIP Radford et al. (2021) employs277
InfoNCE with cosine similarity, while ALIGN Jia et al. (2021) uses normalized softmax loss to enhance278
positive similarity and reduce negative similarities.279

Masked Language Modeling (MLM) is an NLP task Taylor (1953) first utilized in BERT Devlin et al.280
(2019). MLM randomly replaces a percentage of tokens in textual data with a special token, usually denoted281
as MASK. The model then predicts these masked tokens, considering the context on both sides, enabling it282
to capture detailed contextual information. VLMs like UNITER Chen et al. (2020b) and VisualBERT Li283
et al. (2019) utilize MLM during pre-training.284

Masked Image Modeling (MIM), extending the idea of MLM to images, emerged as a novel approach285
Xie et al. (2022). In MIM, certain patches are masked, prompting the model to predict the contents286
of masked regions. This process enables the model to draw context from the entirety of the image,287
encouraging the integration of both local and global visual features. VLMs like UNITER Chen et al.288
(2020b) and ViLBERT Lu et al. (2019) leverage MIM for enhanced performance. The cross-entropy loss289
is employed in MLM and MIM tasks to measure the difference between predicted and actual probability290
distributions for the masked elements. Additionally, MLM can be combined with MIM, allowing the291
reconstruction of the masked signal in one modality with support from another modality Kwon et al. (2023).292

Image-Text Matching (ITM) is another common vision-language pre-training task. Throughout the293
training, the model learns to map images and corresponding textual descriptions into a shared semantic294
space, where closely aligned vectors represent similar content in both modalities. In single-stream VLMs,295
the special token [CLS] represents the joint representation for both modalities. In contrast, in dual-296
stream VLMs, the visual and textual representations of [CLS]V and [CLS]T are concatenated. This joint297
representation is fed into a fully-connected layer followed by the sigmoid function, predicting a score298
indicating match or mismatch Chen et al. (2023). Models like CLIP Radford et al. (2021) and ALBEF299
(ALign the image and text representations BEfore Fusing) Li et al. (2021) leverage ITM during pre-training.300

In VLM pre-training, multiple tasks are often combined to enable models to understand nuanced301
contextual information across modalities. Tasks like contrastive loss, cross-entropy loss for masked token302
prediction, and others can be integrated into the final loss function. This approach equips VLMs with303
versatile representations for diverse downstream tasks. For instance, ALBEF Li et al. (2021) adopts a304
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pre-training objective involving CL, MLM, and ITM tasks, with the overall loss computed as the sum of305
these components.306

3.2.5 Fine-Tuning Techniques307

Following the training, a common practice involves fine-tuning VLMs on smaller datasets tailored to308
specific downstream tasks. In the following, we present well-known techniques for fine-tuning VLMs.309

Supervised Fine-Tuning (SFT) involves meticulous fine-tuning of a model on a dataset curated to match310
the nuances of the targeted application. However, before engaging in SFT, the VLM undergoes pre-training311
on an extensive image-text dataset to establish a foundational understanding of visual-textual relationships.312
This dual-phase strategy enables the model to generalize broadly while adapting to specific applications313
Ouyang et al. (2022).314

Reinforcement Learning from Human Feedback (RLHF) is a distinct fine-tuning approach employed315
to enhance VLMs through the incorporation of human preferences during fine-tuning Ouyang et al.316
(2022); Lambert et al. (2022); Ziegler et al. (2020). RLHF initiates with an initial model, incorporating317
human-generated rankings of its outputs to construct a detailed reward model. In contrast to traditional318
reinforcement learning (RL) Sutton and Barto (1998); Coronato et al. (2020), which relies solely on319
environmental interactions, RLHF strategically integrates human feedback. This human-in-the-loop320
approach provides a more nuanced and expert-informed methodology, allowing for fine-tuning in alignment321
with human preferences, ultimately improving model outcomes.322

Instruction Fine-Tuning (IFT) refers to refining a pre-trained language model by providing specific323
instructions or guidance tailored to a particular task or application Ren et al. (2024). This process typically324
involves exposing the model to examples or prompts related to the desired instructions and updating325
its parameters based on the feedback received during this task-specific training phase. Medical VLM,326
RaDialog Pellegrini et al. (2023), employs this fine-tuning technique.327

3.3 Parameter-Efficient Fine-Tuning (PEFT)328

This section explores strategies for adapting VLMs while keeping the model’s parameters frozen and only329
updating newly added layers. PEFT has emerged as a prominent approach, focusing on optimizing parameter330
utilization, especially in scenarios with limited labeled data for the target task. PEFT integrates task-specific331
parameters, called adapters, into a pre-trained model while retaining its original parameters. Adapter332
modules typically feature a bottleneck structure, projecting original features into a reduced dimension,333
applying non-linearity, and then projecting back to the original dimension. This design ensures parameter334
efficiency by minimizing the number of added parameters per task. Adapter modules, placed after each335
layer of the pre-trained model, capture task-specific details while preserving shared parameters, enabling336
seamless extension to new tasks without significant interference with previously acquired knowledge.337

3.3.1 Low-Rank Adaptation (LoRA)338

LoRA is a common adapter-based method Hu et al. (2022). The adaptation process involves fine-tuning339
two smaller low-rank matrices that are decompositions of the larger weight matrix of the pre-trained340
model. These smaller matrices constitute the LoRA adapter modules, and the approach focuses on making341
low-rank modifications to adapt the model for specific tasks efficiently. Pre-trained LLMs that are part of342
medical VLMs architecture are often fine-tuned using LoRA (e.g., Visual Med-Alpaca Shu et al. (2023)343
and RaDialog Pellegrini et al. (2023)).344
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3.3.2 Prompt Tuning345

Prompt tuning involves creating continuous vector representations as input hints Lester et al. (2021),346
enabling the model to dynamically create effective prompts during training. This iterative process347
significantly enhances the model’s ability to generate contextually relevant responses and adapt its behavior348
based on an evolving task. VLMs like Qwen-VL and InstructBLIP used prompt tuning Bai et al. (2023a);349
Dai et al. (2023).350

3.3.3 Prefix Token Tuning351

Prefix token tuning adds task-specific vectors to the input, specifically to the initial tokens known as352
prefix tokens, to guide the model’s behavior for a given task Li and Liang (2021). For instance, VL-T5353
utilized different prefixes for questions from various datasets Cho et al. (2021) . These vectors can be354
trained and updated independently while the remaining pre-trained model parameters are frozen. Prefix355
token tuning allows task-specific adaptation without compromising the pre-trained knowledge encoded in356
most model parameters.357

3.4 In-Context Learning358

In this section, we explore strategies for adapting VLMs using the context only, keeping the model’s359
parameters (and PEFT/LoRA adapters, if any) frozen. In our settings, in-context learning may be considered360
using LLMs or VLMs for inference only.361

3.4.1 Prompt Engineering362

Prompt engineering involves guiding a trained model with task-specific instructions, known as prompts,363
to tailor its output for specific tasks Gu et al. (2023). Examples include instructing the model to generate a364
radiology report for a specific image (e.g., RAMM Pellegrini et al. (2023)). Prompt engineering can also365
expose the VLM to interconnected examples or prompts, guiding it to a desired output. Another approach366
incorporates progressively structured instructions or questions, refining focus and enhancing the model’s367
ability to generate coherent and contextually relevant responses Gu et al. (2023).368

3.4.2 Retrieval Augmented Generation (RAG)369

RAG is a form of prompt engineering that involves strategically crafting prompts for both retrieval and370
generation phases, allowing for an adaptive and efficient process that leverages external knowledge sources371
to enhance generative tasks. While the original concept of RAG was developed in the context of NLP Lewis372
et al. (2020), the principles behind retrieval and generation can be extended to multimodal learning Zhao373
et al. (2023), including VLMs. RAG has been used in medical VLMs for tasks like VQA (e.g., RAMM374
Yuan et al. (2023)) and RG (e.g., CXR-RePaiR-Gen Ranjit et al. (2023)). RAG begins with a retrieval375
component, usually a pre-trained model designed for information retrieval. This versatile component376
excels in extracting pertinent information from extensive datasets, catering to various modalities such as377
images, text, codes, video, or audio when presented with diverse inputs Zhao et al. (2023). Following the378
retrieval phase, the model returns a set of contexts related to the given input. The second component is a379
generative LLM. This component takes the input and the retrieved context and generates the final output.380
The generated output is conditioned on the input and the information extracted from the retrieved context.381
An intrinsic advantage of RAG lies in its capacity to reduce the reliance on extensive labeled datasets.382
While the base model is typically frozen during RAG, there are instances, as seen in RAMM Yuan et al.383
(2023), where model parameters are updated in the process.384
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3.5 Downstream Tasks385

Multimodal downstream tasks leverage the acquired knowledge from pre-training VLMs to excel in386
diverse applications that require a joint understanding of visual and textual data.387

3.5.1 Report Generation (RG)388

RG is a prominent example of a typical medical VLM task, which centers on creating a comprehensive389
summary report of visual data. RG plays a crucial role in automatically summarizing diagnostic imaging390
results and reducing the workload of report writing Monshi et al. (2020); Ting et al. (2023); Mohsan et al.391
(2023). For instance, in radiology, a report generation system could analyze a set of medical images such392
as X-rays, CT scans, or MRIs and generate a detailed report summarizing the observed abnormalities,393
their locations, and potential implications for diagnosis or treatment Liu et al. (2023b). A radiology report394
usually has several sections: (1) Examination (type of exam), (2) Indication (reasons for the examination),395
(3) Comparison (prior exams), (4) Technique (scanning method) (5) Findings (detailed observations made396
by a radiologist), and (6) Impression (summary of the major findings) Mabotuwana et al. (2020). In the397
context of RG, VLMs are usually designed to generate Findings and Impression sections Thawkar et al.398
(2023).399

