1

18
19
20
21
22
23
24
25
26
27
28

l\' frontiers

Vision-Language Models for Medical Report
Generation and Visual Question Answering: A
Review

Iryna Hartsock '*, Ghulam Rasool !

1 Department of Machine Learning, H. Lee Moffitt Cancer Center & Research
Institute, Tampa, FL, USA
Correspondence™:

Iryna Hartsock
iryna.hartsock@moffitt.org

ABSTRACT

Medical vision-language models (VLMs) combine computer vision (CV) and natural language
processing (NLP) to analyze visual and textual medical data. Our paper reviews recent
advancements in developing VLMs specialized for healthcare, focusing on publicly available
models designed for medical report generation and visual question answering (VQA). We provide
background on NLP and CV, explaining how techniques from both fields are integrated into VLMs,
with visual and language data often fused using Transformer-based architectures to enable effective
learning from multimodal data. Key areas we address include the exploration of 18 public medical
vision-language datasets, in-depth analyses of the architectures and pre-training strategies of
16 recent noteworthy medical VLMs, and comprehensive discussion on evaluation metrics for
assessing VLMs’ performance in medical report generation and VQA. We also highlight current
challenges facing medical VLM development, including limited data availability, concerns with data
privacy, and lack of proper evaluation metrics, among others, while also proposing future directions to
address these obstacles. Overall, our review summarizes the recent progress in developing VLMs to
harness multimodal medical data for improved healthcare applications.

Keywords: vision-language models, report generation, visual question answering, datasets, evaluation metrics, healthcare

1 INTRODUCTION

The last decade has seen significant progress in artificial intelligence (Al) and machine learning (ML),
including the development of foundation models (FMs), large language models (LLMs), and vision-
language models (VLMs). These AI/ML developments have started transforming several aspects of our
daily lives, including healthcare. AI/ML can potentially transform the healthcare continuum by significantly
optimizing and improving disease screening, diagnostics, treatment planning, and post-treatment care
Bajwa et al. (2021). Various computer vision (CV) and natural language processing (NLP) models,
particularly LLMs, have been instrumental in driving this transformative trend He et al. (2023b); Zhou
et al. (2023b). CV models have been trained and validated for various screening and diagnosis use cases
leveraging radiology data from X-rays, mammograms, magnetic resonance imaging (MRI), computed
tomography (CT), and others. Recently, AI models focused on digital pathology using histopathology and
immunohistochemistry data have also shown significant advances in accurate disease diagnosis, prognosis,
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and biomarker identification Waqas et al. (2023, 2024a). On the other hand, by training models using large
datasets of medical literature, clinical notes, and other healthcare-related text, LLLMs can extract insights
from electronic health records (EHR) efficiently, assist healthcare professionals in generating concise
summary reports, and facilitate the interpretation of patient information. Noteworthy examples of such
LLMs include GatorTron Yang et al. (2022), ChatDoctor Li et al. (2023c), Med-PaLM (Medical Pathways
Language Model) Singhal et al. (2023) and Med-Alpaca Han et al. (2023).

The healthcare data is inherently multimodal, and consequently, the AI/ML models often need to be
trained using multiple data modalities, including text (e.g., clinical notes, radiology reports, surgical
pathology reports, etc.), imaging (e.g., radiology scans, digitized histopathology slides, etc.), and tabular
data (e.g., numerical data such as vitals or labs and categorical data such as race, gender, and others)
Acosta et al. (2022); Shrestha et al. (2023); Wagqas et al. (2024b); Tripathi et al. (2024a); Mohsan et al.
(2023); Wagqas et al. (2024c,a); Tripathi et al. (2024b). In routine clinical practice, healthcare professionals
utilize a combination of these data modalities for diagnosing and treating various conditions. Integrating
information from diverse data modalities enhances the precision and thoroughness of disease assessments,
diagnoses, treatment planning, and post-treatment surveillance. The need for AI/ML models to ingest,
integrate, and learn from information stemming from varied data sources is the driving force for multimodal
learning Huang et al. (2021); Wagqas et al. (2024b).

The recent progress in multimodal learning has been driven by the development of VLMs Gan et al.
(2022); Chen et al. (2023); Mohsan et al. (2023). These models analyze, interpret, and derive insights from
both visual and textual data. In the medical domain, these models contribute to a holistic understanding of
patient information and improve ML model performance in clinical tasks. Many of these models, like CLIP
(Contrastive Language—Image Pre-training) Radford et al. (2021), LLaVa (Large Language and Vision
Assistant) Liu et al. (2023c), and Flamingo Alayrac et al. (2022) are tailored to healthcare domain through
training on extensive medical datasets. Adapting VLMs for medical visual question-answering (VQA)
Lin et al. (2023b) enables healthcare professionals to query medical images such as CT scans, MRIs,
mammograms, ultrasounds, X-rays, and more. The question-answering capability elevates the interactive
nature of the AI/ML models in healthcare, facilitating dynamic exchanges between healthcare providers
and the Al system. Furthermore, adapting VLMs for medical report generation enables them to amalgamate
information from visual and textual sources, producing detailed and contextually relevant reports. This
enhances healthcare workflow efficiency by ensuring comprehensive and accurate reports.

In contrast to previous related surveys Lin et al. (2023b); Ting et al. (2023); Shrestha et al. (2023), this
review aims to provide a comprehensive update on how methods from CV and NLP are integrated to
develop VLMs specifically designed for medical report generation and VQA. The specific objectives of
this review are as follows:

e Provide essential background on artificial neural networks, CV, and NLP, to ensure the accessibility
of this review for readers from medical fields and promote collaboration and knowledge exchange
between the AI/ML community and the medical professionals (see Section 2).

e Explore the integration of CV and NLP in VLMs, including model architectures, training strategies,
and downstream tasks (see Section 3).
e Analyze recent advances in VLMs, datasets, and evaluation metrics relevant to medical report
generation and VQA (see Section 4). Specifically:
e Describe 18 publicly available vision-language datasets that encompass medical image-text pairs or
question-answer pairs related to medical images (see Section 4.1).
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e Outline over 10 metrics employed for evaluating VLMs in the context of report generation and VQA
tasks (see Section 4.2).

e Thoroughly review 16 recent medical VLMs, 15 of which are publicly available, with most models
not previously covered in other surveys (see Section 4.3).

e Discuss the current challenges within the field of medical VLMs, offering insights into potential
research directions that could profoundly influence their future development (see Section 5).

The overall structure of this review is shown in Figure 1. The list of medical VLMs and datasets can also
be found on GitHub.

2 MACHINE LEARNING (ML) - A BRIEF REVIEW

Deep learning (DL), a subfield of ML, involves algorithms that learn to recognize patterns and make
decisions by analyzing large amounts of data. In this section, we review the fundamental principles of DL
and explore two main areas of DL relevant to medical VLMs: CV and NLP. For more detailed information
on DL, we refer the reader to LeCun et al. (2015); Goodfellow et al. (2016); Baldi (2021).

2.1 Principles of Deep Learning (DL)

ML and Al originated in the 1940s-1950s, with neural networks (NNs) emerging as classical models. The
fundamental building block of an NN is an artificial neuron, which receives multiple inputs, aggregates them,
applies nonlinear operations, and outputs a single scalar value. NNs consist of layers of interconnected
artificial neurons, including input, output, and hidden layers. In feedforward NNs, connections are
structured so that a connection from neuron ¢ to neuron j exists only if 7 < 7 Baldi (2021). In any NN,
the connections between artificial neurons carry weight, and neurons utilize “activation functions” on
their inputs to introduce non-linearity. An activation function is a mathematical operation that transforms
the weighted sum of inputs into an output, enabling the network to model complex patterns. Common
activation functions include the sigmoid, hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU).

A loss function quantifies the disparity between predicted and actual outputs, with the goal of minimizing
this scalar value during training. DL leverages NNs but extends them into deeper architectures with many
hidden layers. Backpropagation, short for backward propagation of errors, is essential for training deep
NNs. It involves calculating the gradient of the loss function with respect to the weights, using the chain rule
for derivatives Baldi (2021). This gradient information updates the weights to minimize the loss. Common
optimization methods include gradient descent, stochastic gradient descent (SGD) Robbins (1951), and
Adam (Adaptive Moment Estimation) Kingma and Ba (2014). These methods iteratively update the weights
to improve the model’s performance during training.

2.2 Natural Language Processing (NLP)

NLP is the analysis of linguistic data, most commonly in the form of textual data such as documents or
publications, using computational methods Verspoor and Cohen (2013). NLP encompasses a variety of
tasks aimed at understanding, processing, and generating human language. The common NLP tasks include
machine translation, named entity recognition, text summarization, etc. In the following, we introduce
terminology and fundamental concepts that will help the reader in the coming sections on modern NLP and
medical VLMs.

Frontiers 3


https://github.com/lab-rasool/Awesome-Medical-VLMs-and-Datasets/tree/main

109

110
111
112

Hartsock, Rasool

A Review of Medical VLMs

Markov Chain
Model

Tokenization

Token
Embeddings

Transformers

CNNs

Model

ViTs

Single- vs.
Dual-Stream

Architecture

Encoder vs.
Encoder-Decoder,

Transfer Learning
Curriculum
Learning

Self-Supervised
Learning

Pre-Training
Process & Tasks

Fine-Tuning

Model Training

I

PEFT

Techniques

In-Context
Learning

Downstream

Tasks

Prompt
Engineering

Report
Generation

Visual Question
Answering

edical Datasets

Other Tasks

LoRA

Prompt Tuning

Prefix Token
Tuning

]

) A

for VLMs

—@edical VLMD—

Evaluation
Metrics for RG

/l\

VLM Evaluation
Metrics

Challenges &
Future Directions

Medical Models

Evaluation
Metrics for VQA

AR

ROCO

MIMIC-CXR

MIMIC-CXR-JPG

MIMIC-NLE

MedViLL
CXR-PRO

PubMedCLIP
IU-Xray

RepsNet
MedICaT

BiomedCLIP
PMC-OA

UniXGen
MS-CXR

SLAKE

VQA-RAD
Visual
PathVQA Med-Alpaca
CXR-RePaiR-Gen
VQA-Med 2019

LLaVa-Med
VQA-Med 2020

XrayGPT
VQA-Med 2021

CAT-ViL DeiT
EndoVis 2017

MUMC

EndoVis 2018

Med-Flami

PathQABench ed-Flamingo
- Public

Data Availability
& Privacy

Proper Evaluatio
Metrics

Hallucinations
Catastrophic
Forgetting

ntegration into
ospital Systems,

fl

—(Conclusion)

—C Security )

RaDialog

PathChat

A

Figure 1. Organization of the review paper. The structure begins with an introduction, followed by a
foundational review of ML and background on VLMs. It then delves into medical vision-language datasets,
evaluation metrics, and recent medical VLMs. Next, the paper addresses the current challenges of medical
VLMs and proposes possible future research directions. It ends with a conclusion summarizing key insights

and findings.

2.2.1 Markov Cha

in Model

The Markov chain model has historically been significant in NLP, particularly for tasks involving sequence
prediction and probabilistic modeling of text data Nadkarni et al. (2011). A Markov chain is a stochastic
process that transitions from one state to another based on specific probabilistic rules, with the fundamental
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property that the future state depends only on the current state and not on the sequence of events that
preceded it. This property, known as the Markov property, allowed Markov chains to model the likelihood
of sequences of words or characters by capturing statistical dependencies between adjacent elements.
They facilitated tasks such as text generation, next-element prediction, and part-of-speech tagging in early
NLP research and applications, providing a foundational framework for subsequent advanced techniques
Nadkarni et al. (2011).

2.2.2 Tokenization

In contemporary NLP, tokenization is the initial step involving the splitting of sentences and words into
their smallest morphemes, known as tokens Rai and Borah (2021). Subword tokenization methods are
often preferred in many NLP applications due to their effectiveness in handling out-of-vocabulary words.
WordPiece Wu et al. (2016) starts by treating each character as a token, forming an initial vocabulary. Using
a flexible merging strategy, WordPiece considers adjacent characters or subword units that enhance the
overall likelihood of the training data, aiming to accurately represent it given the model’s current state.
Byte-Pair Encoding (BPE) Sennrich et al. (2016) shares similarities with WordPiece but follows a more
deterministic merging strategy. BPE merges the most frequent pair of adjacent characters or subword units
in each iteration, progressing toward a predefined vocabulary size. Byte-level BPE Wang et al. (2020)
operates at an even finer granularity, considering individual bytes instead of characters. This extension
allows it to capture more nuanced patterns at the byte level.

