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Abstract—The increasing integration of renewable energy
resources into power grids has led to time-varying system
inertia and consequent degradation in frequency dynamics. A
promising solution to alleviate performance degradation is using
power electronics interfaced energy resources, such as renewable
generators and battery energy storage for primary frequency
control, by adjusting their power output set-points in response to
frequency deviations. However, designing a frequency controller
under time-varying inertia is challenging. Specifically, the stability
or optimality of controllers designed for time-invariant systems
can be compromised once applied to a time-varying system. We
model the frequency dynamics under time-varying inertia as a
nonlinear switching system, where the frequency dynamics under
each mode are described by the nonlinear swing equations and
different modes represent different inertia levels. We identify
a key controller structure, named Neural Proportional-Integral
(Neural-PI) controller, that guarantees exponential input-to-state
stability for each mode. To further improve performance, we
present an online event-triggered switching algorithm to select
the most suitable controller from a set of Neural-PI controllers,
each optimized for specific inertia levels. Simulations on the IEEE
39-bus system validate the effectiveness of the proposed online
switching control method with stability guarantees and optimized
performance for frequency control under time-varying inertia.

Index Terms—Power system dynamics, primary frequency
control, nonlinear and hybrid systems, reinforcement learning.

I. INTRODUCTION

Frequency stability is vital for the security and operation
of power systems, the goal of which is to balance power
generation and demand to maintain the system frequency
near its nominal value (i.e., 60 Hz in the US). This paper
mainly focuses on primary frequency control, which corrects
immediate power imbalances within seconds [1]. The surge in
integrating renewable energy sources like wind and solar, while
marking significant progress towards sustainability, introduces
larger fluctuations in net loads due to their unpredictable power
outputs, thus requiring more advanced controllers [2]. Moreover,
many of these new technologies are interfaced with the grid
through power electronic interfaces (i.e., inverters), which have
no rotational inertia. At the same time, the grid still has a large
number of synchronous components, creating a system that
is a mixture of conventional machines and inverter-connected
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[ Main Result 1: The closed-loop system has a unique equilibrium point. (Theorem 1) ]

Main Result 2: Under constant inertia, the Neural-PI controller guarantees Exponential
Input-to-State(Exp-ISS) Stability, with Exp-ISS defined in Definition 1. (Theorem 2)

Main Result 3: Under variable inertia, Algorithm 1--online switching between different
Neural-PI controllers preserves Exp-ISS stability. (Theorem 3)

Fig. 1: The proposed online switching control method for fre-
quency control under variable inertia with stability guarantees.

resources. The amount of inertia depends on the amount of
online synchronous generators. At different times of the day,
renewable generations will displace a different amount of power
generation from synchronous machines, leading to different
numbers of online synchronous generators. As a result, the
grid can present a reduced and switching system inertia, where
switching means the inertia is a right continuous piecewise
constant function of time [3]. The resulting complexity has
been linked to a noticeable degradation in system frequency
dynamics [4]-[6], risking load shedding and blackouts. Despite
significant efforts for handling reduced inertia [2], [7], [8], two
facts motivate further research considering the time-varying
systems: (1) even if each sub-system is exponentially stable,
the switching system can be unstable [9]; (2) the optimal
controller for a specific inertia can be suboptimal for another.
For example, as system inertia increases, frequency dynamics
slow down, potentially causing prolonged frequency deviations
with the controller optimized for low inertia [10].

To tackle the challenge of frequency control under time-
varying inertia, we model the system as a nonlinear switching
system between different inertia levels, where the switching
signal is unknown to the controller beforehand. Our objectives
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are first to guarantee stability for the time-varying system
and then to improve the performance of controllers designed
for time-invariant systems. We first identify a key controller
structure, named Neural Proportional-Integral (Neural-PI) con-
trol, that guarantees exponential input-to-state stability (Exp-
ISS) of the nonlinear frequency dynamics under an arbitrary,
fixed inertia mode, through Lyapunov analysis. The Neural-PI
structure is first introduced in [11] for frequency control under
time-invariant inertia with asymptotic stability guarantees. In
this work, we first improve the analysis of [11] to show the
Neural-PI controller guarantees Exp-ISS for the time-invariant
system, and then extend the Exp-ISS guarantees of the Neural-
PI controller to nonlinear switching systems. To further improve
the controller performance for the time-varying system, we
propose an online event-triggered switching algorithm for
dynamic controller selection from a set of pre-trained Neural-PI
controllers, each of which is trained under a specific inertia
level, and the switching algorithm online updates the selection
probability according to their performance. Fig. 1 illustrates
the proposed online switching control algorithm. We prove
the online switching algorithm can maintain the closed-loop
stability guarantees and demonstrate significant performance
improvement compared to using a pre-trained controller for
constant inertia without online switching.

We summarize the main contribution of this paper as follows:

« We identify a key controller structure, Neural-PI control,
that guarantees Exp-ISS of frequency control under
switching inertia. This is, to our knowledge, the first
learning-based control algorithm that guarantees stability
under nonlinear and time-varying frequency dynamics.

« We introduce an online event-triggered switching control
framework for dynamical controller selection from a set of
pre-trained Neural-PI controllers, leading to improved per-
formance compared to a fixed controller for the switching
system, while maintaining the stability guarantees.

o We conduct comprehensive experiments to validate the ef-
fectiveness and efficiency of our proposed online switching
algorithm with Neural-PI controllers. These experiments
verify the closed-loop stability and improved performance
for primary frequency control under variable inertia.

A. Related Work

Significant progress has been made in frequency control for
systems with reduced and time-invariant inertia, with growing
interest in approaches for time-varying inertia. This section
reviews recent advancements in frequency control for both
constant and time-varying inertia, summarized in Table L.

1) Frequency control under time-invariant inertia: Most
existing frequency control methods are designed for systems
with constant inertia, including classical droop control [1],
[12]-[14], model predictive control (MPC) [8], [15] and data-
driven control [2], [11], [16]-[19]. The most popular method
for primary frequency control using synchronous generators
is droop control, which is typically a linear function of the
frequency deviation (possibly with deadbands and saturation)
[1], [12]. Droop control is also adopted in inverter-connected
resources to provide primary frequency control, to mimic
the behavior of synchronous generators [13], [14]. However,

linear controllers can be sub-optimal since the frequency
dynamics are nonlinear [15]. Facing this challenge, MPC-based
approaches [8], [15] synthesize nonlinear controllers through
optimization, which can lead to computational challenges
for real-time control. Considering the nonlinear nature of
frequency dynamics and the requirement for fast computation,
recently, reinforcement learning (RL) approaches have been
proposed [16], [17]. See [2] for a recent review. The basic
idea of RL lies in finding a policy that computes the optimal
action based on observed states, aiming to maximize cumulative
rewards through interaction with the environment. The key
challenge with those learning-based methods is ensuring
stability, which is critical for power system applications. To this
end, recent studies have integrated RL with stability guarantees
[11], [18], [19], for frequency control under constant inertia.

