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Abstract

Psychological test scores are commonly used in high-stakes settings to classify individuals. While
measurement invariance across groups is necessary for valid and meaningful inferences of group
differences, full measurement invariance rarely holds in practice. The classification accuracy analysis
framework (Lai & Zhang, 2022; Millsap & Kwok, 2004) aims to quantify the degree and practical impact of
noninvariance. However, how to best navigate the next steps remains unclear, and methods devised to
account for noninvariance at the group level may be insufficient when the goal is classification.
Furthermore, deleting a biased item may improve fairness but negatively affect performance, and replacing
the test can be costly. We propose item-level effect size indices that allow test users to make more informed
decisions by quantifying the impact of deleting (or retaining) an item on test performance and fairness,

provide an illustrative example, and introduce unbiasr, an R package implementing the proposed methods.

Keywords: measurement invariance, item bias, classification accuracy, fairness, R package
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Exploring the Impact of Deleting (or Retaining) a Biased Item on Classification Accuracy

Psychological tests are commonly used for selection and classification purposes. Medical
professionals, government agencies, licensing boards, and employers alike use tests to measure and make
comparisons between individuals’ relative standings on constructs of interest (e.g., depression, aptitude),
which are often key components for high-stakes decisions such as diagnosis, personnel selection, placement,
licensing, and school admission (Reynolds et al., 2021). In health care, psychological tests are used to screen
and assess treatment eligibility for conditions including depression, substance abuse, and sleep disorders, and
may determine which patient gains access to or is denied certain resources and medical services. For example,
screening tests are administered during primary care visits or as part of community screening initiatives for the early
detection and treatment of depression (Arias de la Torre et al., 2024), and can help clinicians efficiently identify the
individuals at greater risk and prioritize these individuals for further assessment. Accurate identification of
probable cases of depression via screenings leads to improved health outcomes, expedites treatment delivery, and
facilitates optimal allocation of limited resources, while inaccurate decisions may result in heavier burdens on the
healthcare system and delays in treatment (Arias de la Torre et al., 2024; US Preventive Services Task Force, 2023).

Test scores contain random and systematic errors, which means that there is a chance that medical
conditions may be misdiagnosed, a deserving applicant may be denied admission, or an unqualified employee
may receive a promotion. If there are systematic differences in error rates across groups such that
individuals belonging to one group (characterized by, for instance, racial identity) disproportionately lose
access to opportunities, situations of adverse impact (Biddle, 2006) may arise. Clearly, the validity and
fairness of any test is integral to its value and utility as a decision-making tool.

Implicit in the use of tests in such high-stakes contexts is an assumption that the tests measure the
same construct the same way regardless of group membership or other construct-irrelevant conditions. For
instance, the gender, SES, or ethnicity of test takers should have no bearing on scores on a test measuring

risk of developing depression. If two individuals have the same underlying true risk of depression, their
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propensity distribution (Lord et al., 1968) for the test should be the same. This idea of equivalence of
measurement operations across groups and conditions is termed measurement invariance (MI; Drasgow,
1984; Mellenbergh, 1989; Meredith, 1993). MI is considered a prerequisite of valid inference and
interpretation in scientific inquiries (Horn & McArdle, 1992). However, the rigorous criteria for MI are
rarely met in practice. More commonly, test users establish partial measurement invariance (PMI; Byrne et
al., 1989), which exists when only a subset of the items are measurement invariant. For a test used for
classification in high-stakes settings, violations of MI at the test or item levels may harm the prospects of
some individuals by reflecting group-level differences when none exist. Such spurious inferences may have
grave consequences, from psychiatric conditions being misdiagnosed disproportionately for individuals
from disadvantaged groups to delays in treatment and misallocation of limited resources.

Most existing literature on MI has focused on inferences at the group level, but not on classification,
which is a major purpose of psychological tests. While one can model PMI to obtain valid group difference
estimates, modeling PMI may not be a feasible solution when the goal is the classification of individuals as
(a) scoring is usually based on unweighted sums (or weighted sums with the same weights across groups),
which leads to bias with biased items, and (b) if using factor scores based on PMI, different scoring formulas
are used for different populations, which compounds fairness concerns.

Thus, after discovering PMI, test users are tasked with finding the best course of action going
forward, which often entails answering some crucial questions: is the impact of bias negligible enough that
the biased items can be retained? If not, should the test be discarded entirely in favor of a measurement
invariant test? Should biased items be deleted, and if so, which ones? What is the practical impact of
removing a biased item: does the performance of the test improve, deteriorate, or remain unaffected if a
specific item is removed? At which point is the improvement in test performance big enough to justify
deleting an item? While research on the importance of and methods for establishing MI is abundant, methods
and guidelines for navigating the next steps after the detection of biased items remain sparse in comparison,

and the decision to retain or remove items, or discard the test in favor of another (if such an alternative exists)
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ultimately depends on the researchers’ professional judgment, existing literature, and the application
context (Hammack-Brown et al., 2021; Millsap & Kwok, 2004).

Furthermore, a focus on MI in the context of classification is warranted as MI is implicated in the
quality and practical impact of the decisions made using test scores, which is not necessarily a consideration
when the test purpose is to describe group differences in latent means. The current research aims to remedy
these gaps by developing item-level effect size indices that quantify the impact of deleting (or retaining) an
item on test performance. We advocate for an impact-oriented lens for evaluating MI, which brings test
purpose to the forefront, and introduce methods and guidelines for exploring and mitigating the practical
impact of measurement bias on classification decisions.

This paper is structured as follows. We first introduce MI and review previous work on how PMI
impacts classification, which constitute the building blocks of the current research. Then, we introduce the
item deletion operations h and Ah which are based on Cohen’s h effect size (1988), describe the item
deletion indices that allow test users to assess how item-level bias impacts metrics such as sensitivity and
specificity, and provide an illustrative example of the methods and functions from the R package unbiasr
using parameter estimates from a previous invariance study involving the Center for Epidemiological
Studies Depression (CES-D) Scale (Radloff, 1977; Zhang et al., 2011). We conclude with a discussion of
the results, guidelines of interpretation, and future directions. All accompanying code is available as part of the
unbiasr package, and function calls and parameter values for the illustrative example can be found in the
supplementary materials.

Measurement Invariance

Measurement invariance (MI) is achieved when latent construct(s) (e.g., cognitive functioning,
depression) are measured equivalently and comparably across groups (e.g., ethnicity, SES), test modes (e.g.,
paper, computer), or time points (Drasgow, 1984; Mellenbergh, 1989; Somaraju et al., 2021). The focus on
the relationship between a test and the latent construct it purports to measure sets MI apart from prediction

invariance, which concerns the relationship between test scores and criterion performance (Cleary, 1968).
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While there is no universally accepted definition of fairness, here we define fairness to encapsulate freedom
of scores from the effects of construct-irrelevant characteristics, and equivalence in meaning across
individuals and groups in line with standards set jointly by the American Educational Research Association,
the American Psychological Association, and the National Council on Measurement in Education (AERA,
APA, & NCME; 2014).