2.2.3 Token Embeddings

Tokens are often transformed into numerical vectors that capture semantic relationships between tokens,
called word or token embeddings. Word2Vec Mikolov et al. (2013b) is a widely used word embedding
technique employing two models: Skip-Gram Mikolov et al. (2013b) and Continuous Bag of Words
(CBOW) Mikolov et al. (2013a). Skip-Gram predicts context words given a target word, capturing
semantic associations, while CBOW predicts the target word based on context, emphasizing syntactic
structures. Word2Vec is computationally efficient, making it suitable for large datasets and general-purpose
applications. Global Vectors (GloVe) Pennington et al. (2014) focuses on capturing global semantic
relationships by analyzing word pair statistics across the entire corpus. It generates word vectors reflecting
co-occurrence probabilities, which is ideal for tasks requiring a holistic understanding of word connections.
FastText Bojanowski et al. (2017) is effective for handling out-of-vocabulary words and morphologically
rich languages. It adopts a sub-word approach, breaking words into n-grams, and uses a skip-gram training
method similar to Word2Vec to learn embeddings for these sub-word units.

Specialized embeddings are available for biomedical and clinical terms. BioWordVec Zhang et al. (2019)
incorporates MeSH terms and text from PubMed abstracts to learn improved biomedical word embeddings.
Cui2vec Beam et al. (2020) utilizes multi-modal data from medical publications and clinical notes, mapping
terms onto a common Concept Unique Identifier (CUI) space. Additionally, positional encodings, often
based on sinusoidal functions, are commonly added to capture the order of tokens in a sequence. These
vectors systematically encode token positions, enriching embeddings with positional information for
tailored NLP tasks Ahmed et al. (2023).

2.2.4 Recurrent Neural Networks (RNNSs)

RNNs are widely employed for pattern detection in sequential data like genomic sequences, text, or
numerical time series Schmidt (2019). Operating on the principle of preserving a form of memory, RNNs
incorporate a cyclic structure by looping the output of a specific layer back to the input, facilitating the

Frontiers 5



155
156
157
158
159
160

161

162
163
164
165
166
167
168
169

170
171
172
173
174
175
176
177

178

179
180
181
182
183
184

185

186
187
188
189
190
191
192
193

Hartsock, Rasool A Review of Medical VLMs

prediction of subsequent layer outputs. This mechanism empowers RNNs to adeptly model sequential and
temporal dependencies, capturing information from preceding time steps within hidden states. However,
they face challenges in retaining long-term dependencies due to the vanishing gradient problem. To address
this, variants like Long Short-Term Memory (LSTM) Hochreiter and Schmidhuber (1997) and Gated
Recurrent Unit (GRU) Cho et al. (2014) have been developed to better capture and utilize long-range
dependencies in sequential data Ahmed et al. (2023).

2.2.5 Transformers

In recent years, there has been a remarkable advancement in NLP mainly due to the development of the
Transformer models Vaswani et al. (2017). Beyond incorporating embeddings and positional encodings, the
Transformer architecture consists of an encoder that processes input data, represented by vectors obtained
from embedded and positionally encoded tokens. The encoder-generated representation then serves as
the input for the subsequent decoder, transforming these vector representations into a relevant output
tailored to the specific task. A defining characteristic of the Transformer lies in its self-attention mechanism,
particularly the scaled dot-product attention, which proves instrumental in capturing intricate dependencies
within sequences.

The synergy between enhanced computational power provided by Graphical Processing Units (GPUs)
and advancements in attention mechanisms has been pivotal in developing large language models (LLMs).
These models are meticulously trained on vast datasets with many parameters. BERT (Bidirectional
Encoder Representations from Transformers) Devlin et al. (2019) marked the inception of LLMs. The era
of even larger LLMs began in 2020 with the introduction of models like GPT-3 (the 3rd generation of the
Generative Pre-trained Transformer model) Brown et al. (2020) and PaLM (Pathways Language Model)
Chowdhery et al. (2022). Some recent LLMs include LLaMA (Large Language Model Meta AI) Touvron
et al. (2023a,b), Vicuna Chiang et al. (2023), and Mistral Jiang et al. (2023).

2.3 Computer Vision (CV)

CV involves interpreting and understanding the world from their images or videos Ji (2020). Data in
CV is encoded as numerical values representing the intensity or brightness of pixels. The extraction of
visual patterns like edges, textures, and objects in images or video frames serves as building blocks for
various CV tasks like image classification, object detection, and semantic segmentation. In the following,
we introduce fundamental concepts and terms essential for understanding VLMs presented in the later
parts of the paper.

2.3.1 Convolutional Neural Networks (CNNSs)

CNNs s represent a significant advancement in CV Yamashita et al. (2018). Besides pooling and fully
connected layers, CNNs also have convolution layers, which apply convolution operations to input data. A
small filter or kernel slides over the input data during a convolution operation, performing element-wise
multiplications with local regions of the input at each position. The results are summed to create a new
value in the output feature map. This process is repeated across the entire input, capturing patterns and
features at different spatial locations. The well-known CNNs include Residual Network (ResNet) He et al.
(2016), Dense Convolutional Network (DenseNet) Huang et al. (2022), Efficient Network (EfficientNet)
Tan and Le (2020) and others.
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2.3.2 Vision Transformers (ViTs)

Transformer models, originally proposed for NLP tasks, have also found valuable applications in CV.
For instance, the ViT model Dosovitskiy et al. (2021) can capture intricate relationships and dependencies
across the entire image. This is achieved by leveraging the Transformer architecture and treating images as
sequences of smaller patches. Each image patch undergoes flattening into a vector, followed by passage
through an embedding layer, enriching the patches for a more expressive representation. Positional
encodings are then incorporated to convey spatial arrangement information. ViTs also introduce a
special token capturing global image information, represented by a learnable token embedding with
unique parameters. ViTs have excelled in semantic segmentation Ranftl et al. (2021), anomaly detection
Mishra et al. (2021), medical image classification Manzari et al. (2023); Barhoumi et al. (2023) and even
outperformed CNNs in some cases Tyagi et al. (2021); Xin et al. (2022).

3 VISION-LANGUAGE MODELS (VLMS)

Many real-world scenarios inherently involve multiple data modalities, prompting the development of
VLMs capable of simultaneously handling and understanding both NLP and CV data. In this section, we
build on the basic concepts described earlier and present VLMs, their architectures, training and fine-tuning
methods, and various downstream tasks facilitated by these multimodal models.

3.1 Model Architecture
3.1.1 Single-Stream vs. Dual-Stream VLMs

Based on how different data modalities are fused together in VLMSs, they are generally categorized
into two groups Chen et al. (2023): (1) single-stream (e.g., VisualBERT Li et al. (2019) and UNITER or
UNiversal Image-TExt Representation Learning Chen et al. (2020b)), and (2) dual-stream models (e.g.,
VILBERT or Vision-and-Language BERT Lu et al. (2019) and CLIP or Contrastive Language-Image
Pre-training Radford et al. (2021)).

A single-stream VLM adopts an efficient architecture for processing visual and textual information
within a unified module (see Figure 2 A and and Figure 3 A). This architecture incorporates an early fusion
of distinct data modalities, concatenating feature vectors from various data sources into a single vector (e.g.,
MedViLL Moon et al. (2022)). Subsequently, this combined representation is fed into a single stream. One
notable advantage of the single-stream design is its parameter efficiency, achieved by employing the same
set of parameters for all modalities. This simplifies the model and contributes to computational efficiency
during training and inference phases Chen et al. (2023).

A dual-stream VLM extracts visual and textual representations separately in parallel streams without
parameter sharing (see Figure 2 B and Figure 3 B). This architecture typically exhibits higher computational
complexity than single-stream architectures. Visual features are generated from pre-trained vision encoders,
such as CNNs or ViTs, and textual features are obtained from pre-trained text encoders, usually based on the
Transformer architecture (e.g., PubMedCLIP Eslami et al. (2023)). These features are then integrated using
a multimodal fusion module, often leveraging attention mechanisms, to capture cross-modal dependencies.

3.1.2 Encoder vs. Encoder-Decoder VLMs

The learned cross-modal representations can be optionally processed by a decoder before producing
the final output. Consequently, VLMs are classified into two groups: (1) encoder-only (e.g., ALIGN (A
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Figure 2. Two main types of VLM architectures, single-steam and dual-stream, are presented. The model
inputs and outputs are indicated. The rectangular boxes inside the grey areas indicate the components of
the VLM that typically undergo pre-training and fine-tuning, i.e., the model parameters are updated using
labeled or unlabeled data. The top row (A) shows the single-stream VLM architecture, and the bottom row
shows the (B) dual-stream. Each block indicated in these architectures can be designed using different
AI/ML models as indicated in these blocks.

Large-scale ImaGe and Noisy-text embedding) Jia et al. (2021)), and (2) encoder-decoder models (e.g.,
SimVLM (Simple Visual Language Model) Wang et al. (2022c)).

Encoder-only VLMs are advantageous in scenarios where the primary objective is efficient representation
learning. They often exhibit streamlined processing and reduced computational complexity, making them
suitable for tasks requiring compact and informative representations. However, these models might lack
the capability to generate intricate and detailed outputs, limiting their use in tasks demanding nuanced
responses or creative generation.

Encoder-decoder VLMs offer the flexibility to generate complex and diverse outputs, making them
well-suited for tasks like image captioning, translation, or any application requiring creative responses. The
decoding step allows for the transformation of joint representations into meaningful outputs. However, this
versatility comes at the cost of increased computational demand and complexity.

3.2 Model Training

3.2.1 Transfer Learning

A widely used strategy in ML is transfer learning, where pre-trained models are customized for specific
downstream tasks. This involves fine-tuning the model’s parameters using smaller task-specific datasets to
address the intricacies of the target task rather than starting with random initialization Bommasani et al.
(2022). Transfer learning often entails modifying the original model’s architecture, such as adjusting final
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A Single-stream B Dual-stream
Pros: Pros:
- Facilitates tight integration of visual and - Extracts nuanced features from both vision
language features, as they are aligned early and language data;

in the process;

- Adaptable across a wide range of tasks.

- Has simpler architecture, leading to easier
implementation.

Cons: Cons:
- May struggle to capture the complexities and - Features more complex architecture due to
nuances of both vision and language data; separate processing streams for visual and
language data, requiring sophisticated
- Often has difficulty adapting to diverse tasks. design;

- Typically demands more computational
resources and memory.

Applications in Healthcare: Applications in Healthcare:

- Suited for straightforward medical VQA tasks - Suited for complex medical VQA tasks that
where questions and images are tightly require fine-grained analysis of medical
coupled; images;

- Efficient for generating concise routine - Suited for intricate report generation in
reports that summarize key visual findings challenging clinical cases;

from imaging (e.g., nodules, fluid);
- Adaptable to varying types of medical

- Efficient for large-scale deployment in images (e.g., X-rays, MRlIs, CT scans)
clinical settings with limited computational through specialization of the visual stream.
resources.

Figure 3. Comparison of (A) single-stream and (B) dual-stream VLMs in terms of their advantages,
disadvantages, and healthcare applications, to guide the selection of the appropriate architecture for various
medical scenarios. In some cases, the optimal choice between architectures remains uncertain and may
depend on specific task requirements.

layers or introducing new ones, like classification or regression layers, to align with the task requirements
Bommasani et al. (2022). The goal is to adapt the pre-trained model to the new task while leveraging the
knowledge it gained during initial pre-training. Almost all VLMs use transfer learning during training in
one way or another.

3.2.2 Curriculum Learning

Curriculum learning offers a novel approach for tasks or data with inherent progressions or hierarchies. It
strategically presents training examples or tasks in a designed order, often based on difficulty or complexity
measures Soviany et al. (2021). For instance, LLaVa-Med, a recent medical VLM Li et al. (2023a), employs
curriculum learning during training. This gradual learning approach starts with simpler examples and
progresses to more complex ones, enhancing the model’s adaptability and performance.

3.2.3 Self-Supervised Learning (SSL)

SSL provides a potent alternative to traditional supervised learning by enabling models to generate their
own labels from data Rani et al. (2023). This approach is especially advantageous when acquiring labeled
data is difficult or costly. In self-supervised learning for VLMs, models formulate tasks that leverage
inherent data structures, allowing them to learn meaningful representations across modalities without
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external labels. Examples of such tasks include contrastive learning, masked language modeling, and
masked image modeling (further detailed in the subsequent sub-section).

3.2.4 Pre-Training Process and Tasks

The pre-training process is crucial for providing VLMs with a foundational understanding of the complex
relationship between visual and textual data. A common approach involves extensive pre-training on
datasets pairing images/videos with their corresponding textual descriptions. Throughout pre-training,
the model engages in various tasks to acquire versatile representations for downstream applications. The
following paragraphs describe commonly used pre-training techniques.