Traditional methods of RG in radiology, such as handwriting, telephone dictation, transcriptionist-oriented400
systems, speech recognition, and structured data entry, face several challenges, including medical errors,401
cognitive overload, and inefficient decision-making. Handwriting and telephone dictation are particularly402
vulnerable to mistakes, as they can suffer from issues like illegible handwriting and miscommunication,403
leading to misinterpretations. Structured data entry, although designed to standardize and streamline404
reporting, often places a significant cognitive burden on radiologists, who must meticulously input detailed405
information, potentially leading to fatigue and errors. While technological advancements like electronic406
health records (EHRs), improved speech recognition software, standardized reporting templates, and407
automated error detection have been developed to mitigate these challenges, they have limitations. For408
example, EHRs and speech recognition still require substantial manual input and proofreading, which can409
be time-consuming and prone to error. Standardized reporting templates are helpful in ensuring consistency,410
but they can be inflexible and may not always capture the nuanced details of individual cases. Automated411
error detection systems are also not foolproof, often requiring human oversight to verify and correct flagged412
issues. Despite these improvements, the need for manual effort and the potential for human error remain413
significant concerns.414

The evolution of RG methods parallels the advancements in image captioning. Early methods in image415
captioning included retrieval-based approaches, where captions were generated by retrieving existing416
phrases from a database, and template-based approaches, where predefined sentence templates were filled417
with identified image elements, such as objects, actions, or locations Bai and An (2018). However, these418
approaches struggled with generating captions for unseen images. This limitation motivated the emergence419
of DL methods for RG. Initial DL approaches utilized CNNs to extract visual features from images, which420
were then processed by RNNs to generate text descriptions Ting et al. (2023). While this CNN-RNN421
approach improved the flexibility of captioning, it still faced challenges in capturing complex relationships422
between images and text outputs, and it struggled with generating longer, more comprehensive reports,423
often required in the medical field. These challenges gradually led to the adoption of VLMs in medical RG.424

VLMs represent a transformative leap in medical RG by addressing the shortcomings of previous methods.425
By simultaneously integrating imaging and textual data, VLMs are able to generate more comprehensive and426
coherent reports. They also significantly reduce cognitive load by automating the creation of comprehensive427
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reports, thereby liberating clinicians from the repetitive and time-consuming task of manual report writing.428
Furthermore, VLMs provide consistent interpretations of imaging data, which helps minimize the risk429
of errors associated with clinician fatigue or oversight. Their capability to process large volumes of data430
efficiently streamlines the reporting process, enhancing the overall effectiveness of medical practice and431
contributing to more accurate diagnoses. Currently, VLMs tailored for RG are predominantly utilized for432
radiology images, with lesser application in other medical imaging domains such as pathology Sengupta433
and Brown (2023), robotic surgery Xu et al. (2021), and ophthalmology Li et al. (2022).434

3.5.2 Visual Question Answering (VQA)435

VQA is another important visual-language understanding task, where the model needs to comprehend436
images or videos and the posed question to provide a relevant and accurate response Antol et al. (2015).437
The spectrum of questions encountered in VQA is broad, encompassing inquiries about the presence of438
specific objects, their locations, or distinctive properties within the image. In the medical context Lin et al.439
(2023b), this may involve questions regarding the presence of medical conditions or abnormalities, such440
as “What abnormality is seen in the image?” Ionescu et al. (2021) or “Is there gastric fullness?” Lau et al.441
(2018). Other queries may delve into details like the imaging method used Abacha et al. (2019), the organ442
system involved Lau et al. (2018), or the presence of specific anatomical structures Liu et al. (2021a).443

Questions in VQA fall into two categories. Open-ended questions elicit responses in the form of phrases or444
sentences, fostering detailed and nuanced answers Thawkar et al. (2023). On the other hand, closed-ended445
questions are designed to prompt limited responses, often with predetermined options, such as a short446
list of multiple choices, a yes/no response, or a numeric rating Bazi et al. (2023). The task of VQA is447
commonly approached as either a classification task, a generation task, or both Lin et al. (2023b). In the448
classification approach, models select the correct answer from a predefined set, while in the generation449
task, models produce free-form textual responses unconstrained by predefined options.450

3.5.3 Other Tasks451

Beyond VQA and RG, a spectrum of VLM tasks exist for the vision-language understanding Chen et al.452
(2023). For instance, referring expression comprehension entails a model locating the specific area or object453
in an image that the given phrase or sentence refers to Zhang et al. (2018). Visual commonsense reasoning454
involves answering questions about an image, typically presented in a multiple-choice format, and justifying455
the answer based on the model’s understanding of the image and common sense knowledge Zellers et al.456
(2019). Vision-language retrieval focuses on either generating or retrieving relevant information from457
images using textual data, or vice versa, obtaining information from text using visual data Zhen et al.458
(2019). In the context of visual captioning, the model’s role is to generate a concise, text-based description459
of either an image Sharma et al. (2023). It is worth highlighting that some of these tasks can seamlessly460
transition from images to videos, showcasing the adaptability and versatility of VLMs across diverse visual461
contexts Gan et al. (2022).462

4 MEDICAL VLMS

4.1 Medical Datasets for VLMs463

The adaptation of VLMs to various medical tasks is achieved through their pre-training and fine-tuning464
using specialized task-specific datasets. Below is the list of vision-language datasets available in the public465
domain that contain medical image-text pairs or question-answer (QA) pairs. Most of them are employed466
by medical VLMs described in Section 4.3 for pre-training, fine-tuning, and evaluating VQA and RG tasks.467
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Table 1. A list of datasets used for developing medical VLMs. Datasets with image-text pairs are typically
employed for training medical VLMs, as well as for fine-tuning and evaluating models on RG tasks.
Additionally, datasets containing question-answer (QA) pairs are specifically designed for fine-tuning and
evaluating models in VQA tasks.

Dataset # image-text pairs # QA pairs Other components Link
ROCO 81, 825 – – GHPelka et al. (2018)

MIMIC-CXR 377, 110 – – PNJohnson et al. (2019a)

MIMIC-CXR-JPG 377, 110 – pathology labels PNJohnson et al. (2019b)

MIMIC-NLE 38, 003 – diagnosis labels, GHKayser et al. (2022) evidence labels

CXR-PRO – – 374, 139 radiographs and PNRamesh et al. (2022) 374, 139 reports but not paired

MS-CXR 1, 162 – bounding box annotations PNBoecking et al. (2022)

IU-Xray or Open-I 7, 470 – labels WebDemner-Fushman et al. (2015)

MedICaT 224, 567 – annotations; inline GHSubramanian et al. (2020) references to ROCO figures

PMC-OA 1, 650, 000 – – HFLin et al. (2023a)

SLAKE – 14, 028 642 annotated images, WebLiu et al. (2021a) 5, 232 medical triplets

VQA-RAD – 3, 515 315 radiology images WebLau et al. (2018)

PathVQA – 32, 799 4, 998 pathology images GHHe et al. (2020)

VQA-Med 2019 – 15, 292 4, 200 radiology images GHAbacha et al. (2019)

VQA-Med 2020 – 5, 000 5, 000 radiology images for VQA; GHAbacha et al. (2020) images and questions for VQG

VQA-Med 2021 – 5, 500 5, 500 radiology images for VQA; GHIonescu et al. (2021) images and questions for VQG

EndoVis 2017 – 472 bounding box annotations; GHAllan et al. (2019) 97 frames

EndoVis 2018 – 11, 783 bounding box annotations; GH + WebAllan et al. (2020) 2,007 frames

PathQABench-Public – 312 52 ROIs from WSIs GHLu et al. (2024b)

Note: Abbreviations used are: GH - GitHub, HF - Hugging Face, and PN - PhysioNet

The comparative analysis of these datasets is presented in Table 1. Note that determining which dataset is468
best suited for a particular task can be challenging, as each medical application presents its own nuances469
and requirements. Factors such as the context in which images are acquired and the types of annotations470
provided can significantly influence a dataset’s effectiveness for specific tasks. In some cases, it may be471
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necessary to enhance existing datasets by adding relevant image-text pairs or QA pairs, or even to create472
entirely new datasets tailored to specific research questions or clinical scenarios.473

4.1.1 Radiology Objects in Context (ROCO)474

ROCO is a dataset composed of image-caption pairs extracted from the open-access biomedical literature475
database PubMed Central (PMC) Pelka et al. (2018). ROCO is stratified into two categories: radiology476
and out-of-class. The radiology group includes 81, 825 radiology images, including CT, ultrasound, x-ray,477
fluoroscopy, positron emission tomography (PET), mammography, MRI, angiography, and PET-CT. The478
out-of-class group has 6, 127 images, including synthetic radiology images, clinical photos, portraits,479
compound radiology images, and digital art. To facilitate model training, the dataset is randomly split into480
a training set (65, 460 radiology and 4, 902 out-of-class images), a validation set (8, 183 radiology and 612481
out-of-class images), and a test set (8, 182 radiology and 613 out-of-class images) using an 80/10/10 split482
ratio, respectively.483

4.1.2 Medical Information Mart for Intensive Care - Chest X-Ray (MIMIC-CXR)484

MIMIC-CXR collection encompasses 377, 110 chest X-rays paired with 227, 835 associated free-text485
radiology reports Johnson et al. (2019a). The dataset is derived from de-identified radiographic studies486
conducted at the Beth Israel Deaconess Medical Center in Boston, MA. Each imaging study within the487
MIMIC-CXR dataset consists of one or more images, typically featuring lateral and from back-to-front488
(posteroanterior, PA) views in Digital Imaging and Communications in Medicine (DICOM) format.489

4.1.3 MIMIC-CXR-JPG490

MIMIC-CXR-JPG Johnson et al. (2019b) is a pre-processed variant of the MIMIC-CXR dataset Johnson491
et al. (2019a). In this version, the original 377, 110 images are converted into compressed JPG format. The492
227, 827 reports associated with these images are enriched with labels for various common pathologies.493
The labels are derived from the analysis of the impression, findings, or final sections of the radiology494
reports, facilitated by the use of NegBio Peng et al. (2017) and CheXpert (Chest eXpert) Irvin et al. (2019)495
tools.496

