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Abstract—The increasing integration of renewable energy
resources into power grids has led to time-varying system
inertia and consequent degradation in frequency dynamics. A
promising solution to alleviate performance degradation is using
power electronics interfaced energy resources, such as renewable
generators and battery energy storage for primary frequency
control, by adjusting their power output set-points in response to
frequency deviations. However, designing a frequency controller
under time-varying inertia is challenging. Specifically, the stability
or optimality of controllers designed for time-invariant systems
can be compromised once applied to a time-varying system. We
model the frequency dynamics under time-varying inertia as a
nonlinear switching system, where the frequency dynamics under
each mode are described by the nonlinear swing equations and
different modes represent different inertia levels. We identify
a key controller structure, named Neural Proportional-Integral
(Neural-PI) controller, that guarantees exponential input-to-state
stability for each mode. To further improve performance, we
present an online event-triggered switching algorithm to select
the most suitable controller from a set of Neural-PI controllers,
each optimized for specific inertia levels. Simulations on the IEEE
39-bus system validate the effectiveness of the proposed online
switching control method with stability guarantees and optimized
performance for frequency control under time-varying inertia.

Index Terms—Power system dynamics, primary frequency
control, nonlinear and hybrid systems, reinforcement learning.

I. INTRODUCTION

Frequency stability is vital for the security and operation

of power systems, the goal of which is to balance power

generation and demand to maintain the system frequency

near its nominal value (i.e., 60 Hz in the US). This paper

mainly focuses on primary frequency control, which corrects

immediate power imbalances within seconds [1]. The surge in

integrating renewable energy sources like wind and solar, while

marking significant progress towards sustainability, introduces

larger fluctuations in net loads due to their unpredictable power

outputs, thus requiring more advanced controllers [2]. Moreover,

many of these new technologies are interfaced with the grid

through power electronic interfaces (i.e., inverters), which have

no rotational inertia. At the same time, the grid still has a large

number of synchronous components, creating a system that

is a mixture of conventional machines and inverter-connected
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Fig. 1: The proposed online switching control method for fre-

quency control under variable inertia with stability guarantees.

resources. The amount of inertia depends on the amount of

online synchronous generators. At different times of the day,

renewable generations will displace a different amount of power

generation from synchronous machines, leading to different

numbers of online synchronous generators. As a result, the

grid can present a reduced and switching system inertia, where

switching means the inertia is a right continuous piecewise

constant function of time [3]. The resulting complexity has

been linked to a noticeable degradation in system frequency

dynamics [4]–[6], risking load shedding and blackouts. Despite

significant efforts for handling reduced inertia [2], [7], [8], two

facts motivate further research considering the time-varying

systems: (1) even if each sub-system is exponentially stable,

the switching system can be unstable [9]; (2) the optimal

controller for a specific inertia can be suboptimal for another.

For example, as system inertia increases, frequency dynamics

slow down, potentially causing prolonged frequency deviations

with the controller optimized for low inertia [10].

To tackle the challenge of frequency control under time-

varying inertia, we model the system as a nonlinear switching

system between different inertia levels, where the switching

signal is unknown to the controller beforehand. Our objectives
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are first to guarantee stability for the time-varying system

and then to improve the performance of controllers designed

for time-invariant systems. We first identify a key controller

structure, named Neural Proportional-Integral (Neural-PI) con-

trol, that guarantees exponential input-to-state stability (Exp-

ISS) of the nonlinear frequency dynamics under an arbitrary,

fixed inertia mode, through Lyapunov analysis. The Neural-PI

structure is first introduced in [11] for frequency control under

time-invariant inertia with asymptotic stability guarantees. In

this work, we first improve the analysis of [11] to show the

Neural-PI controller guarantees Exp-ISS for the time-invariant

system, and then extend the Exp-ISS guarantees of the Neural-

PI controller to nonlinear switching systems. To further improve

the controller performance for the time-varying system, we

propose an online event-triggered switching algorithm for

dynamic controller selection from a set of pre-trained Neural-PI

controllers, each of which is trained under a specific inertia

level, and the switching algorithm online updates the selection

probability according to their performance. Fig. 1 illustrates

the proposed online switching control algorithm. We prove

the online switching algorithm can maintain the closed-loop

stability guarantees and demonstrate significant performance

improvement compared to using a pre-trained controller for

constant inertia without online switching.

We summarize the main contribution of this paper as follows:

• We identify a key controller structure, Neural-PI control,

that guarantees Exp-ISS of frequency control under

switching inertia. This is, to our knowledge, the first

learning-based control algorithm that guarantees stability

under nonlinear and time-varying frequency dynamics.

• We introduce an online event-triggered switching control

framework for dynamical controller selection from a set of

pre-trained Neural-PI controllers, leading to improved per-

formance compared to a fixed controller for the switching

system, while maintaining the stability guarantees.

• We conduct comprehensive experiments to validate the ef-

fectiveness and efficiency of our proposed online switching

algorithm with Neural-PI controllers. These experiments

verify the closed-loop stability and improved performance

for primary frequency control under variable inertia.

A. Related Work

Significant progress has been made in frequency control for

systems with reduced and time-invariant inertia, with growing

interest in approaches for time-varying inertia. This section

reviews recent advancements in frequency control for both

constant and time-varying inertia, summarized in Table I.

1) Frequency control under time-invariant inertia: Most

existing frequency control methods are designed for systems

with constant inertia, including classical droop control [1],

[12]–[14], model predictive control (MPC) [8], [15] and data-

driven control [2], [11], [16]–[19]. The most popular method

for primary frequency control using synchronous generators

is droop control, which is typically a linear function of the

frequency deviation (possibly with deadbands and saturation)

[1], [12]. Droop control is also adopted in inverter-connected

resources to provide primary frequency control, to mimic

the behavior of synchronous generators [13], [14]. However,

linear controllers can be sub-optimal since the frequency

dynamics are nonlinear [15]. Facing this challenge, MPC-based

approaches [8], [15] synthesize nonlinear controllers through

optimization, which can lead to computational challenges

for real-time control. Considering the nonlinear nature of

frequency dynamics and the requirement for fast computation,

recently, reinforcement learning (RL) approaches have been

proposed [16], [17]. See [2] for a recent review. The basic

idea of RL lies in finding a policy that computes the optimal

action based on observed states, aiming to maximize cumulative

rewards through interaction with the environment. The key

challenge with those learning-based methods is ensuring

stability, which is critical for power system applications. To this

end, recent studies have integrated RL with stability guarantees

[11], [18], [19], for frequency control under constant inertia.

2) Frequency control under variable inertia: There is

growing interest in frequency control under variable inertia,

due to the increasing penetration of renewable generation.

[20] firstly proposed to use a switched-affine system model

with the linear approximated frequency dynamics for each

inertia model. Building on this model, [21] developed a

stable, time-invariant linear controller learned from datasets

of optimal time-varying LQR controllers. Additionally, [22]

validated the feasibility of solutions within the switched-

affine system framework, leveraging the specific structure of

linearized frequency dynamics. Building on this, [23] introduces

a nonlinear residual in addition to a stable linear controller to

improve performance, with stability ensured through projection.

