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Abstract

Psychological test scores are commonly used in high-stakes settings to classify individuals. While 

measurement  invariance  across  groups  is  necessary  for  valid  and  meaningful  inferences  of  group 

differences, full  measurement invariance rarely holds in practice. The classification accuracy analysis  

framework (Lai & Zhang, 2022; Millsap & Kwok, 2004) aims to quantify the degree and practical impact of 

noninvariance. However, how to best navigate the next steps remains unclear, and methods devised to 

account  for  noninvariance  at  the  group  level  may  be  insufficient  when  the  goal  is  classification. 

Furthermore, deleting a biased item may improve fairness but negatively affect performance, and replacing 

the test can be costly. We propose item-level effect size indices that allow test users to make more informed 

decisions by quantifying the impact of deleting (or retaining) an item on test performance and fairness, 

provide an illustrative example, and introduce unbiasr, an R package implementing the proposed methods. 

Keywords: measurement invariance, item bias, classification accuracy, fairness, R package
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Exploring the Impact of Deleting (or Retaining) a Biased Item on Classification Accuracy

Psychological  tests  are  commonly  used  for  selection  and  classification  purposes.  Medical 

professionals, government agencies, licensing boards, and employers alike use tests to measure and make 

comparisons between individuals’ relative standings on constructs of interest (e.g., depression, aptitude), 

which are often key components for high-stakes decisions such as diagnosis, personnel selection, placement, 

licensing, and school admission (Reynolds et al., 2021). In health care, psychological tests are used to screen 

and assess treatment eligibility for conditions including depression, substance abuse, and sleep disorders, and

may determine which patient gains access to or is denied certain resources and medical services. For example, 

screening tests are administered during primary care visits or as part of community screening initiatives for the early 

detection and treatment of depression (Arias de la Torre et al., 2024), and can help clinicians efficiently identify the 

individuals at greater risk and prioritize these individuals for further assessment. Accurate identification of 

probable cases of depression via screenings leads to improved health outcomes, expedites treatment delivery, and 

facilitates optimal allocation of limited resources, while inaccurate decisions may result in heavier burdens on the 

healthcare system and delays in treatment (Arias de la Torre et al., 2024; US Preventive Services Task Force, 2023).

Test scores contain random and systematic errors, which means that there is a chance that medical 

conditions may be misdiagnosed, a deserving applicant may be denied admission, or an unqualified employee

may receive  a promotion. If there are systematic differences in error rates across groups such that 

individuals belonging to one group (characterized by, for instance, racial identity) disproportionately lose 

access to opportunities, situations of adverse impact (Biddle, 2006) may arise. Clearly, the validity and 

fairness of any test is integral to its value and utility as a decision-making tool. 

Implicit in the use of tests in such high-stakes contexts is an assumption that the tests measure the 

same construct the same way regardless of group membership or other construct-irrelevant conditions. For 

instance, the gender, SES, or ethnicity of test takers should have no bearing on scores on a test measuring 

risk of developing depression. If two individuals have the same underlying true risk of depression, their 
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propensity distribution (Lord et al., 1968) for the test should be the same. This idea of  equivalence of 

measurement operations across groups and conditions is termed measurement  invariance  (MI; Drasgow, 

1984; Mellenbergh,  1989; Meredith,  1993). MI  is  considered  a  prerequisite of valid inference and 

interpretation in scientific inquiries (Horn & McArdle, 1992). However, the rigorous criteria for MI are 

rarely met in practice. More commonly, test users establish partial measurement invariance (PMI; Byrne et 

al.,  1989), which exists when only a subset of the items are measurement invariant. For a test used for 

classification in high-stakes settings, violations of MI at the test or item levels may harm the prospects of 

some individuals by reflecting group-level differences when none exist. Such spurious inferences may have 

grave consequences, from psychiatric conditions being misdiagnosed disproportionately for individuals 

from disadvantaged groups to delays in treatment and misallocation of limited resources.

Most existing literature on MI has focused on inferences at the group level, but not on classification, 

which is a major purpose of psychological tests. While one can model PMI to obtain valid group difference

estimates, modeling PMI may not be a feasible solution when the goal is the classification of individuals as 

(a) scoring is usually based on unweighted sums (or weighted sums with the same weights across groups), 

which leads to bias with biased items, and (b) if using factor scores based on PMI, different scoring formulas 

are used for different populations, which compounds fairness concerns. 

Thus, after discovering PMI, test users are tasked with finding the best course of action going 

forward, which often entails answering some crucial questions: is the impact of bias negligible enough that 

the biased  items can be retained? If not, should the test be discarded entirely in favor of a measurement 

invariant test? Should biased items be deleted, and if so, which ones? What is the practical impact of 

removing a biased item: does the performance of the test improve, deteriorate, or remain unaffected if a 

specific item is removed? At which point is the improvement in test performance big enough to justify 

deleting an item? While research on the importance of and methods for establishing MI is abundant, methods

and guidelines for navigating the next steps after the detection of biased items remain sparse in comparison, 

and the decision to retain or remove items, or discard the test in favor of another (if such an alternative exists) 
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ultimately depends on the researchers’ professional judgment, existing literature, and the  application 

context (Hammack-Brown et al., 2021; Millsap & Kwok, 2004).

Furthermore, a focus on MI in the context of classification is warranted as MI is implicated in the 

quality and practical impact of the decisions made using test scores, which is not necessarily a consideration 

when the test purpose is to describe group differences in latent means. The current research aims to remedy

these gaps by developing item-level effect size indices that quantify the impact of deleting (or retaining) an 

item on test performance. We advocate for an impact-oriented lens for evaluating MI, which brings test 

purpose to the forefront,  and introduce methods and guidelines for exploring and mitigating the practical 

impact of measurement bias on classification decisions. 

This paper is structured as follows. We first introduce MI and review previous work on how PMI 

impacts classification, which constitute the building blocks of the current research. Then, we introduce the 

item deletion operations  h  and ∆h which are based on Cohen’s  h  effect size (1988), describe the item 

deletion indices that allow test users to assess how item-level bias impacts metrics such as sensitivity and 

specificity, and provide an illustrative example of the methods and functions from the R package unbiasr 

using parameter estimates from a previous invariance study involving the Center for Epidemiological 

Studies Depression (CES-D) Scale (Radloff, 1977; Zhang et al., 2011). We conclude with a discussion of 

the results, guidelines of interpretation, and future directions. All accompanying code is available as part of the 

unbiasr package, and function calls and parameter values for the illustrative example can be found in the 

supplementary materials. 

Measurement Invariance

Measurement invariance (MI) is achieved when latent construct(s) (e.g., cognitive functioning, 

depression) are measured equivalently and comparably across groups (e.g., ethnicity, SES), test modes (e.g., 

paper, computer), or time points (Drasgow, 1984; Mellenbergh, 1989; Somaraju et al., 2021). The focus on 

the relationship between a test and the latent construct it purports to measure sets MI apart from prediction 

invariance, which concerns the relationship between test scores and criterion performance (Cleary, 1968). 
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While there is no universally accepted definition of fairness, here we define fairness to encapsulate freedom 

of scores from the effects of construct-irrelevant characteristics,  and equivalence in meaning across 

individuals and groups in line with standards set jointly by the American Educational Research Association, 

the American Psychological Association, and the National Council on Measurement in Education (AERA, 

APA, & NCME; 2014).