4.1.4 MIMIC-NLE497

MIMIC-NLE dataset is specifically designed for the task of generating natural language explanations498
(NLEs) to justify predictions made on medical images, particularly in the context of thoracic pathologies and499
chest X-ray findings Kayser et al. (2022). The dataset consists of 38, 003 image-NLE pairs or 44, 935 image-500
diagnosis-NLE triplets, acknowledging instances where a single NLE may explain multiple diagnoses.501
NLEs are extracted from MIMIC-CXR Johnson et al. (2019a) radiology reports. The dataset exclusively502
considers X-ray views from front-to-back (anteroposterior, AP) and back-to-front (posteroanterior, PA).503
All NLEs come with diagnosis and evidence (for a diagnosis) labels. The dataset is split into the training504
set with 37, 016 images, a test set with 273 images, and a validation set with 714 images.505

4.1.5 CXR with Prior References Omitted (CXR-PRO)506

CXR-PRO dataset is derived from MIMIC-CXR Johnson et al. (2019a). The dataset consists of 374, 139507
free-text radiology reports containing only the impression sections Ramesh et al. (2022). It also incorporates508
associated chest radiographs; however, the radiology reports and chest X-rays are not paired. This dataset509
is designed to mitigate the problem of hallucinated references to prior reports often generated by radiology510
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report generation ML models. The omission of prior references in this dataset aims to provide a cleaner511
and more reliable dataset for radiology RG.512

4.1.6 Indiana University chest X-rays (IU-Xray)513

IU-Xray dataset, also known as the Open-I dataset, is accessible through the National Library of514
Medicine’s Open-i service Demner-Fushman et al. (2015). The dataset originates from two hospital systems515
within the Indiana Network for Patient Care database. This dataset comprises 7, 470 DICOM chest X-rays516
paired with 3, 955 associated radiology reports. Indication, finding, and impression sections are manually517
annotated using MeSH and RadLex (Radiology Lexicon) codes to represent clinical findings and diagnoses.518
Throughout this review, we will refer to the dataset interchangeably as IU-Xray and Open-I, maintaining519
consistency with the nomenclature used in related literature.520

4.1.7 Medical Images, Captions, and Textual References (MedICaT)521

MedICaT dataset contains 217, 060 figures from 131, 410 open-access PMC papers focused on radiology522
images and other medical imagery types Subramanian et al. (2020). Excluding figures from ROCO Pelka523
et al. (2018), the dataset integrates inline references from the S2ORC (Semantic Scholar Open Research524
Corpus) Lo et al. (2020) corpus, establishing connections between references and corresponding figures.525
Additionally, the inline references to ROCO figures are provided separately. MedICaT also contains 7, 507526
subcaption-subfigure pairs with annotations derived from 2, 069 compound figures.527

4.1.8 PubMedCentral’s OpenAccess (PMC-OA)528

PMC-OA dataset comprises 1.65 M image-caption pairs, derived from PMC papers Lin et al. (2023a). It529
encompasses a variety of diagnostic procedures, including common ones such as ultrasound, MRI, PET,530
and radioisotope, and rarer procedures like mitotic and fMRI. Additionally, the dataset covers a broad531
spectrum of diseases, with induced cataracts, ear diseases, and low vision being among the most frequently532
represented conditions.533

4.1.9 MS-CXR534

MS-CXR dataset contains image bounding box labels paired with radiology findings, annotated and535
verified by two board-certified radiologists Boecking et al. (2022). The dataset consists of 1, 162 image-536
text pairs of bounding boxes and corresponding text descriptions. The annotations cover 8 different537
cardiopulmonary radiological findings and are extracted from MIMIC-CXR Johnson et al. (2019a)538
and REFLACX (Reports and Eye-tracking data For Localization of Abnormalities in Chest X-rays)539
Bigolin Lanfredi et al. (2022) (based on MIMIC-CXR) datasets. The findings include atelectasis,540
cardiomegaly, consolidation, edema, lung opacity, pleural effusion, pneumonia, and pneumothorax.541

4.1.10 Semantically-Labeled Knowledge-Enhanced (SLAKE)542

SLAKE is an English-Chinese bilingual dataset Liu et al. (2021a). It contains 642 images, including 12543
diseases and 39 organs of the whole body. Each image is annotated with two types of visual information:544
masks for semantic segmentation and bounding boxes for object detection. The dataset includes a total545
of 14, 028 QA pairs, categorized into vision-only or knowledge-based types and labeled accordingly,546
encompassing both open- and closed-ended questions. Moreover, SLAKE incorporates 5, 232 medical547
knowledge triplets in the form of < head, relation, tail >, where head and tail denote entities (e.g.,548
organ, disease), and relation signifies the relationship between these entities (e.g., function, treatment).549
An illustrative example of such a triplet is <pneumonia, location, lung>.550
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4.1.11 VQA-RAD551

VQA-RAD dataset contains 104 head axial single-slice CTs or MRIs, 107 chest x-rays, and 104 abdominal552
axial CTs Lau et al. (2018). The images are meticulously chosen from MedPix, an open-access online553
medical image database, ensuring each image corresponds to a unique patient. Furthermore, every selected554
image has an associated caption and is deliberately devoid of any radiology markings. Every caption555
provides details about the imaging plane, modality, and findings generated and reviewed by expert556
radiologists. Also, VQA-RAD contains 3, 515 QA pairs, with an average of 10 questions per image.557
Among them, 1, 515 are free-form questions and answers, allowing for unrestricted inquiry. Additionally,558
733 pairs involve rephrased questions and answers, introducing linguistic diversity. Another 1, 267 pairs are559
framed, featuring questions presented in a structured format, offering consistency and systematic evaluation.560
Additionally, QA pairs are split into 637 open-ended and 878 closed-ended types. Within the closed-ended561
group, a predominant focus is on yes/no questions.562

4.1.12 PathVQA563

PathVQA is a dataset that encompasses 4, 998 pathology images accompanied by a total of 32, 799564
QA pairs derived from these images He et al. (2020). The images are sourced from pathology books:565
“Textbook of Pathology” and “Basic Pathology”, and the digital library “Pathology Education Informational566
Resource”. Out of all QA pairs, 16, 465 are of the open-ended type, while the remaining pairs are of the567
closed-ended yes/no type. On average, each image is associated with 6.6 questions, which cover a broad568
spectrum of visual contents, encompassing aspects such as color, location, appearance, shape, etc.569

4.1.13 VQA-Med 2019570

VQA-Med 2019 dataset contains 4, 200 radiology images obtained from MedPix, an open-access online571
medical image database, and 15, 292 QA pairs Abacha et al. (2019). The training set consists of 3, 200572
images and 12, 792 QA pairs, with each image having 3 to 4 associated questions. The validation set573
includes 500 images and 2, 000 QA pairs, and the test set comprises 500 images and 500 QA pairs. The574
questions are mainly about modality, imaging plane, organ system, and abnormality.575

4.1.14 VQA-Med 2020576

VQA-Med 2020 dataset contains 5, 000 radiology images obtained from MedPix, an open-access online577
medical image database, and 5, 000 QA pairs Abacha et al. (2020). The training set consists of 4, 000578
images and 4, 000 QA pairs. The validation set comprises 500 images and 500 QA pairs, and the test set579
includes 500 images and 500 QA pairs. The questions are focused on abnormalities present in the images.580
Additionally, the dataset contains radiology images and questions for the Visual Question Generation581
(VQG) task. The training set consists of 780 images and 2, 156 associated questions. The validation set582
comprises 141 images with 164 questions, and the test set includes 80 images.583

4.1.15 VQA-Med 2021584

VQA-Med 2021 dataset contains 5, 500 radiology images obtained from MedPix, an open-access online585
medical image database, and 5, 500 QA pairs Ionescu et al. (2021). The training set consists of 4, 500586
images and 4, 5000 QA pairs. The validation set comprises 500 images and 500 QA pairs, and the test set587
includes 500 images and 500 QA pairs. The questions are focused on abnormalities present in the images.588
Similarly to VQA-Med 2019, the dataset also contains radiology images and questions for the VQG task.589
The validation set comprises 85 images with 200 questions, and the test set includes 100 images.590
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4.1.16 Endoscopic Vision (EndoVis) 2017591

EndoVis 2017 dataset contains 5 robotic surgery videos (two videos with 8 frames each, one with 18, one592
with 14, and one with 39 frames) from the MICCAI (Medical Image Computing and Computer Assisted593
Interventions) Endoscopic Vision 2017 Challenge Allan et al. (2019). It also includes 472 QA pairs with594
bounding box annotations. These QA pairs are carefully crafted to involve specific inquiries related to the595
surgical procedure. Examples of questions include queries such as ”What is the state of prograsp forceps?”596
and “Where is the large needle driver located?”. The inclusion of bounding box annotations enhances the597
dataset’s utility for tasks such as object detection or answer localization.598

4.1.17 EndoVis 2018599

EndoVis 2018 dataset contains 14 robotic surgery videos (2, 007 frames in total) from the MICCAI600
Endoscopic Vision 2018 Challenge Allan et al. (2020). It also includes 11, 783 QA pairs regarding organs,601
surgical tools, and organ-tool interactions. When the question is about organ-tool interactions, the bounding602
box will contain both the organ and the tool.603

4.1.18 PathQABench-Public604

PathQABench-Public contains 52 regions of interest (ROIs) hand-selected by a board-certified pathologist605
from whole slide images (WSIs) in the publicly available The Cancer Genome Atlas (TCGA) repository.606
These images represent various organ systems: brain, lung, gastrointestinal tract, urinary tract, male607
reproductive tract, skin/eye/connective tissue, pancreaticohepatobiliary system, endocrine system,608
head/neck/mediastinum, gynecology, and breast. Per each organ system there are from 4 to 6 images. Each609
image is paired with a corresponding multiple-choice question, offering 10 possible answers. Additionally,610
there are five open-ended questions for each image, resulting in a total of 260 open-ended questions611
categorized into microscopy, diagnosis, clinical, and ancillary testing.612