[24] proposes a robust controller that optimizes the worst-

case system performance via a H∞ loop shaping controller

that adapts to time-varying inertia. [25] considers the variable

inertia by modeling the dynamics as a linearized stochastic

swing equation, where inertia is modeled as multiplicative

noise. [10] proposes a PI-based load frequency controller that

is robust to inertia change, and where stability is validated by

small-signal analysis. Despite these advancements, a common

limitation persists: the models rely on a linear swing equation

for modeling the frequency dynamics and therefore are unable

to accurately capture the nonlinear behavior, which might

compromise control performance. There is also work on

system inertia estimation for frequency control under variable

inertia [26], employing real-time inertia estimation to determine

minimum PV power reserve requirements. However, this

approach does not provide stability guarantees for the switching

system, and as noted in a recent survey [27], fast and robust

inertia estimation is challenging.

Notation. We use bold symbols to represent vectors.

sp(A) := 1
2 (A+A¦) denotes the symmetric part of a square

matrix A. diag(c) represents the diagonal matrix with diagonal

equal to the vector c. Vectors of all ones and zeros are denoted

by 1n,0n ∈ R
n, respectively. We use the superscript ∗ to

denote the equilibrium points of the variables.

II. MODEL AND PROBLEM FORMULATION

A. Power System Model

Consider a n-bus power network represented as a connected

graph (V, E), where buses are indexed by i, j ∈ V := [n] :=
{1, ..., n} and the connecting lines are denoted by unordered
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TABLE I: Literature Summary on Frequency Regulation with Constant or Time-Varying Inertia.

Reference
Time-Varying

Inertia

Nonlinear
Dynamics

Nonlinear
Control

Theoretical
Guarantees

Data-
Driven

Controller
Adaption

Droop Control [1], [12]–[14] ✓

MPC [8], [15] ✓

RL [2], [17], [18] ✓ ✓ ✓

Stable RL [11], [16], [19] ✓ ✓ ✓ ✓

Small Signal [20]–[23] ✓ ✓ ✓ ✓

Robust Control [10], [24], [25] ✓ ✓

The present paper ✓ ✓ ✓ ✓ ✓ ✓

pairs {i, j} ∈ E . State variables are phase angles θ := (¹i, i ∈
[n]) ∈ R

n and frequency deviations from the nominal frequency

ω := (Éi, i ∈ [n]) ∈ R
n. Since the frequency dynamics only

depend on the phase angle differences, we define a change of

coordinates ¶i := ¹i − 1
n

∑n

j=1 ¹j , where δ := (¶i, i ∈ [n]) ∈
R

n can be understood as phase angles in the center-of-inertia

coordinates. This change of coordinates is only for analysis

purposes. Denoting a bounded disturbance of power injection

from the nominal set-point pi as ∆di (e.g., renewable and load

fluctuations), the system dynamics can be written as:

¶̇i = Éi −
1

n

n∑

j=1

Éj , (1a)

MiÉ̇i = pi −DiÉi + ui −
n∑

j=1

Bij sin(¶i − ¶j) + ∆di, (1b)

where M := diag(Mi, i ∈ [n]) ∈ R
n×n are the generator

inertia, D := diag(Di, i ∈ [n]) ∈ R
n×n are the combined

frequency response coefficients from synchronous generators

and frequency sensitive loads, p := (pi, i ∈ [n]) ∈ R
n are

the net power injections, B := [Bij ] ∈ R
n×n is the absolute

value of the susceptance matrix with Bij = 0, ∀{i, j} /∈ E , and

u := (ui, i ∈ [n]) ∈ R
n are the control actions, denoting the

active power injection for control. Note that the time index t
for all the state and action variables ¶i(t), Éi(t), ui(t), and the

disturbance ∆di(t) in (1) are omitted for brevity.

Following the recent NREL report [3, Fig. 13 & Fig. 14], the

amount of inertia is piece-wise constant because it only depends

on the on/off status of synchronous generators. Thus, the

frequency dynamics with time-varying inertia can be modeled

as a switching system, with a predetermined set of values of

equivalent inertia at each “mode”. The evolution of the inertia

in the system depends on the current mixture of conventional

generators and inverter-connected resources, and the switches

happen hourly (when a large renewable generation is available,

some synchronous generators will be offline). Considering

m different inertia modes, the inertia follows a piece-wise

continuous switching signal q(t) : [0,∞) 7→ {1, ...,m}
that remains unknown to the controller. Thus the frequency

dynamics in (1b) under time-varying inertia can be written as,

Mi,q(t)É̇i=pi−DiÉi+ui−
n∑

j=1

Bij sin(¶i − ¶j) + ∆di. (2)

This dynamics model in (2) makes the following assumptions

that are commonly adopted in the literature, cf. [28]:

• Time-varying system parameters: inertia coefficients M .

• Lossless lines: the line resistance is zero for all {i, j} ∈ E ;

• Constant voltage profile: the bus voltage magnitudes for

all buses are constant and equal to 1 p.u. Reactive power

flows are not considered;

• Bounded angle difference: the equilibrium bus phase angle

difference is within ±Ã
2 for all {i, j} ∈ E ;

Further, we assume that the bounded disturbances ∆d do not

depend on the history of states and actions.

B. Control System Architecture

In this work, we focus on primary frequency control using

inverter-connected resources. We present the control system

architecture in Figure 2. The controller of inverter i infers

the frequency deviation Épll,i from the phase-locked-loop

(PLL) block. Considering the much faster time response

of PLLs on inverters (they lock around 1 AC cycle [29],

[30]), we assume that the measured frequency deviation Épll,i

accurately approximates Éi. To guarantee convergence to

the nominal frequency and improve economic efficiency, we

consider distributed communication allowing for bidirectional

information exchange between neighboring buses, defined by

the incidence matrix E. The elements of matrix E can be +1,

−1, or 0, and their values indicate the orientation of the edges

relative to the buses. The control action at bus i is defined as

ui, which is the real power injection at bus i calculated with

real-time local frequency measurements Éi and communication.

We assume real-time communication and timescale separation

between the inverter dynamics and frequency control.

Fig. 2: Diagram of the control system architecture.

III. PROBLEM FORMULATION

This paper focuses on frequency control with variable inertia.

The switching dynamics for inertia are unknown to the control
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algorithm. Our objective is to minimize the frequency deviation

of the system while maintaining moderate control costs.

The frequency control problem is defined as follows,

min
u

JT =
1

T

∫ T

0

( n∑

i=1

1

2
ciu

2
i +¼(∥ω∥2+∥ω∥∞)

)

dt, (3a)

s.t. ¶̇i = Éi −
1

n

n∑

j=1

Éj , (3b)

Mi,q(t)É̇i = pi −DiÉi + ui−
n∑

j=1

Bij sin(¶i − ¶j) + ∆di, (3c)

ui = Ã̂i(Éi, si, {sj , j ∈ Ni}) is stabilizing . (3d)

The objective function (3a) encodes the control costs

and a summation of 2-norm and ∞-norm of the frequency

deviations, for reducing both the operational cost and frequency

disturbance. Here, ¼ is a coefficient that trades off control cost

versus frequency deviation and ci > 0 is the controller cost

coefficient at bus i. The time-varying frequency dynamics are

given in (3b)-(3c). Ã̂i(Éi, si, {sj , j ∈ Ni}) is the controller

at bus i, which requires the local frequency measurement Éi

and variables {sj , j ∈ Ni} from node i’s neighbors Ni. The

variable si ∈ R includes the integral of frequency deviation

and the gradient of control cost, as defined in Section IV.

To formalize the stability constraint in (3d), we employ the

notion of input-to-state stability (ISS), which is commonly

used in nonlinear systems with disturbances [31]. Specifically,

we consider exponential-ISS (Exp-ISS) for fast frequency sta-

bilization. With x =
[
δ − δ∗ ω − ω∗ ks− ks∗

]¦
, where

k is a control gain for the integral variable s to be defined

later, we present the definition of Exp-ISS as follows.