2) Frequency control under variable inertia: There is
growing interest in frequency control under variable inertia,
due to the increasing penetration of renewable generation.
[20] firstly proposed to use a switched-affine system model
with the linear approximated frequency dynamics for each
inertia model. Building on this model, [21] developed a
stable, time-invariant linear controller learned from datasets
of optimal time-varying LQR controllers. Additionally, [22]
validated the feasibility of solutions within the switched-
affine system framework, leveraging the specific structure of
linearized frequency dynamics. Building on this, [23] introduces
a nonlinear residual in addition to a stable linear controller to
improve performance, with stability ensured through projection.

[24] proposes a robust controller that optimizes the worst-
case system performance via a Ho, loop shaping controller
that adapts to time-varying inertia. [25] considers the variable
inertia by modeling the dynamics as a linearized stochastic
swing equation, where inertia is modeled as multiplicative
noise. [10] proposes a PI-based load frequency controller that
is robust to inertia change, and where stability is validated by
small-signal analysis. Despite these advancements, a common
limitation persists: the models rely on a linear swing equation
for modeling the frequency dynamics and therefore are unable
to accurately capture the nonlinear behavior, which might
compromise control performance. There is also work on
system inertia estimation for frequency control under variable
inertia [26], employing real-time inertia estimation to determine
minimum PV power reserve requirements. However, this
approach does not provide stability guarantees for the switching
system, and as noted in a recent survey [27], fast and robust
inertia estimation is challenging.

Notation. We use bold symbols to represent vectors.
sp(A) := 2(A+ AT) denotes the symmetric part of a square
matrix A. diag(c) represents the diagonal matrix with diagonal
equal to the vector c. Vectors of all ones and zeros are denoted
by 1,,0, € R", respectively. We use the superscript * to
denote the equilibrium points of the variables.

II. MODEL AND PROBLEM FORMULATION
A. Power System Model

Consider a n-bus power network represented as a connected
graph (V, ), where buses are indexed by i,j € V := [n] :=
{1,...,n} and the connecting lines are denoted by unordered
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TABLE I: Literature Summary on Frequency Regulation with Constant or Time-Varying Inertia.

Reference Time-Varying Nonlinear Nonlinear  Theoretical Data- Controller
Inertia Dynamics Control Guarantees  Driven Adaption

Droop Control [1], [12]-[14] v

MPC [8], [15] v

RL [2], [17], [18] v v v

Stable RL [11], [16], [19] v v v v

Small Signal [20]-[23] v v v v

Robust Control [10], [24], [25] v v

The present paper v v v v v v

pairs {i,j} € £. State variables are phase angles 0 := (0;,7 €
[n]) € R™ and frequency deviations from the nominal frequency
w := (w;, 1 € [n]) € R™. Since the frequency dynamics only
depend on the phase angle differences, we define a change of
coordinates 0; := 6; — - i1 0;, where & := (8;,7 € [n]) €
R™ can be understood as phase angles in the center-of-inertia
coordinates. This change of coordinates is only for analysis
purposes. Denoting a bounded disturbance of power injection
from the nominal set-point p; as Ad; (e.g., renewable and load
fluctuations), the system dynamics can be written as:

n
: 1
62»:0.),»—7 E Wj,
n -
j=1

M;w; = p; — Dijw; +u; — ZBij sin(éi — (5]> + Ad;, (1b)

=1

(1a)

where M := diag(M;,i € [n]) € R"*" are the generator
inertia, D := diag(D;,i € [n]) € R™*™ are the combined
frequency response coefficients from synchronous generators
and frequency sensitive loads, p := (p;,i € [n]) € R" are
the net power injections, B := [B;;] € R™*" is the absolute
value of the susceptance matrix with B;; = 0,V{i,j} ¢ £, and
u := (u4,% € [n]) € R™ are the control actions, denoting the
active power injection for control. Note that the time index ¢
for all the state and action variables 0;(t),w; (), u;(t), and the
disturbance Ad;(¢) in (1) are omitted for brevity.

Following the recent NREL report [3, Fig. 13 & Fig. 14], the
amount of inertia is piece-wise constant because it only depends
on the on/off status of synchronous generators. Thus, the
frequency dynamics with time-varying inertia can be modeled
as a switching system, with a predetermined set of values of
equivalent inertia at each “mode”. The evolution of the inertia
in the system depends on the current mixture of conventional
generators and inverter-connected resources, and the switches
happen hourly (when a large renewable generation is available,
some synchronous generators will be offline). Considering
m different inertia modes, the inertia follows a piece-wise
continuous switching signal ¢(¢t) : [0,00) — {1,..,m}
that remains unknown to the controller. Thus the frequency
dynamics in (1b) under time-varying inertia can be written as,

n
Mi,q(t)wi =p; —D;w; +u; —Z Bij sin(éi — (53) + Ad;. (2)
j=1
This dynamics model in (2) makes the following assumptions
that are commonly adopted in the literature, cf. [28]:
o Time-varying system parameters: inertia coefficients M.
« Lossless lines: the line resistance is zero for all {i,j} € &;

o Constant voltage profile: the bus voltage magnitudes for
all buses are constant and equal to 1 p.u. Reactive power
flows are not considered;

« Bounded angle difference: the equilibrium bus phase angle
difference is within £7 for all {7, j} € &;

Further, we assume that the bounded disturbances Ad do not
depend on the history of states and actions.

B. Control System Architecture

In this work, we focus on primary frequency control using
inverter-connected resources. We present the control system
architecture in Figure 2. The controller of inverter ¢ infers
the frequency deviation wpy; from the phase-locked-loop
(PLL) block. Considering the much faster time response
of PLLs on inverters (they lock around 1 AC cycle [29],
[30]), we assume that the measured frequency deviation wy; ;
accurately approximates w;. To guarantee convergence to
the nominal frequency and improve economic efficiency, we
consider distributed communication allowing for bidirectional
information exchange between neighboring buses, defined by
the incidence matrix E. The elements of matrix £ can be +1,
—1, or 0, and their values indicate the orientation of the edges
relative to the buses. The control action at bus ¢ is defined as
u;, which is the real power injection at bus ¢ calculated with
real-time local frequency measurements w; and communication.
We assume real-time communication and timescale separation
between the inverter dynamics and frequency control.
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Fig. 2: Diagram of the control system architecture.