MI facilitates valid and meaningful comparisons of test scores across groups or conditions by ruling
out construct-irrelevant group level attributes as potential sources of observed group differences (Maassen
et al., 2023; Meredith, 1993). Especially in high-stakes contexts where inaccurate decisions may have far-
reaching negative consequences, it is vital that researchers and practitioners using tests determine if PMI is
present, and if so, assess its practical impact on test outcomes and take steps to mitigate any adverse impact
caused by measurement bias.

The growing interest in measurement invariance has furnished researchers with a wealth of tools and
procedures for the detection of noninvariance, which have been discussed extensively elsewhere (Schmitt &
Kuljanin, 2008; Somaraju et al., 2021; Vandenberg & Lance, 2000). Many of these operate within the
confirmatory factor analysis paradigm (CFA; Joreskog, 1969). Of particular interest to the present research
is the selection accuracy analysis framework by Millsap and Kwok (2004), which evaluates the practical
impact of measurement bias on classification outcomes by comparing selection accuracy indices under MI
and PMI. This framework was initially developed for a unidimensional test with continuous items, and has
since been extended to work with binary (Lai et al., 2019) and ordinal (Gonzalez & Pelham, 2021) items,
and multidimensional tests with continuous items and varying weights (the multidimensional classification
accuracy analysis or the MCAA; Lai and Zhang, 2022). A similar framework is the Adverse Impact (AI)
ratio (Nye & Drasgow, 2011), or the Ratio of Selection Ratios Index (Stark et al., 2004), which is a ratio of
observed and expected selection proportions at a particular cut-off score that helps identify which of the two
groups, if any, would be under or over-selected due to bias. The Al ratio compares the observed score

distribution for one group against the expected distribution of scores for this group if the groups were
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matched on the latent trait(s).

These methods, along with many other innovative developments in MI research that fall outside of
the current scope, reflect an exponential growth in literature on the importance of and methods for
establishing MI. However, the next steps after detecting MI have not received as much attention, especially
in the context of classification decisions, and there is a critical need for methods and guidelines for mitigating
the practical impact of bias on classification decisions.

The Common Factor Model

The common factor model (Thurstone, 1947) is a statistical model of the relationship between an
unobserved (latent) construct (e.g., depression) and observed (manifest) variables (e.g., item responses on a
depression screening test) such that an individual’s true standing on the latent construct governs the
probability of observed responses through a system of linear equations. The relationship between items and the
latent construct(s) is characterized by the loading, intercept, and uniqueness parameters, which refer to the correlation
between the item and the factor, the expected item responses when the latent score equals zero, and the construct-irrelevant
variance of the sum of measurement error and systematic error assumed to be distributed independently with mean zero,
respectively (Thurstone, 1947). Confirmatory Factor Analysis (CFA; Joreskog, 1969) can be used to estimate
and test the equivalence of the parameters of this system (see Appendix A for a more comprehensive
overview and technical details). If estimates are identical across groups, the test is factorially invariant
(Byrne et al., 1989).

Factorial invariance (FI) has been shown to be equivalent to MI under the common factor model
(Horn & McArdle, 1992; Thurstone, 1947); under MI, response probabilities of individuals with the same
latent standing are expected to be invariant across groups. Depending on which parameters are the same
across groups, the level of FI can be classified as, from the least to most stringent, configural, metric, scalar,
and strict (Byrne et al., 2007; Horn & McArdle, 1992; Meredith, 1993). Configural invariance requires
that the configuration of items and factors (the factor structure) is the same across groups. All measurement

parameters are freely estimated under configural invariance. Metric invariance holds if, additionally,
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unstandardized factor loadings are equal across groups. If measurement intercepts are also the same across
groups, it can be said that scalar invariance holds. Finally, strict factorial invariance (SFI) exists when
measurement intercepts, factor loadings, and unique factor variance-covariances (i.e., uniqueness) are equal
across groups or conditions, and is the most stringent level of invariance. More often, partial factorial
invariance (PFI, Byrne et al., 1989) is met, meaning that invariance holds only for a subset of the items.
Under the common factor model, MI is satisfied when SFT holds, and PMI is equivalent to PFT.

The Classification Accuracy Analysis Framework

Consider an example where the 20-item Center for Epidemiologic Studies Depression Scale (CES-
D; Radloff, 1977) is used as an initial screener for risk of depression. Letting n denote an individual’s true
risk of depression, and Z denote observed scores on CES-D items, we can aggregate observed scores on the
CES-D into a composite using some scoring rule, and classify individuals as at risk or not at risk based on a
cut-off score Z. (e.g., 16 points; Radloff, 1977)".

Given the probabilistic nature of inferences based on psychological tests (Borsboom, Romeijn, &
Wicherts, 2008), these classifications are error-prone. The relationship between observed scale sums Z and
theoretical factor scores 1 can be represented as a bivariate normal distribution and visualized as an ellipse,
as in Figure 1. The latent and observed thresholds divide up the area of this ellipse into four quadrants, and
depending on which quadrant a decision falls, it may be qualified as true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). For example, an individual who screened positive on the CES-D
and who is truly at risk of depression (Z > Z. and np > 1) is denoted a TP. Conversely, an individual who
screened positive on the CES-D but is not at risk of depression (Z > Z. and n < n. ) reflects a FP. An
individual who screened negative who is truly not at risk of depression is denoted a TN (Z < Z. and n < )
and an individual who is screened out but is truly at risk is denoted a FN (Z < Z. and n > n.).

The proportion of decisions in each category (i.e., TP, FP, TN, and FN) may then be used to

! In other contexts, classifications may be made using a percentile (e.g., applicants performing in the top 10% on an
entrance exam may be identified as the candidate pool).
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compute summary classification accuracy indices® (CAI): proportion selected (PS), success ratio (SR),
sensitivity (SE), and specificity (SP; Millsap & Kwok, 2004). Proportion selected,

PS=P|TP|+P|FP|, (1)
refers to the ratio of individuals who screened positive over the number of individuals assessed. Success
ratio,

SR=P|TP|/|P|TP|+P|FP]), )
(also termed positive predictive value or the precision of a test; Mohan et al., 2021) indicates the proportion
of positive screens who are truly at risk of depression. Sensitivity,

SE=P|(TP|/|P|TP|+P|FN]), ®3)
is also known as true positive rate, hit rate, or recall (Mohan et al., 2021), and refers to the success of the
test in capturing individuals who meet the criteria: out of all the individuals who should be identified as at
risk, how many of them actually screened positive? Finally, specificity,

SP=P|(IN|/(P|TN|+P|FP]), (4
(selectivity or true negative rate), corresponds to the ability of the test in screening out the individuals who
should have been excluded.