MI facilitates valid and meaningful comparisons of test scores across groups or conditions by ruling 

out construct-irrelevant group level attributes as potential sources of observed group differences (Maassen 

et al., 2023; Meredith, 1993). Especially in high-stakes contexts where inaccurate decisions may have far-

reaching negative consequences, it is vital that researchers and practitioners using tests determine if PMI is 

present, and if so, assess its practical impact on test outcomes and take steps to mitigate any adverse impact 

caused by measurement bias.

The growing interest in measurement invariance has furnished researchers with a wealth of tools and 

procedures for the detection of noninvariance, which have been discussed extensively elsewhere (Schmitt & 

Kuljanin,  2008; Somaraju et al.,  2021; Vandenberg & Lance,  2000). Many of these operate within the 

confirmatory factor analysis paradigm (CFA; Jöreskog, 1969). Of particular interest to the present research 

is the selection accuracy analysis framework by Millsap and Kwok (2004), which evaluates the practical 

impact of measurement bias on classification outcomes by comparing selection accuracy indices under MI 

and PMI. This framework was initially developed for a unidimensional test with continuous items, and has 

since been extended to work with binary (Lai et al.,  2019) and ordinal (Gonzalez & Pelham, 2021) items, 

and multidimensional tests with continuous items and varying weights (the multidimensional classification 

accuracy analysis or the MCAA; Lai and Zhang, 2022). A similar framework is the Adverse Impact (AI) 

ratio (Nye & Drasgow, 2011), or the Ratio of Selection Ratios Index (Stark et al., 2004), which is a ratio of 

observed and expected selection proportions at a particular cut-off score that helps identify which of the two 

groups, if any, would be under or over-selected due to bias. The AI ratio compares the observed score 

distribution for one group against the expected distribution of scores for this group if the  groups were 
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matched on the latent trait(s).

These methods, along with many other innovative developments in MI research that fall outside of 

the current  scope, reflect an exponential growth  in  literature  on  the  importance  of  and  methods  for 

establishing MI. However, the next steps after detecting MI have not received as much attention, especially 

in the context of classification decisions, and there is a critical need for methods and guidelines for mitigating

the practical impact of bias on classification decisions. 

The Common Factor Model

The common factor model (Thurstone, 1947) is a statistical model of the relationship between an 

unobserved (latent) construct (e.g., depression) and observed (manifest) variables (e.g., item responses on a 

depression screening test) such  that  an individual’s true standing on the latent construct governs the 

probability of observed responses through a system of linear equations. The relationship between items and the 

latent construct(s) is characterized by the loading, intercept, and uniqueness parameters, which refer to the correlation 

between the item and the factor, the expected item responses when the latent score equals zero, and the construct-irrelevant 

variance of the sum of measurement error and systematic error assumed to be distributed independently with mean zero, 

respectively (Thurstone, 1947). Confirmatory Factor Analysis (CFA; Jöreskog, 1969) can be used to estimate 

and test the equivalence of the parameters of  this system (see Appendix A for a more comprehensive 

overview and technical details). If estimates are identical across groups, the test is factorially invariant 

(Byrne et al., 1989).

Factorial invariance (FI) has been shown to be equivalent to MI under the common factor model 

(Horn & McArdle, 1992; Thurstone, 1947); under MI, response probabilities of individuals with the same 

latent standing are expected to be invariant across groups. Depending on which parameters are the same 

across groups, the level of FI can be classified as, from the least to most stringent, configural, metric, scalar, 

and strict (Byrne et al., 2007; Horn & McArdle, 1992; Meredith, 1993). Configural invariance requires

that the configuration of items and factors (the factor structure) is the same across groups. All measurement 

parameters are freely estimated under configural invariance. Metric invariance holds if,  additionally, 
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unstandardized factor loadings are equal across groups. If measurement intercepts are also the same across 

groups, it can be said that scalar invariance holds. Finally, strict factorial invariance (SFI) exists when 

measurement intercepts, factor loadings, and unique factor variance-covariances (i.e., uniqueness) are equal 

across groups or conditions,  and is the most stringent level of invariance.  More often, partial factorial 

invariance (PFI, Byrne et al., 1989) is met, meaning that invariance holds only for a subset of the items. 

Under the common factor model, MI is satisfied when SFI holds, and PMI is equivalent to PFI. 

The Classification Accuracy Analysis Framework

Consider an example where the 20-item Center for Epidemiologic Studies Depression Scale (CES-

D; Radloff, 1977) is used as an initial screener for risk of depression. Letting η denote an individual’s true 

risk of depression, and Z denote observed scores on CES-D items, we can aggregate observed scores on the 

CES-D into a composite using some scoring rule, and classify individuals as at risk or not at risk based on a 

cut-off score Zc (e.g., 16 points; Radloff, 1977)1. 

Given the probabilistic nature of inferences based on psychological tests (Borsboom, Romeijn, & 

Wicherts, 2008), these classifications are error-prone. The relationship between observed scale sums Z and 

theoretical factor scores η can be represented as a bivariate normal distribution and visualized as an ellipse, 

as in Figure 1. The latent and observed thresholds divide up the area of this ellipse into four quadrants, and 

depending on which quadrant a decision falls, it may be qualified as true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN). For example, an individual who screened positive on the CES-D 

and who is truly at risk of depression (Z > Zc and η > ηc) is denoted a TP. Conversely, an individual who 

screened positive on the CES-D but is not at risk of depression (Z > Zc and η < ηc ) reflects a FP. An 

individual who screened negative who is truly not at risk of depression is denoted a TN (Z < Zc and η < ηc) 

and an individual who is screened out but is truly at risk is denoted a FN (Z < Zc and η > ηc).

The proportion of decisions in each category (i.e., TP, FP, TN, and FN) may then be used to 

1 In other contexts, classifications may be made using a percentile (e.g., applicants performing in the top 10% on an 
entrance exam may be identified as the candidate pool).
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compute summary classification accuracy indices2 (CAI): proportion selected (PS), success ratio (SR), 

sensitivity (SE), and specificity (SP; Millsap & Kwok, 2004). Proportion selected,

PS=P (TP )+P ( FP ), (1) 

refers to the ratio of individuals who screened positive over the number of individuals assessed. Success 

ratio,

SR=P (TP ) / ( P [TP ]+P [ FP ] ), (2) 

(also termed positive predictive value or the precision of a test; Mohan et al., 2021) indicates the proportion 

of positive screens who are truly at risk of depression. Sensitivity,

S E=P (TP ) / ( P [TP ]+P [ FN ] ), (3) 

 is also known as true positive rate, hit rate, or recall (Mohan et al., 2021), and refers to the success of the 

test in capturing individuals who meet the criteria: out of all the individuals who should be identified as at 

risk, how many of them actually screened positive? Finally, specificity,

SP=P (TN ) / ( P [TN ]+P [ FP ] ), (4) 

(selectivity or true negative rate), corresponds to the ability of the test in screening out the individuals who 

should have been excluded. 