4.2 VLM Evaluation Metrics613

This section delves into the evaluation process of medical VLMs. The initiation of this process involves614
meticulously selecting benchmark datasets and defining evaluation metrics tailored to the specific vision-615
language tasks at hand.616

4.2.1 Evaluation Metrics for Report Generation617

The prevalent benchmark datasets for medical RG are MIMIC-CXR Johnson et al. (2019a) and Open-I618
Demner-Fushman et al. (2015). For more information on these datasets, see Section 4.1. Several metrics619
are used to evaluate the effectiveness of VLMs on RG tasks. The more frequently used metrics are outlined620
below.621

Bilingual Evaluation Understudy (BLEU) score was originally designed for machine translation622
evaluation, but it has been adapted for RG and even VQA in a modified form. BLEU provides a quantitative623
measure of how well the machine-generated text aligns with human-generated reference text Papineni et al.624
(2002). First, the precision of different n-grams, which are consecutive sequences of n words, is calculated625
using the formula:626

Precision(n) =
#overlapping n-grams

#all n-grams in a model-generated text
, (1)
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where ‘overlapping n-grams’ refer to n-grams in the model-generated text that share common elements627
with at least one n-gram in the reference text. To ensure the precision score remains robust and is not628
disproportionately affected by repeated n-grams in the model-generated text, a modification known as629
clipping is often introduced. This process involves capping the count of each n-gram in the model-generated630
text to a maximum count. This maximum count is determined by the highest count observed in any single631
reference text for the same n-gram. The final BLEU-n score is defined as:632

BLEU-n = BP × 1

n
exp

(
n∑

k=1

log [Precision(k)]

)
. (2)

In eq. 2, BP is referred to as the brevity penalty and is calculated as:633

BP =

{
1 if c ≥ r

e(1−r/c) if c < r,
(3)

where c is the length of the model-generated text, and r is the length of the reference text. It is common to634
use n = 4. The BLEU score ranges from 0 to 1, where a higher score suggests better agreement with the635
reference text. The overall BLEU score of the model is the average of BLEU scores for each pair of reports.636

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a set of metrics that evaluate the637
overlap between the model-generated text and human-generated reference text Lin (2004). ROUGE-n638
assesses the overlap of n-grams between model-generated text and reference text, and it is defined as:639

ROUGE-n =
#overlapping n-grams

#all n-grams in a reference text
. (4)

ROUGE-L focuses on measuring the longest common subsequence between model-generated text Y and640
reference text X , and it is calculated using the following relationship:641

ROUGE-L =
(1 + β2)×R× P

(R + P × β2)
, (5)

where R = LCS(X, Y )/m, P = LCS(X, Y )/n, m is the length of X , n is the length of Y , LCS(X, Y )642
is the length of a longest common subsequence of X and Y , and β is a parameter that depends on the643
specific task and the relative importance of precision (P) and recall (R). There are other ROUGE score644
variants. The ROUGE scores range from 0 to 1, where higher scores indicate similarity between the645
model-generated text and the reference text. For each ROUGE variant, the overall score of the model is the646
average of scores for each instance.647

Metric for Evaluation of Translation with Explicit ORrdering (METEOR) is an evaluation metric648
designed to be more forgiving than some other metrics and takes into account the fluency and meaning of649
the generated text Banerjee and Lavie (2005). The METEOR score is computed as follows:650

METEOR =
10× P ×R

R + 9× P
(1− Penalty) (6)
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where651

R =
#overlapping 1-grams

#1-grams in a reference text
, (7)

P =
#overlapping 1-grams

#1-grams in a model-generated text
, (8)

Penalty =
1

2
×
(

#chunks
#overlapping 1-grams

)3

, (9)

and chunks are groups of adjacent 1-grams in the model-generated text that overlap with adjacent 1-grams652
in the reference text. The METEOR score ranges from 0 to 1, with higher scores indicating better alignment653
between the model-generated text and the reference text. The overall METEOR score of a model is the654
average of scores for each instance.655

Perplexity measures the average uncertainty of a model in predicting each word in a text Hao et al.656
(2020). The formula for perplexity is defined as:657

Perplexity = exp

(
− 1

n

n∑
k=1

lnP (wk|w1, w2, . . . , wk−1)

)
, (10)

where n is the total number of words in the text. The value of the perplexity metric can range from 1 to658
+∞, and lower values signify a more accurate and confident model in capturing the language patterns659
within the given text.660

BERTScore was initially designed for evaluating models that use BERT Devlin et al. (2019) embeddings661
Zhang et al. (2020). However, it can also leverage other word embeddings to evaluate the similarity between662
model-generated and reference text. The BERTScore of a single text pair is calculated according to the663
relationship:664

BERTScore =
2× P ×R

P +R
, (11)

where P represents the ratio of the maximum cosine similarity score between tokens in the model-generated665
text and the reference text to the numbers of tokens in the model-generated text and R represents the ratio666
of the maximum cosine similarity score between tokens in the model-generated text and the reference text667
to the numbers of tokens in the reference text. The BERTScore of the model is the average of BERTScores668
across all text pairs.669

RadGraph F1 is a novel metric that measures overlap in clinical entities and relations extracted from670
radiology reports Yu et al. (2023). The RadGraph F1 score is computed in the following way. First, the671
RadGraph model maps model-generated and reference reports into graph representations with clinical672
entities represented as nodes and their relations as edges between them. Second, the number of nodes that673
match between the two graphs based on clinical entity text and labels (entity type) is determined. Third,674
the number of edges that match between the two graphs based on their start and end entities and labels675
(relation type) is calculated. Lastly, the F1 score is separately computed for clinical entities and relations,676
and then the RadGraph F1 score for a report pair is the average of these two scores. The overall model677
performance is determined by averaging RadGraph F1 scores across all report pairs.678
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Human evaluation is crucial for assessing the quality of VLMs in medical RG. In Jeong et al. (2023),679
expert radiologists assessed the X-REM model’s performance in RG by segmenting reports into lines and680
assigning scores based on five error categories to each line. These scores reflected error severity, with681
higher values indicating more severe errors.682

The next few metrics are designed for classification evaluation, and RG can be viewed as such a task. In683
Moon et al. (2022), Lee et al. (2023), and Pellegrini et al. (2023), these metrics are computed based on the684
14 labels obtained from applying the CheXpert Irvin et al. (2019) or CheXbert Smit et al. (2020) labeler685
to the reference reports as well as the model-generated reports. In this context, reports bearing accurate686
diagnosis labels are categorized as positive, while those with inaccurate labels are regarded as negative.687
The following metrics are also called clinical efficacy metrics.688

• Accuracy measures the ratio of all positive predictions to the total number of predictions.689

• Precision evaluates the accuracy of positive predictions. It is calculated as the ratio of true positive690
predictions to the total instances predicted as positive, expressed as:691

Precision =
True Positives

True Positives + False Positives
. (12)

High Precision indicates a low false positive rate.692

• Recall assesses the model’s ability to predict all positive classes. It is defined as the ratio of correctly693
predicted positive observations to the total actual positives:694

Recall =
True Positives

True Positives + False Negatives
. (13)

High Recall means effectively identifying the most actual positive instances.695

• F1 Score provides an overall measure of the model’s performance by balancing Precision and Recall.696
It is calculated as:697

F1 =
2× Precision × Recall
Precision + False Recall

. (14)

F1 scores range from 0 to 1, with higher values indicating better performance. In multi-class698
classification, the macro-F1 score is commonly computed by averaging the F1 scores independently699
calculated for each class. This method ensures unbiased evaluation across all classes, assigning equal700
importance regardless of size or prevalence.701

4.2.2 Evaluation Metrics for VQA702

The common benchmark datasets for medical VQA include VQA-RAD Lau et al. (2018), SLAKE Liu703
et al. (2021a), and PathVQA He et al. (2020). While various metrics are available for VQA evaluation,704
only a few are highlighted here to avoid redundancy with already mentioned metrics.705

Accuracy is a fundamental metric for gauging overall model correctness in VQA evaluation. It is706
determined by calculating the proportion of correctly predicted answers to the total number of questions.707
For a detailed comparison of accuracies among different medical VLMs discussed in Section 4.3, refer to708
Table 3.709
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Exact match computes the ratio of generated answers that match exactly (excluding punctuation) the710
correct answer. However, it may not credit semantically correct answers that lack an exact lexical match.711
This metric is more suitable for evaluating answers to close-ended questions than open-ended ones.712

Human evaluation can be performed for VQA in various ways. For instance, in Moor et al. (2023),713
medical experts evaluated Med-Flamingo’s performance on each VQA problem using a user-friendly714
interface, assigning scores from 0 to 10.715

4.3 Medical Models716

In this part of the review paper, we provide an overview of existing medical VLMs tailored for VQA717
and/or RG. The information is organized chronologically based on the first appearance of the model. Our718
focus is mainly on recently introduced open-source and publicly available models. A summary of these719
VLMs is presented in Table 2.720