Definition 1 (Exponential Input-to-State Stability (Exp-ISS)).

A controller Ã is called Exp-ISS with parameters (», Ä, ´) if,

for any initial condition x0 ∈ R
3n and bounded disturbance

∆d(t), i.e., ∥∆d(t)∥L∞
= suptg0∥∆d(t)∥2 is finite, the

states satisfy

∥x(t)∥2 f »Ät∥x0∥2 + ´∥∆d(t)∥L∞
,

for all t g 0, where », ´ > 0, 0 < Ä < 1.

Exp-ISS is a property that describes the behavior of dynam-

ical systems in response to external inputs, which generalizes

the idea of stability to systems that are not only influenced

by their initial conditions but also by external disturbances.

When a system is Exp-ISS, it implies that the system not only

remains bounded under small external disturbances but also

converges back to equilibrium exponentially fast when the

input is removed. This property guarantees that the system

recovers from disturbances quickly and predictably.

Remark 1 (Robustness to measurements error, delay, or

cyber attacks). In practical terms, Exp-ISS guarantees the

system robustness to and recovery from external disturbances,

which may include unexpected load changes, or even latency,

measurement errors, and certain types of cyber attacks. As long

as the disturbances on the system resulting from these factors

are bounded, their impact on a system with Exp-ISS guarantees

is bounded by ´∥∆d(t)∥L∞
. Furthermore, the system will be

restored exponentially fast once the disturbance is removed. •
Moreover, provided that appropriate conditions are met, the

Exp-ISS guarantees for fixed subsystems can be effectively

extended to a switching system that alternates between these

subsystems [9].

IV. EXPONENTIALLY STABLE CONTROLLER DESIGN

UNDER ALL MODES

In this section, we design a controller structure that satisfies

the Exp-ISS property in Definition 1 under all modes and

provide a theoretical analysis. Our goal is to develop a uniform

stabilizing controller for all inertia modes in the switching

system that simultaneously achieves two key objectives. Firstly,

restore the system to its nominal frequency, where ω∗ = 0n.

Secondly, optimize the control cost for maintaining system op-

eration at the equilibrium, expressed as c(u) =
∑n

i=1
1
2ci(ui)

2.

A. Controller Structure

The steady-state optimization problem can be written as the

optimal steady-state economic dispatch problem:

min
u∗

c(u∗) =
n∑

i=1

1

2
ci(u

∗
i )

2 (4a)

s.t.
∑

i

(pi + u∗
i ) = 0. (4b)

To meet the requirement of nominal frequency restoration and

steady-state optimality, Distributed Averaging-based Integral

(DAI) [32] is an established choice for frequency control.

Based on this idea, we propose to use the following neural

proportional-integral (Neural-PI) controller structure,

Ã̂i(Éi, si, {sj , j ∈ Ni}) = −Ãi(Éi)
︸ ︷︷ ︸

proportional term

+ ksi
︸︷︷︸

integral term

, (5a)

ṡi = −c−1
i Éi −

∑

j∈Ni

(ciksi − cjksj). (5b)

We name it neural because the proportional term Ãi(·)
is a monotonically increasing function of the instantaneous

frequency deviation Éi parameterized as a monotone neural

network with Ãi(0) = 0. We name it integral because it is

a linear function of si, the integral of frequency deviations

and the difference in the gradients of the control cost c(ks)
between its neighbors. k > 0 is a learnable control gain defined

as a scalar. The linear integral control is deployed instead of a

neural network to achieve exponential stability. Figure 3 shows

the proposed controller structure.

Define C as a diagonal matrix with diagonal entries equal

{ci}i∈V and ci > 0 is the controller cost coefficient, we

summarize the controller design (5) in vector form as

Ã̂(ω, s) = −Ã(ω)
︸ ︷︷ ︸

proportional term

+ ks
︸︷︷︸

integral term

, (6a)

ṡ = −C−1ω − EE¦Cks. (6b)

Remark 2 (Comparison to the Neural-PI controller in [11]).

The above controller structure (6) is inspired by our earlier
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Fig. 3: Diagram of the Neural-PI controller defined by (5).

work [11] for frequency control under time-invariant inertia

with only asymptotic stability guarantees, where both the pro-

portional and integral terms are parameterized as monotone neu-

ral networks. In this work, we adapt this structure to frequency

control under time-varying inertia with one major difference:

only the proportional term is parameterized as a monotone

neural network, and the integral term is parameterized as a

linear function, in order to achieve exponential input-to-state

stability guarantees (Theorem 2). The theoretical contribution

is that we extend the asymptotic stability guarantees of the

Neural-PI controller to exponential ISS guarantee of each mode

(Theorem 2), which is essential for establishing the stability

of the switching system under different inertia. •

B. Theoretical Results

Combining the frequency dynamics and the proposed Neural-

PI controller in (6), the overall closed-loop system can be

modeled in vector form as follows,

δ̇ = (In − 1

n
1n1

¦
n )ω, (7a)

Mq(t)ω̇ = p+ Ã̂(ω, s)−Dω − EB sin(E¦δ) +∆d. (7b)

Our first result characterizes the equilibrium points of the

closed-loop system (7) with ∆d = 0n.

Theorem 1 (Unique Closed-loop Equilibrium). Assume

∀{i, j} ∈ E |¶i − ¶j | < Ã
2 , the power flow equation (3c)

is feasible, and proportional term equals to zero when the

frequency deviation is zero, i.e., Ã(0n) = 0n. Then the

equilibrium (δ∗,ω∗, ks∗) of the closed-loop system (7) with

∆d = 0n is the unique point satisfying

ω∗ = 0n, (8a)

EB sin(E¦δ∗) = p+ ks∗, (8b)

ks∗ = µC−1
1n, (8c)

where µ is determined by

µ = −
∑n

i=1 pi
∑n

i=1 c
−1
i

. (9)

Equation (8a) indicates that the proposed controller effec-

tively reduces frequency deviations to zero at the steady state.

Given that 1¦
nE = 0, and upon premultiplying equation (8b), it

follows that
∑

i(pi+ks∗i ) = 0. By (8c), the final control action,

ks∗i , is distributed proportionally to µc−1
i . This allocation

strategy facilitates higher real power injection from lower-cost

buses, thereby restoring generation balance in an economically

efficient manner. Moreover, the equilibrium point remains the

same regardless of the inertia mode change and switching of

controllers.

For each fixed inertia mode, the following result provides

an exponential ISS guarantee for the closed-loop system.

Theorem 2 (Exp-ISS of Neural-PI Controller for Frequency

Control with Time-invariant Inertia). Let Ã(0n) = 0n and

Ãi(Éi) be monotonically increasing with respect to Éi. Consider

D := {x ∈ R
3n, ∀{i, j} ∈ E , |¶i − ¶j | < Ã

2 }. If a Neural-PI

controller defined by (6) is deployed, then for any x0 ∈ D, the

closed-loop system (1) is exponentially input-to-state stable

(Exp-ISS), i.e., there exists positive scalars », ´ and 0 < Ä < 11

such that for all t g 0,

∥x(t)∥2 f »Ät∥x0∥2 + ´∥∆d(t)∥L∞
.