Contrastive Learning (CL) trains the model to distinguish positive pairs from negative pairs of visual
and textual data Li et al. (2021). Positive pairs contain related visual and textual content, like an image
with its corresponding description. Negative pairs contain unrelated content, such as an image paired with
a randomly chosen description. The goal is to bring positive pairs closer and push negative pairs apart in a
shared embedding space. Various contrastive loss functions are used, with InfoNCE (Noise-Contrastive
Estimation) loss van den Oord et al. (2019) being a common choice. CLIP Radford et al. (2021) employs
InfoNCE with cosine similarity, while ALIGN Jia et al. (2021) uses normalized softmax loss to enhance
positive similarity and reduce negative similarities.

Masked Language Modeling (MLM) is an NLP task Taylor (1953) first utilized in BERT Devlin et al.
(2019). MLLM randomly replaces a percentage of tokens in textual data with a special token, usually denoted
as MASK. The model then predicts these masked tokens, considering the context on both sides, enabling it
to capture detailed contextual information. VLMs like UNITER Chen et al. (2020b) and VisualBERT Li
et al. (2019) utilize MLM during pre-training.

Masked Image Modeling (MIM), extending the idea of MLM to images, emerged as a novel approach
Xie et al. (2022). In MIM, certain patches are masked, prompting the model to predict the contents
of masked regions. This process enables the model to draw context from the entirety of the image,
encouraging the integration of both local and global visual features. VLMs like UNITER Chen et al.
(2020b) and VILBERT Lu et al. (2019) leverage MIM for enhanced performance. The cross-entropy loss
is employed in MLM and MIM tasks to measure the difference between predicted and actual probability
distributions for the masked elements. Additionally, MLM can be combined with MIM, allowing the
reconstruction of the masked signal in one modality with support from another modality Kwon et al. (2023).

Image-Text Matching (ITM) is another common vision-language pre-training task. Throughout the
training, the model learns to map images and corresponding textual descriptions into a shared semantic
space, where closely aligned vectors represent similar content in both modalities. In single-stream VLMs,
the special token [CLS] represents the joint representation for both modalities. In contrast, in dual-
stream VLMs, the visual and textual representations of [CLS]y and [CLS]t are concatenated. This joint
representation is fed into a fully-connected layer followed by the sigmoid function, predicting a score
indicating match or mismatch Chen et al. (2023). Models like CLIP Radford et al. (2021) and ALBEF
(ALign the image and text representations BEfore Fusing) Li et al. (2021) leverage ITM during pre-training.

In VLM pre-training, multiple tasks are often combined to enable models to understand nuanced
contextual information across modalities. Tasks like contrastive loss, cross-entropy loss for masked token
prediction, and others can be integrated into the final loss function. This approach equips VLMs with
versatile representations for diverse downstream tasks. For instance, ALBEF Li et al. (2021) adopts a
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pre-training objective involving CL, MLM, and ITM tasks, with the overall loss computed as the sum of
these components.

3.2.5 Fine-Tuning Techniques

Following the training, a common practice involves fine-tuning VLMs on smaller datasets tailored to
specific downstream tasks. In the following, we present well-known techniques for fine-tuning VLMs.

Supervised Fine-Tuning (SFT) involves meticulous fine-tuning of a model on a dataset curated to match
the nuances of the targeted application. However, before engaging in SFT, the VLM undergoes pre-training
on an extensive image-text dataset to establish a foundational understanding of visual-textual relationships.
This dual-phase strategy enables the model to generalize broadly while adapting to specific applications
Ouyang et al. (2022).

Reinforcement Learning from Human Feedback (RLHF) is a distinct fine-tuning approach employed
to enhance VLMs through the incorporation of human preferences during fine-tuning Ouyang et al.
(2022); Lambert et al. (2022); Ziegler et al. (2020). RLHF initiates with an initial model, incorporating
human-generated rankings of its outputs to construct a detailed reward model. In contrast to traditional
reinforcement learning (RL) Sutton and Barto (1998); Coronato et al. (2020), which relies solely on
environmental interactions, RLHF strategically integrates human feedback. This human-in-the-loop
approach provides a more nuanced and expert-informed methodology, allowing for fine-tuning in alignment
with human preferences, ultimately improving model outcomes.

Instruction Fine-Tuning (IFT) refers to refining a pre-trained language model by providing specific
instructions or guidance tailored to a particular task or application Ren et al. (2024). This process typically
involves exposing the model to examples or prompts related to the desired instructions and updating
its parameters based on the feedback received during this task-specific training phase. Medical VLM,
RaDialog Pellegrini et al. (2023), employs this fine-tuning technique.

3.3 Parameter-Efficient Fine-Tuning (PEFT)

This section explores strategies for adapting VLMs while keeping the model’s parameters frozen and only
updating newly added layers. PEFT has emerged as a prominent approach, focusing on optimizing parameter
utilization, especially in scenarios with limited labeled data for the target task. PEFT integrates task-specific
parameters, called adapters, into a pre-trained model while retaining its original parameters. Adapter
modules typically feature a bottleneck structure, projecting original features into a reduced dimension,
applying non-linearity, and then projecting back to the original dimension. This design ensures parameter
efficiency by minimizing the number of added parameters per task. Adapter modules, placed after each
layer of the pre-trained model, capture task-specific details while preserving shared parameters, enabling
seamless extension to new tasks without significant interference with previously acquired knowledge.

3.3.1 Low-Rank Adaptation (LoRA)

LoRA is a common adapter-based method Hu et al. (2022). The adaptation process involves fine-tuning
two smaller low-rank matrices that are decompositions of the larger weight matrix of the pre-trained
model. These smaller matrices constitute the LoORA adapter modules, and the approach focuses on making
low-rank modifications to adapt the model for specific tasks efficiently. Pre-trained LLMs that are part of
medical VLMs architecture are often fine-tuned using LoRA (e.g., Visual Med-Alpaca Shu et al. (2023)
and RaDialog Pellegrini et al. (2023)).
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3.3.2 Prompt Tuning

Prompt tuning involves creating continuous vector representations as input hints Lester et al. (2021),
enabling the model to dynamically create effective prompts during training. This iterative process
significantly enhances the model’s ability to generate contextually relevant responses and adapt its behavior
based on an evolving task. VLMs like Qwen-VL and InstructBLIP used prompt tuning Bai et al. (2023a);
Dai et al. (2023).

3.3.3 Prefix Token Tuning

Prefix token tuning adds task-specific vectors to the input, specifically to the initial tokens known as
prefix tokens, to guide the model’s behavior for a given task Li and Liang (2021). For instance, VL-T5
utilized different prefixes for questions from various datasets Cho et al. (2021) . These vectors can be
trained and updated independently while the remaining pre-trained model parameters are frozen. Prefix
token tuning allows task-specific adaptation without compromising the pre-trained knowledge encoded in
most model parameters.

3.4 In-Context Learning

In this section, we explore strategies for adapting VLLMs using the context only, keeping the model’s
parameters (and PEFT/LoRA adapters, if any) frozen. In our settings, in-context learning may be considered
using LLMs or VLMs for inference only.

3.4.1  Prompt Engineering

Prompt engineering involves guiding a trained model with task-specific instructions, known as prompts,
to tailor its output for specific tasks Gu et al. (2023). Examples include instructing the model to generate a
radiology report for a specific image (e.g., RAMM Pellegrini et al. (2023)). Prompt engineering can also
expose the VLM to interconnected examples or prompts, guiding it to a desired output. Another approach
incorporates progressively structured instructions or questions, refining focus and enhancing the model’s
ability to generate coherent and contextually relevant responses Gu et al. (2023).

3.4.2 Retrieval Augmented Generation (RAG)

RAG is a form of prompt engineering that involves strategically crafting prompts for both retrieval and
generation phases, allowing for an adaptive and efficient process that leverages external knowledge sources
to enhance generative tasks. While the original concept of RAG was developed in the context of NLP Lewis
et al. (2020), the principles behind retrieval and generation can be extended to multimodal learning Zhao
et al. (2023), including VLMs. RAG has been used in medical VLMs for tasks like VQA (e.g., RAMM
Yuan et al. (2023)) and RG (e.g., CXR-RePaiR-Gen Ranjit et al. (2023)). RAG begins with a retrieval
component, usually a pre-trained model designed for information retrieval. This versatile component
excels in extracting pertinent information from extensive datasets, catering to various modalities such as
images, text, codes, video, or audio when presented with diverse inputs Zhao et al. (2023). Following the
retrieval phase, the model returns a set of contexts related to the given input. The second component is a
generative LLLM. This component takes the input and the retrieved context and generates the final output.
The generated output is conditioned on the input and the information extracted from the retrieved context.
An intrinsic advantage of RAG lies in its capacity to reduce the reliance on extensive labeled datasets.
While the base model is typically frozen during RAG, there are instances, as seen in RAMM Yuan et al.
(2023), where model parameters are updated in the process.
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3.5 Downstream Tasks

Multimodal downstream tasks leverage the acquired knowledge from pre-training VLMs to excel in
diverse applications that require a joint understanding of visual and textual data.

3.5.1 Report Generation (RG)

RG is a prominent example of a typical medical VLM task, which centers on creating a comprehensive
summary report of visual data. RG plays a crucial role in automatically summarizing diagnostic imaging
results and reducing the workload of report writing Monshi et al. (2020); Ting et al. (2023); Mohsan et al.
(2023). For instance, in radiology, a report generation system could analyze a set of medical images such
as X-rays, CT scans, or MRIs and generate a detailed report summarizing the observed abnormalities,
their locations, and potential implications for diagnosis or treatment Liu et al. (2023b). A radiology report
usually has several sections: (1) Examination (type of exam), (2) Indication (reasons for the examination),
(3) Comparison (prior exams), (4) Technique (scanning method) (5) Findings (detailed observations made
by a radiologist), and (6) Impression (summary of the major findings) Mabotuwana et al. (2020). In the
context of RG, VLMs are usually designed to generate Findings and Impression sections Thawkar et al.
(2023).

Traditional methods of RG in radiology, such as handwriting, telephone dictation, transcriptionist-oriented
systems, speech recognition, and structured data entry, face several challenges, including medical errors,
cognitive overload, and inefficient decision-making. Handwriting and telephone dictation are particularly
vulnerable to mistakes, as they can suffer from issues like illegible handwriting and miscommunication,
leading to misinterpretations. Structured data entry, although designed to standardize and streamline
reporting, often places a significant cognitive burden on radiologists, who must meticulously input detailed
information, potentially leading to fatigue and errors. While technological advancements like electronic
health records (EHRs), improved speech recognition software, standardized reporting templates, and
automated error detection have been developed to mitigate these challenges, they have limitations. For
example, EHRs and speech recognition still require substantial manual input and proofreading, which can
be time-consuming and prone to error. Standardized reporting templates are helpful in ensuring consistency,
but they can be inflexible and may not always capture the nuanced details of individual cases. Automated
error detection systems are also not foolproof, often requiring human oversight to verify and correct flagged
issues. Despite these improvements, the need for manual effort and the potential for human error remain
significant concerns.

The evolution of RG methods parallels the advancements in image captioning. Early methods in image
captioning included retrieval-based approaches, where captions were generated by retrieving existing
phrases from a database, and template-based approaches, where predefined sentence templates were filled
with identified image elements, such as objects, actions, or locations Bai and An (2018). However, these
approaches struggled with generating captions for unseen images. This limitation motivated the emergence
of DL methods for RG. Initial DL approaches utilized CNNs to extract visual features from images, which
were then processed by RNNs to generate text descriptions Ting et al. (2023). While this CNN-RNN
approach improved the flexibility of captioning, it still faced challenges in capturing complex relationships
between images and text outputs, and it struggled with generating longer, more comprehensive reports,
often required in the medical field. These challenges gradually led to the adoption of VLMs in medical RG.

VLMs represent a transformative leap in medical RG by addressing the shortcomings of previous methods.
By simultaneously integrating imaging and textual data, VLMs are able to generate more comprehensive and
coherent reports. They also significantly reduce cognitive load by automating the creation of comprehensive
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reports, thereby liberating clinicians from the repetitive and time-consuming task of manual report writing.
Furthermore, VLMs provide consistent interpretations of imaging data, which helps minimize the risk
of errors associated with clinician fatigue or oversight. Their capability to process large volumes of data
efficiently streamlines the reporting process, enhancing the overall effectiveness of medical practice and
contributing to more accurate diagnoses. Currently, VLMs tailored for RG are predominantly utilized for
radiology images, with lesser application in other medical imaging domains such as pathology Sengupta
and Brown (2023), robotic surgery Xu et al. (2021), and ophthalmology Li et al. (2022).

3.5.2 Visual Question Answering (VQA)

VQA is another important visual-language understanding task, where the model needs to comprehend
images or videos and the posed question to provide a relevant and accurate response Antol et al. (2015).
The spectrum of questions encountered in VQA is broad, encompassing inquiries about the presence of
specific objects, their locations, or distinctive properties within the image. In the medical context Lin et al.
(2023b), this may involve questions regarding the presence of medical conditions or abnormalities, such
as “What abnormality is seen in the image?” Ionescu et al. (2021) or “Is there gastric fullness?” Lau et al.
(2018). Other queries may delve into details like the imaging method used Abacha et al. (2019), the organ
system involved Lau et al. (2018), or the presence of specific anatomical structures Liu et al. (2021a).