4.3.1 Medical Vision Language Learner (MedViLL)721

MedViLL can process medical images to generate associated reports Moon et al. (2022). The model722
employs ResNet-50 He et al. (2016), trained on ImageNet Deng et al. (2009), for extracting visual features723
v. The model leverages WordPiece Wu et al. (2016) tokenizer to extract textual features t from clinical724
reports. Both visual and textual features incorporate positional information to capture spatial relationships725
and sequential order. These features, along with special tokens [CLS], [SEP]V, [SEP]L, are concatenated726
into a single vector (CLS, v, SEPV , t, SEPL) and fed into the BERT-based Transformer. The MedViLL727
is pre-training on two tasks: MLM and ITM. The MLM task employs a bidirectional auto-regressive (BAR)728
self-attention mask. For MLM, a negative log-likelihood loss function is used. Pre-training is performed729
on 89, 395 image-report pairs from MIMIC-CXR Johnson et al. (2019a), with fine-tuning on 3, 547 pairs730
from Open-I Demner-Fushman et al. (2015). VQA is performed on VQA-RAD Lau et al. (2018) (see Table731
3), where the output representation of [CLS] is used to predict a one-hot encoded answer. For radiology732
RG fine-tuning, the model uses a sequence-to-sequence (S2S) mask instead of BAR and generates reports733
by sequentially recovering MASK tokens. RG is evaluated on MIMIC-CXR Johnson et al. (2019a) and734
Open-I Demner-Fushman et al. (2015). MedViLL achieves a BLEU-4 score of 0.066, a perplexity value of735
4.185, and using a CheXpert labeler Irvin et al. (2019) an accuracy of 84.1%, a precision value of 0.698, a736
recall value of 0.559, and an F1 score of 0.621 on MIMIC-CXR. Additionally, it achieves a BLEU-4 score737
of 0.049, a perplexity value of 5.637, an accuracy of 73.4%, a precision value of 0.512, a recall value of738
0.594, and an F1 score of 0.550 on Open-I.739

4.3.2 PubMedCLIP740

PubMedCLIP is a CLIP-based Radford et al. (2021) model pre-trained on the ROCO Pelka et al. (2018)741
dataset Eslami et al. (2023). It employs a CLIP text encoder based on the Transformer architecture and three742
distinct visual encoders: ViT-B/32 Dosovitskiy et al. (2021), ResNet-50, and ResNet-50×4 He et al. (2016).743
Following CLIP’s approach, the model generates joint representations by computing cosine similarity744
between textual and visual features. The pre-training objective involves computing cross-entropy losses745
for vision and language, which are then averaged to derive an overall loss. Repurposed as a pre-trained746
visual encoder for VQA, PubMedCLIP’s output is also concatenated with the output of a convolutional747
denoising autoencoder (CDAE) Masci et al. (2011). Questions are encoded using GloVe Pennington748
et al. (2014) word embeddings followed by an LSTM Hochreiter and Schmidhuber (1997). Image and749
question features are combined using bilinear attention networks (BAN) Kim et al. (2018), and the resulting750
representations are classified using a two-layer feedforward neural network. The VQA loss combines751
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Table 2. A list of medical VLMs developed for VQA and RG.
Model Stream Decoder Architecture VQA RG Datasets Code

MedViLL single No RN50 + BERT + + MIMIC-CXR, GHMoon et al. (2022) Open-I, VQA-RAD

PubMedCLIP dual No
ViT-B/32 or RN50 or

+ – ROCO, SLAKE, GHEslami et al. (2023) RN50×4 + Transformer VQA-RAD+ BAN
RepsNet dual Yes ResNeXt-101 + BERT + + VQA-RAD, WebTanwani et al. (2022) + BAN + language decoder IU-Xray

BiomedCLIP dual No
ViT-B/16

+ – PMC-15, SLAKE, HFZhang et al. (2023a) + PubMedBERT VQA-RAD+ METER
UniXGen single Yes VQGAN + Transformer – + MIMIC-CXR GHLee et al. (2023)

dual No

Swiss Transformer

+ –

PMCPM, ROCO

GHRAMM + PubMedBERT MIMIC-CXR,
Yuan et al. (2023) + multimodal encoder w/ SLAKE, VQA-RAD,

retrieval-atten. module VQA-Med 2019,
VQA-Med 2021

dual No
ALBEF

– + GHX-REM (ViT-B/16 + BERT MIMIC-CXR,
Jeong et al. (2023) + multimodal encoder) MedNLI, RadNLI

single Yes + –

ROCO; MedDialog,

GH
Visual DePlot or Med-GIT MEDIQA QA,
Med-Alpaca + prompt manager MEDIQA RQE,
Shu et al. (2023) +LLaMa-7B MedQA, PubMedQA

+ GPT-3.5-Turbo

dual Yes

ALBEF

– + –
+ FAISS retriever

CXR-RePaiR-Gen + prompt manager CXR-PRO,
Ranjit et al. (2023) + text-davinci-003 MS-CXR

or GPT-3.5-Turbo
or GPT-4

LLaVa-Med single Yes ViT-L/14 + projection + –
PMC-15 + GPT-4,

GHLi et al. (2023a) layer + LLaMa-7B VQA-RAD, SLAKE,
PathVQA

single Yes
MedCLIP + linear

+ + GHXrayGPT transformation layer MIMIC-CXR
Thawkar et al. (2023) + Vicuna-7B Open-I

CAT-ViL DeiT dual No
RN18

+ – EndoVis 2017, GHBai et al. (2023b) + CAT-ViL fusion EndoVis 2018module + DeiT

dual Yes + –
ROCO, MedICaT,

GHMUMC ViT-B/12 + BERT ImageCLEF Caption,
Li et al. (2023b) + multimodal encoder VQA-RAD, SLAKE+ answer decoder PathVQA

Med-Flamingo single Yes ViT-L/14 + perceiver + –
MTB, PMC-OA,

GHMoor et al. (2023) resampler + LLaMa-7B VQA-RAD, PathVQA,
Visual USMLE

single Yes
BioViL-T + BERT

+ + GHRaDialog + prompt manager MIMIC-CXR,
Pellegrini et al. (2023) + Vicuna-7B Instruct

PathChat single Yes UNI + multimodal + – CONCH, PathChat GHLu et al. (2024b) projector + Llama 2-13B dataset, PathQABench

classification and image reconstruction losses. PubMedCLIP is fine-tuned on datasets like SLAKE Liu752
et al. (2021a) and VQA-RAD Lau et al. (2018). Its performance is compared with existing Medical753
VQA (MedVQA) methods, such as Mixture of Enhanced Visual Features (MEVF) Zhan et al. (2020)754
and question-conditioned reasoning (QCR) Liu et al. (2023a). PubMedCLIP, integrated into the QCR755
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framework, achieves superior accuracies on VQA-RAD and SLAKE datasets compared to the MEVF756
framework. The highest accuracies of PubMedCLIP in the QCR framework on both datasets are shown in757
Table 3.758

4.3.3 RepsNet759

RepsNet is designed for VQA tasks Tanwani et al. (2022). It can generate automated medical reports760
and interpret medical images. The model employs a modified version of the pre-trained ResNeXt-101 Xie761
et al. (2016) as its image encoder and utilizes pre-trained BERT Devlin et al. (2019) as the text encoder,762
with text tokenization done through WordPiece Wu et al. (2016). Fusion of image and question features763
is achieved using BAN Kim et al. (2018). To align images with textual descriptions, the model employs764
bidirectional contrastive learning Chen et al. (2020a). The language decoder, based on GPT-2, is adapted to765
incorporate image features and prior context, generating text sequences in an auto-regressive manner until766
an end-of-sequence token is produced. The overall loss function combines contrastive loss for encoding767
phase and cross-entropy loss for decoding phase. For VQA tasks, the model is fine-tuned and evaluated on768
VQA-RAD Lau et al. (2018) (see Table 3). In contrast, for RG, fine-tuning and evaluation are done using769
IU-Xray Demner-Fushman et al. (2015) dataset. On the IU-Xray dataset, RepsNet achieves BLEU-2 and770
BLEU-4 scores of 0.44 and 0.27, respectively.771

4.3.4 BiomedCLIP772

BiomedCLIP is pre-trained on the specifically curated PMC-15 dataset that consists of 15 M figure-773
caption pairs derived from the PMC articles Zhang et al. (2023a) but is not publicly available. The774
model architecture is similar to CLIP Radford et al. (2021), except that the text encoder is a pre-trained775
PubMedBERT Gu et al. (2021) model with WordPiece tokenizer Wu et al. (2016). The model uses ViT-B/16776
Dosovitskiy et al. (2021) as the visual data encoder. For pre-training, the model adopts the CL approach,777
and to mitigate memory usage, it utilizes the sharding contrastive loss Cherti et al. (2022). For adaptation778
to VQA, the model incorporates the METER Dou et al. (2022) framework. This involves deploying a779
Transformer-based co-attention multimodal fusion module that produces cross-modal representations.780
These representations are then fed into a classifier for the final prediction of answers. The model is781
evaluated on VQA-RAD Lau et al. (2018) and SLAKE (English) Liu et al. (2021a) datasets (see Table 3).782

4.3.5 Unified chest X-ray and report Generation model (UniXGen)783

UniXGen is a unified model that can generate both reports and view-specific X-rays Lee et al. (2023).784
The model tokenizes chest X-rays leveraging VQGAN Esser et al. (2021), a generative model that785
amalgamates generative adversarial networks (GANs) with vector quantization (VQ) techniques. VQGAN786
employs an encoder to transform input images into continuous representations, subsequently using vector787
quantization to discretize them into learnable codebook vectors. Additionally, VQGAN incorporates a788
decoder, translating these discrete codes back into images during the generation process. For chest X-rays,789
multiple views from the same study are tokenized into sequences of discrete visual tokens, demarcated790
by special tokens to distinguish perspectives. In the case of radiology reports, the model uses the byte-791
level BPE Wang et al. (2020) tokenizer, augmented with sinusoid positional embedding for enhanced792
representation. The model is based on the Transformer architecture Vaswani et al. (2017) with a multimodal793
causal attention mask, ensuring that each position in the sequence attends to all previous positions and794
not future ones. During training, multiple views of chest X-rays and a report embedding are concatenated795
randomly and fed into the Transformer. The model is optimized using the negative log-likelihood loss796
function. The model is trained on 208, 534 studies sampled from the MIMIC-CXR Johnson et al. (2019a)797
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dataset. Each study contains at most three chest X-rays representing PA (from back to front), AP (from798
front to back), and lateral views. On the MIMIC-CXR dataset, UniXGen achieves a BLEU-4 score of799
0.050 and, using the CheXpert labeler Irvin et al. (2019), attains a precision score of 0.431, a recall value800
of 0.410, and an F1 score of 0.420.801