Theorem 2 guarantees Exp-ISS for the closed-loop (1)

with the Neural-PI controller under any timer-invariant inertia,

ensuring stability despite disturbances and supporting the

generalization of stability to the switching system (7). We

prove this using Lyapunov stability analysis by identifying a

well-defined Lyapunov function that exponentially converges

along the system’s trajectories (1) with bounded disturbance

errors. The detailed proof is available in Appendix B.

C. Monotone Neural Network

The monotonically increasing function Ãi(·) is constructed

as a stacked ReLU function as follows.

Corollary 1. (Stacked ReLU Monotone Network [18, Lemma

5]) The stacked ReLU function with d hidden units constructed

by

Ã+(x;w+, b+) = (w+)¦ReLU(1x+ b+) (10a)

d′

∑

l=1

w+
l > 0, ∀d′ = 1, ..., d , b+1 = 0, b+l f b+l−1, ∀l = 2, ..., d

(10b)

is monotonically increasing for x > 0 and zero when x f 0.

In addition, the stacked ReLU function with d hidden units

constructed by

Ã−(x;w−, b−) = (w−)¦ReLU(−1x+ b−) (11a)

d′

∑

l=1

w−
l < 0, ∀d′ = 1, ..., d , b−1 = 0, b−l f b−l−1, ∀l = 2, ..., d

(11b)

is monotonically increasing for x < 0 and zero when x g 0.

In this way, the stacked ReLU function is a piece-wise

linear function. The slope for each piece of Ã+(x;w+, b+) =
∑d′

l=1 w
+
l , which is always positive by construction and thus

satisfies the monotonic property. A similar argument holds

for Ã−(x;w−, b−). As a result, let Ã(·) = Ã+(·;w+, b+) +
Ã−(·;w−, b−), Ã(x) is monotonically increasing. By [18,

Theorem 2], any continuous, Lipschitz and bounded monotonic

function r(x) with bounded derivatives, r(0) = 0, and mapping

the compact set X to R can be approximated arbitrarily well

by Ã(x).

1An explicit expression of », Ä, ´ is provided in (27b) below.
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V. ONLINE SWITCHING ALGORITHM

In this section, we introduce an online event-triggered

switching algorithm with stability guarantees for frequency

control under time-varying inertia. The proposed algorithm

dynamically chooses from a set of pre-trained Neural-PI

controllers that are optimized for different uni-inertia modes, to

improve the controller performance while maintaining stability.

For implementation purposes, the algorithm is presented in a

discrete-time manner.

A. Online Event-triggered Switching Algorithm

Based on the previous discussion, the Neural-PI controller

is capable of maintaining frequency stability under any inertia

level. However, controllers optimized for high-inertia systems

may underperform when inertia is low due to faster frequency

dynamics [4]. Consequently, a uniform Neural-PI controller,

even trained for all modes, compromises between different

inertia modes and can result in suboptimal performance. Instead,

here we propose an innovative switching algorithm to select

the most appropriate controller based on the current system

state from a set of Neural-PI controllers, each trained for a

specific inertia level, while guaranteeing stability. The switching

algorithm can improve control performance compared to base

controllers trained for each specific mode. Figure 4 illustrates

the proposed online switching control idea.

Fig. 4: Online switching control for frequency control under

variable inertia.

We now detail the online event-triggered switching algorithm

in Algorithm 1. A finite pool of candidate controllers is

considered. With a slight abuse of notation, we define the

index set of base Neural-PI controllers as P = {1, · · · ,m},

where index i ∈ P refers to a Neural-PI controller trained in

inertia mode i. For theoretical purposes, the base controllers

share the same integral controller gain k. The proposed online

switching control algorithm contains three phases: the selection

phase (ns steps), the trial phase (nt steps), and the deployment

phase. The transition into the selection phase occurs once

a frequency deviation exceeding 0.01 Hz event is detected.

Note that a different event-triggering threshold of frequency

Algorithm 1 Online event-triggered switching algorithm.

Ensure: Choose selection phase duration ns, trial phase

duration nt, learning rate À > 0, batch length Ä .

1: Initialize the controller selection probability Pi = 1/m and

accumulated cost G̃i(−1) = 0 for i ∈ [1, 2, ...,m] in the

controller pool; set selection flag as False and t = t0 = 0.

2: while time step t = 0, 1, 2, .... do

3: Measure frequency deviation ω(t);
4: if ∥ω(t)∥∞ > 0.01Hz and selection flag is False then

5: Set selection flag as True;

6: end if

7: if selection flag is True then

8: Let t0 = t;
9: for batch j = 0, 1, ..., +ns

Ä
, (selection phase) do

10: Select controller Ij ∈ P from the selection

probability P;

11: Compute tj+1 = min(tj + Ä, t0 + ns), imple-

ment the chosen Neural-PI controller Ij during batch time

[tj , tj+1] and calculate the batch cost,

g(Ij)(j)=
1

tj+1−tj

tj+1
∑

t=tj

(

n
∑

i=1

ci

2
ui(t)

2+¼(∥ω(t)∥2+∥ω(t)∥∞)

)

;

(12)

12: Update the accumulated cost G̃i(j) = G̃i(j −
1) +

g(Ij)(j)

Pi
I(Ij = i) for all i ∈ P and I is the indicator

function;

13: Update the controller selection probabilities,

Pi =
exp(−ÀG̃i(j))

∑

k∈P exp(−ÀG̃k(j))
, ∀i ∈ P; (13)

14: end for

15: Let t = t0+ns, G̃i(−1) = G̃i(+ns

Ä
,) for all i ∈ P ;

16: for time step t, t+ 1, ..., t+ nt (trial phase) do

17: Commit to controller I = argmax(P);
18: end for

19: Set the selection flag to False, t = t+ nt.

20: else Commit to controller I = argmax(P), set t = t+1.

21: end if

22: end while

deviation can be chosen by the system operator according to

the operation requirements.

During the selection phase, we adopt a multi-arm bandit

(MAB) framework to decide the best controller to use from

the set of pre-trained Neural-PI controllers. Each controller

represents an ‘arm’, the selection of a controller pulls an arm

and yields a cost. Specifically, at each time step and if the

selection phase flag is true, after observing the system state ω,

a controller is selected for deciding the action, and the cost

of the chosen action is revealed for updating the controller

selection probability (so that controllers with lower costs will

have higher probabilities to be chosen). We adopt the batched

MAB in [33] for updating the controller selection probability,

since we would like to measure the controller performance over

a time interval rather than a single step. Thus the algorithm

proceeds in a batch manner with the batch length as Ä . The

selected controller at batch j as Ij with the batched control
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costs and frequency deviation defined in (12), as g(Ij)(j). The

controller selection probability P is updated at the end of each

batch using the historical accumulated cost G̃i(j) following

the exponential weight formula in (13). After the selection

phase, the most probable controller for the current mode, i.e.,

controller I = argmax(P ), is deployed for nt steps in the trial

phase. If the frequency deviation is still greater than the pre-set

threshold after the trial phase, we go back to the selection

phase; otherwise, we stay in the deployment phase and commit

to controller I until the next triggering event with a large

enough frequency deviation. For each selection, the complexity

of the online switching algorithm is O(mns), which enables

efficient real-time application.

B. Stability Guarantees for the Switching System

With the online event-triggered switching algorithm in

Algorithm 1, we now proceed to provide stability guarantees

for the switching system. Let Nq(T, t) be the number of mode

switches in the interval [t, T ). The switching signal q(t) has

an average dwell-time Äa if there exists No, Äa > 0 such that

Nq(T, t) f No+
T−t
Äa

, ∀T g t g 0. The following result states

that, if inertia switches sufficiently slow (with a sufficiently

large Äa), as compared to the time scale of the control, the

switching system with both inertia switching and controller

switching is still guaranteed to be Exp-ISS.