Under the simplifying assumption that individuals belong to one of two distinct populations (termed 

the focal and reference groups, where the reference group often corresponds to the majority group), the 

classification accuracy analysis framework entails the computation and comparison of CAI for the reference 

and focal groups under MI versus PMI to better understand the extent and practical impact of bias on test 

performance. If the negative impact of noninvariant items is deemed large enough by the test user, Millsap 

and Kwok (2004) suggest solutions such as removing noninvariant items or using a different test, and state 

that such decisions should be made with the usage of the test and the cost of each type of misclassification in 

mind. For instance, FPs and therefore SR and SP might be of greater concern if the test will be used to give 

2 These indices were originally termed selection accuracy indices in Millsap and Kwok (2004). We 
opted for classification accuracy indices to encompass a wider range of scenarios.
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access to limited and costly resources (Millsap & Kwok, 2004).

When MI holds and the latent distributions are equal,  we expect equal TP, FP, FN, and TN 

proportions for the reference and focal groups. However, proportions may be drastically different across 

groups under PMI (see Figure 1). Further, if the latent distributions are not equal across groups, it is not 

possible to compare the indices across groups even under MI. In order to address this concern, an additional 

set of indices termed ‘expected focal’ (Efocal) can be computed as the proportions we would expect to  

observe for the focal group if its latent distribution matched that of the reference group. One index of note  

based on this idea is the Adverse Impact (AI) ratio (Nye & Drasgow, 2011; Stark et al., 2004), which refers 

to the ratio of the expected proportion selected for the focal group and the observed proportion selected for 

the reference group. The AI ratio was developed to quantify the impact of differential item functioning on  

selection outcomes, and can be computed within Millsap and Kwok’s (2004) original framework. 

The main idea behind the AI ratio is  that  if  the latent trait  level  is  equal across groups,  the 

proportions of individuals scoring above the threshold should be equal in each group, which allows us to 

attribute any differences between selection proportions to measurement bias. Conditioning on the latent trait 

level η and using the group means and standard deviations from the two groups with the reference group’s 

ability density function means that any differences captured between the expected proportion selected in the 

focal group (PEf [Zf > Zc]; i.e., if the focal group has the same distribution of depression risk as the reference 

group) and the observed proportion selected (i.e., the proportion who screened positive) in the reference 

group Pr (Zr > Zc) are not related to the construct being measured (see Appendix A for additional details).

The AI ratio is defined as

AI ratio=
PEf (Z f ≥ Zc )
Pr (Z r ≥ Zc )

(5) 

(Nye & Drasgow, 2011; Stark et al., 2004) which we express as

AI=PSEf /PSr (6) 

where PSr denotes PS for the reference group, and PSEf denotes the expected PS for the focal group if both 
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groups were matched to have the latent score distribution of the reference group. If SFI holds, the expected 

PS for the focal group will be equal to the PS for the reference group; hence, the AI ratio will equal 1. 

Deviations from 1 indicate the presence of measurement bias. A commonly used rule is the ‘four-fifths’ rule, 

which suggests that the focal group has suffered adverse impact if the AI ratio falls below 0.80 (Biddle, 

2006; Nye & Drasgow, 2011). In an adverse impact situation, the item with the removal of which brings the 

AI ratio the closest to 1 would be our candidate for deletion.

The Multidimensional Classification Accuracy Analysis Framework

Noting that selection and classification decisions are rarely based on psychological tests measuring a

single, unidimensional latent construct, and that different weights may be assigned to different dimensions in 

practice, Lai and Zhang (2022) expanded the selection accuracy analysis framework (Millsap & Kwok, 

2004) to work with tests aimed to measure multiple latent constructs with different weights. Assuming the 

multivariate normality of the latent factor scores and the unique factor variables, the observed composite 

scores Zg and the latent composite factor scores ηg (where the latent composite is a weighted combination of 

the  latent  dimensions  and  g denotes  group  membership)  were  shown  to  follow  a  bivariate  normal 

distribution (see Appendix A; Lai & Zhang, 2022). Furthermore, the marginal distribution of (Z, η) was 

demonstrated to be a finite mixture of bivariate normal distributions with mixing proportion πg, and the 

latent composite cut-off ηc can be computed as the quantile in the mixture corresponding to PStotal (Lai & 

Zhang, 2022; Millsap & Kwok, 2004). The researcher may choose to pre-specify PStotal (e.g., to select 

the top X% of candidates) or specify a cut-off Zc (e.g., in a diagnostic screening setting), which will 

then be used to compute the proportion of individuals selected using the cut-off.

While this framework help test users to link measurement noninvariance to the practical impact on 

classification, it does not provide clear methods for or guidance on how test accuracy and fairness may be 

improved, for example, by dropping biased items. Our goal is to remedy this gap by providing test users 

with item deletion indices that allow for the assessment of improvements (or decreases) in test accuracy and

fairness when a biased item is dropped. 
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Methods: Item Deletion

The methods discussed here concern the case where a psychological test used for classification 

decisions contains measurement bias, and the researcher aims to investigate which of the test items, if any, 

may be deleted to reduce the negative impact of this bias on the performance and fairness of the scale. The 

deletion of an item may not be necessary or beneficial in some scenarios, and may in fact harm the validity 

and reliability of the test as will be discussed later. The methods outlined here are provided to facilitate 

researchers’ exploration of their data and to lead to more informed decisions about deleting or retaining an 

item.

The test instrument can consist of a single factor (e.g., depressive affect) or multiple factors (e.g., a 

scale of depression measuring different facets of depression such as positive affect, negative affect, and 

somatic symptoms). In this paper and in the accompanying unbiasr package, deletion is considered in a step-

wise manner such that no more than one item is to be dropped at one time. Unless otherwise indicated by a 

subscript (e.g., SEsfi), we assume that CAI are computed under PFI. The current method assumes that each 

item loads onto a single factor (i.e., no cross-loadings). 

We can examine the impact of dropping an item on the difference in CAI from three distinct but 

complementary angles. The first approach entails an examination of an overall measure of classification 

accuracy, termed aggregate CAI ( CAI ) ,  which is a weighted average of CAI across the reference and focal 

groups. The second approach consists of a comparison of the AI ratio computed using the full item set (AI) 

with the AI ratio computed using an item set excluding the j-th item (AI |j). The third approach entails a 

comparison of CAI for the reference group (CAIr) and the expected CAI for focal group (CAIEf) for a given 

set of items. 

We now introduce h and ∆h, operations used to compute item deletion indices that quantify 

differences in CAI and CAI . 