Questions in VQA fall into two categories. Open-ended questions elicit responses in the form of phrases or
sentences, fostering detailed and nuanced answers Thawkar et al. (2023). On the other hand, closed-ended
questions are designed to prompt limited responses, often with predetermined options, such as a short
list of multiple choices, a yes/no response, or a numeric rating Bazi et al. (2023). The task of VQA is
commonly approached as either a classification task, a generation task, or both Lin et al. (2023b). In the
classification approach, models select the correct answer from a predefined set, while in the generation
task, models produce free-form textual responses unconstrained by predefined options.

3.5.3 Other Tasks

Beyond VQA and RG, a spectrum of VLM tasks exist for the vision-language understanding Chen et al.
(2023). For instance, referring expression comprehension entails a model locating the specific area or object
in an image that the given phrase or sentence refers to Zhang et al. (2018). Visual commonsense reasoning
involves answering questions about an image, typically presented in a multiple-choice format, and justifying
the answer based on the model’s understanding of the image and common sense knowledge Zellers et al.
(2019). Vision-language retrieval focuses on either generating or retrieving relevant information from
images using textual data, or vice versa, obtaining information from text using visual data Zhen et al.
(2019). In the context of visual captioning, the model’s role is to generate a concise, text-based description
of either an image Sharma et al. (2023). It is worth highlighting that some of these tasks can seamlessly
transition from images to videos, showcasing the adaptability and versatility of VLMs across diverse visual
contexts Gan et al. (2022).

4 MEDICAL VLMS
4.1 Maedical Datasets for VLMs

The adaptation of VLMs to various medical tasks is achieved through their pre-training and fine-tuning
using specialized task-specific datasets. Below is the list of vision-language datasets available in the public
domain that contain medical image-text pairs or question-answer (QA) pairs. Most of them are employed
by medical VLMs described in Section 4.3 for pre-training, fine-tuning, and evaluating VQA and RG tasks.
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Table 1. A list of datasets used for developing medical VLMs. Datasets with image-text pairs are typically
employed for training medical VLMs, as well as for fine-tuning and evaluating models on RG tasks.
Additionally, datasets containing question-answer (QA) pairs are specifically designed for fine-tuning and
evaluating models in VQA tasks.

Dataset # image-text pairs # QA pairs Other components Link
ROCO

Pelka et al. (2018) 81,825 - - GH
MIMIC-CXR

Johnson et al. (2019a) 377,110 - - PN
MIMIC-CXR-JPG

Johnson et al. (2019b) 377,110 - pathology labels PN
MIMIC-NLE diagnosis labels,

Kayser et al. (2022) 38,003 B evidence labels GH
CXR-PRO B _ 374,139 radiographs and PN
Ramesh et al. (2022) 374,139 reports but not paired

MS-CXR . .

Boecking et al. (2022) 1,162 - bounding box annotations PN
IU-Xray or Open-I

Demner-Fushman et al. (2015) 7,470 - labels Web
MedICaT annotations; inline

Subramanian et al. (2020) 224, 567 - references to ROCO figures GH
PMC-OA

Lin et al. (2023a) 1,650,000 - - HE
SLAKE 642 annotated images,

Liu et al. (2021a) - 14,028 5939 medical triplets Web
VQA-RAD . .

Lgl etal. (2018) - 3,515 315 radiology images Web
PathVQA .

H?: et a(l;.! (2020) - 32,799 4,998 pathology images GH
VQA-Med 2019 . .

Abacha et al. (2019) - 15,292 4,200 radiology images GH
VQA-Med 2020 B 5000 5,000 radiology images for VQA; GH
Abacha et al. (2020) ) images and questions for VQG

VQA-Med 2021 B 5 500 5, 500 radiology images for VQA; GH
Ionescu et al. (2021) ’ images and questions for VQG

EndoVis 2017 B 479 bounding box annotations; GH
Allan et al. (2019) 97 frames

EndoVis 2018 bounding box annotations;

Allan et al. (2020) - L7835 007 frames GH + Web
PathQABench-Public - 312 52 ROIs from WSIs GH

Lu et al. (2024b)

Note: Abbreviations used are: GH - GitHub, HF - Hugging Face, and PN - PhysioNet

The comparative analysis of these datasets is presented in Table 1. Note that determining which dataset is
best suited for a particular task can be challenging, as each medical application presents its own nuances
and requirements. Factors such as the context in which images are acquired and the types of annotations
provided can significantly influence a dataset’s effectiveness for specific tasks. In some cases, it may be
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necessary to enhance existing datasets by adding relevant image-text pairs or QA pairs, or even to create
entirely new datasets tailored to specific research questions or clinical scenarios.

4.1.1 Radiology Objects in Context (ROCO)

ROCO is a dataset composed of image-caption pairs extracted from the open-access biomedical literature
database PubMed Central (PMC) Pelka et al. (2018). ROCO is stratified into two categories: radiology
and out-of-class. The radiology group includes 81, 825 radiology images, including CT, ultrasound, x-ray,
fluoroscopy, positron emission tomography (PET), mammography, MRI, angiography, and PET-CT. The
out-of-class group has 6, 127 images, including synthetic radiology images, clinical photos, portraits,
compound radiology images, and digital art. To facilitate model training, the dataset is randomly split into
a training set (65, 460 radiology and 4, 902 out-of-class images), a validation set (8, 183 radiology and 612
out-of-class images), and a test set (8, 182 radiology and 613 out-of-class images) using an 80/10/10 split
ratio, respectively.

4.1.2 Medical Information Mart for Intensive Care - Chest X-Ray (MIMIC-CXR)

MIMIC-CXR collection encompasses 377, 110 chest X-rays paired with 227, 835 associated free-text
radiology reports Johnson et al. (2019a). The dataset is derived from de-identified radiographic studies
conducted at the Beth Israel Deaconess Medical Center in Boston, MA. Each imaging study within the
MIMIC-CXR dataset consists of one or more images, typically featuring lateral and from back-to-front
(posteroanterior, PA) views in Digital Imaging and Communications in Medicine (DICOM) format.

4.1.3 MIMIC-CXR-JPG

MIMIC-CXR-JPG Johnson et al. (2019b) is a pre-processed variant of the MIMIC-CXR dataset Johnson
et al. (2019a). In this version, the original 377, 110 images are converted into compressed JPG format. The
227,827 reports associated with these images are enriched with labels for various common pathologies.
The labels are derived from the analysis of the impression, findings, or final sections of the radiology
reports, facilitated by the use of NegBio Peng et al. (2017) and CheXpert (Chest eXpert) Irvin et al. (2019)
tools.

4.1.4 MIMIC-NLE

MIMIC-NLE dataset is specifically designed for the task of generating natural language explanations
(NLE?5) to justify predictions made on medical images, particularly in the context of thoracic pathologies and
chest X-ray findings Kayser et al. (2022). The dataset consists of 38, 003 image-NLE pairs or 44, 935 image-
diagnosis-NLE triplets, acknowledging instances where a single NLE may explain multiple diagnoses.
NLEs are extracted from MIMIC-CXR Johnson et al. (2019a) radiology reports. The dataset exclusively
considers X-ray views from front-to-back (anteroposterior, AP) and back-to-front (posteroanterior, PA).
All NLEs come with diagnosis and evidence (for a diagnosis) labels. The dataset is split into the training
set with 37,016 images, a test set with 273 images, and a validation set with 714 images.

4.1.5 CXR with Prior References Omitted (CXR-PRO)

CXR-PRO dataset is derived from MIMIC-CXR Johnson et al. (2019a). The dataset consists of 374, 139
free-text radiology reports containing only the impression sections Ramesh et al. (2022). It also incorporates
associated chest radiographs; however, the radiology reports and chest X-rays are not paired. This dataset
is designed to mitigate the problem of hallucinated references to prior reports often generated by radiology
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report generation ML models. The omission of prior references in this dataset aims to provide a cleaner
and more reliable dataset for radiology RG.

4.1.6 Indiana University chest X-rays (IU-Xray)

IU-Xray dataset, also known as the Open-I dataset, is accessible through the National Library of
Medicine’s Open-i service Demner-Fushman et al. (2015). The dataset originates from two hospital systems
within the Indiana Network for Patient Care database. This dataset comprises 7,470 DICOM chest X-rays
paired with 3, 955 associated radiology reports. Indication, finding, and impression sections are manually
annotated using MeSH and RadLex (Radiology Lexicon) codes to represent clinical findings and diagnoses.
Throughout this review, we will refer to the dataset interchangeably as /U-Xray and Open-I, maintaining
consistency with the nomenclature used in related literature.

4.1.7 Medical Images, Captions, and Textual References (MedICaT)

MedICaT dataset contains 217, 060 figures from 131, 410 open-access PMC papers focused on radiology
images and other medical imagery types Subramanian et al. (2020). Excluding figures from ROCO Pelka
et al. (2018), the dataset integrates inline references from the S2ORC (Semantic Scholar Open Research
Corpus) Lo et al. (2020) corpus, establishing connections between references and corresponding figures.
Additionally, the inline references to ROCO figures are provided separately. MedICaT also contains 7, 507
subcaption-subfigure pairs with annotations derived from 2, 069 compound figures.

4.1.8 PubMedCentral’s OpenAccess (PMC-OA)

PMC-OA dataset comprises 1.65 M image-caption pairs, derived from PMC papers Lin et al. (2023a). It
encompasses a variety of diagnostic procedures, including common ones such as ultrasound, MRI, PET,
and radioisotope, and rarer procedures like mitotic and fMRI. Additionally, the dataset covers a broad
spectrum of diseases, with induced cataracts, ear diseases, and low vision being among the most frequently
represented conditions.

419 MS-CXR

MS-CXR dataset contains image bounding box labels paired with radiology findings, annotated and
verified by two board-certified radiologists Boecking et al. (2022). The dataset consists of 1, 162 image-
text pairs of bounding boxes and corresponding text descriptions. The annotations cover 8 different
cardiopulmonary radiological findings and are extracted from MIMIC-CXR Johnson et al. (2019a)
and REFLACX (Reports and Eye-tracking data For Localization of Abnormalities in Chest X-rays)
Bigolin Lanfredi et al. (2022) (based on MIMIC-CXR) datasets. The findings include atelectasis,
cardiomegaly, consolidation, edema, lung opacity, pleural effusion, pneumonia, and pneumothorax.

4.1.10 Semantically-Labeled Knowledge-Enhanced (SLAKE)

SLAKE is an English-Chinese bilingual dataset Liu et al. (2021a). It contains 642 images, including 12
diseases and 39 organs of the whole body. Each image is annotated with two types of visual information:
masks for semantic segmentation and bounding boxes for object detection. The dataset includes a total
of 14,028 QA pairs, categorized into vision-only or knowledge-based types and labeled accordingly,
encompassing both open- and closed-ended questions. Moreover, SLAKE incorporates 5, 232 medical
knowledge triplets in the form of < head, relation,tail >, where head and tail denote entities (e.g.,
organ, disease), and relation signifies the relationship between these entities (e.g., function, treatment).
An illustrative example of such a triplet is <pneumonia, location, lung>.
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4.1.11 VQA-RAD

VQA-RAD dataset contains 104 head axial single-slice CTs or MRIs, 107 chest x-rays, and 104 abdominal
axial CTs Lau et al. (2018). The images are meticulously chosen from MedPix, an open-access online
medical image database, ensuring each image corresponds to a unique patient. Furthermore, every selected
image has an associated caption and is deliberately devoid of any radiology markings. Every caption
provides details about the imaging plane, modality, and findings generated and reviewed by expert
radiologists. Also, VQA-RAD contains 3,515 QA pairs, with an average of 10 questions per image.
Among them, 1, 515 are free-form questions and answers, allowing for unrestricted inquiry. Additionally,
733 pairs involve rephrased questions and answers, introducing linguistic diversity. Another 1, 267 pairs are
framed, featuring questions presented in a structured format, offering consistency and systematic evaluation.
Additionally, QA pairs are split into 637 open-ended and 878 closed-ended types. Within the closed-ended
group, a predominant focus is on yes/no questions.

4.1.12 PathVQA

PathVQA is a dataset that encompasses 4, 998 pathology images accompanied by a total of 32,799
QA pairs derived from these images He et al. (2020). The images are sourced from pathology books:
“Textbook of Pathology” and “Basic Pathology”, and the digital library “Pathology Education Informational
Resource”. Out of all QA pairs, 16,465 are of the open-ended type, while the remaining pairs are of the
closed-ended yes/no type. On average, each image is associated with 6.6 questions, which cover a broad
spectrum of visual contents, encompassing aspects such as color, location, appearance, shape, etc.