Theorem 3 (Exp-ISS for the switching system). Let Ã(0n) =
0n and Ãi(Éi) be monotonically increasing with respect to

Éi. Consider a finite number of inertia modes {1, · · · ,m},

with each candidate controller in the pool P being a Neural-

PI controller as defined by (6) deployed over D := {x ∈
R

3n, ∀{i, j} ∈ E , |¶i−¶j | < Ã
2 }. There exist constants Ä∗a , »

∗ >
0, Ä∗ ∈ (0, 1), and ´∗ > 0 such that, if the average dwell

time Äa > Ä∗a , then with the online event-triggered switching

Algorithm 1,

the switching system satisfies

∥x(t)∥ f »∗Ä∗t∥x0∥2 + ´∗∥∆d(t)∥L∞
. (14)

We provide the proof sketch for Theorem 3. Consider first

the case of inertia changes only. In this case, Theorem 3 is

a direct consequence of [9, Theorem 3.1]. When switching

of controllers is considered, the Lyapunov function (19) is

invariant to controller changes. Thus the Lyapunov function for

the current controller is a common Lyapunov function for all

base Neural-PI controllers, and switching of controllers retains

Exp-ISS.

Note that the average dwell time Äa is sufficiently large in

frequency control. A long average dwell time Äa of inertia

implies slow inertia switching. In scenarios where synchronous

generators provide inertia, such switches occur on an hourly

basis, whereas control actions are executed in second and

sub-second scale [3]. Therefore, the average dwell time Äa
is sufficiently large for the controllers, and Exp-ISS for the

system with switching inertia is preserved with rates »∗, Ä∗ and

´∗. Theorem 3 also generalizes the stability guarantees of the

batched MAB algorithm [33] from an unknown time-invariant

system to unknown time-varying systems. When the switching

of inertia is sufficiently slow, the online event-triggered control

Fig. 5: Structure of RNN for policy optimization.

algorithm with the controller pool composed of Neural-PI

controllers preserves the exponential ISS guarantees of the

base Neural-PI controllers while enhancing the performance.

VI. EXPERIMENTS

This section first introduces the experiment setup and model

training details. Then, we evaluate the performance of the

base Neural-PI controllers and the proposed online switching

algorithm. Finally, we study the impact of hyperparameters in

the online switching algorithm through sensitivity analysis.

A. Experiment Setup

We evaluate the performance of different controllers using the

IEEE New England 10-machine 39-bus (NE39) network [34].

There are three inertia modes, where the inertia constants

M are set at 30%, 100%, and 500% of the standard values

[34]. These correspond to a low inertia scenario with prevalent

renewable generation (denoted as 0.3), a standard scenario

(denoted as 1.0), and a scenario dominated by synchronous

generators (denoted as 5.0), respectively. Three base Neural-

PI controllers are trained under specific inertia levels and

denoted as ‘Neural-PI-0.3’, ’Neural-PI-1’, and ’Neural-PI-5’.

The Neural-PI controller structure is defined in (6), where

the proportional term Ã(·) is parameterized as a monotone

neural network defined in Corollary 1 with 1 hidden layer and

20 hidden units. To comply with the operational constraints,

we threshold our control policy with action bounds, i.e.

[Ã̂i(Éi, {sj , j ∈ Ni})]ūi
ui

, where [·]ūi
ui

represents a projection

onto [ui, ūi]. These constraints are not considered in our

theoretical analysis.

1) Training Algorithm: To optimize the Neural-PI controller

for each given inertia model, we adopt the Physics-informed

Reinforcement Learning with RNN structure from [18], where

RNN is a class of neural networks designed for modeling

temporal sequences. Given that all states are time-coupled, we

integrate the state transition dynamics (3b)-(3c) of the power

system to the RNN framework following the training algorithm

in [11] to train the base Neural-PI policies.

The operation of RNN is shown by the left side of Figure 5.

The cell unit of RNN will remember its current state at the

initial stage and pass it to the Neural-PI controller, where

the controller gives the corresponding control action. The

integrated power system dynamics give the output, which is

the state at time 1. Then the output is fed as input to the

next stage. Unfolding this process gives Figure 5. The output

at stage t includes the control action ui(t) and the frequency

measurement Éi(t) for all buses. For each training trajectory, a
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random net-load disturbance is generated at a random time step.

The total trajectory length is 3s with step size ∆t = 0.01s
(T = 300). To obtain the trained controllers, we run 300
episodes, each episode containing 300 trajectories. Parameters

of the controllers are updated via gradient descent to minimize

the following loss function,

LÃ̂ =
1

T

T∑

t=1

( n∑

i=1

1

2
ciu

2
i (t)+¼(∥ω(t)∥2+∥ω(t)∥∞)

)

. (15)

with initial learning rate 0.05, decaying every 50 episodes

with a base of 0.7. Adam algorithm [35] is adopted as the

optimizer. We use the TensorFlow 2.0 framework to build

the learning environment and run the training process with a

single Nvidia 1080 Ti GPU with 11 GB memory. Our code is

available online.2 Training for each base Neural-PI controller

takes 429.9 seconds (roughly 7 minutes), each inference of

the trained Neural-PI controller takes an average of 1.29 ms,

which is sufficient for real-time implementation.

2) Baselines: Besides base Neural-PI controllers trained

with constant inertia, we test the proposed online switching

algorithm against the following baseline algorithms.

• Linear-Droop: Standard linear droop controller [1], where

the linear coefficients are learnable.

• Linear-PI: PI controller with linear proportional and

integral control [10], [36], both proportional and integral

coefficients are learnable.

• Lyapunov-NN: Neural network proportional control policy

with monotone structure design [18].

• NN-PI: A standard neural network proportional controller

with linear integral control. Standard fully connected

neural networks are widely used as controllers in various

RL-based frequency regulation studies [2].

All the parameters of the baseline methods are trained with the

RNN framework using the same settings as our method. Instead

of using a constant inertia mode to train the controllers as the

base Neural-PI controllers, all three modes are explored by the

baseline models at the same time. With trained controllers, we

first test the base Neural-PI controllers in different constant

inertia modes to evaluate their transient performances in

different inertia levels (Table II), where each test trajectory has

a 3s duration and a random net-load change at the start. We then

demonstrate the efficiency of our online switching algorithm

against all baseline methods with 20s trajectories, where mode

transitions occur every five seconds, which is a challenging

scenario for experimental purposes (Table III). Additionally,

random net-load disturbances are introduced at the 0.1-second

and 7.0-second. The initial inertia is set at 0.3, 1.0, and 5.0

with respective probabilities of 10%, 45%, and 45%. Inertia

transitions include increasing, decreasing, or staying the same,

governed by a Markov process. If the current inertia level is

0.3, the inertia level will stay at 0.3 or increase to 1.0 with

50% probability each. If the inertia level is at 1.0, there will

be a probability of 30%, 40%, and 30% to decrease, stay, and

increase the inertia level. If the current inertia is 5, it follows

50% probability to switch to 1.0 and 50% to stay the same.

2https://github.com/JieFeng-cse/Online-Event-Triggered-Switching-for-
Frequency-Control

These probabilities, predetermined for experimental purposes,

are unknown to the online control algorithm. We set Ä = 5,

À = 5e−3, ns = 50, nt = 300 in Algorithm 1.