Operation: Cohen’s h (Cohen, 1988)

Cohen’s h (1988) is an effect size measure of the difference in two proportions or probabilities that 
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was designed to account for the fact that  probabilities can only range from 0 to 1, and uses the arcsine 

transformation so that the values better resemble an interval scale. Cohen’s h effect size  (Cohen, 1988) of the

difference between proportions p1 and p2 is defined as 

h = 2 arcsin (√ p1 ) – 2 arcsin (√ p2 ). (7) 

Resulting  h values  can  be  interpreted  as  indicators  of  small,  medium,  or  large differences between 

proportions using the conventionally used benchmarks of 0.2, 0.5, and 0.8 (Cohen, 1988). For example, if p1 

= .65 and p2 = .50,  we have h(.65, .50) = 0.30, which corresponds to a small-medium effect size, and h(.95, 

.80) = 0.48.

Operation: Delta h (∆h)

The change in the effect size h when a noninvariant item j is deleted is also of interest. Using ∗ as a 

placeholder for the comparison h was computed for, the operation ∆h is defined as

∆ h| j CAI = | h* CAI | − | h* CAI | j  |. (8) 

Delta h can be used to quantify the change in the difference between h values comparing CAI across groups 

or invariance conditions when the j-th item is dropped. As an example, consider a scenario where we are 

interested in the change in the effect size h associated with the difference between SEr and the SEEf computed 

when item 2 is deleted (SEEf
2 ). First, t he effect size h for the difference between SEr versus SEEf (using the 

full item set) is computed:

hr-EfSE = 2arcsin(√SEr )
 
− 2arcsin(√SEEf ).

Second, h for the difference between SEr
2 versus SEEf

2 ) (on the item set excluding item 2) is computed: 

hr-EfSE2
 = 2arcsin(√SEr

2
 )

 
− 2arcsin(√SEEf

2
).

Finally, these values are compared using

∆h|2SE = |hr-EfSE| − |hr-EfSE|2|.

Note that Delta h is only computed on h values, in contrast to Cohen’s h which can be computed for ‘raw’ 
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proportions.  Having defined these two operations, we now describe the  first three approaches to item 

deletion in more detail.

Approach 1: Examining Changes in Aggregate Classification Accuracy Indices (CAI )

We obtain aggregate classification accuracy indices as weighted averages across groups (see Appendix 

B for computation details) and CAI | j (aggregate classification accuracy indices when a potentially biased item j 

is deleted).  Comparing CAI  and CAI | j and examining the effect size h of any discrepancy helps us determine

the impact of deleting a biased item.  Increases in CAI  when an item is deleted may point to one of the 

following scenarios: CAI may have increased for both groups, or CAI may have increased for one group 

but stayed constant or decreased for the other3. 

We suggest that the item j leading to the largest increase in CAI  and resulting in negative  

h j CAI  when deleted may be considered a candidate for deletion. If h j CAI  is positive, deleting item j would 

lead to a decrease in CAI so researchers should be careful with deletion when h j CAI  is large. 

Approach 2: Examining the AI Ratio

We then compare the AI ratio computed using the full item set (AI) to the one computed using the 

item set excluding biased item j (AI|j). If the deletion of j does not lead to an AI|j closer to 1 than AI 

for any j, or leads to an AI ratio that is lower than the one computed using the full item set, all items 

should be retained as the deletion of items has no impact or leads to more adverse impact. If, on the other 

hand, the deletion of item j brings the AI ratio closer to 1, the discrepancy between PSr and PSEf has 

decreased, signaling an improvement. If in fact AI|j = 1, we can say that the difference between the groups 

in PS that is due to measurement bias is eliminated as the deletion of item j achieves a PSf that is equivalent 

to that of the PSr if these two groups were matched on their latent trait level. If there are multiple items the 

deletion of which lead to an improvement, the researcher is advised to consider the deletion of the item that 

3 We may consider an increase in CAI  when the j-th item is deleted such that CAI  <  CAI j an overall 

improvement in all cases except when the increase in CAI  is driven by improvements in CAIr being given greater 
weight in computation  due to a larger πr that masks decreases in CAIf . This case concerns the scenario where the 
removal of the item actually leads to greater discrepancy. Note that if there is an imbalance between CAIr and CAIf 

such that CAI is higher for one group than the other, CAI  will take a value between CAIr and CAIf that is closer to 
CAIr if πr > 0.5, and equal to the midpoint between CAIr and CAIf if πr = 0.5. 

58
59
60
61

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

62
63
64
65
66
67



IMPACT OF DELETING A BIASED ITEM 15

brings the AI ratio the closest to 1. If multiple items lead to a similar improvement in the AI ratio if deleted, 

the researcher may continue their exploration of the other indices and make a judgment call as to which 

item, if any, should be deleted.

Approach 3: Examining Differences in CAI for Reference and Efocal Group

Comparisons can then be made between the observed scores for the reference group (CAIr) and 

the scores we would expect to see for the focal group if the focal group followed the same distribution as 

the reference group (CAIEf) by conditioning on the matched latent trait. Unlike the AI ratio, which 

focuses solely on PS, this approach allows the researcher to quantify discrepancies between SEr, SRr, and 

SPr, and SEEf, SREf, and SPEf, and to interpret any observed difference between CAI r and CAI Ef  as being 

truly due to measurement bias, that is, as a difference that is not due to true group-level differences in the 

trait being measured.

After computing Cohen’s h values for the difference between CAIr and CAIEf for the full item set 

(hr-EfCAI) and an item set excluding biased item  j  (hh-EfCAI j ,  the  change in this difference can be 

computed using equation (8). Item j that leads to the smallest |hr-EfCAI| and the largest ∆h|jCAI introduces 

the most bias and its deletion has the largest effect size may be considered the candidate for deletion. In 

contrast, items that lead to a larger |hr-EfCAI| or result in an insubstantial improvement (as indicated by a very 

small ∆h|jCAI) should be retained.

The three approaches are intended to be examined in conjunction, and test users are  advised to 

compare and contrast results from each approach before making a final decision about item deletion. If there 

is unanimity across the approaches supporting the deletion of an item (and assuming that its deletion does 

not have a major impact on the conceptual breadth of the test), the item may be dropped. If the three 

approaches agree, but the improvement as indicated by the indices is minimal, the test user may opt to retain 

the item in order to preserve the statistical properties and construct coverage of the scale. If there is 

disagreement between the approaches such that, for example, one approach indicates an improvement and 

one approach indicates a decrease in accuracy and fairness if an item is deleted, the user is advised to proceed 
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with caution and examine raw classification accuracy indices. We suggest that items should be retained unless 

there is clear indication that the deletion of an item would lead to a concrete improvement in and would not 

harm accuracy and fairness.

Illustrative Example

We now illustrate the use and interpretation of the item-level deletion indices in a diagnostic 

application context using CFA estimates from a previous study investigating the measurement invariance of 

the CES-D (Radloff, 1977) across Chinese and Dutch elderly populations (Zhang et al., 2011). CES-D is 

made up of 20 items and four factors: positive affect (good, hopeful, happy, enjoyed), depressive affect 

(blues, depressed, failure, fearful, lonely, crying, sad), somatic complaints (bothered, appetite, mind, 

effort, sleep, talk, get going), and interpersonal problems (unfriendly, dislike). Participants are asked to 

rate each item on a scale of 0 to 3 based on how they felt in the past week. The maximum score is 60 on the 

full scale.