Under the simplifying assumption that individuals belong to one of two distinct populations (termed
the focal and reference groups, where the reference group often corresponds to the majority group), the
classification accuracy analysis framework entails the computation and comparison of CAI for the reference
and focal groups under MI versus PMI to better understand the extent and practical impact of bias on test
performance. If the negative impact of noninvariant items is deemed large enough by the test user, Millsap
and Kwok (2004) suggest solutions such as removing noninvariant items or using a different test, and state
that such decisions should be made with the usage of the test and the cost of each type of misclassification in

mind. For instance, FPs and therefore SR and SP might be of greater concern if the test will be used to give

% These indices were originally termed selection accuracy indices in Millsap and Kwok (2004). We
opted for classification accuracy indices to encompass a wider range of scenarios.
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access to limited and costly resources (Millsap & Kwok, 2004).

When MI holds and the latent distributions are equal, we expect equal TP, FP, FN, and TN
proportions for the reference and focal groups. However, proportions may be drastically different across
groups under PMI (see Figure 1). Further, if the latent distributions are not equal across groups, it is not
possible to compare the indices across groups even under MI. In order to address this concern, an additional
set of indices termed ‘expected focal’ (Efocal) can be computed as the proportions we would expect to
observe for the focal group if its latent distribution matched that of the reference group. One index of note
based on this idea is the Adverse Impact (Al) ratio (Nye & Drasgow, 2011; Stark et al., 2004), which refers
to the ratio of the expected proportion selected for the focal group and the observed proportion selected for
the reference group. The Al ratio was developed to quantify the impact of differential item functioning on
selection outcomes, and can be computed within Millsap and Kwok’s (2004) original framework.

The main idea behind the AI ratio is that if the latent trait level is equal across groups, the
proportions of individuals scoring above the threshold should be equal in each group, which allows us to
attribute any differences between selection proportions to measurement bias. Conditioning on the latent trait
level i and using the group means and standard deviations from the two groups with the reference group’s
ability density function means that any differences captured between the expected proportion selected in the
focal group (Pgf[Zf> Z.]; i.e., if the focal group has the same distribution of depression risk as the reference
group) and the observed proportion selected (i.e., the proportion who screened positive) in the reference
group P.(Z, > Z.) are not related to the construct being measured (see Appendix A for additional details).

The Al ratio is defined as

P.Z,>Z,
Al ratio= 5|222 ©)
Pl" r— ZC)
(Nye & Drasgow, 2011; Stark et al., 2004) which we express as
AIZPSEf/PSr (6)

where PS, denotes PS for the reference group, and PS denotes the expected PS for the focal group if both
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groups were matched to have the latent score distribution of the reference group. If SFI holds, the expected
PS for the focal group will be equal to the PS for the reference group; hence, the Al ratio will equal 1.
Deviations from 1 indicate the presence of measurement bias. A commonly used rule is the ‘four-fifths’ rule,
which suggests that the focal group has suffered adverse impact if the Al ratio falls below 0.80 (Biddle,
2006; Nye & Drasgow, 2011). In an adverse impact situation, the item with the removal of which brings the
Al ratio the closest to 1 would be our candidate for deletion.

The Multidimensional Classification Accuracy Analysis Framework

Noting that selection and classification decisions are rarely based on psychological tests measuring a
single, unidimensional latent construct, and that different weights may be assigned to different dimensions in
practice, Lai and Zhang (2022) expanded the selection accuracy analysis framework (Millsap & Kwok,
2004) to work with tests aimed to measure multiple latent constructs with different weights. Assuming the
multivariate normality of the latent factor scores and the unique factor variables, the observed composite
scores Z, and the latent composite factor scores ng (where the latent composite is a weighted combination of
the latent dimensions and g denotes group membership) were shown to follow a bivariate normal
distribution (see Appendix A; Lai & Zhang, 2022). Furthermore, the marginal distribution of (Z, n) was
demonstrated to be a finite mixture of bivariate normal distributions with mixing proportion m,, and the
latent composite cut-off r. can be computed as the quantile in the mixture corresponding to PSiw (Lai &
Zhang, 2022; Millsap & Kwok, 2004). The researcher may choose to pre-specify PS.a (e.g., to select
the top X% of candidates) or specify a cut-off Z. (e.g., in a diagnostic screening setting), which will
then be used to compute the proportion of individuals selected using the cut-off.

While this framework help test users to link measurement noninvariance to the practical impact on
classification, it does not provide clear methods for or guidance on how test accuracy and fairness may be
improved, for example, by dropping biased items. Our goal is to remedy this gap by providing test users
with item deletion indices that allow for the assessment of improvements (or decreases) in test accuracy and

fairness when a biased item is dropped.
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Methods: Item Deletion

The methods discussed here concern the case where a psychological test used for classification
decisions contains measurement bias, and the researcher aims to investigate which of the test items, if any,
may be deleted to reduce the negative impact of this bias on the performance and fairness of the scale. The
deletion of an item may not be necessary or beneficial in some scenarios, and may in fact harm the validity
and reliability of the test as will be discussed later. The methods outlined here are provided to facilitate
researchers’ exploration of their data and to lead to more informed decisions about deleting or retaining an
item.

The test instrument can consist of a single factor (e.g., depressive affect) or multiple factors (e.g., a
scale of depression measuring different facets of depression such as positive affect, negative affect, and
somatic symptoms). In this paper and in the accompanying unbiasr package, deletion is considered in a step-
wise manner such that no more than one item is to be dropped at one time. Unless otherwise indicated by a
subscript (e.g., SEs), we assume that CAI are computed under PFI. The current method assumes that each
item loads onto a single factor (i.e., no cross-loadings).

We can examine the impact of dropping an item on the difference in CAI from three distinct but
complementary angles. The first approach entails an examination of an overall measure of classification
accuracy, termed aggregate CAI ( CAI), which is a weighted average of CAI across the reference and focal
groups. The second approach consists of a comparison of the Al ratio computed using the full item set (AI)
with the AI ratio computed using an item set excluding the j-th item (AI V). The third approach entails a
comparison of CAI for the reference group (CAI,) and the expected CALI for focal group (CAlg) for a given
set of items.

We now introduce h and Ah, operations used to compute item deletion indices that quantify
differences in CAI and CAI .