4.1.13 VQA-Med 2019

VQA-Med 2019 dataset contains 4, 200 radiology images obtained from MedPix, an open-access online
medical image database, and 15,292 QA pairs Abacha et al. (2019). The training set consists of 3,200
images and 12,792 QA pairs, with each image having 3 to 4 associated questions. The validation set
includes 500 images and 2, 000 QA pairs, and the test set comprises 500 images and 500 QA pairs. The
questions are mainly about modality, imaging plane, organ system, and abnormality.

4.1.14 VQA-Med 2020

VQA-Med 2020 dataset contains 5, 000 radiology images obtained from MedPix, an open-access online
medical image database, and 5,000 QA pairs Abacha et al. (2020). The training set consists of 4, 000
images and 4, 000 QA pairs. The validation set comprises 500 images and 500 QA pairs, and the test set
includes 500 images and 500 QA pairs. The questions are focused on abnormalities present in the images.
Additionally, the dataset contains radiology images and questions for the Visual Question Generation
(VQGQG) task. The training set consists of 780 images and 2, 156 associated questions. The validation set
comprises 141 images with 164 questions, and the test set includes 80 images.

4.1.15 VQA-Med 2021

VQA-Med 2021 dataset contains 5, 500 radiology images obtained from MedPix, an open-access online
medical image database, and 5, 500 QA pairs Ionescu et al. (2021). The training set consists of 4, 500
images and 4, 5000 QA pairs. The validation set comprises 500 images and 500 QA pairs, and the test set
includes 500 images and 500 QA pairs. The questions are focused on abnormalities present in the images.
Similarly to VQA-Med 2019, the dataset also contains radiology images and questions for the VQG task.
The validation set comprises 85 images with 200 questions, and the test set includes 100 images.
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4.1.16 Endoscopic Vision (EndoVis) 2017

EndoVis 2017 dataset contains 5 robotic surgery videos (two videos with 8 frames each, one with 18, one
with 14, and one with 39 frames) from the MICCAI (Medical Image Computing and Computer Assisted
Interventions) Endoscopic Vision 2017 Challenge Allan et al. (2019). It also includes 472 QA pairs with
bounding box annotations. These QA pairs are carefully crafted to involve specific inquiries related to the
surgical procedure. Examples of questions include queries such as "What is the state of prograsp forceps?”
and “Where is the large needle driver located?”. The inclusion of bounding box annotations enhances the
dataset’s utility for tasks such as object detection or answer localization.

4.1.17 EndoVis 2018

EndoVis 2018 dataset contains 14 robotic surgery videos (2,007 frames in total) from the MICCAI
Endoscopic Vision 2018 Challenge Allan et al. (2020). It also includes 11, 783 QA pairs regarding organs,
surgical tools, and organ-tool interactions. When the question is about organ-tool interactions, the bounding
box will contain both the organ and the tool.

4.1.18 PathQABench-Public

PathQABench-Public contains 52 regions of interest (ROIs) hand-selected by a board-certified pathologist
from whole slide images (WSIs) in the publicly available The Cancer Genome Atlas (TCGA) repository.
These images represent various organ systems: brain, lung, gastrointestinal tract, urinary tract, male
reproductive tract, skin/eye/connective tissue, pancreaticohepatobiliary system, endocrine system,
head/neck/mediastinum, gynecology, and breast. Per each organ system there are from 4 to 6 images. Each
image is paired with a corresponding multiple-choice question, offering 10 possible answers. Additionally,
there are five open-ended questions for each image, resulting in a total of 260 open-ended questions
categorized into microscopy, diagnosis, clinical, and ancillary testing.

4.2 VLM Evaluation Metrics

This section delves into the evaluation process of medical VLMs. The initiation of this process involves
meticulously selecting benchmark datasets and defining evaluation metrics tailored to the specific vision-
language tasks at hand.

4.2.1 Evaluation Metrics for Report Generation

The prevalent benchmark datasets for medical RG are MIMIC-CXR Johnson et al. (2019a) and Open-I
Demner-Fushman et al. (2015). For more information on these datasets, see Section 4.1. Several metrics
are used to evaluate the effectiveness of VLMs on RG tasks. The more frequently used metrics are outlined
below.

Bilingual Evaluation Understudy (BLEU) score was originally designed for machine translation
evaluation, but it has been adapted for RG and even VQA in a modified form. BLEU provides a quantitative
measure of how well the machine-generated text aligns with human-generated reference text Papineni et al.
(2002). First, the precision of different n-grams, which are consecutive sequences of n words, is calculated
using the formula:

B #overlapping n-grams
~ #all n-grams in a model-generated text’

Precision(n)

(D
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where ‘overlapping n-grams’ refer to n-grams in the model-generated text that share common elements
with at least one n-gram in the reference text. To ensure the precision score remains robust and is not
disproportionately affected by repeated n-grams in the model-generated text, a modification known as
clipping is often introduced. This process involves capping the count of each n-gram in the model-generated
text to a maximum count. This maximum count is determined by the highest count observed in any single
reference text for the same n-gram. The final BLEU-n score is defined as:

1 n
BLEU-n = BP X —exp (Z log [Precision(k)]) ) (2)
n k=1

In eq. 2, BP is referred to as the brevity penalty and is calculated as:

1 ife>r
BP = - 3
{e(l_r/‘:) if c <, ©)

where c is the length of the model-generated text, and r is the length of the reference text. It is common to
use n = 4. The BLEU score ranges from O to 1, where a higher score suggests better agreement with the
reference text. The overall BLEU score of the model is the average of BLEU scores for each pair of reports.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a set of metrics that evaluate the
overlap between the model-generated text and human-generated reference text Lin (2004). ROUGE-n
assesses the overlap of n-grams between model-generated text and reference text, and it is defined as:

ROUGE.n — —_Troverlapping n-grams

4)

#all n-grams in a reference text

ROUGE-L focuses on measuring the longest common subsequence between model-generated text Y and
reference text X, and it is calculated using the following relationship:

1+ xRxP

ROUGE-L =
(R+Pxp?)

)

where R = LCS(X,Y)/m, P = LCS(X,Y)/n, mis the length of X, n is the length of Y, LC'S(X,Y)
is the length of a longest common subsequence of X and Y, and [ is a parameter that depends on the
specific task and the relative importance of precision (P) and recall (R). There are other ROUGE score
variants. The ROUGE scores range from O to 1, where higher scores indicate similarity between the
model-generated text and the reference text. For each ROUGE variant, the overall score of the model is the
average of scores for each instance.

Metric for Evaluation of Translation with Explicit ORrdering (METEOR) is an evaluation metric
designed to be more forgiving than some other metrics and takes into account the fluency and meaning of
the generated text Banerjee and Lavie (2005). The METEOR score is computed as follows:

10x Px R
METEOR = —————(1 — Penalt 6
R+9><P( enalty) ©)
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where
R #overlépping 1-grams 7 7
#1-grams in a reference text
p_ #overlapping 1-grams 8)
~ #t1-grams in a model-generated text’
1 hunk ¥
Penalty = — x ia 'un > 9
2 #overlapping 1-grams

and chunks are groups of adjacent 1-grams in the model-generated text that overlap with adjacent 1-grams
in the reference text. The METEOR score ranges from O to 1, with higher scores indicating better alignment
between the model-generated text and the reference text. The overall METEOR score of a model is the
average of scores for each instance.

Perplexity measures the average uncertainty of a model in predicting each word in a text Hao et al.
(2020). The formula for perplexity is defined as:

1 n
Perplexity = exp (_ﬁ Z In P(wg|wy, wa, . .. ,wk_1)> , (10)
k=1

where n is the total number of words in the text. The value of the perplexity metric can range from 1 to
~+00, and lower values signify a more accurate and confident model in capturing the language patterns
within the given text.

BERTScore was initially designed for evaluating models that use BERT Devlin et al. (2019) embeddings
Zhang et al. (2020). However, it can also leverage other word embeddings to evaluate the similarity between
model-generated and reference text. The BERTScore of a single text pair is calculated according to the
relationship:

2x PxR
BERTScore = “PrR (11)
where P represents the ratio of the maximum cosine similarity score between tokens in the model-generated
text and the reference text to the numbers of tokens in the model-generated text and R represents the ratio
of the maximum cosine similarity score between tokens in the model-generated text and the reference text
to the numbers of tokens in the reference text. The BERTScore of the model is the average of BERTScores
across all text pairs.

RadGraph F1 is a novel metric that measures overlap in clinical entities and relations extracted from
radiology reports Yu et al. (2023). The RadGraph F1 score is computed in the following way. First, the
RadGraph model maps model-generated and reference reports into graph representations with clinical
entities represented as nodes and their relations as edges between them. Second, the number of nodes that
match between the two graphs based on clinical entity text and labels (entity type) is determined. Third,
the number of edges that match between the two graphs based on their start and end entities and labels
(relation type) is calculated. Lastly, the F1 score is separately computed for clinical entities and relations,
and then the RadGraph F1 score for a report pair is the average of these two scores. The overall model
performance is determined by averaging RadGraph F1 scores across all report pairs.
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Human evaluation is crucial for assessing the quality of VLMs in medical RG. In Jeong et al. (2023),
expert radiologists assessed the X-REM model’s performance in RG by segmenting reports into lines and
assigning scores based on five error categories to each line. These scores reflected error severity, with
higher values indicating more severe errors.

The next few metrics are designed for classification evaluation, and RG can be viewed as such a task. In
Moon et al. (2022), Lee et al. (2023), and Pellegrini et al. (2023), these metrics are computed based on the
14 labels obtained from applying the CheXpert Irvin et al. (2019) or CheXbert Smit et al. (2020) labeler
to the reference reports as well as the model-generated reports. In this context, reports bearing accurate
diagnosis labels are categorized as positive, while those with inaccurate labels are regarded as negative.
The following metrics are also called clinical efficacy metrics.

e Accuracy measures the ratio of all positive predictions to the total number of predictions.

e Precision evaluates the accuracy of positive predictions. It is calculated as the ratio of true positive
predictions to the total instances predicted as positive, expressed as:

. True Positives
Precision = — —. (12)
True Positives + False Positives

High Precision indicates a low false positive rate.

e Recall assesses the model’s ability to predict all positive classes. It is defined as the ratio of correctly
predicted positive observations to the total actual positives:

Recall — .T.rue Positives . (13)
True Positives + False Negatives

High Recall means effectively identifying the most actual positive instances.

e F'] Score provides an overall measure of the model’s performance by balancing Precision and Recall.
It is calculated as:

2 x Precision x Recall

Fl =

= ) 14
Precision + False Recall (14

F1 scores range from O to 1, with higher values indicating better performance. In multi-class
classification, the macro-F1 score is commonly computed by averaging the F1 scores independently
calculated for each class. This method ensures unbiased evaluation across all classes, assigning equal
importance regardless of size or prevalence.

4.2.2 Evaluation Metrics for VQA

The common benchmark datasets for medical VQA include VQA-RAD Lau et al. (2018), SLAKE Liu
et al. (2021a), and PathVQA He et al. (2020). While various metrics are available for VQA evaluation,
only a few are highlighted here to avoid redundancy with already mentioned metrics.

Accuracy is a fundamental metric for gauging overall model correctness in VQA evaluation. It is
determined by calculating the proportion of correctly predicted answers to the total number of questions.
For a detailed comparison of accuracies among different medical VLMs discussed in Section 4.3, refer to
Table 3.
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Exact match computes the ratio of generated answers that match exactly (excluding punctuation) the
correct answer. However, it may not credit semantically correct answers that lack an exact lexical match.
This metric is more suitable for evaluating answers to close-ended questions than open-ended ones.

Human evaluation can be performed for VQA in various ways. For instance, in Moor et al. (2023),
medical experts evaluated Med-Flamingo’s performance on each VQA problem using a user-friendly
interface, assigning scores from 0O to 10.

4.3 Medical Models

In this part of the review paper, we provide an overview of existing medical VLMs tailored for VQA
and/or RG. The information is organized chronologically based on the first appearance of the model. Our
focus is mainly on recently introduced open-source and publicly available models. A summary of these
VLMs is presented in Table 2.