III. PROBLEM FORMULATION

This paper focuses on frequency control with variable inertia.
The switching dynamics for inertia are unknown to the control
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algorithm. Our objective is to minimize the frequency deviation
of the system while maintaining moderate control costs.
The frequency control problem is defined as follows,

1 T, &1
min Jp = / (;201U?+>\(||w||2+w|oo))dt7 (3a)

. 1 &
s.t. 52 = Ww; — ﬁ ZOJJ', (3b)
j=1
M; 4ywi = pi — Diw; + ui—
> Bijsin(6; — 6;) + Ad, (3c)

J=1

u; = 7;(wi, 84, {8;,7 € Ni}) is stabilizing . (3d)

The objective function (3a) encodes the control costs
and a summation of 2-norm and oo-norm of the frequency
deviations, for reducing both the operational cost and frequency
disturbance. Here, ) is a coefficient that trades off control cost
versus frequency deviation and ¢; > 0 is the controller cost
coefficient at bus ¢. The time-varying frequency dynamics are
given in (3b)-(3¢). 7;(w;, s, {sj,4 € N;}) is the controller
at bus ¢, which requires the local frequency measurement w;
and variables {s;,j € N;} from node i’s neighbors N;. The
variable s; € R includes the integral of frequency deviation
and the gradient of control cost, as defined in Section IV.

To formalize the stability constraint in (3d), we employ the
notion of input-to-state stability (ISS), which is commonly
used in nonlinear systems with disturbances [31]. Specifically,
we consider exponential-ISS (Exp-ISS) for fast frequency sta-
bilization. With x = [5 -6 w—w* ks-— ks*} T, where
k is a control gain for the integral variable s to be defined
later, we present the definition of Exp-ISS as follows.

Definition 1 (Exponential Input-to-State Stability (Exp-ISS)).
A controller w is called Exp-ISS with parameters (k, p, ) if,
for any initial condition xo € R®" and bounded disturbance
Ad(t), ie, |Ad(t)||L. = supsollAd(t)||2 is finite, the
states satisfy B

()2 < kp'|@oll2 + BllAd()| L.,
for all t > 0, where k,8>0,0< p < 1.

Exp-ISS is a property that describes the behavior of dynam-
ical systems in response to external inputs, which generalizes
the idea of stability to systems that are not only influenced
by their initial conditions but also by external disturbances.
When a system is Exp-ISS, it implies that the system not only
remains bounded under small external disturbances but also
converges back to equilibrium exponentially fast when the
input is removed. This property guarantees that the system
recovers from disturbances quickly and predictably.

Remark 1 (Robustness to measurements error, delay, or
cyber attacks). In practical terms, Exp-ISS guarantees the
system robustness to and recovery from external disturbances,
which may include unexpected load changes, or even latency,
measurement errors, and certain types of cyber attacks. As long
as the disturbances on the system resulting from these factors
are bounded, their impact on a system with Exp-ISS guarantees

is bounded by S3||Ad(t)||L... Furthermore, the system will be
restored exponentially fast once the disturbance is removed.

Moreover, provided that appropriate conditions are met, the
Exp-ISS guarantees for fixed subsystems can be effectively
extended to a switching system that alternates between these
subsystems [9].

IV. EXPONENTIALLY STABLE CONTROLLER DESIGN
UNDER ALL MODES

In this section, we design a controller structure that satisfies
the Exp-ISS property in Definition 1 under all modes and
provide a theoretical analysis. Our goal is to develop a uniform
stabilizing controller for all inertia modes in the switching
system that simultaneously achieves two key objectives. Firstly,
restore the system to its nominal frequency, where w* = 0,,.
Secondly, optimize the control cost for maintaining system op-

1

eration at the equilibrium, expressed as c(u) = > ; 3¢ (u;)?.

A. Controller Structure

The steady-state optimization problem can be written as the
optimal steady-state economic dispatch problem:

min c(u*) = Z %cl(u:‘)2 (4a)
i=1
st Y (pi+up)=0. (4b)

K3

To meet the requirement of nominal frequency restoration and
steady-state optimality, Distributed Averaging-based Integral
(DAI) [32] is an established choice for frequency control.
Based on this idea, we propose to use the following neural
proportional-integral (Neural-PI) controller structure,

wti(wi, si, {s;,7 e Ni}) = —mi(wi) +  ksi ,  (5a)
——— ~—
proportional term  integral term
§i = —c¢; 'wi — Z (ciksi — cjks;). (5b)

JEN;

We name it neural because the proportional term 7r;(-)
is a monotonically increasing function of the instantaneous
frequency deviation w; parameterized as a monotone neural
network with 7;(0) = 0. We name it integral because it is
a linear function of s;, the integral of frequency deviations
and the difference in the gradients of the control cost c(ks)
between its neighbors. £ > 0 is a learnable control gain defined
as a scalar. The linear integral control is deployed instead of a
neural network to achieve exponential stability. Figure 3 shows
the proposed controller structure.

Define C' as a diagonal matrix with diagonal entries equal
{ci}iev and ¢; > 0 is the controller cost coefficient, we
summarize the controller design (5) in vector form as

flw,s) = —m(w) +. ks (6a)
proportional term  integral term
$=—-C"'w—FEE Cks. (6b)

Remark 2 (Comparison to the Neural-PI controller in [11]).
The above controller structure (6) is inspired by our earlier
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Fig. 3: Diagram of the Neural-PI controller defined by (5).

work [11] for frequency control under time-invariant inertia
with only asymptotic stability guarantees, where both the pro-
portional and integral terms are parameterized as monotone neu-
ral networks. In this work, we adapt this structure to frequency
control under time-varying inertia with one major difference:
only the proportional term is parameterized as a monotone
neural network, and the integral term is parameterized as a
linear function, in order to achieve exponential input-to-state
stability guarantees (Theorem 2). The theoretical contribution
is that we extend the asymptotic stability guarantees of the
Neural-PI controller to exponential ISS guarantee of each mode
(Theorem 2), which is essential for establishing the stability
of the switching system under different inertia. °

B. Theoretical Results

Combining the frequency dynamics and the proposed Neural-
PI controller in (6), the overall closed-loop system can be
modeled in vector form as follows,

6= (I, — l1n1fl)w, (72)
n

Myyw =p+ #(w,s) — Dw — EBsin(E"8) + Ad. (7b)

Our first result characterizes the equilibrium points of the
closed-loop system (7) with Ad = 0,,.

Theorem 1 (Unique Closed-loop Equilibrium). Assume
V{i,j} € €6 — ;| < 3, the power flow equation (3c)
is feasible, and proportional term equals to zero when the
frequency deviation is zero, i.e., w(0,) = 0,. Then the
equilibrium (6*,w™, ks*) of the closed-loop system (7) with
Ad = 0, is the unique point satisfying

w* =0y, (8a)
EBsin(E'6*) = p + ks*, (8b)
ks* =~C~'1,, (8¢c)
where vy is determined by
:L: Di
7= -l ©)

Yim1 G

Equation (8a) indicates that the proposed controller effec-
tively reduces frequency deviations to zero at the steady state.
Given that 1] E = 0, and upon premultiplying equation (8b), it
follows that >, (p; +ks;) = 0. By (8c), the final control action,
ks;, is distributed proportionally to vyc; ! This allocation
strategy facilitates higher real power injection from lower-cost
buses, thereby restoring generation balance in an economically
efficient manner. Moreover, the equilibrium point remains the

same regardless of the inertia mode change and switching of
controllers.