Operation: Cohen’s h (Cohen, 1988)

Cohen’s h (1988) is an effect size measure of the difference in two proportions or probabilities that
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was designed to account for the fact that probabilities can only range from O to 1, and uses the arcsine
transformation so that the values better resemble an interval scale. Cohen’s h effect size (Cohen, 1988) of the
difference between proportions p; and p» is defined as
h =2 arcsin (\/F1 ) — 2 arcsin (\/F2 ). (7

Resulting h values can be interpreted as indicators of small, medium, or large differences between
proportions using the conventionally used benchmarks of 0.2, 0.5, and 0.8 (Cohen, 1988). For example, if p;
= .65 and p, = .50, we have h(.65, .50) = 0.30, which corresponds to a small-medium effect size, and h(.95,
.80) = 0.48.

Operation: Delta h (Ah)

The change in the effect size h when a noninvariant item j is deleted is also of interest. Using * as a
placeholder for the comparison h was computed for, the operation Ah is defined as
ARICAI = |h"CAI| - |h" CAI!J|. (8)
Delta h can be used to quantify the change in the difference between h values comparing CAI across groups
or invariance conditions when the j-th item is dropped. As an example, consider a scenario where we are

interested in the change in the effect size h associated with the difference between SE, and the SE computed
when item 2 is deleted (SE éf). First, the effect size h for the difference between SE, versus SEg (using the

full item set) is computed:

hSE = 2arcsin(Y SEr) - 2arcsin(V SE ),

Second, h for the difference between SEf versus SE i“ﬁ (on the item set excluding item 2) is computed:

2 2 2
h-ESE” = arcsin(V SE, ) — 2arcsin(V SEEf).

Finally, these values are compared using
ARPSE = |hE'SE| - |hE'SEP.

Note that Delta h is only computed on h values, in contrast to Cohen’s h which can be computed for ‘raw’
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proportions. Having defined these two operations, we now describe the first three approaches to item
deletion in more detail.
Approach 1: Examining Changes in Aggregate Classification Accuracy Indices (CAI)

We obtain aggregate classification accuracy indices as weighted averages across groups (see Appendix
B for computation details) and CAI" (aggregate classification accuracy indices when a potentially biased item j
is deleted). Comparing CAI and CAI" and examining the effect size h of any discrepancy helps us determine
the impact of deleting a biased item. Increases in CAI when an item is deleted may point to one of the
following scenarios: CAI may have increased for both groups, or CAI may have increased for one group
but stayed constant or decreased for the other®.

We suggest that the item j leading to the largest increase in CAI and resulting in negative
h’ CAI when deleted may be considered a candidate for deletion. If h’/ CAT is positive, deleting item j would

lead to a decrease in CAI so researchers should be careful with deletion when h’ CAT is large.
Approach 2: Examining the AI Ratio

We then compare the Al ratio computed using the full item set (AI) to the one computed using the
item set excluding biased item j (AIY). If the deletion of j does not lead to an AI' closer to 1 than Al
for any j, or leads to an Al ratio that is lower than the one computed using the full item set, all items
should be retained as the deletion of items has no impact or leads to more adverse impact. If, on the other
hand, the deletion of item j brings the Al ratio closer to 1, the discrepancy between PS, and PSgs has
decreased, signaling an improvement. If in fact AIY = 1, we can say that the difference between the groups
in PS that is due to measurement bias is eliminated as the deletion of item j achieves a PS¢that is equivalent
to that of the PS, if these two groups were matched on their latent trait level. If there are multiple items the

deletion of which lead to an improvement, the researcher is advised to consider the deletion of the item that

% We may consider an increase in CAI when the j-th item is deleted such that CAI < CAI’ an overall
improvement in all cases except when the increase in CAI is driven by improvements in CAI, being given greater
weight in computation due to a larger 7z that masks decreases in CAl;. This case concerns the scenario where the
removal of the item actually leads to greater discrepancy. Note that if there is an imbalance between CAI, and CAI;
such that CAI is higher for one group than the other, CAI will take a value between CAI, and CAI that is closer to
CAL if 7. > 0.5, and equal to the midpoint between CAI, and CAJ; if 7z, = 0.5.
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brings the Al ratio the closest to 1. If multiple items lead to a similar improvement in the Al ratio if deleted,
the researcher may continue their exploration of the other indices and make a judgment call as to which
item, if any, should be deleted.

Approach 3: Examining Differences in CAI for Reference and Efocal Group

Comparisons can then be made between the observed scores for the reference group (CAI,) and
the scores we would expect to see for the focal group if the focal group followed the same distribution as
the reference group (CAlg) by conditioning on the matched latent trait. Unlike the AI ratio, which
focuses solely on PS, this approach allows the researcher to quantify discrepancies between SE,, SR,, and
SP,, and SEg;, SRy, and SPg, and to interpret any observed difference between CAI, and CAI ; as being
truly due to measurement bias, that is, as a difference that is not due to true group-level differences in the
trait being measured.

After computing Cohen’s h values for the difference between CAI, and CAlg for the full item set
(h"*'CAI) and an item set excluding biased item j (h"*CAI’ , the change in this difference can be
computed using equation (8). Item j that leads to the smallest |h"*CAI| and the largest Ah'CALI introduces
the most bias and its deletion has the largest effect size may be considered the candidate for deletion. In
contrast, items that lead to a larger |i™*'CAI| or result in an insubstantial improvement (as indicated by a very
small Ah'CAI) should be retained.

The three approaches are intended to be examined in conjunction, and test users are advised to
compare and contrast results from each approach before making a final decision about item deletion. If there
is unanimity across the approaches supporting the deletion of an item (and assuming that its deletion does
not have a major impact on the conceptual breadth of the test), the item may be dropped. If the three
approaches agree, but the improvement as indicated by the indices is minimal, the test user may opt to retain
the item in order to preserve the statistical properties and construct coverage of the scale. If there is
disagreement between the approaches such that, for example, one approach indicates an improvement and

one approach indicates a decrease in accuracy and fairness if an item is deleted, the user is advised to proceed
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with caution and examine raw classification accuracy indices. We suggest that items should be retained unless
there is clear indication that the deletion of an item would lead to a concrete improvement in and would not
harm accuracy and fairness.

Ilustrative Example

We now illustrate the use and interpretation of the item-level deletion indices in a diagnostic
application context using CFA estimates from a previous study investigating the measurement invariance of
the CES-D (Radloff, 1977) across Chinese and Dutch elderly populations (Zhang et al., 2011). CES-D is
made up of 20 items and four factors: positive affect (good, hopeful, happy, enjoyed), depressive affect
(blues, depressed, failure, fearful, lonely, crying, sad), somatic complaints (bothered, appetite, mind,
effort, sleep, talk, get going), and interpersonal problems (unfriendly, dislike). Participants are asked to
rate each item on a scale of 0 to 3 based on how they felt in the past week. The maximum score is 60 on the
full scale.