B. Performance of the Online Switching Control

1) Evaluation Metrics: We consider the transient period as

the 3-second time interval after a disturbance and define the

transient performance as the cumulative cost during this period.

Three metrics are used to evaluate the controller performance:

• Frequency deviation: is defined as 1
T

∑T

t=1 ¼(∥ω(t)∥2 +
∥ω(t)∥∞) denoting the average frequency deviation dur-

ing the transient period T = 300;

• Control cost: is defined as 1
T

∑T

t=1 c(u(t)) measuring the

average control cost during the transient period T = 300;

• Total cost: sum of frequency deviation and control cost.

2) Statistical Results: We first present the performance of

the base Neural-PI controllers at different fixed inertia modes

to illustrate the sub-optimality when a controller is trained

under one inertia level but then used for different inertia. Table

II summarizes the average total cost along 100 test trajectories.

TABLE II: Total control costs of different base Neural-

PI controllers under different inertia modes, with the best

performance in each mode highlighted in bold.

Inertia 0.3 Inertia 1.0 Inertia 5.0

Method Mean Std Mean Std Mean Std

Neural-PI-0.3 22.50 8.25 22.74 8.37 23.81 8.35
Neural-PI-1 335.07 2.84 11.23 2.40 11.24 2.34
Neural-PI-5 488.07 3.03 13.10 4.47 10.52 2.06

Table II shows that base controllers optimized for specific

inertia levels outperform others, indicating that proper switching

of controllers can improve performance. Notably, at a low

inertia level, controllers Neural-PI-1 and Neural-PI-5 result

in much higher costs because of large control actions and

induced frequency oscillations. As inertia increases, frequency

dynamics get slower and allow larger control actions to stabilize

the system. As a result, Neural-PI-1 and Neural-PI-5 outperform

Neural-PI-0.3 under higher inertia levels.

We now evaluate the performance of known switching, the

proposed online switching control in Algorithm 1, and base

Neural-PI controllers for frequency control under variable

inertia. Known switching refers to the ideal scenario where, as

soon as the inertia mode changes, the corresponding controller

is deployed instantly. However, real-time mode detection poses

significant challenges, as highlighted by [27], and is thus

considered an ideal performance benchmark. This experiment

uses a 20-second trajectory with mode transitions occurring

every five seconds. Results from 100 test trajectories are

summarized in Table III. The Lyapunov-NN achieves the best

performance among the four baselines except Neural-PI based

methods. However, without integral control, this controller may

fail to restore frequency to its nominal value and achieve steady-

state optimality, and yield a sub-optimal performance. While

Linear-PI can achieve similar stability guarantees, the neural

network design of Neural-PI structure enables our approach
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TABLE III: Transient performance of the known switching,

online switching, base Neural-PI controllers, and other base-

lines. Known Switching defines the offline optimum assuming

that the inertia switches are known to the controller, and

the corresponding controller is selected once a mode change

happens. Performance of the proposed algorithm is highlighted

in bold.

Total Cost Freq Deviation Control Cost

Method Mean Std Mean Std Mean Std

Known Switching 14.52 4.46 13.74 4.41 0.78 0.31
Online Switching 17.34 7.28 16.62 7.22 0.72 0.22
Neural-PI-0.3 21.91 7.11 21.58 6.97 0.32 0.16
Neural-PI-1 48.57 74.05 46.50 71.51 2.07 2.55
Neural-PI-5 56.18 101.91 54.13 99.36 2.04 2.57
Linear-PI 29.10 8.63 28.81 8.52 0.29 0.13
NN-PI 245.4 520.2 245.0 519.7 0.35 0.49
Lyapunov-NN 22.52 4.62 22.11 4.49 0.41 0.14
Linear-Droop 38.35 11.33 38.10 11.20 0.25 0.13

to have more flexibility, leading to an improved performance.

Without any stability guarantees, a general NN-PI controller can

lead to frequency oscillations and a large frequency cost. Our

online event-triggered switching control achieves a significant

improvement compared to the Neural-PI baselines without

switching and outperforms all other baselines.

3) High-Order Power System Simulation: To illustrate how

the proposed algorithm works in practice, we test the trained

models and the online event-triggered algorithm with 6th

order generator model as well as dynamic models for inverter-

connected resources [37], [38]. ANDES (an open-source

package for high-order power system dynamic simulation)

[39] is utilized to simulate the dynamic response from the

Western Electricity Coordinating Council (WECC) generic

models [40] for solar PV generation as the renewable resources,

and 6th-order generator model with turbine-governing systems.

Parameters for the PV and the voltage control follow the default

values in ANDES. A test trajectory is provided in Figure 6,

illustrating controlled frequency deviation and the evolution of

controller selection probability distribution P across an inertia

switching sequence {5.0, 1.0, 1.0, 0.3}. Initially, a disturbance

triggers the selection phase at around 0.1 seconds. Neural-PI-5

outperforms other controllers in the controller pool, thus it is

selected after the selection and trial phases, and is deployed

until a new disturbance at 7 seconds prompts another selection

phase, where Neural-PI-1 is chosen. With frequency disturbance

restored, no further switching is triggered even if mode changes

happen or another small disturbance happens at 12 seconds.

As demonstrated in this high-order simulation, our method

effectively restores frequency deviation after disturbances,

thanks to its robustness to errors, cf. Remark 1, and correctly

identifies the appropriate controller online.

C. Sensitivity Analysis: Impacts of Hyperparameters

We examine the impact of hyperparameters À (learning

rate) and Ä (batch length) in the proposed online switching

algorithm in Algorithm 1. Results are presented in Table IV.

The learning rate, À, modulates the algorithm’s responsiveness

Fig. 6: High-order simulation with ANDES. Control tra-

jectory of all controlled buses with the proposed online

event-triggered switching control algorithm and the evolution

of controller selection probabilities. The background colors

represent the inertia levels, where the inertia switching sequence

is {5.0, 1.0, 1.0, 0.3}.

TABLE IV: Transient performance of the online switching

algorithm with different hyperparameters. Results of the

selected hyperparameters are highlighted in bold.

Total Cost Freq Deviation Control Cost

Parameter Mean Std Mean Std Mean Std

À = 5e−4, Ä = 5 17.92 9.16 17.20 9.03 0.73 0.28

ξ = 5e−3, τ = 5 17.34 7.28 16.62 7.22 0.72 0.22

À = 3e−2, Ä = 5 18.10 8.60 17.39 8.56 0.71 0.24

À = 5e−3, Ä = 1 18.28 9.36 17.57 9.26 0.71 0.29

À = 5e−3, Ä = 10 20.69 12.30 19.94 12.16 0.74 0.32

to cost changes, set initially at 5e−4 based on the cost scale

in our experiments. A lower À results in a more gradual

evolution of the probability distribution P , avoiding rapid

probability change but potentially leading to prolonged use

of sub-optimal controllers. On the other hand, a higher À
accelerates convergence towards a particular controller, while

risking being greedy and committing to a sub-optimal choice

too early. The batch length Ä also influences the balance

between exploration and exploitation. For our experiments,

with a selection phase of ns = 50, Ä must be less than 10

to allow sufficient trials of different controllers. At Ä = 10,

the agent has merely five opportunities to evaluate different

controllers, increasing the risk of prematurely converging to

a sub-optimal choice. A Ä value of 1 leads to controller

update and switching at every step, potentially leading to more

oscillations and short-sighted controller performance evaluation.