For each fixed inertia mode, the following result provides
an exponential ISS guarantee for the closed-loop system.

Theorem 2 (Exp-ISS of Neural-PI Controller for Frequency
Control with Time-invariant Inertia). Let 7(0,) = 0, and
m;(w;) be monotonically increasing with respect to w;. Consider
D = {x € R*,V{i,j} € &,|6; — 0;| < Z}. If a Neural-PI
controller defined by (6) is deployed, then for any xy € D, the
closed-loop system (1) is exponentially input-to-state stable
(Exp-ISS), i.e., there exists positive scalars k., 3 and 0 < p < 1!
such that for all t > 0,

lz(®)ll2 < kp'llzoll2 + Bl Ad(H)]| 1. -

Theorem 2 guarantees Exp-ISS for the closed-loop (1)
with the Neural-PI controller under any timer-invariant inertia,
ensuring stability despite disturbances and supporting the
generalization of stability to the switching system (7). We
prove this using Lyapunov stability analysis by identifying a
well-defined Lyapunov function that exponentially converges
along the system’s trajectories (1) with bounded disturbance
errors. The detailed proof is available in Appendix B.

C. Monotone Neural Network

The monotonically increasing function 7;(+) is constructed
as a stacked ReLU function as follows.

Corollary 1. (Stacked ReLU Monotone Network [18, Lemma
5]) The stacked ReLU function with d hidden units constructed
by
7 (z;w", b)) = (wh) TReLU(1z + bT)
d/
S owh>0,vd =1,..,d,bf =0,b <b,\VI=2,..d
1=1

(10a)

(10b)

is monotonically increasing for x > 0 and zero when x < Q.
In addition, the stacked ReLU function with d hidden units
constructed by

7 (z;w™,b7) = (w”) "ReLU(—1x +b™)
d/

> wp <0,Vd =1,..,d,by =0,b; <b_,VI=2,...d
=1

(11a)

(11b)
is monotonically increasing for x < 0 and zero when x > 0.

In this way, the stacked ReLU function is a piece-wise
linear function. The slope for each piece of 7t (z;w™,bT) =
27;1 wl+, which is always positive by construction and thus
satisfies the monotonic property. A similar argument holds
for 77 (z;w™,b7). As a result, let w(-) = 77 (;;w, b)) +
7~ (;w™,b7), w(x) is monotonically increasing. By [18,
Theorem 2], any continuous, Lipschitz and bounded monotonic
function r(x) with bounded derivatives, r(0) = 0, and mapping
the compact set X to R can be approximated arbitrarily well

by 7(x).

'An explicit expression of x, p, 8 is provided in (27b) below.
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V. ONLINE SWITCHING ALGORITHM

In this section, we introduce an online event-triggered
switching algorithm with stability guarantees for frequency
control under time-varying inertia. The proposed algorithm
dynamically chooses from a set of pre-trained Neural-PI
controllers that are optimized for different uni-inertia modes, to
improve the controller performance while maintaining stability.
For implementation purposes, the algorithm is presented in a
discrete-time manner.

A. Online Event-triggered Switching Algorithm

Based on the previous discussion, the Neural-PI controller
is capable of maintaining frequency stability under any inertia
level. However, controllers optimized for high-inertia systems
may underperform when inertia is low due to faster frequency
dynamics [4]. Consequently, a uniform Neural-PI controller,
even trained for all modes, compromises between different
inertia modes and can result in suboptimal performance. Instead,
here we propose an innovative switching algorithm to select
the most appropriate controller based on the current system
state from a set of Neural-PI controllers, each trained for a
specific inertia level, while guaranteeing stability. The switching
algorithm can improve control performance compared to base
controllers trained for each specific mode. Figure 4 illustrates
the proposed online switching control idea.
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Fig. 4: Online switching control for frequency control under
variable inertia.

We now detail the online event-triggered switching algorithm
in Algorithm 1. A finite pool of candidate controllers is
considered. With a slight abuse of notation, we define the
index set of base Neural-PI controllers as P = {1,--- ,m},
where index ¢ € P refers to a Neural-PI controller trained in
inertia mode ¢. For theoretical purposes, the base controllers
share the same integral controller gain k. The proposed online
switching control algorithm contains three phases: the selection
phase (ng steps), the trial phase (n, steps), and the deployment
phase. The transition into the selection phase occurs once

a frequency deviation exceeding 0.01 Hz event is detected.

Note that a different event-triggering threshold of frequency

Algorithm 1 Online event-triggered switching algorithm.

Ensure: Choose selection phase duration ng, trial phase
duration n,, learning rate £ > 0, batch length 7.

1: Initialize the controller selection probability P; = 1/m and

accumulated cost Gj(—1) = 0 for i € [1,2,...,m] in the

controller pool; set selection flag as False and ¢t = t5 = 0.

2: while time step t =0,1,2,.... do

3: Measure frequency deviation w(t);

4 if ||w(t)|lo > 0.01Hz and selection flag is False then
5: Set selection flag as True;

6: end if

7: if selection flag is True then

8: Let tg =t;

9: for batch j = 0,1,..., [ %] (selection phase) do
10: Select controller I; € P from the selection

probability P;

11 Compute t;41 = min(t; + 7,t + n), imple-
ment the chosen Neural-PI controller /; during batch time
[tj,t;+1] and calculate the batch cost,

1 T Ci
gup@D=r—— D (Z gui<t>2+x<nw<t>u2+|w<t>|w>>;
EAE R i v
J (12)

12: Update the accumulated cost G;(5) = Gi(j —
1) + 290911 — ) for all i € P and L is the indicator
function;L

13: Update the controller selection probabilities,

p,— —OPEGU)  yicp (g3
ZkeP exp(—€Gk (7))

14: end for

15: Lett = to+ns, Gi(—1) = G;([2]) for all i € P;

16: for time step ¢,t+ 1,...,t + n,; (trial phase) do

17: Commit to controller I = argmax(P);

18: end for

19: Set the selection flag to False, ¢t =t 4 n,.

20: else Commit to controller I = argmax(P), sett = ¢+1.

21: end if

22: end while

deviation can be chosen by the system operator according to
the operation requirements.