In their examination of data collected from 4903 elderly adults from China and 1903 elderly adults
from the Netherlands, Zhang and colleagues (2011) found that configural and metric invariance held, and
demonstrated partial scalar and partial strict invariance such that while the same construct was being
measured across groups, there were differences in intercepts (failure, good) and uniqueness (depressed,
fearful, and dislike). Depending on the size and direction of these differences, more individuals from the
Chinese elderly (reference) group may be flagged for depression, resulting in a potential waste of valuable and
limited resources. Likewise, fewer individuals from the Dutch elderly (focal) group who are truly at risk for
depression may screen positive, which may mean that their treatment is delayed, or they lose access to
resources or interventions. These observed differences may also be mistaken for true group-level
differences, leading to spurious conclusions in theory building which may have unforeseeable downstream
consequences. Taking informed steps to delete the item introducing the most bias to the scale may allow
practitioners and researchers mitigate unfair disadvantages caused by measurement bias.

We demonstrate the item deletion framework assuming that the CES-D scale is used as an initial
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screener for risk of depression, where selected individuals would be further assessed by a clinician who may
leverage multiple additional information sources (e.g., a diagnostic interview) to determine whether the
individual qualifies for some treatment or intervention program for depression. We use unstandardized factor
loading, uniqueness, intercept, factor mean and factor standard deviation estimates from Zhang et al. (2011)
and a latent factor variance-covariance matrix computed using factor correlation estimates from a previous
study by Miller et al. (1997) as our input parameters*.

We use a cut-off score of 16 on the full CES-D scale following the example of Radloff (1977), and
hold the proportions selected using the full set of items constant in the item deletion scenarios considered.

Note that researchers can instead choose to provide a new post-deletion cut-off to be used.

he mixing proportion 7, is set to 4903/(1903 + 4903) ~ 0.72. As the depressive affect and somatic
affect factors have 7 items each, the lack of positive affect factor has 4 items, and the interpersonal problems
factor has 2 items, this allocation of weights results in 35%, 35%, 20% and 10% weighting for the
aforementioned latent dimensions. All relevant parameter values, function calls, and outputs can be found in
the code excerpts included in the supplementary materials®.
Item deletion on the 20-item, four-factor CES-D scale

Under partial factorial invariance, PS = 0.457 of the Chinese elderly group and PS = 0.144 of the

Dutch elderly group scored above the cut-off score of Z. = 16, which corresponds to an aggregated PS of

* The factor correlation estimates from Miller et al. (1997) were used as a proxy as estimates for the latent factor
variance-covariance matrix or factor correlations were not provided in Zhang et al. (2011). As items in the
positive affect subscale were reversed in Zhang et al. (2011) to achieve a ‘lack of positive affect’ interpretation, we
reversed the signs of Miller et al.’s (1997) correlation estimates in our computations of the variance-covariance
matrix.

> The parameters reported in Zhang et al. (2011) were obtained via maximum likelihood (ML) while Miller et
al. (1997) used the asymptotically distribution free weighted least squares (WLS) estimator. The assumptions of
continuous, normally distributed data for the ML estimator are unlikely to hold in the case of CES-D, which has four
response options. It is recommended that ordinal methods are employed when dealing with data with less than five
response options (Rhemtulla et al., 2012), and ordinal data should be handled differently than continuous data while
testing for MI (Wu & Estabrook, 2016). We use parameter estimates for the CES-D scale for illustrative purposes
only, and the item deletion methods were developed to facilitate researchers’ exploration of the impact of item-level
bias after fitting their model.
®  An extension to the illustrative example in which the analyses are repeated for each of the four subscales of CES-
D, assuming for the purposes of illustration that the subscales will be used independently to select individuals can be
found in the supplementary materials.
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0.387. PS, and PSy are held constant to achieve an aggregate PS of PS = 0.387 across item deletion
scenarios.

Items 4, 9, 10, 11, 15, and 20 (effort, depressed, failure, fearful, good, dislike) were identified as

biased in Zhang (2011). Table 1 illustrates the CAI and Cohen’s h values associated with the deletion of
each of these biased items. The h values here range between 0.003 and 0.013. The higher SP = 0.934
compared to SR = SE = 0.887 suggests that, overall, the scale performs somewhat better at not selecting
individuals who are not at risk for depression. The effect size of removing any of the biased items on CAI is
quite low, as seen in the Cohen’s h values provided in Table 1, and no item's removal leads to an

improvement in CAI3.

Table 2 contains the item deletion indices quantifying the discrepancy between CAI, and CAlgy.
The Al ratio for the full scale is AI = 0.908, which is greater than the 80% threshold for adverse impact.
The deletion of item 9 (depressed) or 11 (fearful) leads to Al ratios further away from the optimal ratio of 1,
whereas deleting item 4 or (effort) or 20 (dislike) leads to no change in the AI ratio. The greatest
improvement in the Al ratio is observed for the removal of item 15 (good), followed by item 10 (failure) as
the removal of either item brings the Al ratio closer to 1: AI'® = 0.977 and AI''® = 0.930. The rightmost
three columns of Table 2 illustrate the effect size of the discrepancies between CAI, and CAlg attributable
to measurement bias. h™*SR = —0.157 and h"*SP = —0.164 on the full CES-D scale suggests higher SR
and SP values for the focal group (Dutch elderly) had the focal group been matched with the reference group
(Chinese elderly) on the latent traits. Similarly, h™*'SE = 0.141 suggests a lower SE for the expected focal
group. Not only does the deletion of item 15 (good) attenuate the discrepancy between CAI, and CAlg,
bringing the h values closer to 0 (h"°SR = -0.047, h"*SE = 0.026, h"*SP = —0.048), improvements
caused by the deletion of this item also have the largest effect sizes out of all item deletion scenarios (Ah!

"SR = 0.110, Ah*SE = 0.116, Ah"*SP = 0.116).

In light of these findings, and barring any domain specific reasons to retain this item, we can
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conclude that deleting item 15 would help mitigate the impact of measurement bias on classification
accuracy and fairness, and render the diagnostic accuracy of the CES-D for the Chinese and Dutch elderly
groups more comparable (see the supplementary materials for an illustration of the distributions of latent
and observed scores for depression for the Dutch and Chinese elderly groups before and after the deletion of
item 15).

We would like to emphasize that the suggestion to delete item 15 (good) only applies to the findings
discussed here by Zhang et al. (2011) regarding the comparison between Chinese and Dutch elderly
individuals, and does not necessarily generalize to item or test performance in other contexts. For instance,
if a clinician is adapting the Chinese version of the CES-D to screen depression risk for their clients, we
would recommend repeating the analyses here with their data and carefully examining the performance of
all items including item 15 before proceeding with any deletion.