In their examination of data collected from 4903 elderly adults from China and 1903 elderly adults 

from the Netherlands, Zhang and colleagues (2011) found that configural and metric invariance held, and 

demonstrated partial scalar and partial strict invariance such that while the same construct was being 

measured across groups, there were differences in intercepts (failure,  good) and uniqueness (depressed, 

fearful, and dislike). Depending on the size and direction of these differences, more individuals from the 

Chinese elderly (reference) group may be flagged for depression, resulting in a potential waste of valuable and 

limited resources. Likewise, fewer individuals from the Dutch elderly (focal) group who are truly at risk for 

depression may screen positive, which may mean that their treatment is delayed, or they lose access to 

resources  or  interventions. These  observed  differences may also be mistaken for true group-level 

differences, leading to spurious conclusions in theory building which may have unforeseeable downstream 

consequences. Taking informed steps to delete the item introducing the most bias to the scale may allow 

practitioners and researchers mitigate unfair disadvantages caused by measurement bias.

We demonstrate the item deletion framework assuming that the CES-D scale is used  as an initial 
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screener for risk of depression, where selected individuals would be further assessed by a clinician who may 

leverage  multiple  additional  information  sources  (e.g.,  a  diagnostic  interview)  to  determine  whether  the 

individual qualifies for some treatment or intervention program for depression. We use unstandardized factor 

loading, uniqueness, intercept, factor mean and factor standard deviation estimates from Zhang et al. (2011) 

and a latent factor variance-covariance matrix computed using factor correlation estimates from a previous 

study by Miller et al. (1997) as our input parameters45.

We use a cut-off score of 16 on the full CES-D scale following the example of Radloff (1977), and 

hold the proportions selected using the full set of items constant in the item deletion scenarios considered. 

Note that researchers can instead choose to provide a new post-deletion cut-off to be used.

The
 mixing proportion πr is set to 4903/(1903 + 4903) ≈ 0.72. As the depressive affect and somatic 

affect factors have 7 items each, the lack of positive affect factor has 4 items, and the interpersonal problems

factor has 2 items, this allocation of weights results in  35%, 35%, 20% and 10% weighting for the 

aforementioned latent dimensions. All relevant parameter values, function calls, and outputs can be found in 

the code excerpts included in the supplementary materials6. 

Item deletion on the 20-item, four-factor CES-D scale

Under partial factorial invariance, PS = 0.457 of the Chinese elderly group and PS = 0.144 of the 

Dutch elderly group scored above the cut-off score of Zc = 16, which corresponds to an aggregated PS of 

4 The factor correlation estimates from Miller et al. (1997) were used as a proxy as estimates for the latent factor 
variance-covariance matrix or factor correlations were not provided in Zhang et al. (2011). As items in the 
positive affect subscale were reversed in Zhang et al. (2011) to achieve a ‘lack of positive affect’ interpretation, we 
reversed the signs of Miller et al.’s  (1997) correlation estimates in our computations of the variance-covariance 
matrix.

5 The parameters reported in Zhang et al. (2011) were obtained via maximum likelihood (ML) while Miller et 
al. (1997) used the asymptotically distribution free weighted least squares (WLS) estimator. The assumptions of  
continuous, normally distributed data for the ML estimator are unlikely to hold in the case of CES-D, which has four 
response options. It is recommended that ordinal methods are employed when dealing with data with less than five 
response options (Rhemtulla et al., 2012), and ordinal data should be handled differently than continuous data while 
testing for MI (Wu & Estabrook, 2016). We use parameter estimates for the CES-D scale for illustrative purposes 
only, and the item deletion methods were developed to facilitate researchers’ exploration of the impact of item-level 
bias after fitting their model.
6    An extension to the illustrative example in which the analyses are repeated for each of the four subscales of CES-
D, assuming for the purposes of illustration that the subscales will be used independently to select individuals can be 
found in the supplementary materials.
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0.387. PSr and PSf are held constant to achieve an aggregate PS of PS = 0.387 across item deletion 

scenarios. 

Items 4, 9, 10, 11, 15, and 20 (effort, depressed, failure, fearful, good, dislike) were identified as 

biased in Zhang (2011). Table 1 illustrates the CAI  and Cohen’s h values associated with the deletion of 

each of these biased items. The h values here range between 0.003 and 0.013. The higher  SP = 0.934 

compared to SR = SE = 0.887 suggests that, overall, the scale performs somewhat better at not selecting 

individuals who are not at risk for depression. The effect size of removing any of the biased items on CAI  is 

quite low, as  seen in the Cohen’s h values provided in Table 1, and no item's removal  leads to an 

improvement in CAI ).

Table 2 contains the item deletion indices quantifying the discrepancy between CAIr and CAIEf. 

The AI ratio for the full scale is AI = 0.908, which is greater than the 80% threshold for adverse impact. 

The deletion of item 9 (depressed) or 11 (fearful) leads to AI ratios further away from the optimal ratio of 1, 

whereas deleting item 4 or (effort) or 20 (dislike) leads to no change in the AI ratio. The  greatest 

improvement in the AI ratio is observed for the removal of item 15 (good), followed by item 10 (failure) as 

the removal of either item brings the AI ratio closer to 1: AI|15 = 0.977 and AI|10 = 0.930. The rightmost 

three columns of Table 2 illustrate the effect size of the discrepancies between CAIr and CAIEf  attributable 

to measurement bias. hr-EfSR = −0.157 and hr-EfSP = −0.164 on the full CES-D scale suggests higher SR 

and SP values for the focal group (Dutch elderly)  had the focal group been matched with the reference group 

(Chinese elderly) on the latent traits. Similarly, hr-EfSE = 0.141 suggests a lower SE for the expected focal 

group. Not only does the deletion of item 15 (good) attenuate the discrepancy between CAIr and CAIEf , 

bringing the  h values closer to 0 (h|15SR = −0.047,  h|15SE = 0.026,  h|15SP = −0.048), improvements 

caused by the deletion of this item also have the largest effect sizes out of all item deletion scenarios (∆h|

15SR = 0.110, ∆h|15SE = 0.116, ∆h|15SP = 0.116). 

In light of these findings, and barring any domain specific reasons to retain this item, we  can 
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conclude that deleting item 15 would help mitigate the impact of measurement bias on  classification 

accuracy and fairness, and render the diagnostic accuracy of the CES-D for the Chinese and Dutch elderly 

groups more comparable (see the supplementary materials for an illustration of the distributions of latent 

and observed scores for depression for the Dutch and Chinese elderly groups before and after the deletion of 

item 15).

We would like to emphasize that the suggestion to delete item 15 (good) only applies to the findings 

discussed here by Zhang et al. (2011) regarding the comparison between Chinese and Dutch elderly 

individuals, and does not necessarily generalize to item or test performance in other contexts. For instance, 

if a clinician is adapting the Chinese version of the CES-D to screen depression risk for their clients, we  

would recommend repeating the analyses here with their data and carefully examining the performance of  

all items including item 15 before proceeding with any deletion. 