During the selection phase, we adopt a multi-arm bandit
(MAB) framework to decide the best controller to use from
the set of pre-trained Neural-PI controllers. Each controller
represents an ‘arm’, the selection of a controller pulls an arm
and yields a cost. Specifically, at each time step and if the
selection phase flag is true, after observing the system state w,
a controller is selected for deciding the action, and the cost
of the chosen action is revealed for updating the controller
selection probability (so that controllers with lower costs will
have higher probabilities to be chosen). We adopt the batched
MAB in [33] for updating the controller selection probability,
since we would like to measure the controller performance over
a time interval rather than a single step. Thus the algorithm
proceeds in a batch manner with the batch length as 7. The
selected controller at batch j as I; with the batched control
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costs and frequency deviation defined in (12), as g(;,)(j). The
controller selection probability P is updated at the end of each
batch using the historical accumulated cost G;(j) following
the exponential weight formula in (13). After the selection
phase, the most probable controller for the current mode, i.e.,
controller I = argmax(P), is deployed for n; steps in the trial
phase. If the frequency deviation is still greater than the pre-set
threshold after the trial phase, we go back to the selection
phase; otherwise, we stay in the deployment phase and commit
to controller I until the next triggering event with a large
enough frequency deviation. For each selection, the complexity
of the online switching algorithm is O(mny), which enables
efficient real-time application.

B. Stability Guarantees for the Switching System

With the online event-triggered switching algorithm in
Algorithm 1, we now proceed to provide stability guarantees
for the switching system. Let N, (7', t) be the number of mode
switches in the interval [¢,T). The switching signal ¢(t) has
an average dwell-time 7, if there exists N,, 7, > 0 such that
Ny(T,t) < No+ ?,VT >t > 0. The following result states
that, if inertia switches sufficiently slow (with a sufficiently
large 7,), as compared to the time scale of the control, the
switching system with both inertia switching and controller
switching is still guaranteed to be Exp-ISS.

Theorem 3 (Exp-ISS for the switching system). Let 7(0,) =
0,, and m;(w;) be monotonically increasing with respect to
w;. Consider a finite number of inertia modes {1,--- ,m},
with each candidate controller in the pool P being a Neural-
PI controller as defined by (6) deployed over D := {x €
R3",V{i, j} € &,10;—8;| < 5}. There exist constants 7/, k* >
0, p* € (0,1), and 8* > 0 such that, if the average dwell
time T, > 7., then with the online event-triggered switching
Algorithm 1,
the switching system satisfies

()]l < & p* lloll2 + B* | Ad(t)] ... -

We provide the proof sketch for Theorem 3. Consider first
the case of inertia changes only. In this case, Theorem 3 is
a direct consequence of [9, Theorem 3.1]. When switching
of controllers is considered, the Lyapunov function (19) is
invariant to controller changes. Thus the Lyapunov function for
the current controller is a common Lyapunov function for all
base Neural-PI controllers, and switching of controllers retains
Exp-ISS.

Note that the average dwell time 7, is sufficiently large in
frequency control. A long average dwell time 7, of inertia
implies slow inertia switching. In scenarios where synchronous
generators provide inertia, such switches occur on an hourly
basis, whereas control actions are executed in second and
sub-second scale [3]. Therefore, the average dwell time 7,
is sufficiently large for the controllers, and Exp-ISS for the
system with switching inertia is preserved with rates «*, p* and
B*. Theorem 3 also generalizes the stability guarantees of the
batched MAB algorithm [33] from an unknown time-invariant
system to unknown time-varying systems. When the switching
of inertia is sufficiently slow, the online event-triggered control
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algorithm with the controller pool composed of Neural-PI
controllers preserves the exponential ISS guarantees of the
base Neural-PI controllers while enhancing the performance.

VI. EXPERIMENTS

This section first introduces the experiment setup and model
training details. Then, we evaluate the performance of the
base Neural-PI controllers and the proposed online switching
algorithm. Finally, we study the impact of hyperparameters in
the online switching algorithm through sensitivity analysis.

A. Experiment Setup

We evaluate the performance of different controllers using the
IEEE New England 10-machine 39-bus (NE39) network [34].
There are three inertia modes, where the inertia constants
M are set at 30%, 100%, and 500% of the standard values
[34]. These correspond to a low inertia scenario with prevalent
renewable generation (denoted as 0.3), a standard scenario
(denoted as 1.0), and a scenario dominated by synchronous
generators (denoted as 5.0), respectively. Three base Neural-
PI controllers are trained under specific inertia levels and
denoted as ‘Neural-PI-0.3’, Neural-PI-1°, and ’Neural-PI-5°.
The Neural-PI controller structure is defined in (6), where
the proportional term 7(-) is parameterized as a monotone
neural network defined in Corollary 1 with 1 hidden layer and
20 hidden units. To comply with the operational constraints,
we threshold our control policy with action bounds, i.e.
(73 (wi, {s5,7 € Ni})]%i, where [-]% represents a projection
onto [u;,@;]. These constraints are not considered in our
theoretical analysis.

1) Training Algorithm: To optimize the Neural-PI controller
for each given inertia model, we adopt the Physics-informed
Reinforcement Learning with RNN structure from [18], where
RNN is a class of neural networks designed for modeling
temporal sequences. Given that all states are time-coupled, we
integrate the state transition dynamics (3b)-(3c) of the power
system to the RNN framework following the training algorithm
in [11] to train the base Neural-PI policies.

The operation of RNN is shown by the left side of Figure 5.
The cell unit of RNN will remember its current state at the
initial stage and pass it to the Neural-PI controller, where
the controller gives the corresponding control action. The
integrated power system dynamics give the output, which is
the state at time 1. Then the output is fed as input to the
next stage. Unfolding this process gives Figure 5. The output
at stage ¢ includes the control action wu;(t) and the frequency
measurement w; (¢) for all buses. For each training trajectory, a
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random net-load disturbance is generated at a random time step.

The total trajectory length is 3s with step size At = 0.01s
(T'" = 300). To obtain the trained controllers, we run 300
episodes, each episode containing 300 trajectories. Parameters
of the controllers are updated via gradient descent to minimize
the following loss function,

T n
L= ;Z (> Sed (04 AN+ o D)ll))- (15
with initial learning rate 0.05, decaying every 50 episodes
with a base of 0.7. Adam algorithm [35] is adopted as the
optimizer. We use the TensorFlow 2.0 framework to build
the learning environment and run the training process with a
single Nvidia 1080 Ti GPU with 11 GB memory. Our code is
available online.” Training for each base Neural-PI controller
takes 429.9 seconds (roughly 7 minutes), each inference of
the trained Neural-PI controller takes an average of 1.29 ms,
which is sufficient for real-time implementation.
2) Baselines: Besides base Neural-PI controllers trained
with constant inertia, we test the proposed online switching
algorithm against the following baseline algorithms.

o Linear-Droop: Standard linear droop controller [1], where
the linear coefficients are learnable.

o Linear-PI: PI controller with linear proportional and
integral control [10], [36], both proportional and integral
coefficients are learnable.

o Lyapunov-NN: Neural network proportional control policy
with monotone structure design [18].

o NN-PI: A standard neural network proportional controller
with linear integral control. Standard fully connected
neural networks are widely used as controllers in various
RL-based frequency regulation studies [2].