4.3.6 Retrieval-Augmented bioMedical Multi-modal Pretrain-and-Finetune Paradigm (RAMM)802

RAMM, a retrieval-augmented VLM designed for biomedical VQA, integrates Swin Transformer Liu803
et al. (2021b) as its image encoder and PubMedBERT Gu et al. (2021) as its text encoder Yuan et al. (2023).804
The visual and textual features are then fused by the multimodal encoder, a 6-layer Transformer Vaswani805
et al. (2017). The model is pre-trained on the MIMIC-CXR Johnson et al. (2019a) and ROCO Pelka et al.806
(2018) datasets along with a newly curated PMC-Patients-Multi-modal (PMCPM) dataset, consisting of807
398, 000 image-text pairs sampled from PMC-OA Lin et al. (2023a) dataset. The pre-training objective808
function of RAMM is the sum of three tasks: CL, ITM, and MLM. Using CL, the model aligns images and809
texts using the cosine similarity metric. The VQA task is viewed as a classification problem, and the model810
is optimized using the cross-entropy loss function. During model fine-tuning, the retrieval-attention module811
fuses the representations of the image-question input with four representations of the retrieved image-text812
pairs from the pre-trained datasets. This lets RAMM to focus on relevant parts of the retrieved information813
when generating answers. The model is evaluated on VQA-Med 2019 Abacha et al. (2019), VQA-Med814
2021 Ionescu et al. (2021), VQA-RAD Lau et al. (2018), and SLAKE Liu et al. (2021a) datasets (see Table815
3).816

4.3.7 Contrastive X-Ray REport Match (X-REM)817

X-REM is a retrieval-based radiology RG model that uses an ITM score to measure the similarity of a818
chest X-ray image and radiology report for report retrieval Jeong et al. (2023). The VLM backbone of819
the model is ALBEF Li et al. (2021). ALBEF utilizes ViT-B/16 Dosovitskiy et al. (2021) as its image820
encoder and initializes the text encoder with the first 6 layers of the BERT Devlin et al. (2019) base model.821
The multimodal encoder in ALBEF, responsible for combining visual and textual features to generate822
ITM scores, is initialized using the final six layers of the BERT base model. X-REM leverages ALBEF’s823
pre-trained weights and performs further pre-training on X-rays paired with extracted impression sections824
(2, 192 pairs), findings sections (1, 597 pairs), or both (2, 192 pairs) from the MIMIC-CXR Johnson et al.825
(2019a) dataset. Subsequently, the model is fine-tuned on the ITM task, where the scoring mechanism826
involves using the logit value for the positive class as the similarity score for image-text pairs. To address827
the positive skewness in medical datasets, 14 clinical labels obtained from the CheXbert Smit et al. (2020)828
labeler are utilized. The model efficiently manages the computational burden associated with ITM scores829
by employing ALBEF’s pre-aligned unimodal embeddings. This involves narrowing down the candidate830
reports based on high cosine similarity with the input image before computing ITM scores. Additionally,831
the text encoder undergoes fine-tuning on natural language inference (NLI) task, utilizing datasets such as832
MedNLI Romanov and Shivade (2018) and RadNLI Miura et al. (2021). This step is crucial for preventing833
the retrieval of multiple reports with overlapping or conflicting information. X-REM achieves a BLEU-2834
score of 0.186 on the MIMIC-CXR (Findings only) dataset. The BERTScore of the model is 0.386 on835
MIMIC-CXR (Findings only) and 0.287 on MIMIC-CXR (Impressions and Findings).836

4.3.8 Visual Med-Alpaca837

Visual Med-Alpaca is a biomedical FM designed for addressing multimodal biomedical tasks like VQA838
Shu et al. (2023). The model processes image inputs through a classifier to select the appropriate module for839
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converting visual information into text, with supported modules including DePlot Liu et al. (2022) for plots840
and Med-GIT Wang et al. (2022a) fine-tuned on the ROCO Pelka et al. (2018) dataset for radiology images.841
The prompt manager combines textual information from images and text inputs to form prompts for the842
LLaMA-7B Touvron et al. (2023a) model. However, before generating responses, LLaMa-7B undergoes843
both standard and LoRA Hu et al. (2022) fine-tuning on a carefully curated set of 54, 000 medical QA844
pairs. The questions within this set are derived from question-answering datasets such as MEDIQA QA845
Ben Abacha et al. (2019), MEDIQA RQE Ben Abacha et al. (2019), MedQA Jin et al. (2021), MedDialog846
Zeng et al. (2020), and PubMedQA Jin et al. (2019), with their corresponding answers synthesized using847
GPT-3.5-Turbo in the self-instruct Wang et al. (2023b) manner. Human experts filter and edit the obtained848
QA pairs for quality and relevance. The evaluation of this model is still ongoing Shu et al. (2023).849

4.3.9 Contrastive X-ray-Report Pair Retrieval based Generation (CXR-RePaiR-Gen)850

CXR-RePaiR-Gen, designed for radiology RG, integrates the RAG framework to address hallucinated851
references Ranjit et al. (2023). The model leverages the pre-trained ALBEF Li et al. (2021) previously852
utilized in CXR-ReDonE Ramesh et al. (2022). Textual features are indexed in a vector database, Facebook853
AI Similarity Search (FAISS). When given a radiology image input, embeddings from the reports or854
sentences corpus with the highest dot-product similarity to the image embedding are retrieved. The CXR-855
PRO Ramesh et al. (2022) dataset is employed for text retrieval to gather relevant impressions for generating856
the radiology report. The retrieved impression sections from the CXR-PRO dataset serve as the context for857
the prompt to an LLM, along with instructions to generate the radiology report. Two prompts are employed:858
one for the text-davinci-003 model and another for conversational RG with GPT-3.5-Turbo and GPT-4859
models. The model is evaluated on MS-CXR Boecking et al. (2022) and CXR-PRO datasets. A code has860
yet to be provided for this model. Evaluated on MS-CXR and CXR-PRO datasets, CXR-RePaiR-Gen861
achieves BERTScore scores of 0.2865 on CXR-PRO (GPT-4) and 0.1970 on MS-CXR (text-davinci-003).862
Its RadGraph F1 scores are 0.1061 on CXR-PRO (GPT-4) and 0.0617 on MS-CXR (text-davinci-003),863
employing three retrieval samples per input during RAG.864

4.3.10 Large Language and Vision Assistant for BioMedicine (LLaVa-Med)865

LLaVa-Med, an adaptation of LLaVa Liu et al. (2023c), is customized for the medical domain through866
training on instruction-following datasets Li et al. (2023a). Visual features are extracted by the pre-trained867
CLIP visual encoder ViT-L/14 Dosovitskiy et al. (2021), which can be substituted with BiomedCLIP868
Zhang et al. (2023a). These features are mapped into textual embedding space via linear projection layer869
and combined with instructions before being input to the LLM LLaMa-7B Touvron et al. (2023a), which870
can be replaced with Vicuna Chiang et al. (2023). After initializing with the general-domain LLaVA, the871
model undergoes fine-tuning using curriculum learning. First, the model learns to connect visual elements872
in biomedical images to corresponding language descriptions, using a dataset of 600, 000 image-caption873
pairs from PMC-15, initially employed in BiomedCLIP. These image-caption pairs are transformed into an874
instruction-following dataset, where the instructions prompt the model to describe the corresponding image875
concisely or in detail. Given the language instruction and image input, the model is prompted to predict the876
original caption. The visual encoder and language model weights are frozen during this stage, with updates877
exclusively applied to the linear projection layer. The second stage of training focuses on aligning the878
model to follow diverse instructions. For this purpose, another instruction-following dataset is generated879
from PMC-15. Instructions for this dataset are designed to guide the GPT-4 model to generate multi-round880
questions and answers from the image caption and sentences from the original PMC paper mentioning the881
image Li et al. (2023a). In this training phase, the model undergoes training on a set of 60, 000 images, each882
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accompanied by its respective caption and multi-round questions and answers. Throughout this process,883
the weights of the visual encoder remain unchanged, preserving the previously acquired visual features.884
Meanwhile, the pre-trained weights of the projection layer and the language model undergo continuous885
updates. Lastly, for VQA, the model is fine-tuned and evaluated on VQA-RAD Lau et al. (2018), SLAKE886
Liu et al. (2021a), and PathVQA He et al. (2020) (see Table 3).887

4.3.11 XrayGPT888

XrayGPT is a conversational medical VLM specifically developed for analyzing chest radiographs889
Thawkar et al. (2023). The VLM uses MedCLIP Wang et al. (2022b) to generate visual features. These890
features undergo a meticulous transformation process: initially, they are mapped to a lower-dimensional891
space through a linear projection head and subsequently translated into tokens via a linear transformation892
layer. The model incorporates two text queries: an assistant query framing its purpose and a doctor’s query893
guiding relevant information provision. Tokens generated from a visual input are concatenated with the894
tokenized queries and then fed into Vicuna-7B Chiang et al. (2023), fine-tuned on 100, 000 patient-doctor895
and 20, 000 radiology conversations sourced from ShareGPT.com. During training, the weights of the896
vision encoder and LLM are frozen while the weights of the linear transformation layer undergo updates.897
The model is first trained on 213, 514 image-text pairs from pre-processed MIMIC-CXR Johnson et al.898
(2019a) dataset and then on 3, 000 image-text pairs from Open-I Demner-Fushman et al. (2015) dataset.899
XrayGPT achieves ROUGE-1 = 0.3213, ROUGE-2 = 0.0912, and ROUGE-L = 0.1997 on MIMIC-CXR900
dataset.901