Four-factor CES-D Scale after deleting item 15 

Continuing with the diagnostic example, we perform item deletion on the remaining 19 items of the 

CES-D to see whether the deletion of a second item may further reduce the impact of measurement bias. The 

cut-off score is recomputed as Zc = 16/60×(60−3)  = 15.2 to account for the deleted item. Results are 

illustrated in Tables 3 and 4.

In Table 3, we see that the deletion of any of the remaining biased items (4, 9, 10, 11, 20, or effort, 

depressed,  failure,  fearful,  dislike)  leads to decreases from SR= 0.886, SE= 0.886 and SP= 0.925, 

harming overall classification accuracy.

In the first column of Table 4, only item 10 (failure) leads to an AI ratio that is closer to 1 if deleted, 

with AI|10 = 0.999 from AI = 0.9797. In the next three columns of Table 4, we see that deleting item 10 

7 Note that the AI ratio is 0.979 on the 19-item CES-D scale, which is slightly different than the previously reported 
delete-one AI ratio of AI |15 = 0.977 (see Table 2). Any such difference in the row labeled ‘|15’ in Table 2 and in the 
row labeled Full in Table 4 is due to the difference in providing a cut-off value versus a proportion to be selected for 
the computations. In the computations for the AI value that would be achieved by deleting item 15, the proportions 
selected using the provided cut-off score on the 20-item scale were held constant in the 19-item scenarios. As such, 
AI |15 = 0.979 was achieved using a proportion of selection. On the other hand, once we dropped item 15 and 
repeated our computations to consider the deletion of a second item, AI = 0.999 was computed based on the cut-off 
score for the 19-item scale. Accordingly, the delete-one statistics reported for the 19-item scale (i.e., for an 18-item 
subset) were computed based on the proportions selected when using the full 19-item scale.
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may also slightly reduce the discrepancy between CAIr and CAIEf , with hr-EfSR|10 = −0.011, hr-Ef SE|10 = 

−0.007, and hr-EfSP|10 = −0.011. The effect sizes of these changes in discrepancy between CAIr and 

CAIEf are ∆h|10SR = 0.032, ∆h|10SE = 0.017, and ∆h|10SP = 0.036. The deletion of any other item 

either leads to an insubstantial improvement, or exacerbates the discrepancy between CAIr and expected 

CAIf , increasing bias.

While  these  results  show that  item 10  introduces  the  most  bias  after  item 15,  the  potential 

improvement achieved from dropping this item is not as clear-cut as that from the deletion of item 15. 

Given the ambiguity of these results and the lower magnitude of the improvements in AI and hr-Ef  CAI 

compared to when item 15 was the candidate for deletion, we would recommend retaining item 10 and 

proceeding with the 19-item CES-D scale unless further, theory-based justification supporting the deletion 

of item 10 is established. It may be worthwhile examining the raw classification accuracy indices as, 

depending on the application context, whether an increase in SR is caused by a decrease in FP or an increase

in TP may give additional insight into the best course of action if the scale will be used for allocating limited 

resources such as access to a treatment program. We believe that the methods and guidelines outlined here 

equip test users to make more informed decisions about whether improvements in AI and hr-Ef CAI are large 

enough to warrant item deletion.

Implementation using R package unbiasr

The R package unbiasr implements the item deletion methods proposed in the current paper. The 

main function in unbiasr is PartInv(), which allows users to evaluate the practical impact of classification 

accuracy  across  groups  and  requires  only  the  CFA  parameter  estimates  as  input.  item_deletion_h() 

computes effect size indices quantifying the impact of deleting biased item(s) on classification accuracy 

indices. unbiasr incorporates the R scripts from Lai et al. (2017) and Lai and Zhang (2022). 

First, CAI are computed under SFI and PFI for the full set of items using the user-specified item 

weights. Then, summary statistics are computed for the item set excluding item j using an adjusted item 

weight vector where an item weight of zero is assigned to the j-th item. In the calculation of the new item 
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weights, the weight that had been allocated to the j-th item is redistributed across the remaining test items 

proportionally to the current weights of these items. If the test is multi-dimensional, the weighting is 

redistributed only across the items that belong to the same subscale as item j. Once relevant delete-one 

classification accuracy indices are computed for the reference, focal, and expected focal groups under 

strict and partial factorial invariance, operations h and Delta h are used to compute the deletion indices (

CAI , h | j CAI ,  AI | j, hr-Ef CAI, ∆h| j CAI).

Depending on the purpose and application context of the test, users may indicate a cut-off score 

(Zc; e.g., to identify patients scoring above a clinically meaningful cut-off for treatment referral), or input a

proportion for selection (propsel; e.g., to hire the candidates scoring in the top 10% of the applicant 

pool). If the user specifies a cut-off Zc as well as a delete-one cut-off score adjusting for the decrease in 

the maximum total score when an item is dropped from the scale, the second cut-off score is used as the 

new Zc in item deletion scenarios. If the user specifies a proportion for selection, this value is held constant

in item deletion scenarios. If a delete-one cut-off score is not provided by the user, the PSsfi and PSpfi using 

Zc on the full item set are held constant in the computations of CAI in item deletion scenarios. For example, 

if Zc = 16 on the full scale corresponds to PSsfi = 0.30 and PSpfi = 0.28, summary statistics will be 

computed with propsel = 0.30 and propsel = 0.28 so that the  highest scoring 30% and 28% of 

individuals in each item deletion scenario will be selected under strict and partial invariance conditions 

respectively.

Discussion

Psychological tests provide decision-making bodies and scientists alike with a relatively time-

efficient and objective tool for the assessment and comparison of individuals’ relative standings on constructs 

of interest and are used in a range of applications from theory construction and advancement to decision-

making. As such tests are commonly used in high-stakes contexts and may have wide-reaching 

consequences beyond the immediate application of the test, it is critical that test scores are valid and free of 

bias. A notion inextricably linked to validity and bias is measurement invariance, which holds when a test 

118
119
120
121

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483



IMPACT OF DELETING A BIASED ITEM 22

measures the same construct in the same way across grouping variables that are irrelevant to the construct 

under study (e.g., race). The current framework provides decision-makers with tools and guidelines to better 

navigate the seldom-discussed next-steps following the discovery of noninvariant items. 

We have fully automated the three complementary approaches to item deletion outlined in this 

paper, and the functions for the computation of item deletion indices are available in our open-source R 

package unbiasr. The outlined methods expedite and give structure to the otherwise laborious and error-

prone process of determining the best course of action to handle item bias by converting differences in 

classification accuracy indices to comparable and easily interpretable units. As such, test users can make 

more informed decisions about item deletion (or retention) more efficiently, prevent the misallocation of 

limited resources, expedite the time it takes for patients to receive the care they need, and reduce the 

influence of construct-irrelevant factors on classification decisions, promoting fairness. We hope that the 

detailed examination and discussion of the item deletion indices in the illustrative example helps elucidate 

the process of determining whether a biased item can, or should, be deleted to improve accuracy and fairness 

in classification decisions. 