All the parameters of the baseline methods are trained with the
RNN framework using the same settings as our method. Instead
of using a constant inertia mode to train the controllers as the
base Neural-PI controllers, all three modes are explored by the
baseline models at the same time. With trained controllers, we
first test the base Neural-PI controllers in different constant
inertia modes to evaluate their transient performances in
different inertia levels (Table II), where each test trajectory has
a 3s duration and a random net-load change at the start. We then
demonstrate the efficiency of our online switching algorithm
against all baseline methods with 20s trajectories, where mode
transitions occur every five seconds, which is a challenging
scenario for experimental purposes (Table III). Additionally,
random net-load disturbances are introduced at the 0.1-second
and 7.0-second. The initial inertia is set at 0.3, 1.0, and 5.0
with respective probabilities of 10%, 45%, and 45%. Inertia
transitions include increasing, decreasing, or staying the same,
governed by a Markov process. If the current inertia level is
0.3, the inertia level will stay at 0.3 or increase to 1.0 with
50% probability each. If the inertia level is at 1.0, there will
be a probability of 30%, 40%, and 30% to decrease, stay, and
increase the inertia level. If the current inertia is 5, it follows
50% probability to switch to 1.0 and 50% to stay the same.

Zhttps://github.com/JieFeng-cse/Online-Event-Triggered-Switching-for-
Frequency-Control

These probabilities, predetermined for experimental purposes,
are unknown to the online control algorithm. We set 7 = 5,
&= 5e¢73, ng = 50, n; = 300 in Algorithm 1.

B. Performance of the Online Switching Control

1) Evaluation Metrics: We consider the transient period as
the 3-second time interval after a disturbance and define the
transient performance as the cumulative cost during this period.
Three metrics are used to evaluate the controller performance:

o Frequency deviation: is defined as % ZZ;I Allw ()2 +
lw(t)]loo) denoting the average frequency deviation dur-
ing the transient period 7' = 300;

o Control cost: is defined as Zthl ¢(u(t)) measuring the
average control cost during the transient period 7' = 300;

o Total cost: sum of frequency deviation and control cost.

2) Statistical Results: We first present the performance of
the base Neural-PI controllers at different fixed inertia modes
to illustrate the sub-optimality when a controller is trained
under one inertia level but then used for different inertia. Table
IT summarizes the average total cost along 100 test trajectories.

TABLE 1II: Total control costs of different base Neural-
PI controllers under different inertia modes, with the best
performance in each mode highlighted in bold.

Inertia 0.3 Inertia 1.0 Inertia 5.0
Method Mean Std Mean Std Mean Std
Neural-PI-0.3 22.50 825 2274 837 2381 835
Neural-PI-1 335.07 284 11.23 240 1124 234
Neural-PI-5 488.07 3.03 13.10 447 1052 2.06

Table II shows that base controllers optimized for specific
inertia levels outperform others, indicating that proper switching
of controllers can improve performance. Notably, at a low
inertia level, controllers Neural-PI-1 and Neural-PI-5 result
in much higher costs because of large control actions and
induced frequency oscillations. As inertia increases, frequency
dynamics get slower and allow larger control actions to stabilize
the system. As a result, Neural-PI-1 and Neural-PI-5 outperform
Neural-PI-0.3 under higher inertia levels.

We now evaluate the performance of known switching, the
proposed online switching control in Algorithm 1, and base
Neural-PI controllers for frequency control under variable
inertia. Known switching refers to the ideal scenario where, as
soon as the inertia mode changes, the corresponding controller
is deployed instantly. However, real-time mode detection poses
significant challenges, as highlighted by [27], and is thus
considered an ideal performance benchmark. This experiment
uses a 20-second trajectory with mode transitions occurring
every five seconds. Results from 100 test trajectories are
summarized in Table III. The Lyapunov-NN achieves the best
performance among the four baselines except Neural-PI based
methods. However, without integral control, this controller may
fail to restore frequency to its nominal value and achieve steady-
state optimality, and yield a sub-optimal performance. While
Linear-PI can achieve similar stability guarantees, the neural
network design of Neural-PI structure enables our approach
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TABLE III: Transient performance of the known switching,
online switching, base Neural-PI controllers, and other base-
lines. Known Switching defines the offline optimum assuming
that the inertia switches are known to the controller, and
the corresponding controller is selected once a mode change
happens. Performance of the proposed algorithm is highlighted
in bold.

Total Cost Freq Deviation  Control Cost
Method Mean Std Mean Std Mean  Std
Known Switching ~ 14.52 4.46 1374 441 0.78  0.31
Online Switching  17.34 7.28 16.62  7.22 072  0.22
Neural-PI-0.3 21.91 7.11 21.58 6.97 032 0.16
Neural-PI-1 48.57 7405 4650 71.51 207 255
Neural-PI-5 56.18 10191 5413 9936 204 257
Linear-PI 29.10 8.63 28.81 8.52 029 0.13
NN-PI 2454 5202 2450 5197 035 049
Lyapunov-NN 22.52 4.62 22.11 4.49 0.41 0.14
Linear-Droop 38.35 11.33  38.10 11.20 025 0.13

to have more flexibility, leading to an improved performance.
Without any stability guarantees, a general NN-PI controller can
lead to frequency oscillations and a large frequency cost. Our
online event-triggered switching control achieves a significant
improvement compared to the Neural-PI baselines without
switching and outperforms all other baselines.

3) High-Order Power System Simulation: To illustrate how
the proposed algorithm works in practice, we test the trained
models and the online event-triggered algorithm with 6"
order generator model as well as dynamic models for inverter-
connected resources [37], [38]. ANDES (an open-source
package for high-order power system dynamic simulation)
[39] is utilized to simulate the dynamic response from the
Western Electricity Coordinating Council (WECC) generic
models [40] for solar PV generation as the renewable resources,
and 6t"-order generator model with turbine-governing systems.
Parameters for the PV and the voltage control follow the default
values in ANDES. A test trajectory is provided in Figure 6,
illustrating controlled frequency deviation and the evolution of
controller selection probability distribution P across an inertia
switching sequence {5.0,1.0,1.0,0.3}. Initially, a disturbance
triggers the selection phase at around 0.1 seconds. Neural-PI-5
outperforms other controllers in the controller pool, thus it is
selected after the selection and trial phases, and is deployed
until a new disturbance at 7 seconds prompts another selection
phase, where Neural-PI-1 is chosen. With frequency disturbance
restored, no further switching is triggered even if mode changes
happen or another small disturbance happens at 12 seconds.
As demonstrated in this high-order simulation, our method
effectively restores frequency deviation after disturbances,
thanks to its robustness to errors, cf. Remark 1, and correctly
identifies the appropriate controller online.