Four-factor CES-D Scale after deleting item 15

Continuing with the diagnostic example, we perform item deletion on the remaining 19 items of the
CES-D to see whether the deletion of a second item may further reduce the impact of measurement bias. The
cut-off score is recomputed as Z. = 16/60%(60—3) = 15.2 to account for the deleted item. Results are
illustrated in Tables 3 and 4.

In Table 3, we see that the deletion of any of the remaining biased items (4, 9, 10, 11, 20, or effort,
depressed, failure, fearful, dislike) leads to decreases from SR= 0.886, SE= 0.886 and SP=0.925,
harming overall classification accuracy.

In the first column of Table 4, only item 10 (failure) leads to an Al ratio that is closer to 1 if deleted,

with AI"'® = 0.999 from AI = 0.979". In the next three columns of Table 4, we see that deleting item 10

7 Note that the Al ratio is 0.979 on the 19-item CES-D scale, which is slightly different than the previously reported
delete-one Al ratio of AT > = 0.977 (see Table 2). Any such difference in the row labeled ‘|15’ in Table 2 and in the
row labeled Full in Table 4 is due to the difference in providing a cut-off value versus a proportion to be selected for
the computations. In the computations for the Al value that would be achieved by deleting item 15, the proportions
selected using the provided cut-off score on the 20-item scale were held constant in the 19-item scenarios. As such,
AI ™ = 0.979 was achieved using a proportion of selection. On the other hand, once we dropped item 15 and
repeated our computations to consider the deletion of a second item, AI = 0.999 was computed based on the cut-off
score for the 19-item scale. Accordingly, the delete-one statistics reported for the 19-item scale (i.e., for an 18-item
subset) were computed based on the proportions selected when using the full 19-item scale.
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may also slightly reduce the discrepancy between CAI and CAlg , with "SR = -0.011, h*# SE!"* =

~0.007, and h™¥SP!'" = —0.011. The effect sizes of these changes in discrepancy between CAI, and
CAlg are AR'°SR = 0.032, AR'°SE = 0.017, and Ah'°SP = 0.036. The deletion of any other item
either leads to an insubstantial improvement, or exacerbates the discrepancy between CAI, and expected
CAl;, increasing bias.

While these results show that item 10 introduces the most bias after item 15, the potential
improvement achieved from dropping this item is not as clear-cut as that from the deletion of item 15.
Given the ambiguity of these results and the lower magnitude of the improvements in Al and h"* CAI
compared to when item 15 was the candidate for deletion, we would recommend retaining item 10 and
proceeding with the 19-item CES-D scale unless further, theory-based justification supporting the deletion
of item 10 is established. It may be worthwhile examining the raw classification accuracy indices as,
depending on the application context, whether an increase in SR is caused by a decrease in FP or an increase
in TP may give additional insight into the best course of action if the scale will be used for allocating limited
resources such as access to a treatment program. We believe that the methods and guidelines outlined here
equip test users to make more informed decisions about whether improvements in Al and h™* CAI are large
enough to warrant item deletion.

Implementation using R package unbiasr

The R package unbiasr implements the item deletion methods proposed in the current paper. The
main function in unbiasr is Partinv(), which allows users to evaluate the practical impact of classification
accuracy across groups and requires only the CFA parameter estimates as input. item_deletion_h()
computes effect size indices quantifying the impact of deleting biased item(s) on classification accuracy
indices. unbiasr incorporates the R scripts from Lai et al. (2017) and Lai and Zhang (2022).

First, CAI are computed under SFI and PFT for the full set of items using the user-specified item
weights. Then, summary statistics are computed for the item set excluding item j using an adjusted item

weight vector where an item weight of zero is assigned to the j-th item. In the calculation of the new item
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weights, the weight that had been allocated to the j-th item is redistributed across the remaining test items
proportionally to the current weights of these items. If the test is multi-dimensional, the weighting is
redistributed only across the items that belong to the same subscale as item j. Once relevant delete-one
classification accuracy indices are computed for the reference, focal, and expected focal groups under
strict and partial factorial invariance, operations h and Delta h are used to compute the deletion indices (
CAI, hV CAI, A1V, " CAI, AhVCAI).

Depending on the purpose and application context of the test, users may indicate a cut-off score
(Z; e.g., to identify patients scoring above a clinically meaningful cut-off for treatment referral), or input a
proportion for selection (propsel; e.g., to hire the candidates scoring in the top 10% of the applicant
pool). If the user specifies a cut-off Z. as well as a delete-one cut-off score adjusting for the decrease in
the maximum total score when an item is dropped from the scale, the second cut-off score is used as the
new Z. in item deletion scenarios. If the user specifies a proportion for selection, this value is held constant
in item deletion scenarios. If a delete-one cut-off score is not provided by the user, the PS,; and PS,; using
Z. on the full item set are held constant in the computations of CAI in item deletion scenarios. For example,
if Z. = 16 on the full scale corresponds to PSs; = 0.30 and PS,s = 0.28, summary statistics will be
computed with propsel = 0.30 and propsel = 0.28 so that the highest scoring 30% and 28% of
individuals in each item deletion scenario will be selected under strict and partial invariance conditions
respectively.

Discussion

Psychological tests provide decision-making bodies and scientists alike with a relatively time-
efficient and objective tool for the assessment and comparison of individuals’ relative standings on constructs
of interest and are used in a range of applications from theory construction and advancement to decision-
making. As such tests are commonly used in high-stakes contexts and may have wide-reaching
consequences beyond the immediate application of the test, it is critical that test scores are valid and free of

bias. A notion inextricably linked to validity and bias is measurement invariance, which holds when a test
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measures the same construct in the same way across grouping variables that are irrelevant to the construct
under study (e.g., race). The current framework provides decision-makers with tools and guidelines to better
navigate the seldom-discussed next-steps following the discovery of noninvariant items.

We have fully automated the three complementary approaches to item deletion outlined in this
paper, and the functions for the computation of item deletion indices are available in our open-source R
package unbiasr. The outlined methods expedite and give structure to the otherwise laborious and error-
prone process of determining the best course of action to handle item bias by converting differences in
classification accuracy indices to comparable and easily interpretable units. As such, test users can make
more informed decisions about item deletion (or retention) more efficiently, prevent the misallocation of
limited resources, expedite the time it takes for patients to receive the care they need, and reduce the
influence of construct-irrelevant factors on classification decisions, promoting fairness. We hope that the
detailed examination and discussion of the item deletion indices in the illustrative example helps elucidate
the process of determining whether a biased item can, or should, be deleted to improve accuracy and fairness
in classification decisions.