There are a number of limitations to the current work. First, the methods outlined here concern 

binary classification decisions, such as selection versus rejection or diagnosis versus no diagnosis. Future work 

is  planned  to  extend  to  classification  into  multiple  categories  (e.g.,  classification of an individual’s 

depression level into severity  categories;  class  placement  of  students  based  on  levels  of  language 

proficiency). Second, we only considered noninvariance across two groups, whereas many demographic 

characteristics have multiple subgroups (e.g., ethnicity, race, SES). We hope to extend the framework to the 

classification of individuals across multiple groups. Third, we assumed that the test items were measured on 

an interval scale. We have proposed and illustrated the current framework in the context of interval level 

data8, but we plan to extend the framework to ordered categorical data in future research. Moreover, the 

current methods do not quantify the uncertainty around the estimates. Additional tasks for our package 

8 Note that the CES-D items are measured on a 0-3 scale and would ideally be treated as ordinal. The illustrative  
example assumed interval level data for the sake of simplicity. 
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therefore include extending the current methods to performing item deletion for multiple groups as well as 

for when test items may be measured on a binary or ordinal scale, and computing uncertainty estimates (e.g., 

Bayesian credible intervals). 

Any item deletion decision should be made with the context and application of the test in mind 

(Millsap & Kwok,  2004), as one potential consequence of deleting items is reduced construct coverage 

(Kruyen et al., 2013). While the deletion of an item may lead to better classification accuracy and 

increased fairness, the item may nevertheless be  important to retain, particularly in application contexts 

where inference and interpretability  take precedence over prediction. It may be more important in a 

research context to get  a holistic picture that taps into all facets of the construct for theory-building 

purposes as opposed to in more applied contexts where the goal is to make a decision9. For example, 

imagine the item loss of interest and pleasure, which measures an aspect of depression that is integral to the 

construct definition of depression, is found noninvariant across groups and that the deletion of this item leads to

better classification accuracy and higher fairness. If the goal is to determine the individuals that qualify for a

treatment program, the improvement in performance and fairness in outcomes may justify the deletion of the 

item as the predictive validity of the scale as a diagnostic tool may be of greater interest. However, if the 

scores on the depression scale are, for example, used to gain a better understanding the manifestation of the 

symptoms of depression in different cultural contexts, we recommend consulting existing literature as well 

as domain experts to clarify the potential reductions in construct coverage. It may also be worthwhile to 

explore alternative approaches, such as going back to the drawing table and piloting modified versions of 

the noninvariant item with samples  from the different groups to rebuild the scale with an unbiased 

replacement item, assuming that resource and time constraints allow for such a detour.

Furthermore, test users should exercise great caution while considering deleting multiple items at a 

time from a scale, and note the close relationship between the test length and its internal reliability (Brown, 

1910; Kruyen et al., 2012; Spearman, 1910). We stress that the shorter the test, the riskier it may be to drop 

9 See Chapter 4 of AERA, APA & NCME (2014) and Bandalos (2018) Chapter 16 for additional discussions of MI  
applications for theory building and item revision.
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items.

The item deletion indices, methods, and guidelines introduced here function as exploratory tools to 

scrutinize the ‘what-if’ scenarios concerning biased items. It is ultimately up to the decision-maker to judge 

whether the magnitude of an improvement is large enough to warrant deletion, and determine whether one or 

more items, if any, can (and should) be deleted in a given application context.
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          Figure 1

Distribution of observed and latent scores by group and invariance condition.

(a) 

Strict factorial invariance.                (b) Partial factorial invariance.

Note. An illustration of the joint bivariate distributions of observed and latent scores for  the cases where strict 

measurement invariance holds (a), and partial measurement invariance  holds (b). The distributions are indicated 

separately for the reference and focal groups. Dotted lines denote thresholds on the observed and latent scores. The 

quadrants A, B, C, and D correspond to TP, FP, TN, FN rates.
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Table 1

Aggregate Classification Accuracy Indices and h values computed for the 20-item CES-D scale

Aggregate Classification Accuracy Indices

SR h SE h SP h

Full 0.885 - 0.885 - 0.933 -

|4 0.881 0.013 0.881 0.013 0.930 0.010

|9 0.882 0.009 0.882 0.009 0.931 0.007

|10 0.884 0.004 0.884 0.004 0.932 0.003

|11 0.884 0.005 0.884 0.005 0.932 0.003

|15 0.883 0.008 0.883 0.008 0.931 0.006

|20 0.883 0.006 0.883 0.006 0.932 0.004

Note. Columns SR, SE, and SP indicate aggregate classification accuracy indices computed for a given item set 

(either 20-items, "Full", or 19-items excluding item j indicated in the row). The columns titled h indicate the 

Cohen’s h values for comparisons between CAI  on the 20-item scale and possible 19-item scales excluding item j. 

The dashes in the second row indicate that there is no comparison of CAI  on the 20-item scale with itself.
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Table 2

Item deletion indices comparing the reference and the (expected) focal groups on the 20-item CES-D scale

CAIr vs. Expected CAIf

AI hr-EfSR ∆hr-EfSR hr-EfSE ∆hr-EfSE hr-EfSP ∆hr-EfSP

Full 0.908 -0.151 - 0.141 - -0.159 -

|4 0.908 -0.147 0.004 0.138 0.002 -0.156 0.003

|9 0.904 -0.154 -0.003 0.147 -0.006 -0.164 -0.004

|10 0.930 -0.115 0.036 0.104 0.037 -0.122 0.037

|11 0.905 -0.153 -0.002 0.145 -0.005 -0.162 -0.003

|15 0.977 -0.045 0.106 0.026 0.114 -0.047 0.113

|20 0.908 -0.145 0.006 0.141 -0.001 -0.154 0.005

Note. The first column contains the AI ratio for a given item set.  hr-EfCAI columns indicate effect sizes for the 

discrepancy between classification accuracy indices computed for the reference group (CAIr) and expected CAI 

computed for the focal group (CAIEf ) for an item set (either 20-items, "Full", or 19-items excluding biased item j  

indicated in the row). ∆hr-EfCAI columns denote the change in the discrepancy between CAIr and CAIEf when item j is 

deleted. The dashes in the first row indicate that there is no comparison of an item deletion index on the 20-item scale 

with itself. As Cohen’s h cannot be computed for non-proportions, there are no h values reported for AI values. 
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Table 3

Aggregate classification accuracy indices computed for the 19-item CES-D scale.