4.3.12 Co-Attention gaTed Vision-Language Data-efficient image Transformer (CAT-ViL DeiT)902

CAT-ViL DeiT is a specialized VLM tailored for VQA within surgical scenarios, focusing on answer903
localization Bai et al. (2023b). It integrates ResNet-18 He et al. (2016) pre-trained on ImageNet Deng et al.904
(2009) to generate visual features and custom BERT tokenizer Seenivasan et al. (2022) for text encoding.905
The Co-Attention gaTed Vision-Language (CAT-ViL) module facilitates interaction between visual and906
textual features, fused via gating mechanisms to optimize multimodal embeddings. These embeddings907
are further processed by a pre-trained Data-efficient image Transformer (DeiT) module for optimal joint908
representation. For VQA, the model adopts a standard classification head, while for answer localization909
within images, it employs the detection with transformers (DETR) Carion et al. (2020) head. The overall910
loss function comprises cross-entropy as the classification loss and L1-norm, along with the generalized911
intersection over union (GIoU) Rezatofighi et al. (2019), serving as the localization loss. The model is912
trained on 1, 560 frames, and 9, 014 QA pairs from the surgical datasets EndoVis 2018 Allan et al. (2020).913
The model achieved an accuracy of 61.92% on the remaining data from EndoVis 2018 and 45.55% on914
EndoVis 2017 Allan et al. (2019) dataset.915

4.3.13 Masked image and text modeling with Unimodal and Multimodal Contrastive losses916
(MUMC)917

MUMC utilizes a ViT-B/12 Dosovitskiy et al. (2021) as its image encoder, the first 6 layers of BERT918
Devlin et al. (2019) as its text encoder, and the last 6 layers of BERT as its multimodal encoder Li et al.919
(2023b). The multimodal encoder incorporates cross-attention layers to align visual and textual features.920
For pre-training, the model employs CL, MLM, and ITM. Also, the model utilizes a newly introduced921
masked image strategy, randomly masking 25% of image patches as a data augmentation technique. This922
exposes the model to a greater variety of visual contexts and enables learning representations that are more923
robust to partially occluded inputs. The pre-training is performed on ROCO Radford et al. (2021), MedICaT924
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Subramanian et al. (2020), and Image Retrieval in Cross-Language Evaluation Forum (ImageCLEF) caption925
Rückert et al. (2022) datasets. For VQA tasks, an answering decoder is added to generate answer text926
tokens. The encoder weights are initialized from pre-training, and the model is fine-tuned and evaluated on927
VQA-RAD Lau et al. (2018), SLAKE Liu et al. (2021a), and PathVQA He et al. (2020) (see Table 3).928

4.3.14 Med-Flamingo929

Med-Flamingo is a multimodal few-shot learner model based on the Flamingo Alayrac et al. (2022)930
architecture, adapted to the medical domain Moor et al. (2023). The model is pre-trained on the MTB931
Moor et al. (2023) dataset, a newly curated collection comprising 4, 721 segments from various Medical932
TextBooks, encompassing textual content and images. Each segment is designed to contain at least one933
image and up to 10 images, with a specified maximum length. Also, it is pre-trained on 1.3 M image-caption934
pairs from the PMC-OA Lin et al. (2023a) dataset. The model’s few-shot capabilities are achieved through935
training on these mixed text and image datasets, enabling it to generalize and perform diverse multimodal936
tasks with only a few examples. The model utilizes a pre-trained frozen CLIP vision encoder ViT-L/14 for937
visual feature generation. To convert these visual features into a fixed number of tokens, the model employs938
a module known as the perceiver resampler, which is trained from scratch. Subsequently, these tokens and939
tokenized text inputs undergo further processing in a pre-trained frozen LLM LLaMA-7B Touvron et al.940
(2023a), enhanced with gated cross-attention layers, which are trained from scratch. This augmentation aids941
in learning novel relationships and enhances training stability. Med-Flamingo’s performance is evaluated942
on VQA-RAD Lau et al. (2018) and PathVQA He et al. (2020). The exact match scores for MedFlamingo943
demonstrate a few-shot performance of 0.200 on VQA-RAD and 0.303 on PathVQA. In contrast, the zero-944
shot performance yields an exact match score of 0.000 on VQA-RAD and 0.120 on PathVQA. Additionally,945
it is evaluated on a specifically created Visual United States Medical Licensing Examination (USMLE)946
dataset, comprising 618 challenging open-ended USMLE-style questions augmented with images, case947
vignettes, and tables of laboratory measurements, covering a diverse range of medical specialties.948

4.3.15 RaDialog949

RaDialog is a VLM that integrates automated radiology RG with conversational assistance Pellegrini et al.950
(2023). The model incorporates BioViL-T Bannur et al. (2023), a hybrid model that fuses the strengths of951
ResNet-50 He et al. (2016) and Transformer Vaswani et al. (2017) architectures. Pre-trained on radiology952
images and reports, BioViL-T generates patch-wise visual features. The extracted features undergo953
alignment through a BERT Devlin et al. (2019) model, transforming them into a concise representation of954
32 tokens. The model incorporates the CheXpert classifier to offer organized findings in medical images.955
These findings are generated based on labels obtained from the CheXbert Smit et al. (2020) model. The956
classifier is trained independently using labels predicted by CheXbert from the findings section of radiology957
reports. Visual features, structured findings, and a directive prompt are combined as input for the Vicuna-7B958
LLM, fine-tuned using LoRA. The training is performed on MIMIC-CXR Johnson et al. (2019a) dataset.959
RaDialog achieves a BLEU-4 score of 0.095, ROUGE-L score of 0.2710, METEOR score of 0.14, and960
BERTScore of 0.400 on the MIMIC-CXR dataset. To address the challenge of catastrophic forgetting during961
training and ensure the model’s capability across diverse downstream tasks, it is specifically trained on the962
newly created Instruct Pellegrini et al. (2023) dataset. This dataset is meticulously curated to encompass963
a spectrum of 8 diverse tasks: RG, NLE, complete CheXpert QA, binary CheXpert QA, region QA,964
summarization, report correction, and reformulation report using simple language. Carefully formulated965
prompts accompany each task, tailored to elicit specific responses from the model. For instance, some966
prompts involve answering questions about particular X-ray regions. RaDialog trained on the Instruct967
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Table 3. The comparison of medical VLMs’ accuracies on VQA tasks. The underlined accuracies are the
highest for a specific dataset.

Model
SLAKE SLAKE VQA-RAD VQA-RAD PathVQA PathVQA

open close open close open close VQA-Med VQA-Med
-ended -ended -ended -ended -ended -ended 2019 2021

MedViLL – – 59.50% 77.70% – – – –Moon et al. (2022)

PubMedCLIP 78.40% 82.50% 60.10% 80.00% – – – –Eslami et al. (2023)

RepsNet – – – 87.05% – – – –Tanwani et al. (2022)

BioMedCLIP 82.50% 89.70% 67.60% 79.80% – – – –Zhang et al. (2023a)

RAMM 82.48% 91.59% 67.60% 85.29% – – 82.13% 39.20%Yuan et al. (2023)

LLaVa-Med – 84.19% – 85.34% – 91.21% – –Li et al. (2023a)

MUMC – – 71.50% 84.20% 39.00% 90.4% – –Li et al. (2023b)

dataset achieves an F1 score of 0.397 on the binary CheXpert QA task and 0.403 on the complete CheXpert968
QA task. In contrast, RaDialog without being trained on Instruct achieves lower F1 scores of 0.018 and969
0.098, respectively.970

4.3.16 PathChat971

PathChat is a multimodal generative AI copilot designed for human pathology Lu et al. (2024b). It972
employs UNI Chen et al. (2024), built on the ViT-L backbone and pre-trained using SSL on over 100 M973
histology image patches from approximately 100,000 WSIs, to generate visual features. PathChat uses974
the Llama 2 13B Touvron et al. (2023b) LLM for text decoding, which is pre-trained on general text975
data. The UNI is connected to the LLM through a multimodal projector that maps visual tokens into976
the LLM’s embedding space. During PathChat’s pre-training phase, UNI and multimodal projector are977
trained on the CONCH Lu et al. (2024a) dataset, comprising 1.18 M pathology image-caption pairs sourced978
from PMC-OA Lin et al. (2023a) and internally curated datasets, aligning the image representations with979
pathology text while keeping the LLM weights frozen. The whole dataset is not publicly available. During980
instruction fine-tuning, the entire model is trained end-to-end on a specially curated PathChat dataset981
consisting of 456,916 pathology-specific instructions of 6 different types and 999,202 QA pairs. The model982
is evaluated on the newly curated PathQABench dataset, consisting of public and private subparts. On the983
multiple-choice questions across the entire PathQABench dataset, PathChat achieved an accuracy of 78.1%984
when only images and questions are provided to the model and 89.5% when clinical data is also included.985
For open-ended questions, PathChat attained an accuracy of 78.7% on the subset of questions for which986
pathologist evaluators reached a consensus.987

Frontiers 30



Hartsock, Rasool A Review of Medical VLMs

5 CHALLENGES AND FUTURE DIRECTIONS

As VLMs become more prevalent in healthcare, various challenges and opportunities for future research988
emerge. This section highlights key obstacles and proposes research directions to improve VLM’s989
effectiveness and seamless integration within clinical environments.990

5.1 Data Availability and Privacy991

A significant challenge in developing effective medical VLMs is the limited availability of ML-ready992
diverse and representative medical datasets. This limitation restricts the comprehensive training of VLMs,993
impeding their ability to understand the complexities of diverse and rare clinical scenarios Moor et al.994
(2023). To mitigate privacy concerns, most datasets undergo rigorous pre-processing to remove Protected995
Health Information (PHI) before model training. The common approach is using algorithms to detect and996
remove sensitive information from structured and unstructured data. For example, Philter redacts PHI from997
clinical notes Norgeot et al. (2020). ImageDePHI automates the removal of PHI from WSIs Clunie et al.998
(2024). Another approach is replacing identifying information with artificial identifiers, which keeps data999
linkable without disclosing personal details. However, the risk of PHI leakage still remains a concern.1000