There are a number of limitations to the current work. First, the methods outlined here concern
binary classification decisions, such as selection versus rejection or diagnosis versus no diagnosis. Future work
is planned to extend to classification into multiple categories (e.g., classification of an individual’s
depression level into severity categories; class placement of students based on levels of language
proficiency). Second, we only considered noninvariance across two groups, whereas many demographic
characteristics have multiple subgroups (e.g., ethnicity, race, SES). We hope to extend the framework to the
classification of individuals across multiple groups. Third, we assumed that the test items were measured on
an interval scale. We have proposed and illustrated the current framework in the context of interval level
data®, but we plan to extend the framework to ordered categorical data in future research. Moreover, the

current methods do not quantify the uncertainty around the estimates. Additional tasks for our package

8 Note that the CES-D items are measured on a 0-3 scale and would ideally be treated as ordinal. The illustrative
example assumed interval level data for the sake of simplicity.
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therefore include extending the current methods to performing item deletion for multiple groups as well as
for when test items may be measured on a binary or ordinal scale, and computing uncertainty estimates (e.g.,
Bayesian credible intervals).

Any item deletion decision should be made with the context and application of the test in mind
(Millsap & Kwok, 2004), as one potential consequence of deleting items is reduced construct coverage
(Kruyen et al., 2013). While the deletion of an item may lead to better classification accuracy and
increased fairness, the item may nevertheless be important to retain, particularly in application contexts
where inference and interpretability take precedence over prediction. It may be more important in a
research context to get a holistic picture that taps into all facets of the construct for theory-building
purposes as opposed to in more applied contexts where the goal is to make a decision®. For example,
imagine the item loss of interest and pleasure, which measures an aspect of depression that is integral to the
construct definition of depression, is found noninvariant across groups and that the deletion of this item leads to
better classification accuracy and higher fairness. If the goal is to determine the individuals that qualify for a
treatment program, the improvement in performance and fairness in outcomes may justify the deletion of the
item as the predictive validity of the scale as a diagnostic tool may be of greater interest. However, if the
scores on the depression scale are, for example, used to gain a better understanding the manifestation of the
symptoms of depression in different cultural contexts, we recommend consulting existing literature as well
as domain experts to clarify the potential reductions in construct coverage. It may also be worthwhile to
explore alternative approaches, such as going back to the drawing table and piloting modified versions of
the noninvariant item with samples from the different groups to rebuild the scale with an unbiased
replacement item, assuming that resource and time constraints allow for such a detour.

Furthermore, test users should exercise great caution while considering deleting multiple items at a
time from a scale, and note the close relationship between the test length and its internal reliability (Brown,

1910; Kruyen et al., 2012; Spearman, 1910). We stress that the shorter the test, the riskier it may be to drop

? See Chapter 4 of AERA, APA & NCME (2014) and Bandalos (2018) Chapter 16 for additional discussions of MI
applications for theory building and item revision.
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items.

The item deletion indices, methods, and guidelines introduced here function as exploratory tools to
scrutinize the ‘what-if’ scenarios concerning biased items. It is ultimately up to the decision-maker to judge
whether the magnitude of an improvement is large enough to warrant deletion, and determine whether one or

more items, if any, can (and should) be deleted in a given application context.
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658 Figure 1

659 Distribution of observed and latent scores by group and invariance condition.
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661  Strict factorial invariance. (b) Partial factorial invariance.

662 Note. An illustration of the joint bivariate distributions of observed and latent scores for the cases where strict
663  measurement invariance holds (a), and partial measurement invariance holds (b). The distributions are indicated
664  separately for the reference and focal groups. Dotted lines denote thresholds on the observed and latent scores. The

665 quadrants A, B, C, and D correspond to TP, FP, TN, FN rates.
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164
165

666

667

668 Table 1

Aggregate Classification Accuracy Indices and h values computed for the 20-item CES-D scale

Aggregate Classification Accuracy Indices

SR h SE h SP h

Full 0.885 - 0.885 - 0.933 -
|4 0.881 0.013 0.881 0.013 0.930 0.010
9 0.882 0.009 0.882 0.009 0.931 0.007
|10 0.884 0.004 0.884 0.004 0.932 0.003
|11 0.884 0.005 0.884 0.005 0.932 0.003
115 0.883 0.008 0.883 0.008 0.931 0.006
|20 0.883 0.006 0.883 0.006 0.932 0.004

669  Note. Columns SR, SE, and SP indicate aggregate classification accuracy indices computed for a given item set
670 (either 20-items, "Full", or 19-items excluding item j indicated in the row). The columns titled h indicate the
671 Cohen’s h values for comparisons between CAI on the 20-item scale and possible 19-item scales excluding item j.

672  The dashes in the second row indicate that there is no comparison of CAI on the 20-item scale with itself.
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Table 2

Item deletion indices comparing the reference and the (expected) focal groups on the 20-item CES-D scale

CAI vs. Expected CAlf

Al hEfsrR  antEfsr  prEfsp aprEfsg pr-Efgp aprEfgp

Full 0.908 20.151 - 0.141 - 20.159 -

14 0.908 -0.147 0.004 0.138 0.002 -0.156 0.003

9 0.904 -0.154 -0.003 0.147 -0.006 -0.164 -0.004
110 0.930 -0.115 0.036 0.104 0.037 -0.122 0.037
I8! 0.905 -0.153 -0.002 0.145 -0.005 -0.162 -0.003
115 0.977 -0.045 0.106 0.026 0.114 -0.047 0.113
20 0.908 -0.145 0.006 0.141 -0.001 -0.154 0.005

Note. The first column contains the Al ratio for a given item set. h"*CAI columns indicate effect sizes for the
discrepancy between classification accuracy indices computed for the reference group (CAI,) and expected CAI
computed for the focal group (CAlg ) for an item set (either 20-items, "Full", or 19-items excluding biased item j
indicated in the row). Ah"*CAI columns denote the change in the discrepancy between CAI, and CAls when item j is
deleted. The dashes in the first row indicate that there is no comparison of an item deletion index on the 20-item scale

with itself. As Cohen’s h cannot be computed for non-proportions, there are no h values reported for Al values.
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Table 3

Aggregate classification accuracy indices computed for the 19-item CES-D scale.