C. Sensitivity Analysis: Impacts of Hyperparameters

We examine the impact of hyperparameters ¢ (learning
rate) and 7 (batch length) in the proposed online switching
algorithm in Algorithm 1. Results are presented in Table IV.
The learning rate, £, modulates the algorithm’s responsiveness
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Fig. 6: High-order simulation with ANDES. Control tra-
jectory of all controlled buses with the proposed online
event-triggered switching control algorithm and the evolution
of controller selection probabilities. The background colors
represent the inertia levels, where the inertia switching sequence
is {5.0,1.0,1.0,0.3}.

TABLE 1IV: Transient performance of the online switching
algorithm with different hyperparameters. Results of the
selected hyperparameters are highlighted in bold.

Total Cost Freq Deviation Control Cost
Parameter Mean Std Mean Std Mean Std
E=5e"4r=5 1792  9.16 1720 9.03 073  0.28
E=5e3,7r=5 1734 728 1662 722 072 022
£€=3e2,7r=5 18.10 860 1739 856 071 024
E=5e3,r=1 1828 936 1757 9.26 0.71  0.29
£€=5e"3,7=10 2069 1230 1994 1216 074 0.32

to cost changes, set initially at 5e~* based on the cost scale
in our experiments. A lower ¢ results in a more gradual
evolution of the probability distribution P, avoiding rapid
probability change but potentially leading to prolonged use
of sub-optimal controllers. On the other hand, a higher ¢
accelerates convergence towards a particular controller, while
risking being greedy and committing to a sub-optimal choice
too early. The batch length 7 also influences the balance
between exploration and exploitation. For our experiments,
with a selection phase of ng, = 50, 7 must be less than 10
to allow sufficient trials of different controllers. At = = 10,
the agent has merely five opportunities to evaluate different
controllers, increasing the risk of prematurely converging to
a sub-optimal choice. A 7 value of 1 leads to controller
update and switching at every step, potentially leading to more
oscillations and short-sighted controller performance evaluation.
Therefore, properly choosing hyperparameters is essential for
optimizing performance.

D. Ablation Study: Impact of Time-varying Droop Control of
Conventional Generators

Under different inertia modes, the amount of online con-
ventional generators is different, thus the primary frequency
control capacity can be different. The dynamical model (2)
follows the convention of existing literature [21], [22] on
modeling frequency dynamics under time-varying penetration
of renewable energy, and focuses on variable inertia, assuming
constant damping coefficients. However, damping coefficients
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may switch simultaneously with inertia changes, leading instead
to the following switching system model:
n
MLq(t)(fdi :pi_Di,q(t)wi+Ui_Z Bij Sin((si — (5j) + Ad;.

j=1
To test the effects of variable damping control, we set the
damping coefficients at 30%, 100%, and 500% of the standard
values (the same scales as the inertia mode changes). For
example, when inertia is 30% of the original inertia, we set
the damping coefficients to be 30% of the standard D values
to reflect the capacity limit of synchronous generators. The
performance of our algorithm in this case is presented in
Figure 7. Even though the damping control is different under
different inertia modes, our method still works effectively
in restoring frequency after disturbances due to the Exp-ISS
guarantees. We leave a detailed technical analysis of time-
varying damping coefficients for future work.
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Fig. 7: Control trajectory with variable primary frequency
control. The first row illustrates constant damping coefficients,
while the second row depicts variable damping coefficients.
Background colors indicate the inertia levels, following the
switching sequence {0.3,1.0,1.0,5.0}. Disturbances are intro-
duced at 0.1 seconds, 7 seconds, and 15 seconds, respectively.

VII. CONCLUSIONS

In this work, we have considered the problem of primary
frequency control under time-varying system inertia. To address
it, we have modeled it as a switching system, where the
frequency dynamics under each mode are described by the
nonlinear swing equation, and different modes represent
different system inertia levels determined by the ratios of
inverter-connected resources and synchronous generators. We
proposed an online event-triggered switching control scheme,
to dynamically select a controller online from a set of pre-
trained Neural-PI controllers under specific inertia levels. Our
design leverages the Exp-ISS properties of the base Neural-PI
controller, to establish the Exp-ISS guarantee of the switching
system. The efficacy of the proposed approach is demonstrated
on the IEEE 39-bus system, where it achieves a notable
reduction in average cost by approximately 20.9% compared

to the best base Neural-PI controllers in the controller pool.
Additionally, in high-order power system simulations, our
algorithm successfully identifies the appropriate controller
online and restores frequency deviations. In terms of future
directions, we are interested in incorporating line losses, time-
varying damping coefficients, and inverter dynamics into the
stability analysis, simultaneous consideration of voltage control,
extending the framework to regional frequency control, and
incorporating cyber-security and latency aspects.
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APPENDICES
A. Proof of Theorem 1
Proof. At steady state, the dynamics (7) yields

w' =1,w", (16a)

0, =p+u(w*, s*) — Dw* — EBsin(E"8%),  (16b)

C~'w* = —EE"Cks*, (16¢)
where w* is a scalar. Premultiplying (16¢) by 1, yields

1,07 "1,w" = -1 EETCks* =0,

which implies that w* = 0. As a result, the right-hand side
of (16¢) also equals the zero vector. Following [11, Lemma
5], EETCks = 0,, if and only if Cks € range(1,), which
indicates that Cks* = v1,,, implying that ks* = ~vc~ 11,
In this case, u* = ks* is the unique minimizer of the
optimal steady-state economic dispatch problem following [32].
Applying these results to (16b) yields

EBsin(E'6*) =p+ks*=p+-C'1,

By premultiplying the above equation with 1, and the fact
that 1) EBsin(E"§*) = 0, we can reach to (9). This result is
similar to the analysis in [32, Theorem 1]. Given that the inertia
does not show up in the equilibrium analysis, the switching
system has a unique equilibrium point. O

B. Proof of Theorem 2

We use the Lyapunov stability theory. The proof is structured
as follows. We first present the Lyapunov function for the
closed-loop system, which can be bounded by the norm of
x on both sides. We then bound its Lie derivative under
disturbances. Following the application of the Comparison
Lemma [41, Adopted from Lemma 3.4],

we arrive at Exp-ISS.

Lyapunov Function: Define the function

R(s) as

R(s) cz/ kzdz = (17)
Then, the Bregman distance is defined as BV(s, s*), i.e.,
BY(s,s*) := R(s) — R(s*) — VR(s*) " (s —s*)  (18)

Notably, the Bregman distance here simplified as BY (s, s*) =
53 cilsi —sp)%

We consider the following Lyapunov function candidate for
a fixed inertia M:

V(d,w,s) = ZM wi)? + W, (8)

z_l
+ e We(8,w) + BY(s,8") —ea(s — s*) 1,1 Mw,

(19)
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where
1 n n
d):= ~3 Z Z Bij(cos(ij) — cos(d;;))
i=1 j=1
n n
=Y Bijsin(d5)(%: — &),
i=1j=1
We(d,w) := ZZBij(sin(éij) sin(d;;))ci Mi(w; — w™),
i=1 j=1
and d;; := J; — 6;. Here, €1,e2 > 0 are tunable parameters.