4.3.1 Medical Vision Language Learner (MedVilLL)

MedViLL can process medical images to generate associated reports Moon et al. (2022). The model
employs ResNet-50 He et al. (2016), trained on ImageNet Deng et al. (2009), for extracting visual features
v. The model leverages WordPiece Wu et al. (2016) tokenizer to extract textual features ¢ from clinical
reports. Both visual and textual features incorporate positional information to capture spatial relationships
and sequential order. These features, along with special tokens [CLS], [SEP]y, [SEP]., are concatenated
into a single vector (CLS,v, SEPy,t, SEPr) and fed into the BERT-based Transformer. The MedViLL
is pre-training on two tasks: MLM and ITM. The MLM task employs a bidirectional auto-regressive (BAR)
self-attention mask. For MLM, a negative log-likelihood loss function is used. Pre-training is performed
on 89, 395 image-report pairs from MIMIC-CXR Johnson et al. (2019a), with fine-tuning on 3, 547 pairs
from Open-I Demner-Fushman et al. (2015). VQA is performed on VQA-RAD Lau et al. (2018) (see Table
3), where the output representation of [CLS] is used to predict a one-hot encoded answer. For radiology
RG fine-tuning, the model uses a sequence-to-sequence (S2S) mask instead of BAR and generates reports
by sequentially recovering MASK tokens. RG is evaluated on MIMIC-CXR Johnson et al. (2019a) and
Open-I Demner-Fushman et al. (2015). MedViLL achieves a BLEU-4 score of 0.066, a perplexity value of
4.185, and using a CheXpert labeler Irvin et al. (2019) an accuracy of 84.1%, a precision value of 0.698, a
recall value of 0.559, and an F1 score of 0.621 on MIMIC-CXR. Additionally, it achieves a BLEU-4 score
of 0.049, a perplexity value of 5.637, an accuracy of 73.4%, a precision value of 0.512, a recall value of
0.594, and an F1 score of 0.550 on Open-I.

4.3.2 PubMedCLIP

PubMedCLIP is a CLIP-based Radford et al. (2021) model pre-trained on the ROCO Pelka et al. (2018)
dataset Eslami et al. (2023). It employs a CLIP text encoder based on the Transformer architecture and three
distinct visual encoders: ViT-B/32 Dosovitskiy et al. (2021), ResNet-50, and ResNet-50x4 He et al. (2016).
Following CLIP’s approach, the model generates joint representations by computing cosine similarity
between textual and visual features. The pre-training objective involves computing cross-entropy losses
for vision and language, which are then averaged to derive an overall loss. Repurposed as a pre-trained
visual encoder for VQA, PubMedCLIP’s output is also concatenated with the output of a convolutional
denoising autoencoder (CDAE) Masci et al. (2011). Questions are encoded using GloVe Pennington
et al. (2014) word embeddings followed by an LSTM Hochreiter and Schmidhuber (1997). Image and
question features are combined using bilinear attention networks (BAN) Kim et al. (2018), and the resulting
representations are classified using a two-layer feedforward neural network. The VQA loss combines
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Table 2. A list of medical VLMs developed for VQA and RG.

Model Stream Decoder Architecture VQA RG Datasets Code
MedViLL . MIMIC-CXR,
Moonetal 2022) ~ Single  No  RN30+BERT * * OpenlvQaraD  OH
ViT-B/32 or RN50 or
PubMedCLIP ROCO, SLAKE,
Eslami et al. (2023) dual No RN50x4 + Transformer + ~  VQA-RAD GH
+ BAN
RepsNet ResNeXt-101 + BERT VQA-RAD,
Tanwani et al. (2022) dual Yes + BAN + language decoder + + [U-Xray Web
. ViT-B/16
Biomed CLIP PMC-15, SLAKE
dual No + PubMedBERT + - . > HF
Zhang et al. (2023a) + METER VQA-RAD
UniXGen i f MIMIC-CXR GH
Lee et al. (2023) single Yes VQGAN + Transformer - + -
Swiss Transformer PMCPM, ROCO
RAMM + PubMedBERT MIMIC-CXR,
Yuan et al. (2023) dual No + multimodal encoder w/ + - SLAKE, VQA-RAD, GH
’ retrieval-atten. module VQA-Med 2019,
VQA-Med 2021
ALBEF
X-REM - MIMIC-CXR,
Jeong et al. (2023) dual No  (ViT-B/16 + BERT =~ % MedNLI, RadNLI GH
+ multimodal encoder)
ROCO; MedDialog,
Visual DePlot or Med-GIT MEDIQA QA,
Med-Alpaca single Yes + prompt manager + — MEDIQA RQE, GH
Shu et al. (2023) +LLaMa-7B MedQA, PubMedQA
+ GPT-3.5-Turbo
ALBEF
+ FAISS retriever
CXR-RePaiR-Gen dual Yes + prompt manager _ + CXR-PRO, _
Ranjit et al. (2023) + text-davinci-003 MS-CXR
or GPT-3.5-Turbo
or GPT-4
. o PMC-15 + GPT-4,
f};‘;‘i"gg%a) single  Yes  ALL/LA+ projection + - VOQARAD,SLAKE, GH
: y PathVQA
MedCLIP + linear
”)F(l::\i,/‘l?;:’ret al. (2023) single Yes transformation layer + + l(sdlle\;ll{?-CXR GH
) + Vicuna-7B P
. . RNI18 .
CAT-ViL DeiT . . EndoVis 2017,
Bai ct al. (2023b) dual No  +CAT-ViL fusion * = EndoVis 2018 GH
module + DeiT
. ROCO, MedICaT,
MUMC dual Yes erfl-u]?t/ilnzlo-a;ﬁlzﬁgoder + _ ImageCLEF Caption, GH
Li et al. (2023b) + answer decoder VQA-RAD, SLAKE
PathVQA
. . . MTB, PMC-0OA,
MebTumings e e VMmoo, YOURAS Paivos, s
: p Visual USMLE
. BioViL-T + BERT
RaDialo . MIMIC-CXR,
Pelle;;rin% et al. (2023) single Yes *+ prompt manager + * Instruct GH
) + Vicuna-7B
PathChat single Yes UNI + multimodal N _ CONCH, PathChat GH

Lu et al. (2024b) projector + Llama 2-13B dataset, PathQABench

classification and image reconstruction losses. PubMedCLIP is fine-tuned on datasets like SLAKE Liu
et al. (2021a) and VQA-RAD Lau et al. (2018). Its performance is compared with existing Medical
VQA (MedVQA) methods, such as Mixture of Enhanced Visual Features (MEVF) Zhan et al. (2020)
and question-conditioned reasoning (QCR) Liu et al. (2023a). PubMedCLIP, integrated into the QCR
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framework, achieves superior accuracies on VQA-RAD and SLAKE datasets compared to the MEVF
framework. The highest accuracies of PubMedCLIP in the QCR framework on both datasets are shown in
Table 3.

4.3.3 RepsNet

RepsNet is designed for VQA tasks Tanwani et al. (2022). It can generate automated medical reports
and interpret medical images. The model employs a modified version of the pre-trained ResNeXt-101 Xie
et al. (2016) as its image encoder and utilizes pre-trained BERT Devlin et al. (2019) as the text encoder,
with text tokenization done through WordPiece Wu et al. (2016). Fusion of image and question features
is achieved using BAN Kim et al. (2018). To align images with textual descriptions, the model employs
bidirectional contrastive learning Chen et al. (2020a). The language decoder, based on GPT-2, is adapted to
incorporate image features and prior context, generating text sequences in an auto-regressive manner until
an end-of-sequence token is produced. The overall loss function combines contrastive loss for encoding
phase and cross-entropy loss for decoding phase. For VQA tasks, the model is fine-tuned and evaluated on
VQA-RAD Lau et al. (2018) (see Table 3). In contrast, for RG, fine-tuning and evaluation are done using
[U-Xray Demner-Fushman et al. (2015) dataset. On the [U-Xray dataset, RepsNet achieves BLEU-2 and
BLEU-4 scores of 0.44 and 0.27, respectively.

4.3.4 BiomedCLIP

BiomedCLIP is pre-trained on the specifically curated PMC-15 dataset that consists of 15 M figure-
caption pairs derived from the PMC articles Zhang et al. (2023a) but is not publicly available. The
model architecture is similar to CLIP Radford et al. (2021), except that the text encoder is a pre-trained
PubMedBERT Gu et al. (2021) model with WordPiece tokenizer Wu et al. (2016). The model uses ViT-B/16
Dosovitskiy et al. (2021) as the visual data encoder. For pre-training, the model adopts the CL approach,
and to mitigate memory usage, it utilizes the sharding contrastive loss Cherti et al. (2022). For adaptation
to VQA, the model incorporates the METER Dou et al. (2022) framework. This involves deploying a
Transformer-based co-attention multimodal fusion module that produces cross-modal representations.
These representations are then fed into a classifier for the final prediction of answers. The model is
evaluated on VQA-RAD Lau et al. (2018) and SLAKE (English) Liu et al. (2021a) datasets (see Table 3).

4.3.5 Unified chest X-ray and report Generation model (UniXGen)

UniXGen is a unified model that can generate both reports and view-specific X-rays Lee et al. (2023).
The model tokenizes chest X-rays leveraging VQGAN Esser et al. (2021), a generative model that
amalgamates generative adversarial networks (GANs) with vector quantization (VQ) techniques. VQGAN
employs an encoder to transform input images into continuous representations, subsequently using vector
quantization to discretize them into learnable codebook vectors. Additionally, VQGAN incorporates a
decoder, translating these discrete codes back into images during the generation process. For chest X-rays,
multiple views from the same study are tokenized into sequences of discrete visual tokens, demarcated
by special tokens to distinguish perspectives. In the case of radiology reports, the model uses the byte-
level BPE Wang et al. (2020) tokenizer, augmented with sinusoid positional embedding for enhanced
representation. The model is based on the Transformer architecture Vaswani et al. (2017) with a multimodal
causal attention mask, ensuring that each position in the sequence attends to all previous positions and
not future ones. During training, multiple views of chest X-rays and a report embedding are concatenated
randomly and fed into the Transformer. The model is optimized using the negative log-likelihood loss
function. The model is trained on 208, 534 studies sampled from the MIMIC-CXR Johnson et al. (2019a)
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dataset. Each study contains at most three chest X-rays representing PA (from back to front), AP (from
front to back), and lateral views. On the MIMIC-CXR dataset, UniXGen achieves a BLEU-4 score of
0.050 and, using the CheXpert labeler Irvin et al. (2019), attains a precision score of 0.431, a recall value
of 0.410, and an F1 score of 0.420.

4.3.6 Retrieval-Augmented bioMedical Multi-modal Pretrain-and-Finetune Paradigm (RAMM)

RAMM, a retrieval-augmented VLM designed for biomedical VQA, integrates Swin Transformer Liu
et al. (2021b) as its image encoder and PubMedBERT Gu et al. (2021) as its text encoder Yuan et al. (2023).
The visual and textual features are then fused by the multimodal encoder, a 6-layer Transformer Vaswani
et al. (2017). The model is pre-trained on the MIMIC-CXR Johnson et al. (2019a) and ROCO Pelka et al.
(2018) datasets along with a newly curated PMC-Patients-Multi-modal (PMCPM) dataset, consisting of
398, 000 image-text pairs sampled from PMC-OA Lin et al. (2023a) dataset. The pre-training objective
function of RAMM is the sum of three tasks: CL, ITM, and MLM. Using CL, the model aligns images and
texts using the cosine similarity metric. The VQA task is viewed as a classification problem, and the model
is optimized using the cross-entropy loss function. During model fine-tuning, the retrieval-attention module
fuses the representations of the image-question input with four representations of the retrieved image-text
pairs from the pre-trained datasets. This lets RAMM to focus on relevant parts of the retrieved information
when generating answers. The model is evaluated on VQA-Med 2019 Abacha et al. (2019), VQA-Med
2021 Ionescu et al. (2021), VQA-RAD Lau et al. (2018), and SLAKE Liu et al. (2021a) datasets (see Table
3).

4.3.7 Contrastive X-Ray REport Match (X-REM)

X-REM is a retrieval-based radiology RG model that uses an I'TM score to measure the similarity of a
chest X-ray image and radiology report for report retrieval Jeong et al. (2023). The VLM backbone of
the model is ALBEF Li et al. (2021). ALBEEF utilizes ViT-B/16 Dosovitskiy et al. (2021) as its image
encoder and initializes the text encoder with the first 6 layers of the BERT Devlin et al. (2019) base model.
The multimodal encoder in ALBEF, responsible for combining visual and textual features to generate
I'TM scores, is initialized using the final six layers of the BERT base model. X-REM leverages ALBEF’s
pre-trained weights and performs further pre-training on X-rays paired with extracted impression sections
(2, 192 pairs), findings sections (1, 597 pairs), or both (2, 192 pairs) from the MIMIC-CXR Johnson et al.
(2019a) dataset. Subsequently, the model is fine-tuned on the I'TM task, where the scoring mechanism
involves using the logit value for the positive class as the similarity score for image-text pairs. To address
the positive skewness in medical datasets, 14 clinical labels obtained from the CheXbert Smit et al. (2020)
labeler are utilized. The model efficiently manages the computational burden associated with ITM scores
by employing ALBEF’s pre-aligned unimodal embeddings. This involves narrowing down the candidate
reports based on high cosine similarity with the input image before computing ITM scores. Additionally,
the text encoder undergoes fine-tuning on natural language inference (NLI) task, utilizing datasets such as
MedNLI Romanov and Shivade (2018) and RadNLI Miura et al. (2021). This step is crucial for preventing
the retrieval of multiple reports with overlapping or conflicting information. X-REM achieves a BLEU-2
score of 0.186 on the MIMIC-CXR (Findings only) dataset. The BERTScore of the model is 0.386 on
MIMIC-CXR (Findings only) and 0.287 on MIMIC-CXR (Impressions and Findings).