Therefore, properly choosing hyperparameters is essential for

optimizing performance.

D. Ablation Study: Impact of Time-varying Droop Control of

Conventional Generators

Under different inertia modes, the amount of online con-

ventional generators is different, thus the primary frequency

control capacity can be different. The dynamical model (2)

follows the convention of existing literature [21], [22] on

modeling frequency dynamics under time-varying penetration

of renewable energy, and focuses on variable inertia, assuming

constant damping coefficients. However, damping coefficients
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may switch simultaneously with inertia changes, leading instead

to the following switching system model:

Mi,q(t)É̇i=pi−Di,q(t)Éi+ui−
n∑

j=1

Bij sin(¶i − ¶j) + ∆di.

To test the effects of variable damping control, we set the

damping coefficients at 30%, 100%, and 500% of the standard

values (the same scales as the inertia mode changes). For

example, when inertia is 30% of the original inertia, we set

the damping coefficients to be 30% of the standard D values

to reflect the capacity limit of synchronous generators. The

performance of our algorithm in this case is presented in

Figure 7. Even though the damping control is different under

different inertia modes, our method still works effectively

in restoring frequency after disturbances due to the Exp-ISS

guarantees. We leave a detailed technical analysis of time-

varying damping coefficients for future work.

Fig. 7: Control trajectory with variable primary frequency

control. The first row illustrates constant damping coefficients,

while the second row depicts variable damping coefficients.

Background colors indicate the inertia levels, following the

switching sequence {0.3, 1.0, 1.0, 5.0}. Disturbances are intro-

duced at 0.1 seconds, 7 seconds, and 15 seconds, respectively.

VII. CONCLUSIONS

In this work, we have considered the problem of primary

frequency control under time-varying system inertia. To address

it, we have modeled it as a switching system, where the

frequency dynamics under each mode are described by the

nonlinear swing equation, and different modes represent

different system inertia levels determined by the ratios of

inverter-connected resources and synchronous generators. We

proposed an online event-triggered switching control scheme,

to dynamically select a controller online from a set of pre-

trained Neural-PI controllers under specific inertia levels. Our

design leverages the Exp-ISS properties of the base Neural-PI

controller, to establish the Exp-ISS guarantee of the switching

system. The efficacy of the proposed approach is demonstrated

on the IEEE 39-bus system, where it achieves a notable

reduction in average cost by approximately 20.9% compared

to the best base Neural-PI controllers in the controller pool.

Additionally, in high-order power system simulations, our

algorithm successfully identifies the appropriate controller

online and restores frequency deviations. In terms of future

directions, we are interested in incorporating line losses, time-

varying damping coefficients, and inverter dynamics into the

stability analysis, simultaneous consideration of voltage control,

extending the framework to regional frequency control, and

incorporating cyber-security and latency aspects.
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APPENDICES

A. Proof of Theorem 1

Proof. At steady state, the dynamics (7) yields

ω∗ = 1nÉ
∗, (16a)

0n = p+ u(ω∗, s∗)−Dω∗ − EB sin(E¦δ∗), (16b)

C−1ω∗ = −EE¦Cks∗, (16c)

where É∗ is a scalar. Premultiplying (16c) by 1
¦
n yields

1
¦
nC

−1
1nÉ

∗ = −1
¦
nEE¦Cks∗ = 0,

which implies that É∗ = 0. As a result, the right-hand side

of (16c) also equals the zero vector. Following [11, Lemma

5], EE¦Cks = 0n if and only if Cks ∈ range(1n), which

indicates that Cks∗ = µ1n, implying that ks∗ = µc−1
1n.

In this case, u∗ = ks∗ is the unique minimizer of the

optimal steady-state economic dispatch problem following [32].

Applying these results to (16b) yields

EB sin(E¦δ∗) = p+ ks∗ = p+ µC−1
1n.

By premultiplying the above equation with 1
¦
n and the fact

that 1¦
nEB sin(E¦δ∗) = 0, we can reach to (9). This result is

similar to the analysis in [32, Theorem 1]. Given that the inertia

does not show up in the equilibrium analysis, the switching

system has a unique equilibrium point.

B. Proof of Theorem 2

We use the Lyapunov stability theory. The proof is structured

as follows. We first present the Lyapunov function for the

closed-loop system, which can be bounded by the norm of

x on both sides. We then bound its Lie derivative under

disturbances. Following the application of the Comparison

Lemma [41, Adopted from Lemma 3.4],

we arrive at Exp-ISS.

Lyapunov Function: Define the function R(s) as

R(s) :=
n∑

i=1

ci

∫ si

0

kzdz =
n∑

i=1

cik

2
s2i . (17)

Then, the Bregman distance is defined as BV(s, s∗), i.e.,

BV(s, s∗) := R(s)−R(s∗)−∇R(s∗)¦(s− s∗) (18)

Notably, the Bregman distance here simplified as BV(s, s∗) =
k
2

∑

i ci(si − s∗i )
2.

We consider the following Lyapunov function candidate for

a fixed inertia M :

V (δ,ω, s) =
1

2

n∑

i=1

Mi(Éi)
2 +Wp(δ) (19)

+ ϵ1Wc(δ,ω) +BV(s, s∗)− ϵ2(s− s∗)¦1n1
¦
nMω,
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where

Wp(δ) : = −1

2

n∑

i=1

n∑

j=1

Bij(cos(¶ij)− cos(¶∗ij))

−
n∑

i=1

n∑

j=1

Bij sin(¶
∗
ij)(¶i − ¶∗i ),

Wc(δ,ω) :=

n∑

i=1

n∑

j=1

Bij(sin(¶ij)− sin(¶∗ij))ciMi(Éi − É∗),

and ¶ij := ¶i − ¶j . Here, ϵ1, ϵ2 > 0 are tunable parameters.

The last cross-term in (19) is inspired by [42].

Lemma 1 (Bounds on Lyapunov Function). For all (δ,ω, s) ∈
D, there exist a1, a2 > 03, such that the Lyapunov function

V (δ,ω, s) is bounded by the following inequalities

V (δ,ω, s) g a1(∥δ − δ∗∥22 + ∥ω − ω∗∥22 + ∥ks− ks∗∥22),

V (δ,ω, s) f a2(∥δ − δ∗∥22 + ∥ω − ω∗∥22 + ∥ks− ks∗∥22)).
Proof of Lemma 1. The proof is similar to the proof of [42,

Lemma 1]. We will bound V (δ,ω, s) term-by-term. First,

following the Rayleigh-Ritz theorem, the kinetic energy

term 1
2

∑n

i=1 Mi(Éi − É∗)2 is bounded with lower bound
1
2¼min(M)∥ω − ω∗∥22 and upper bound 1

2¼max(M)∥ω −
ω∗∥22. Following [42, Lemma 4], Wp(δ) can be bounded

by ¸1

2 ∥δ − δ∗∥22 f Wp(δ) f ¸2

2 ∥δ − δ∗∥22 with some positive

¸1, ¸2. Define Cmax = max(C), the absolute value of the

cross-term Wc(δ) is bounded as follows,

|Wc(δ)| f
1

2
(¸22C

2
max∥δ − δ∗∥22 + ¼max(M)2∥ω − ω∗∥22).

Let W2 = (s− s∗)¦1n1
¦
nMω, similarly, we have

|W2| f
1

2
(
n2

k2
∥ks− ks∗∥22+¼max(M)2∥ω∥22).