The last cross-term in (19) is inspired by [42].

Lemma 1 (Bounds on Lyapunov Function). For all (d,w, s) €
D, there exist ai,as > 0°, such that the Lyapunov function
V(d,w, s) is bounded by the following inequalities

V(0,w,8) > ai([|d — &I + w — w3 + [lks — ks™|3),
V(8,w,s) < ax([|6 — 873 + [|lw — w3 + [|ks — ks™[|3)).

Proof of Lemma 1. The proof is similar to the proof of [42,
Lemma 1]. We will bound V(§,w, s) term-by-term. First,

following the Rayleigh-Ritz theorem, the kinetic energy
term 2 >°" | M;(w; — w*)? is bounded with lower bound
IAmin(M)|lw — w*[|3 and upper bound FAmax(M)|w —
w*||3. Following [42, Lemma 4], W,(8) can be bounded
y L6 — %13 < W,(8) < 2(|6 — 6*||3 with some positive
M, 7. Define Chax = max(C), the absolute value of the
cross-term W, (4) is bounded as follows,

(We(d)| < 5( 15 Crnaxl|0 = 8713 + Amax (M) w — w*|3).
Let Wy = (s — 8*) 1,1 Mw, similarly, we have
1 n’ (12 20,,1|2
(W2l < 5 (5 llks = k87|24 Amax (M)7[|w]]2)-

Because BY(s,s*) = 5z >, ¢;(ks; —ks})?, it can be bounded
by “min||ks — ks*||3 < BY(s,s*) < C"‘a"Hks — ks*||3, with
Cmm = min(C). Combining the 1nequahtles we can bound
the entire Lyapunov function with

1
a1 ;== min(Amin(M) —

2 (61 +€2))\max(M)27

2
kcmin — €2N

m — 61772Cmdx, k2 )’ (213)
1
az =g max (Amax (M) + (e1 + €2)Amax (M),
kcmax + 2
M+ €17 G, 220, 21b)

€1 and €9 are sufficiently small so that a;, ay are positive. [
The next result bounds the Lie derivative of (19).

Lemma 2 (Time derivative). Given the Neural-PI controller
defined by (6), with w(0,,) = 0,, and 7;(w;) monotonically
increasing with respect to w;, consider the Lyapunov function
(19). There exist ay, e > 0% such that, for (§,w,s) € D,

V(&,w,s) < —a1V(d,w,s) + az]|Ad|2v/V(d,w, s).

3Explicit expressions for a1, as > 0 are given in (21).
“Explicit expressions for a1, az > 0 are provided in (26).

be positive definite [42]. Given that

Proof of Lemma 2. Define p.;(d) = 37 Bij Sln(ém)
H(d) = Vpe(d). It can also be written as H(d) =
EBdiag(cos(ET8))ET, where E is the incidence matrix.
Given that B is a diagonal matrix, H(d) is a Laplacian matrix.
We start by computing the partial derivatives of V(§,w) with
respect to each state:

8‘/ * *

98 =pe(d) —Ppe(6”) + 1 H(O)OM(w — "),

av * * *
0 “Mlw —w” + e C0(pe(d) — pe(87))] — e2M1,1, (s — s*),
P\% .

s =C(ks — ks*) — e21,1,) Mw.

Therefore, the partial Lie derivatives can be written as

.
P 6 =pe(8) ~ pe(6) T (w ~ 1,122

+ e (HE)OM(w — ™) (w — 1,129,
oV

%w—[w W 4 €10(pe(8) —pe(87)) —e21,1, (s —8")] Mw.

8—V.s = —(ks

B8 —ks") [(w —w") + CEE ' Cks]

+ew! M1,1,[C" " (w—w") + EE" Cks.
Following Theorem 1, Cks* € range(1l,) and thus
CEETCks* = 0. A direct result of this Theorem is
(ks — ks*")TCEE " Cks = (ks — ks*)TCEE " C(ks — ks™)
Note that by definition pe(8)'1, = 0,H(6)"1, = 0,
(Pm — Dw* — wg —Pe(0%) + ks = — 0 at the equlhbrlum
In order to simplify the summation, we introduce the following
three zero-terms

e (6%) + e H(8)CM(w — w*))T(llTTw 1w

Z1 = (pe(d) —p

=0

(p— Dw” — (")
=0
(p— Dw” — (")

=0

Zy=—(w-w)' — pe(8”) + ks”)

Z3 = —[e1C(pe(8) — pe(67))] — Pe(8”) + ks”)

Consider sp[Q(d,w)] as follows

aC e1C(D + K(w))
0 D—eMCH@®)—-eM1,1,,C*
0 0

—610
—HD+KW)1a, |,
CEE'C+21,1,

Thus, we have

. (9\/ ov . oV,
V(§,w,s) = 6 o w+ a—s
oV . 8V ov
7%5"!‘67 +873+Z1+ZQ+ZS
e(8) —pe(87)] " e(0) = pe(87)
< - w—w" Q(4,w) w—w"
ks — ks* ks — ks*

—(w—w") (7(w) —7m(w"))

+[w— W + €@ C(pe(d) — pe(87)) — 21,1, (ks

3 —ks")]" Ad

Consider a small enough €; and ey, matrix Q(d,w) can
7(w) is monotonically
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increasing, —(w — w*) T (7(w) — m(w*)) is negative. Thus the
above equation can be written as

. e(8) — pe ()" () — pe(d7)
V(d,w,s) <— w—w" Q(d,w) w—w"
ks — ks* ks — ks*
C(pe(d) —pe(6")] {eAd]
+ w—w" Ad
~1,1, (s — s%) e2Ad

This further leads to

. a1/ TT T (2
VS—Z—zV(é,w,s)—k 1 \;a G | Adloy/VEw )

where a3 = ming, e Amin(Q(4, w)) min(1,7?) > 0, ay =
Vv/max(1,73C2,,n?) > 0. Thus we define a1, oy as follows,

as as/TH & (3

ap = , Qg =

as Vai

(26)
O

. ; o V .
Given that vV = 3y using Lemma 2, we get

V(J',w,s) < —% V(6,w,s)+ %”AdH?-

Using the Comparison Lemma [41, Lemma 3.4], we have

o (6%
\/V(&w, s) < \/V((S,w, 8)|t—pexp™ 2" +a—j||AdH2,

where the second exponential term is dropped by relaxation.
Utilizing Lemma 1, the above can be rewritten as

l2(t)[l2 < rp[lzoll2 + BllAA(H)]| L., (27a)
\/ a2 o1 a2

where k = ~—=,p=exp 2 ,0=——. (27b)
a1 P P p a1/ar

Notably, while Exp-ISS is guaranteed regardless of inertia
modes, the parameters x, p, and 3 are dependent on the
inertia matrix, indicating that variations in inertia can affect
the convergence rate.
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