4.3.8 Visual Med-Alpaca

Visual Med-Alpaca is a biomedical FM designed for addressing multimodal biomedical tasks like VQA
Shu et al. (2023). The model processes image inputs through a classifier to select the appropriate module for
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converting visual information into text, with supported modules including DePlot Liu et al. (2022) for plots
and Med-GIT Wang et al. (2022a) fine-tuned on the ROCO Pelka et al. (2018) dataset for radiology images.
The prompt manager combines textual information from images and text inputs to form prompts for the
LLaMA-7B Touvron et al. (2023a) model. However, before generating responses, LLaMa-7B undergoes
both standard and LoRA Hu et al. (2022) fine-tuning on a carefully curated set of 54,000 medical QA
pairs. The questions within this set are derived from question-answering datasets such as MEDIQA QA
Ben Abacha et al. (2019), MEDIQA RQE Ben Abacha et al. (2019), MedQA Jin et al. (2021), MedDialog
Zeng et al. (2020), and PubMedQA Jin et al. (2019), with their corresponding answers synthesized using
GPT-3.5-Turbo in the self-instruct Wang et al. (2023b) manner. Human experts filter and edit the obtained
QA pairs for quality and relevance. The evaluation of this model is still ongoing Shu et al. (2023).

4.3.9 Contrastive X-ray-Report Pair Retrieval based Generation (CXR-RePaiR-Gen)

CXR-RePaiR-Gen, designed for radiology RG, integrates the RAG framework to address hallucinated
references Ranjit et al. (2023). The model leverages the pre-trained ALBEF Li et al. (2021) previously
utilized in CXR-ReDonE Ramesh et al. (2022). Textual features are indexed in a vector database, Facebook
Al Similarity Search (FAISS). When given a radiology image input, embeddings from the reports or
sentences corpus with the highest dot-product similarity to the image embedding are retrieved. The CXR-
PRO Ramesh et al. (2022) dataset is employed for text retrieval to gather relevant impressions for generating
the radiology report. The retrieved impression sections from the CXR-PRO dataset serve as the context for
the prompt to an LLLM, along with instructions to generate the radiology report. Two prompts are employed:
one for the text-davinci-003 model and another for conversational RG with GPT-3.5-Turbo and GPT-4
models. The model is evaluated on MS-CXR Boecking et al. (2022) and CXR-PRO datasets. A code has
yet to be provided for this model. Evaluated on MS-CXR and CXR-PRO datasets, CXR-RePaiR-Gen
achieves BERTScore scores of 0.2865 on CXR-PRO (GPT-4) and 0.1970 on MS-CXR (text-davinci-003).
Its RadGraph F1 scores are 0.1061 on CXR-PRO (GPT-4) and 0.0617 on MS-CXR (text-davinci-003),
employing three retrieval samples per input during RAG.

4.3.10 Large Language and Vision Assistant for BioMedicine (LLaVa-Med)

LLaVa-Med, an adaptation of LLaVa Liu et al. (2023c), is customized for the medical domain through
training on instruction-following datasets Li et al. (2023a). Visual features are extracted by the pre-trained
CLIP visual encoder ViT-L/14 Dosovitskiy et al. (2021), which can be substituted with BiomedCLIP
Zhang et al. (2023a). These features are mapped into textual embedding space via linear projection layer
and combined with instructions before being input to the LLM LLaMa-7B Touvron et al. (2023a), which
can be replaced with Vicuna Chiang et al. (2023). After initializing with the general-domain LLaVA, the
model undergoes fine-tuning using curriculum learning. First, the model learns to connect visual elements
in biomedical images to corresponding language descriptions, using a dataset of 600, 000 image-caption
pairs from PMC-15, initially employed in BiomedCLIP. These image-caption pairs are transformed into an
instruction-following dataset, where the instructions prompt the model to describe the corresponding image
concisely or in detail. Given the language instruction and image input, the model is prompted to predict the
original caption. The visual encoder and language model weights are frozen during this stage, with updates
exclusively applied to the linear projection layer. The second stage of training focuses on aligning the
model to follow diverse instructions. For this purpose, another instruction-following dataset is generated
from PMC-15. Instructions for this dataset are designed to guide the GPT-4 model to generate multi-round
questions and answers from the image caption and sentences from the original PMC paper mentioning the
image Li et al. (2023a). In this training phase, the model undergoes training on a set of 60, 000 images, each
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accompanied by its respective caption and multi-round questions and answers. Throughout this process,
the weights of the visual encoder remain unchanged, preserving the previously acquired visual features.
Meanwhile, the pre-trained weights of the projection layer and the language model undergo continuous
updates. Lastly, for VQA, the model is fine-tuned and evaluated on VQA-RAD Lau et al. (2018), SLAKE
Liu et al. (2021a), and PathVQA He et al. (2020) (see Table 3).

4.3.11 XrayGPT

XrayGPT is a conversational medical VLM specifically developed for analyzing chest radiographs
Thawkar et al. (2023). The VLM uses MedCLIP Wang et al. (2022b) to generate visual features. These
features undergo a meticulous transformation process: initially, they are mapped to a lower-dimensional
space through a linear projection head and subsequently translated into tokens via a linear transformation
layer. The model incorporates two text queries: an assistant query framing its purpose and a doctor’s query
guiding relevant information provision. Tokens generated from a visual input are concatenated with the
tokenized queries and then fed into Vicuna-7B Chiang et al. (2023), fine-tuned on 100, 000 patient-doctor
and 20, 000 radiology conversations sourced from ShareGPT . com. During training, the weights of the
vision encoder and LLM are frozen while the weights of the linear transformation layer undergo updates.
The model is first trained on 213, 514 image-text pairs from pre-processed MIMIC-CXR Johnson et al.
(2019a) dataset and then on 3, 000 image-text pairs from Open-I Demner-Fushman et al. (2015) dataset.
XrayGPT achieves ROUGE-1 = 0.3213, ROUGE-2 = 0.0912, and ROUGE-L = 0.1997 on MIMIC-CXR
dataset.

4.3.12 Co-Attention gaTed Vision-Language Data-efficient image Transformer (CAT-ViL DeiT)

CAT-ViL DeiT is a specialized VLM tailored for VQA within surgical scenarios, focusing on answer
localization Bai et al. (2023b). It integrates ResNet-18 He et al. (2016) pre-trained on ImageNet Deng et al.
(2009) to generate visual features and custom BERT tokenizer Seenivasan et al. (2022) for text encoding.
The Co-Attention gaTed Vision-Language (CAT-ViL) module facilitates interaction between visual and
textual features, fused via gating mechanisms to optimize multimodal embeddings. These embeddings
are further processed by a pre-trained Data-efficient image Transformer (DeiT) module for optimal joint
representation. For VQA, the model adopts a standard classification head, while for answer localization
within images, it employs the detection with transformers (DETR) Carion et al. (2020) head. The overall
loss function comprises cross-entropy as the classification loss and L1-norm, along with the generalized
intersection over union (GloU) Rezatofighi et al. (2019), serving as the localization loss. The model is
trained on 1, 560 frames, and 9, 014 QA pairs from the surgical datasets EndoVis 2018 Allan et al. (2020).
The model achieved an accuracy of 61.92% on the remaining data from EndoVis 2018 and 45.55% on
EndoVis 2017 Allan et al. (2019) dataset.

4.3.13 Masked image and text modeling with Unimodal and Multimodal Contrastive losses
(MUMC)

MUMC utilizes a ViT-B/12 Dosovitskiy et al. (2021) as its image encoder, the first 6 layers of BERT
Devlin et al. (2019) as its text encoder, and the last 6 layers of BERT as its multimodal encoder Li et al.
(2023b). The multimodal encoder incorporates cross-attention layers to align visual and textual features.
For pre-training, the model employs CL, MLM, and ITM. Also, the model utilizes a newly introduced
masked image strategy, randomly masking 25% of image patches as a data augmentation technique. This
exposes the model to a greater variety of visual contexts and enables learning representations that are more
robust to partially occluded inputs. The pre-training is performed on ROCO Radford et al. (2021), MedICaT
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Subramanian et al. (2020), and Image Retrieval in Cross-Language Evaluation Forum (ImageCLEF) caption
Riickert et al. (2022) datasets. For VQA tasks, an answering decoder is added to generate answer text
tokens. The encoder weights are initialized from pre-training, and the model is fine-tuned and evaluated on
VQA-RAD Lau et al. (2018), SLAKE Liu et al. (2021a), and PathVQA He et al. (2020) (see Table 3).

4.3.14 Med-Flamingo

Med-Flamingo is a multimodal few-shot learner model based on the Flamingo Alayrac et al. (2022)
architecture, adapted to the medical domain Moor et al. (2023). The model is pre-trained on the MTB
Moor et al. (2023) dataset, a newly curated collection comprising 4, 721 segments from various Medical
TextBooks, encompassing textual content and images. Each segment is designed to contain at least one
image and up to 10 images, with a specified maximum length. Also, it is pre-trained on 1.3 M image-caption
pairs from the PMC-OA Lin et al. (2023a) dataset. The model’s few-shot capabilities are achieved through
training on these mixed text and image datasets, enabling it to generalize and perform diverse multimodal
tasks with only a few examples. The model utilizes a pre-trained frozen CLIP vision encoder ViT-L/14 for
visual feature generation. To convert these visual features into a fixed number of tokens, the model employs
a module known as the perceiver resampler, which is trained from scratch. Subsequently, these tokens and
tokenized text inputs undergo further processing in a pre-trained frozen LLM LLaMA-7B Touvron et al.
(2023a), enhanced with gated cross-attention layers, which are trained from scratch. This augmentation aids
in learning novel relationships and enhances training stability. Med-Flamingo’s performance is evaluated
on VQA-RAD Lau et al. (2018) and PathVQA He et al. (2020). The exact match scores for MedFlamingo
demonstrate a few-shot performance of 0.200 on VQA-RAD and 0.303 on PathVQA. In contrast, the zero-
shot performance yields an exact match score of 0.000 on VQA-RAD and 0.120 on PathVQA. Additionally,
it is evaluated on a specifically created Visual United States Medical Licensing Examination (USMLE)
dataset, comprising 618 challenging open-ended USMLE-style questions augmented with images, case
vignettes, and tables of laboratory measurements, covering a diverse range of medical specialties.

4.3.15 RabDialog

RabDialog is a VLM that integrates automated radiology RG with conversational assistance Pellegrini et al.
(2023). The model incorporates BioViL-T Bannur et al. (2023), a hybrid model that fuses the strengths of
ResNet-50 He et al. (2016) and Transformer Vaswani et al. (2017) architectures. Pre-trained on radiology
images and reports, BioViL-T generates patch-wise visual features. The extracted features undergo
alignment through a BERT Devlin et al. (2019) model, transforming them into a concise representation of
32 tokens. The model incorporates the CheXpert classifier to offer organized findings in medical images.
These findings are generated based on labels obtained from the CheXbert Smit et al. (2020) model. The
classifier is trained independently using labels predicted by CheXbert from the findings section of radiology
reports. Visual features, structured findings, and a directive prompt are combined as input for the Vicuna-7B
LLM, fine-tuned using LoRA. The training is performed on MIMIC-CXR Johnson et al. (2019a) dataset.
RaDialog achieves a BLEU-4 score of 0.095, ROUGE-L score of 0.2710, METEOR score of 0.14, and
BERTScore of 0.400 on the MIMIC-CXR dataset. To address the challenge of catastrophic forgetting during
training and ensure the model’s capability across diverse downstream tasks, it is specifically trained on the
newly created Instruct Pellegrini et al. (2023) dataset. This dataset is meticulously curated to encompass
a spectrum of 8 diverse tasks: RG, NLE, complete CheXpert QA, binary CheXpert QA, region QA,
summarization, report correction, and reformulation report using simple language. Carefully formulated
prompts accompany each task, tailored to elicit specific responses from the model. For instance, some
prompts involve answering questions about particular X-ray regions. RaDialog trained on the Instruct
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Table 3. The comparison of medical VLMs’ accuracies on VQA tasks. The underlined accuracies are the
highest for a specific dataset.