Aggregate classification accuracy indices

Item Set SR h SE h SP h

Full 0.888 - 0.888 - 0.926 -

|4 0.884 0.011 0.884 0.011 0.924 0.009

|9 0.879 0.008 0.879 0.008 0.915 0.006

|10 0.881 0.003 0.881 0.003 0.916 0.002

|11 0.880 0.004 0.880 0.004 0.916 0.003

|20 0.875 0.020 0.875 0.020 0.912 0.016

Note. Columns SR, SE, and SP indicate aggregate classification accuracy indices computed for a given item set 

(either 19-items, "Full", or 18-items excluding item j indicated in the row). Columns titled h Cohen’s h values for 

comparisons between CAI  on the 19-item scale and 18-item scales excluding item j. Note that item numbers are 

the same after the deletion of item 15 (good). The dashes in the first row indicate that there is no comparison of 

CAI  on the 19-item scale with itself.
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Table 4

Item deletion indices comparing the reference and the (expected) focal groups on the 19-item CES-D scale

CAIr vs. Expected CAIf

Item Set AI hr-EfSR ∆hr-EfSR hr-EfSE ∆hr-EfSE hr-EfSP ∆hr-EfSP

Full 0.979 -0.044 - 0.025 - -0.048 -

|4 0.979 -0.042 0.002 0.024 0.001 -0.046 0.002

|9 0.973 -0.047 -0.004 0.032 -0.006 -0.053 -0.005

|10 0.999 -0.011 0.032 -0.007 0.018 -0.010 0.037

|11 0.973 -0.047 -0.004 0.031 -0.006 -0.052 -0.005

|20 0.977 -0.040 0.003 0.028 -0.002 -0.045 0.002

Note. The first column contains the AI ratio for a given item set. hr-EfCAI columns indicate effect sizes for the 

discrepancy between classification accuracy indices computed for the reference group (CAI r) and expected CAI 

computed for the focal group (CAIEf ) for an item set (either 19-items, "Full", or 18-items excluding biased item j  

indicated in the row). ∆hr-EfCAI columns denote the change in the discrepancy between CAIr and CAIEf when item j is 

deleted. Note that item numbers are the same after the deletion of item 15 (good). The dashes in the first row indicate 

that there is no comparison of an item deletion index on the 19-item scale with itself. As Cohen’s h cannot be computed 

for non-proportions, there are no h values reported for AI values. 
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Appendix A

1. The Common Factor Model

For a set of J items (j = 1, . . . , J) aimed to measure M latent constructs (m = 1, . . . , M ), let yig 

denote a J × 1 vector of observed item scores, and ηig a M × 1 vector of latent factor scores distributed with 

M × 1 mean vector E(η) = α and M × M variance-covariance matrix Cov(η) = Ψ. Here, i denotes the 

individual (i = 1, . . . , N ), and g denotes group membership, time point, or test condition. The common 

factor model postulates that the relationship between the latent and observed variables is expressed by

yig = νg + Λg ηig + ϵig

where νg is a J × 1 vector of intercepts, Λ  g is a J × M matrix of factor loadings, and ϵig is  a  J ×1 vector of 

unique factor variables (Lai & Zhang, 2022; Meredith & Teresi, 2006). Unique factor variables (ϵ) refer to 

the construct-irrelevant variance of the sum of measurement error and systematic error, and each is assumed

to be distributed independently with mean  E(ϵ)  = 0 and variance-covariance matrix  Cov(ϵ)  = Θ. 

Assuming additionally that the latent and unique factor variables are uncorrelated (Cor[ϵ, η] = 0), the 

observed variables are distributed with mean E(y) = ν + Λ α and variance-covariance matrix  = Λ Θ 

Λ+Ψ .

Depending on which parameters are the same across groups, the level of factorial invariance can be 

classified as, from the least to most stringent, configural, metric, scalar, and strict (Byrne et al., 2007; Horn 

& McArdle, 1992; Meredith, 1993). Configural invariance requires the same factor structure across groups, 

and freely estimates all parameters. Metric invariance additionally requires equal unstandardized factor  

loadings ( Λ) across groups. Scalar invariance holds if measurement intercepts (ν) are also the same across 

groups. Finally, strict factorial invariance (SFI) exists when measurement intercepts, factor loadings, and 

unique factor variance-covariances (Var[ϵ]; uniqueness) are equal across groups or conditions (νg = ν, Λ  g = 

Λ, θg = θ, ∀g). While SFI is necessary for valid and meaningful comparison of factor scores across groups, it 

may be difficult for these demanding criteria to be met in practice. More often, partial factorial invariance 
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(PFI, Byrne et al., 1989) is met, meaning that invariance holds only for a subset of the items.

Factorial invariance has been shown to be equivalent to MI under the common factor model (Horn & 

McArdle, 1992; Thurstone, 1947). Then, response probabilities of individuals with the same latent standing 

are expected to be invariant across groups if MI holds. Mathematically, MI exists if conditioned on the 

latent construct, observed scores and group membership are independent such that

P (y|η, G = g) = P (y|η),∀g

(Mellenbergh, 1989; Meredith & Millsap, 1992). Under the common factor model, MI is satisfied when 

SFI holds, and PMI is equivalent to PFI. 

2. Adverse Impact Ratio

Letting Pf (Zf > Zc) and Pr(Zr > Zc) denote the proportion of selected individuals who scored above 

the cut-off point Zc in the focal and reference groups and PEf denote the proportion of selected individuals 

expected for the focal group, the AI ratio is defined as

AI ratio=
PEf (Z f ≥ Zc )
Pr (Z r ≥ Zc )

where

PEf  (Zf ≥ Zc) =  Pf  (Zf ≥ Zc|η) fr (η) dη,

Pr (Zr ≥ Zc) =  Pr (Zr ≥ Zc|η) fr (η) dη

(Nye & Drasgow, 2011; Stark et al., 2004).

3. The Multidimensional Classification Accuracy Analysis Framework

Let c be a J × 1 vector of item weights. For a multidimensional test with J items measuring M latent 

constructs, assuming the multivatiate normality of (η, ϵ), the observed scale sums Zg and the latent factor 

scores ηg were shown to follow a bivariate normal distribution such that 
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(Z g

ηg
)=N ([c νg+c Λg α g

w α g
] , [c Λg Ψ g Λg c+c Θg c ¿ c Λg Ψ g w w Ψ g w ])where w is a 1 × M vector 

of  latent  factor weights (Lai  & Zhang,  2022). Furthermore,  the marginal distribution of (Z, η) was 

demonstrated to be a finite mixture of bivariate normal distributions with mixing proportion πg, and the 

latent score cut-off ηc can be computed as the quantile in the mixture corresponding to PStotal (Lai & 

Zhang, 2022; Millsap & Kwok, 2004).
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Appendix B

Computing Aggregate Classification Accuracy Indices (CAI )

We compute aggregate TP (TP) ,  FP ( FP ), TN (TN ), and FN ( FN )  using the following formulas 

where πr indicates the mixing proportion (the relative size) of the reference group: 

TP = TPr × πr + TPf × (1 − πr),

We then compute CAIon the full item set: 

PS=TP+FP, 

SR=TP /(TP+FP ),

SE=TP /(TP+FN ),

SP=TN /(TN +FP ).

PS equals the user-specified proportion to be selected, or the quantile as identified by the user-

specified cut-off. Then, PS¿ j, SR¿ j, SE¿ jand SP¿ j are computed and compared against  PS, SR, SE, and 

SP to determine the impact of deleting a biased item.

h | j CAI  effect size for the change inCAI  when the j-th item is deleted is computed using: 

h¿ j CAI  = 2arcsin(√CAI  )
 
− 2arcsin(√CAI ¿ j )

For example, the improvement in SE if the first item is deleted is computed as

h¿1 SE = 2arcsin(√SE )
 
− 2arcsin(√SE¿1).
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