Aggregate classification accuracy indices

Item Set SR h SE h SP h
Full 0.888 - 0.888 - 0.926 -
|4 0.884 0.011 0.884 0.011 0.924 0.009
19 0.879 0.008 0.879 0.008 0.915 0.006
|10 0.881 0.003 0.881 0.003 0.916 0.002
|11 0.880 0.004 0.880 0.004 0.916 0.003
|20 0.875 0.020 0.875 0.020 0.912 0.016

Note. Columns SR, SE, and SP. indicate aggregate classification accuracy indices computed for a given item set
(either 19-items, "Full", or 18-items excluding item j indicated in the row). Columns titled h Cohen’s h values for
comparisons between CAI on the 19-item scale and 18-item scales excluding item j. Note that item numbers are

the same after the deletion of item 15 (good). The dashes in the first row indicate that there is no comparison of

CAI on the 19-item scale with itself.
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Table 4

Item deletion indices comparing the reference and the (expected) focal groups on the 19-item CES-D scale

CAI vs. Expected CAl;

Ttem Set Al hW-Efsr  antEfsr  pEfsg  aptEfsg  pr-Efsp  apr-Efsp
Full 0.979 -0.044 - 0.025 - -0.048 -
|4 0.979 -0.042 0.002 0.024 0.001 -0.046 0.002
|9 0.973 -0.047 -0.004 0.032 -0.006 -0.053 -0.005
|10 0.999 -0.011 0.032 -0.007 0.018 -0.010 0.037
|11 0.973 -0.047 -0.004 0.031 -0.006 -0.052 -0.005
|20 0.977 -0.040 0.003 0.028 -0.002 -0.045 0.002

Note. The first column contains the Al ratio for a given item set. h"*'CAI columns indicate effect sizes for the
discrepancy between classification accuracy indices computed for the reference group (CAI,) and expected CAI
computed for the focal group (CAIg ) for an item set (either 19-items, "Full", or 18-items excluding biased item j
indicated in the row). Ah"¥'CAI columns denote the change in the discrepancy between CAI, and CAl when item j is
deleted. Note that item numbers are the same after the deletion of item 15 (good). The dashes in the first row indicate
that there is no comparison of an item deletion index on the 19-item scale with itself. As Cohen’s h cannot be computed

for non-proportions, there are no h values reported for Al values.
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Appendix A
1. The Common Factor Model

For a set of Jitems (j = 1, ..., J) aimed to measure M latent constructs (m=1,..., M), let Yig

denote a J x 1 vector of observed item scores, and Nig a M x 1 vector of latent factor scores distributed with

M % 1 mean vector E(n) = a and M x M variance-covariance matrix Cov(n) = W. Here, i denotes the
individual (i =1, ..., N), and g denotes group membership, time point, or test condition. The common

factor model postulates that the relationship between the latent and observed variables is expressed by
Yig= Vg T AgNlig + €5

where v, is a J x 1 vector of intercepts, A 4is a J x M matrix of factor loadings, and €;, is a J %1 vector of
unique factor variables (Lai & Zhang, 2022; Meredith & Teresi, 2006). Unique factor variables (¢) refer to
the construct-irrelevant variance of the sum of measurement error and systematic error, and each is assumed
to be distributed independently with mean E(e) = 0 and variance-covariance matrix Cov(e) = @.
Assuming additionally that the latent and unique factor variables are uncorrelated (Corle, n] = 0), the
observed variables are distributed with mean E(y) = v + A a and variance-covariance matrix £ = /1 ®

N+Y.

Depending on which parameters are the same across groups, the level of factorial invariance can be
classified as, from the least to most stringent, configural, metric, scalar, and strict (Byrne et al., 2007; Horn
& McArdle, 1992; Meredith, 1993). Configural invariance requires the same factor structure across groups,
and freely estimates all parameters. Metric invariance additionally requires equal unstandardized factor
loadings (A) across groups. Scalar invariance holds if measurement intercepts (v) are also the same across
groups. Finally, strict factorial invariance (SFI) exists when measurement intercepts, factor loadings, and

unique factor variance-covariances (Var[e]; uniqueness) are equal across groups or conditions (vg=v, A 4=

A, 6,=0,Vg). While SFI is necessary for valid and meaningful comparison of factor scores across groups, it

may be difficult for these demanding criteria to be met in practice. More often, partial factorial invariance
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(PFI, Byrne et al., 1989) is met, meaning that invariance holds only for a subset of the items.

Factorial invariance has been shown to be equivalent to MI under the common factor model (Horn &
McArdle, 1992; Thurstone, 1947). Then, response probabilities of individuals with the same latent standing
are expected to be invariant across groups if MI holds. Mathematically, MI exists if conditioned on the

latent construct, observed scores and group membership are independent such that
P (yln, G = g) = P (yIn).Vg

(Mellenbergh, 1989; Meredith & Millsap, 1992). Under the common factor model, MI is satisfied when

SFI holds, and PMI is equivalent to PFI.

2. Adverse Impact Ratio
Letting P; (Zf > Z.) and P.(Z, > Z.) denote the proportion of selected individuals who scored above
the cut-off point Z. in the focal and reference groups and Pgs denote the proportion of selected individuals

expected for the focal group, the Al ratio is defined as

Py(2,22,)
Pr<Zr2Zc)

Al ratio=
where
Pee (222 = [ Pr (Z1 2 Zcn) £ (n) dn,
P(Z:2Z) = [ P:(Z: = Zcn) £ (n) dn
(Nye & Drasgow, 2011; Stark et al., 2004).

3. The Multidimensional Classification Accuracy Analysis Framework
Let c be a J x 1 vector of item weights. For a multidimensional test with J items measuring M latent
constructs, assuming the multivatiate normality of (n, €), the observed scale sums Z, and the latent factor

scores 1, were shown to follow a bivariate normal distribution such that
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Z

4

Mg

cvg+cAgag
wa,

=N s {CAQIPQAQC"'C@QC e AP w W‘PQW] where wis a1 x M vector

of latent factor weights (Lai & Zhang, 2022). Furthermore, the marginal distribution of (Z, i) was
demonstrated to be a finite mixture of bivariate normal distributions with mixing proportion m,, and the
latent score cut-off n. can be computed as the quantile in the mixture corresponding to PSiwm (Lai &

Zhang, 2022; Millsap & Kwok, 2004).



190
191
192
193

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

IMPACT OF DELETING A BIASED ITEM 38

Appendix B
Computing Aggregate Classification Accuracy Indices (@)
We compute aggregate TP (TP), FP (FP ), TN (TN), and FN ( FN) using the following formulas
where 7. indicates the mixing proportion (the relative size) of the reference group:
TP = TP, x m, + TP; x (1 — m,),

We then compute CAl on the full item set:

PS equals the user-specified proportion to be selected, or the quantile as identified by the user-
specified cut-off. Then, PS‘/, SR*/, SE*/and SP*’ are computed and compared against PS, SR, SE, and
SP to determine the impact of deleting a biased item.

h'7 CAI effect size for the change inCAI when the j-th item is deleted is computed using:

h'/CAI - 2arcsin(¥ CAI ) — 2arcsin(Y CTAIU)

For example, the improvement in SE if the first item is deleted is computed as

h*'SE - 2arcsin(Y SE ) — 2arcsin(Y S_EM).
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