SLAKE SLAKE VQA-RAD VQA-RAD PathVQA PathVQA

VQA-Med VQA-Med

Modd enled -ended  -emded  -ended  -ended  -endea 2019 2021
Moometal (023 - - 5950%  77.70% - - _ )
B ) 78:40% 8250%  60.10%  80.00% - _ B B

Tanwal;ie Ie)ts 1;Ilt.et(zozz) - - - 87.05% - - - _
thjgi{e;}%(ﬁga) 82.50% 89.70%  67.60%  79.80% _ _ _ B
DV 82.48% 91.59%  67.60% 85.29% - - 82.13% 39.20%

Yuan et al. (2023)

LLaVa-Med

Li et al. (2023a) 84.19% - 85.34% - 91.21% - -

MUMC

Li et al. (2023b) - 71.50% 84.20% 39.00% 90.4% - -

dataset achieves an F1 score of 0.397 on the binary CheXpert QA task and 0.403 on the complete CheXpert
QA task. In contrast, RaDialog without being trained on Instruct achieves lower F1 scores of 0.018 and
0.098, respectively.

4.3.16 PathChat

PathChat is a multimodal generative Al copilot designed for human pathology Lu et al. (2024b). It
employs UNI Chen et al. (2024), built on the ViT-L backbone and pre-trained using SSL on over 100 M
histology image patches from approximately 100,000 WSIs, to generate visual features. PathChat uses
the Llama 2 13B Touvron et al. (2023b) LLM for text decoding, which is pre-trained on general text
data. The UNI is connected to the LLM through a multimodal projector that maps visual tokens into
the LLM’s embedding space. During PathChat’s pre-training phase, UNI and multimodal projector are
trained on the CONCH Lu et al. (2024a) dataset, comprising 1.18 M pathology image-caption pairs sourced
from PMC-OA Lin et al. (2023a) and internally curated datasets, aligning the image representations with
pathology text while keeping the LLLM weights frozen. The whole dataset is not publicly available. During
instruction fine-tuning, the entire model is trained end-to-end on a specially curated PathChat dataset
consisting of 456,916 pathology-specific instructions of 6 different types and 999,202 QA pairs. The model
is evaluated on the newly curated PathQABench dataset, consisting of public and private subparts. On the
multiple-choice questions across the entire PathQABench dataset, PathChat achieved an accuracy of 78.1%
when only images and questions are provided to the model and 89.5% when clinical data is also included.
For open-ended questions, PathChat attained an accuracy of 78.7% on the subset of questions for which
pathologist evaluators reached a consensus.
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5 CHALLENGES AND FUTURE DIRECTIONS

As VLMs become more prevalent in healthcare, various challenges and opportunities for future research
emerge. This section highlights key obstacles and proposes research directions to improve VLM’s
effectiveness and seamless integration within clinical environments.

5.1 Data Availability and Privacy

A significant challenge in developing effective medical VLMs is the limited availability of ML-ready
diverse and representative medical datasets. This limitation restricts the comprehensive training of VLMs,
impeding their ability to understand the complexities of diverse and rare clinical scenarios Moor et al.
(2023). To mitigate privacy concerns, most datasets undergo rigorous pre-processing to remove Protected
Health Information (PHI) before model training. The common approach is using algorithms to detect and
remove sensitive information from structured and unstructured data. For example, Philter redacts PHI from
clinical notes Norgeot et al. (2020). ImageDePHI automates the removal of PHI from WSIs Clunie et al.
(2024). Another approach is replacing identifying information with artificial identifiers, which keeps data
linkable without disclosing personal details. However, the risk of PHI leakage still remains a concern.

In the future, addressing this limitation can involve employing innovative approaches such as RAG
and federated learning (FL). While RAG usually involves a frozen model during training, exploring the
pre-training of VLMs within the RAG framework opens up a new avenue of research Zhao et al. (2023).
This innovative approach can potentially enhance the robustness of VLMs, especially in handling new
and unforeseen medical cases. Additionally, FL offers a promising strategy to address data scarcity while
protecting patient privacy Zhang et al. (2021). In FL, models are trained locally at multiple institutions
on their own patient data. Each institution shares the updated model weights with the central server. The
server then aggregates these weights to create a global model. Later, the updated global model can be sent
back to institutions for fine-tuning. To further safeguard privacy, the weights in FL can be protected using
techniques such as differential privacy (DP) or homomorphic encryption (HE). In DP, noise is added to the
gradients before they are sent to the central server Dwork (2006). In contrast, HE encrypts the weights,
allowing the central server to perform computations on them without decryption Stripelis et al. (2021).
Future research can focus on optimizing the balance between privacy and performance of VLMs, and
enhancing the efficiency of encryption methods in FLL Koutsoubis et al. (2024b,a).

5.2 Proper Evaluation Metrics

In medical RG, traditional metrics like BLEU and ROUGE can be used to effectively quantify surface-
level linguistic similarity by capturing text overlap and structural matching between generated and reference
texts. METEOR goes further by accounting for synonyms and stemming, providing a more nuanced view
of textual similarities. Perplexity, often used to measure language fluency, evaluates how well the generated
text adheres to natural language patterns. Together, these metrics assess fluency, coherence, and overall
readability, ensuring that generated reports are well-formed and comprehensible. However, they often
fall short in capturing the nuanced complexities of clinical language and contextual relevance critical in
medical settings Yu et al. (2023). Specifically, they may fail to determine whether a report accurately
conveys essential clinical findings or diagnoses. Advanced metrics like BERTScore seek to assess semantic
similarity beyond surface-level text overlap, but they require fine-tuning on medical datasets to understand
specialized terminology and relationships, and may still miss subtle clinical nuances.

In medical VQA, traditional metrics like Accuracy, Precision, and Recall are commonly used to evaluate
how well VLMs answer clinical questions, such as identifying medical conditions or anatomical features.
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While these metrics effectively assess binary outcomes, they fail to account for the varying clinical relevance
or significance of errors made by the model. For example, misclassifying a serious condition may have
far more severe consequences than making minor prediction errors, yet this distinction is not captured in
simple accuracy-based evaluations.

To address the limitations of traditional metrics, it is imperative to develop specialized metrics tailored
for medical RG and VQA, particularly for open-ended medical queries. For instance, RadGraph F1 Yu
et al. (2023) was developed to evaluate the extraction of clinical entities (e.g., diagnoses, findings) and their
relations (e.g., linking conditions to anatomical locations) in radiology reports. This metric is particularly
valuable for assessing structured medical data, ensuring that reports capture not only relevant clinical
entities but also their correct relationships, which is crucial for the accuracy and integrity of medical
conclusions. The development of additional specialized metrics is vital for evaluating VLMs performance
and for assessing factors such as generalization, efficiency, and robustness in clinical decision-making and
diagnostic support. Furthermore, integrating these metrics with other quantitative measures and human
assessments can significantly enhance evaluations and drive continuous advancements in the capabilities of
medical VLMs.

5.3 Hallucinations

The issue of hallucinations in generative VLMs poses a significant challenge to their reliability and
practical application Liu et al. (2024). Hallucinations refer to instances where VLMs generate outputs
that are not grounded in the provided images or inconsistent with the established knowledge. In medical
contexts, these hallucinations can have serious consequences, leading to inaccurate diagnostic information
or treatment recommendations. One identified cause of hallucinations is the lack of alignment between
visual and textual information Sun et al. (2023). Training VLMs to effectively align these data modalities
is crucial in mitigating the risk of hallucinations. For instance, LLaVA-RLHF Sun et al. (2023) achieved
hallucination reduction by incorporating RLHF to align different modalities. Further research can focus
on integrating RLHF into medical VLMs. Additionally, incorporating RAG can help reduce the risk of
generating misleading or fabricated outputs by allowing the system to analyze medical images while
simultaneously accessing relevant information from trusted textual sources.

5.4 Catastrophic Forgetting

Overcoming catastrophic forgetting poses an additional challenge in the development of medical VLMs.
Catastrophic forgetting occurs when a model learns new information but inadvertently erases or distorts
previously acquired knowledge, potentially compromising its overall competence. Striking a balance during
fine-tuning can be crucial; moderate fine-tuning can be helpful to adapt the model to a specific task, while
excessive fine-tuning can lead to catastrophic forgetting Zhai et al. (2023); Khan et al. (2023). As a future
research direction, leveraging methodologies from continual learning Wang et al. (2023a); Zhou et al.
(2023a); Cai and Rostami (2024); Khan et al. (2023, 2024) might be useful in the context of medical VLMs.
Continual learning focuses on training models to sequentially learn from and adapt to new data while
retaining knowledge from previously encountered tasks Khan et al. (2024). Also, incorporating adapters
within the framework of continual learning can be a valuable tool in mitigating catastrophic forgetting
Zhang et al. (2023b).

Frontiers 32



1068

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

1101
1102
1103
1104
1105
1106
1107

Hartsock, Rasool A Review of Medical VLMs

5.5 Integration into Hospital Systems

Integrating VLMs into hospital systems also presents substantial challenges, requiring extensive
collaboration between medical professionals and AI/ML researchers. First, medical professionals must
maintain rigorous data collection practices to ensure that the data is clean, well-organized, and accessible,
as ML experts rely on high-quality data to train and fine-tune VLMs. Second, VLMs must be designed
to address the right clinical questions, ensuring their relevance and utility in medical practice. Third,
healthcare professionals need training to use VLMs effectively, and the models should be intuitive and
user-friendly to integrate smoothly into daily clinical routines. Furthermore, implementation scientists play
a crucial role in this process by facilitating collaboration between clinicians and ML experts Reddy (2024).
They help bridge the gap between these two groups, ensuring that VLMs are both technically robust and
clinically relevant.

In this context, models like RaDialog Pellegrini et al. (2023) and PathChat Lu et al. (2024b) show the
potential of VLMs to enhance clinical effectiveness. RaDialog demonstrates a solid capability to produce
clinically accurate radiology reports. It transforms static reporting into a dynamic tool where clinicians can
ask follow-up questions and seamlessly incorporate expert insights. This aligns closely with the interactive
processes typical in clinical settings. Meanwhile, PathChat demonstrates promising clinical effectiveness
as an Al copilot for pathology. It can assist pathologists in their work in real medical settings, including
human-in-the-loop clinical decision-making, complex diagnostic workups, analyzing morphological details
in histology images, and guiding immunohistochemistry (IHC) interpretations. However, the assessment of
VLM effectiveness in medical environments is an open research question. Comprehensive clinical trials are
necessary to confirm that VLMs truly enhance patient care and integrate effectively into existing clinical
workflows.

5.6 Security

The security of VLMs must be thoroughly considered, focusing on privacy, minimizing medical errors,
and preventing the introduction of significant new errors. VLMs must be kept behind the hospital
firewall to protect sensitive medical information. It is also crucial to involve independent experts in
the validation process. Validating the model on unseen medical data can help identify and rectify potential
inaccuracies. Additionally, adversarial attacks represent another significant security issue, as they can
exploit vulnerabilities in the model, leading to incorrect predictions. To combat this, incorporating
adversarial training by exposing the model to adversarial examples during training can enhance its
robustness against such attacks He et al. (2023a). Continuous monitoring and updating of the VLMs
are also essential to prevent the introduction of new errors, which should include regular audits and updates
based on the latest medical research and clinical guidelines.

6 CONCLUSION

This review paper highlights the transformative potential of VLMs in generating medical reports and
answering clinical questions from medical images. It explores 16 recent medical VLMs, among which
15 are publicly available. We observed that 6 of them share a similar architecture that has only recently
become common. These VLLMs incorporate a vision encoder, often with a projection module, to produce
visual features, which can be used as input to LLMs. The visual features are then combined with tokenized
text input and fed into the LLM. This approach simplifies model design and leverages the extensive prior
knowledge embedded in LLMs. Furthermore, feeding all data features into LLMs enables the generation
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of human-like text outputs, improving user experience and facilitating more effective communication of
medical insights. The review also explores 18 publicly available medical vision-language datasets and
over 10 evaluation metrics for RG and VQA. By providing essential background information, this review
ensures accessibility for readers from the medical field while promoting collaboration between the AI/ML
community and medical professionals.

Moreover, the review highlights the current challenges and potential future directions for VLMs in
medicine. The limited availability of diverse medical datasets and privacy concerns can be addressed through
rigorous data pre-processing and techniques like RAG and FL. Also, since traditional evaluation metrics
often fall short of capturing the nuances of clinical language, there is a need to develop specialized metrics
tailored to medical RG and VQA. It is likewise crucial to address VLM hallucinations, and incorporating
RLHF and RAG are promising solutions. Continual learning methods can help mitigate catastrophic
forgetting, ensuring that models retain the knowledge they have previously acquired. Furthermore,
collaboration between healthcare professionals and Al researchers is essential to deploy VLMs in ways that
genuinely improve patient care. Lastly, ensuring the security of these models is vital, which can be achieved
through robust firewalls and adversarial training. Ultimately, the review serves as a valuable resource for
researchers developing and refining VLMs for medical applications, guiding them in overcoming key
obstacles and leveraging innovative approaches to enhance model performance and clinical integration.
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