In the future, addressing this limitation can involve employing innovative approaches such as RAG1001
and federated learning (FL). While RAG usually involves a frozen model during training, exploring the1002
pre-training of VLMs within the RAG framework opens up a new avenue of research Zhao et al. (2023).1003
This innovative approach can potentially enhance the robustness of VLMs, especially in handling new1004
and unforeseen medical cases. Additionally, FL offers a promising strategy to address data scarcity while1005
protecting patient privacy Zhang et al. (2021). In FL, models are trained locally at multiple institutions1006
on their own patient data. Each institution shares the updated model weights with the central server. The1007
server then aggregates these weights to create a global model. Later, the updated global model can be sent1008
back to institutions for fine-tuning. To further safeguard privacy, the weights in FL can be protected using1009
techniques such as differential privacy (DP) or homomorphic encryption (HE). In DP, noise is added to the1010
gradients before they are sent to the central server Dwork (2006). In contrast, HE encrypts the weights,1011
allowing the central server to perform computations on them without decryption Stripelis et al. (2021).1012
Future research can focus on optimizing the balance between privacy and performance of VLMs, and1013
enhancing the efficiency of encryption methods in FL Koutsoubis et al. (2024b,a).1014

5.2 Proper Evaluation Metrics1015

In medical RG, traditional metrics like BLEU and ROUGE can be used to effectively quantify surface-1016
level linguistic similarity by capturing text overlap and structural matching between generated and reference1017
texts. METEOR goes further by accounting for synonyms and stemming, providing a more nuanced view1018
of textual similarities. Perplexity, often used to measure language fluency, evaluates how well the generated1019
text adheres to natural language patterns. Together, these metrics assess fluency, coherence, and overall1020
readability, ensuring that generated reports are well-formed and comprehensible. However, they often1021
fall short in capturing the nuanced complexities of clinical language and contextual relevance critical in1022
medical settings Yu et al. (2023). Specifically, they may fail to determine whether a report accurately1023
conveys essential clinical findings or diagnoses. Advanced metrics like BERTScore seek to assess semantic1024
similarity beyond surface-level text overlap, but they require fine-tuning on medical datasets to understand1025
specialized terminology and relationships, and may still miss subtle clinical nuances.1026

In medical VQA, traditional metrics like Accuracy, Precision, and Recall are commonly used to evaluate1027
how well VLMs answer clinical questions, such as identifying medical conditions or anatomical features.1028
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While these metrics effectively assess binary outcomes, they fail to account for the varying clinical relevance1029
or significance of errors made by the model. For example, misclassifying a serious condition may have1030
far more severe consequences than making minor prediction errors, yet this distinction is not captured in1031
simple accuracy-based evaluations.1032

To address the limitations of traditional metrics, it is imperative to develop specialized metrics tailored1033
for medical RG and VQA, particularly for open-ended medical queries. For instance, RadGraph F1 Yu1034
et al. (2023) was developed to evaluate the extraction of clinical entities (e.g., diagnoses, findings) and their1035
relations (e.g., linking conditions to anatomical locations) in radiology reports. This metric is particularly1036
valuable for assessing structured medical data, ensuring that reports capture not only relevant clinical1037
entities but also their correct relationships, which is crucial for the accuracy and integrity of medical1038
conclusions. The development of additional specialized metrics is vital for evaluating VLMs performance1039
and for assessing factors such as generalization, efficiency, and robustness in clinical decision-making and1040
diagnostic support. Furthermore, integrating these metrics with other quantitative measures and human1041
assessments can significantly enhance evaluations and drive continuous advancements in the capabilities of1042
medical VLMs.1043

5.3 Hallucinations1044

The issue of hallucinations in generative VLMs poses a significant challenge to their reliability and1045
practical application Liu et al. (2024). Hallucinations refer to instances where VLMs generate outputs1046
that are not grounded in the provided images or inconsistent with the established knowledge. In medical1047
contexts, these hallucinations can have serious consequences, leading to inaccurate diagnostic information1048
or treatment recommendations. One identified cause of hallucinations is the lack of alignment between1049
visual and textual information Sun et al. (2023). Training VLMs to effectively align these data modalities1050
is crucial in mitigating the risk of hallucinations. For instance, LLaVA-RLHF Sun et al. (2023) achieved1051
hallucination reduction by incorporating RLHF to align different modalities. Further research can focus1052
on integrating RLHF into medical VLMs. Additionally, incorporating RAG can help reduce the risk of1053
generating misleading or fabricated outputs by allowing the system to analyze medical images while1054
simultaneously accessing relevant information from trusted textual sources.1055

5.4 Catastrophic Forgetting1056

Overcoming catastrophic forgetting poses an additional challenge in the development of medical VLMs.1057
Catastrophic forgetting occurs when a model learns new information but inadvertently erases or distorts1058
previously acquired knowledge, potentially compromising its overall competence. Striking a balance during1059
fine-tuning can be crucial; moderate fine-tuning can be helpful to adapt the model to a specific task, while1060
excessive fine-tuning can lead to catastrophic forgetting Zhai et al. (2023); Khan et al. (2023). As a future1061
research direction, leveraging methodologies from continual learning Wang et al. (2023a); Zhou et al.1062
(2023a); Cai and Rostami (2024); Khan et al. (2023, 2024) might be useful in the context of medical VLMs.1063
Continual learning focuses on training models to sequentially learn from and adapt to new data while1064
retaining knowledge from previously encountered tasks Khan et al. (2024). Also, incorporating adapters1065
within the framework of continual learning can be a valuable tool in mitigating catastrophic forgetting1066
Zhang et al. (2023b).1067
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5.5 Integration into Hospital Systems1068

Integrating VLMs into hospital systems also presents substantial challenges, requiring extensive1069
collaboration between medical professionals and AI/ML researchers. First, medical professionals must1070
maintain rigorous data collection practices to ensure that the data is clean, well-organized, and accessible,1071
as ML experts rely on high-quality data to train and fine-tune VLMs. Second, VLMs must be designed1072
to address the right clinical questions, ensuring their relevance and utility in medical practice. Third,1073
healthcare professionals need training to use VLMs effectively, and the models should be intuitive and1074
user-friendly to integrate smoothly into daily clinical routines. Furthermore, implementation scientists play1075
a crucial role in this process by facilitating collaboration between clinicians and ML experts Reddy (2024).1076
They help bridge the gap between these two groups, ensuring that VLMs are both technically robust and1077
clinically relevant.1078

In this context, models like RaDialog Pellegrini et al. (2023) and PathChat Lu et al. (2024b) show the1079
potential of VLMs to enhance clinical effectiveness. RaDialog demonstrates a solid capability to produce1080
clinically accurate radiology reports. It transforms static reporting into a dynamic tool where clinicians can1081
ask follow-up questions and seamlessly incorporate expert insights. This aligns closely with the interactive1082
processes typical in clinical settings. Meanwhile, PathChat demonstrates promising clinical effectiveness1083
as an AI copilot for pathology. It can assist pathologists in their work in real medical settings, including1084
human-in-the-loop clinical decision-making, complex diagnostic workups, analyzing morphological details1085
in histology images, and guiding immunohistochemistry (IHC) interpretations. However, the assessment of1086
VLM effectiveness in medical environments is an open research question. Comprehensive clinical trials are1087
necessary to confirm that VLMs truly enhance patient care and integrate effectively into existing clinical1088
workflows.1089

5.6 Security1090

The security of VLMs must be thoroughly considered, focusing on privacy, minimizing medical errors,1091
and preventing the introduction of significant new errors. VLMs must be kept behind the hospital1092
firewall to protect sensitive medical information. It is also crucial to involve independent experts in1093
the validation process. Validating the model on unseen medical data can help identify and rectify potential1094
inaccuracies. Additionally, adversarial attacks represent another significant security issue, as they can1095
exploit vulnerabilities in the model, leading to incorrect predictions. To combat this, incorporating1096
adversarial training by exposing the model to adversarial examples during training can enhance its1097
robustness against such attacks He et al. (2023a). Continuous monitoring and updating of the VLMs1098
are also essential to prevent the introduction of new errors, which should include regular audits and updates1099
based on the latest medical research and clinical guidelines.1100

6 CONCLUSION

This review paper highlights the transformative potential of VLMs in generating medical reports and1101
answering clinical questions from medical images. It explores 16 recent medical VLMs, among which1102
15 are publicly available. We observed that 6 of them share a similar architecture that has only recently1103
become common. These VLMs incorporate a vision encoder, often with a projection module, to produce1104
visual features, which can be used as input to LLMs. The visual features are then combined with tokenized1105
text input and fed into the LLM. This approach simplifies model design and leverages the extensive prior1106
knowledge embedded in LLMs. Furthermore, feeding all data features into LLMs enables the generation1107
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of human-like text outputs, improving user experience and facilitating more effective communication of1108
medical insights. The review also explores 18 publicly available medical vision-language datasets and1109
over 10 evaluation metrics for RG and VQA. By providing essential background information, this review1110
ensures accessibility for readers from the medical field while promoting collaboration between the AI/ML1111
community and medical professionals.1112

Moreover, the review highlights the current challenges and potential future directions for VLMs in1113
medicine. The limited availability of diverse medical datasets and privacy concerns can be addressed through1114
rigorous data pre-processing and techniques like RAG and FL. Also, since traditional evaluation metrics1115
often fall short of capturing the nuances of clinical language, there is a need to develop specialized metrics1116
tailored to medical RG and VQA. It is likewise crucial to address VLM hallucinations, and incorporating1117
RLHF and RAG are promising solutions. Continual learning methods can help mitigate catastrophic1118
forgetting, ensuring that models retain the knowledge they have previously acquired. Furthermore,1119
collaboration between healthcare professionals and AI researchers is essential to deploy VLMs in ways that1120
genuinely improve patient care. Lastly, ensuring the security of these models is vital, which can be achieved1121
through robust firewalls and adversarial training. Ultimately, the review serves as a valuable resource for1122
researchers developing and refining VLMs for medical applications, guiding them in overcoming key1123
obstacles and leveraging innovative approaches to enhance model performance and clinical integration.1124
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