Because BV(s, s∗) = 1
2k

∑

i ci(ksi−ks∗i )
2, it can be bounded

by Cmin

2k ∥ks− ks∗∥22 f BV(s, s∗) f Cmax

2k ∥ks− ks∗∥22, with
Cmin = min(C). Combining the inequalities, we can bound
the entire Lyapunov function with

a1 :=
1

2
min(¼min(M)− (ϵ1 + ϵ2)¼max(M)2,

¸1 − ϵ1¸
2
2C

2
max,

kCmin − ϵ2n
2

k2
), (21a)

a2 :=
1

2
max(¼max(M) + (ϵ1 + ϵ2)¼max(M)2,

¸2 + ϵ1¸
2
2C

2
max,

kCmax + ϵ2n
2

k2
). (21b)

ϵ1 and ϵ2 are sufficiently small so that a1, a2 are positive.

The next result bounds the Lie derivative of (19).

Lemma 2 (Time derivative). Given the Neural-PI controller

defined by (6), with Ã(0n) = 0n and Ãi(Éi) monotonically

increasing with respect to Éi, consider the Lyapunov function

(19). There exist ³1, ³2 > 04 such that, for (δ,ω, s) ∈ D,

V̇ (δ,ω, s) f −³1V (δ,ω, s) + ³2∥∆d∥2
√

V (δ,ω, s).

3Explicit expressions for a1, a2 > 0 are given in (21).
4Explicit expressions for ³1, ³2 > 0 are provided in (26).

Proof of Lemma 2. Define pe,i(δ) :=
∑n

j=1 Bij sin(¶ij),
H(δ) = ∇pe(δ). It can also be written as H(δ) =
EBdiag(cos(E¦δ))E¦, where E is the incidence matrix.
Given that B is a diagonal matrix, H(δ) is a Laplacian matrix.
We start by computing the partial derivatives of V (¶, É) with
respect to each state:

∂V

∂δ
=pe(δ)− pe(δ

∗) + ϵ1H(δ)CM(ω − ω
∗),

∂V

∂ω
=M [ω − ω

∗ + ϵ1C(pe(δ)− pe(δ
∗))]− ϵ2M1n1

¦

n (s− s
∗),

∂V

∂s
=C(ks− ks

∗)− ϵ21n1
¦

nMω.

Therefore, the partial Lie derivatives can be written as

∂V

∂δ
δ̇ =(pe(δ)− pe(δ

∗))¦(ω − 1n

1
¦

nω

n
)

+ ϵ1(H(δ)CM(ω − ω
∗))¦(ω − 1n

1
¦

nω

n
).

∂V

∂ω
ω̇ = [ω−ω

∗+ϵ1C(pe(δ)−pe(δ
∗))−ϵ21n1

¦

n (s−s
∗)]¦Mω̇.

∂V

∂s
ṡ = −(ks− ks

∗)¦[(ω − ω
∗) + CEE

¦
Cks]

+ ϵ2ω
¦
M1n1

¦

n [C
−1(ω − ω

∗) + EE
¦
Cks].

Following Theorem 1, Cks∗ ∈ range(1n) and thus
CEE¦Cks∗ = 0. A direct result of this Theorem is

(ks− ks
∗)¦CEE

¦
Cks = (ks− ks

∗)¦CEE
¦
C(ks− ks

∗)

Note that by definition pe(δ)
¦
1n = 0, H(δ)¦1n = 0,

(pm −Dω∗ − Ã(ω∗)− pe(δ
∗) + ks∗ = 0 at the equilibrium.

In order to simplify the summation, we introduce the following
three zero-terms

Z1 = (pe(δ)− pe(δ
∗) + ϵ1H(δ)CM(ω − ω∗))¦(1

1¦ω

n
− 1ω∗)

︸ ︷︷ ︸

=0

Z2 = −(ω − ω)¦ (p−Dω∗
− Ã(ω∗)− pe(δ

∗) + ks∗)
︸ ︷︷ ︸

=0

Z3 = −[ϵ1C(pe(δ)− pe(δ
∗))]¦ (p−Dω∗

− Ã(ω∗)− pe(δ
∗) + ks∗)

︸ ︷︷ ︸

=0

Consider sp[Q(δ,ω)] as follows





ϵ1C ϵ1C(D +K(ω)) −ϵ1C

0 D−ϵ1MCH(δ)−ϵ2M1n1
¦

nC
−1 − ϵ2

k
(D+K(ω))1n1

¦

n

0 0 CEE¦C+ ϵ2
k
1n1

¦

n



 ,

Thus, we have

V̇ (δ,ω, s) =
∂V

∂δ
δ̇ +

∂V

∂ω
ω̇ +

∂V

∂s
ṡ

=
∂V

∂δ
δ̇ +

∂V

∂ω
ω̇ +

∂V

∂s
ṡ+ Z1 + Z2 + Z3

f −

[

pe(δ)− pe(δ
∗)

ω − ω∗

ks− ks∗

]¦

Q(δ,ω)

[

pe(δ)− pe(δ
∗)

ω − ω∗

ks− ks∗

]

− (ω − ω
∗)¦(Ã(ω)− Ã(ω∗))

+ [ω − ω
∗ + ϵ1C(pe(δ)− pe(δ

∗))−
ϵ2

k
1n1

¦

n (ks− ks
∗)]¦∆d

Consider a small enough ϵ1 and ϵ2, matrix Q(δ,ω) can
be positive definite [42]. Given that Ã(ω) is monotonically
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increasing, −(ω−ω∗)¦(Ã(ω)− Ã(ω∗)) is negative. Thus the
above equation can be written as

V̇ (δ,ω, s) f−

[

pe(δ)− pe(δ
∗)

ω − ω∗

ks− ks∗

]¦

Q(δ,ω)

[

pe(δ)− pe(δ
∗)

ω − ω∗

ks− ks∗

]

+





C(pe(δ)− pe(δ
∗))

ω − ω∗

−1n1
¦

n (s− s∗)





¦
[

ϵ∆d
∆d
ϵ2∆d

]

This further leads to

V̇ f−a3
a2

V (δ,ω, s)+
a4
√
1+ϵ2+( ϵ2

k
)2

√
a1

∥∆d∥2
√

V (δ,ω, s)

where a3 = minδ,ω ¼min(Q(δ,ω))min(1, ¸21) > 0, a4 =
√

max(1, ¸22C
2
max, n

2) > 0. Thus we define ³1, ³2 as follows,

³1 =
a3
a2

, ³2 =
a4
√
1 + ϵ2 + ( ϵ2

k
)2

√
a1

. (26)

Given that
√̇
V = V̇

2
√
V

, using Lemma 2, we get

˙√

V (δ,ω, s) f −³1

2

√

V (δ,ω, s) +
³2

2
∥∆d∥2.

Using the Comparison Lemma [41, Lemma 3.4], we have

√

V (δ,ω, s) f
√

V (δ,ω, s)|t=0 exp
−α1

2 t +
³2

³1
∥∆d∥2,

where the second exponential term is dropped by relaxation.

Utilizing Lemma 1, the above can be rewritten as

∥x(t)∥2 f »Ät∥x0∥2 + ´∥∆d(t)∥L∞
, (27a)

where » =

√
a2√
a1

, Ä = exp−
α1
2 , ´ =

³2

³1
√
a1

. (27b)

Notably, while Exp-ISS is guaranteed regardless of inertia

modes, the parameters », Ä, and ´ are dependent on the

inertia matrix, indicating that variations in inertia can affect

the convergence rate.
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