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Abstract—The increasing penetration of converter-
based renewable generation has resulted in faster
frequency dynamics, and low and variable inertia. As a
result, there is a need for frequency control methods that
are able to stabilize a disturbance in the power system
at timescales comparable to the fast converter dynamics.
This letter proposes a combined linear and neural network
controller for inverter-based primary frequency control that
is stable at time-varying levels of inertia. We model the
time-variance in inertia via a switched affine hybrid system
model. We derive stability certificates for the proposed
controller via a quadratic candidate Lyapunov function. We
test the proposed control on a 12-bus 3-area test network,
and compare its performance with a base case linear
controller, optimized linear controller, and finite-horizon
Linear Quadratic Regulator (LQR). Our proposed controller
achieves faster mean settling time and over 50% reduction
in average control cost across 100 inertia scenarios com-
pared to the optimized linear controller. Unlike LQR which
requires complete knowledge of the inertia trajectories and
system dynamics over the entire control time horizon, our
proposed controller is real-time tractable, and achieves
comparable performance to LQR.

Index Terms—Power
time-varying systems.

systems, data-driven control,

|. INTRODUCTION

ENEWABLE energy has experienced a rapid growth,
and is predicted to constitute one-third of the global
generation mix by 2025 [1]. Unlike conventional gener-
ators, renewables are interfaced with the grid via power
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electronic inverters, which lack rotational inertia. In syn-
chronous generator-dominated grids, aggregated rotational
inertia slows down the system frequency response in the event
of an imbalance between power supply and demand [2]. This
allows controllers sufficient response time to restore frequency
to its nominal value. In contrast, renewable-dominated grids
are characterized by low and time-varying inertia, and fast
frequency dynamics [3]. This creates a need for real-time
tractable, and fast-acting controllers (in the order of mil-
liseconds) [4] that are capable of stabilizing a disturbance
without impacting frequency-dependent load shedding and
other protection schemes [5].

Several works have proposed virtual inertia and damping
allocation as a solution to address the frequency stabil-
ity challenges in low inertia systems [6], [7], [8]. The
proposed approaches vary in the order of their frequency
dynamics models and in the metrics used for character-
izing controller performance (see [9] for a comprehensive
overview). Nevertheless, it’s challenging to extend the con-
trollers designed for constant inertia to a time-varying system,
given that even exponentially stable subsystems can become
unstable with time-varying parameters [10]. Only a few
papers have considered frequency control for variable inertia
systems [11], [12], [13], [14], [15]. The work in [12] proposes
a robust controller that optimizes the worst case system
performance via a Hoo loop shaping controller that adapts to
time-varying frequency and damping in low-inertia systems.
The work in [13] explicitly considers the temporal varia-
tion in inertia by modeling it as multiplicative and additive
noise in the linearized stochastic swing dynamics model,
and characterizes controller performance via the H» system
norm. The work in [11] models the time-varying frequency
dynamics as a switched affine hybrid system, with the system
switching through different modes representing different levels
of inertia. Using this framework, the authors solve a receding-
horizon model predictive control problem for dynamic virtual
inertia placement. The work in [14] proposes a data-driven
virtual inertia controller that learns an optimal linear control
gain from the finite-horizon LQR solution that stabilizes the
switched system in all inertia modes. The work in [15] expands
on [11], [14] to prove the existence of such a stabilizing time-
invariant linear controller.

There has been a lot of recent interest in implementing
machine learning to address frequency regulation challenges
in the power grid (see [16] for a review). However, the
key challenge is that standard learning techniques do not
provide stability guarantees. Particularly, a neural network
controller with a low training loss may actually lead to
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system instabilities (i.e., unbounded frequency deviations)
when implemented during testing as observed in [17], [18].
Stability is critical for power system operation because it can
lead to catastrophic consequences, e.g., blackouts [19]. To
take stability into account for a nonlinear time-varying system
with uncertainty, [20] proposes a quadratic constraint based
on restricting the partial gradients of the control policy to a
bounded (safety) set to guarantee global asymptotic stability.
Another class of papers are based on integrating Lyapunov
stability constraints into neural-network-based design [18],
[21], [22], [23], [24], [25], [26], [27], [28], and enforce
strict monotonicity of the policy for stability [18], [21], [23],
[24], [26], [27], [28]. In particular, [21], [24], [28] propose a
nonlinear controller for primary frequency control in lossless
power networks considering nonlinear frequency dynamics.
For the proposed candidate Lyapunov function, local asymp-
totic stability is guaranteed as long as the controller is a
monotonically increasing function that passes through the
origin. The works [18], [23], [25], [26], [27] propose nonlinear
controllers for voltage control considering the linearized dis-
tribution grid power flow model, and show that an incremental
control with monotonically decreasing instantaneous control
functions guarantee stability. For problems where it is hard
to analytically derive a Lyapunov function, [17], [22], [29]
propose methods for learning a candidate Lyapunov function
jointly with a controller, with both parameterized as neural
networks. To the best of the authors’ knowledge, no exist-
ing work has explored learning-based frequency control that
guarantees stability under time-varying frequency dynamics.

This letter leverages the power of deep learning to optimize
the performance of inverter-based frequency control under
time-varying inertia while maintaining stability guarantees.
The contributions of this letter are three-fold:

1) a fast-acting, data-driven controller that considers

frequency dynamics with time-varying inertia,

2) that satisfies Lyapunov stability conditions for a
switched affine hybrid system (i.e., in all inertia modes
and switching sequences), and

3) that performs comparably to finite-horizon LQR in
stabilizing a frequency disturbance in milliseconds (real-
time computationally tractable).

The remainder of this letter is organized as follows. In
Section II, we introduce the switched affine hybrid system
model of frequency dynamics for a system with time-
varying inertia, and the finite-horizon LQR formulation for
frequency control. In Section III, we expand on the notion
of Lyapunov stability for a switched affine hybrid system
in all inertia modes, and present our proposed controller.
We derive Lyapunov stability constraints for the proposed
controller, and propose a method to integrate the derived
stability constraints into a learning algorithm. We implement
the proposed stability-constrained learning algorithm on a
modified Kundur 12-bus 3-area test system and present our
simulation’s results in Section IV. Lastly, in Section V we
conclude and outline future work.

[I. MODEL AND PROBLEM FORMULATION
A. Frequency Dynamics as a Hybrid Switching System
Consider a power network described by an undirected graph,
G = {N,E&}, where NV = {1,...,n} represents the buses
(nodes) of the power network and & represents the edges

(transmission lines). Assuming identical unit voltage magni-
tudes, and purely inductive lines, a small-signal approximation

of the swing equation [30] gives us the following linearized
dynamics, Vi € N:

mit; (1) + di0;(t) = pin,i(t) — Z bij(0:() — 6;(0), (1)
jeN
where 6; is the voltage phase angle at node i, m; is the inertia
coefficient at node i, d; is a lumped parameter representing the
droop control or frequency damping coefficient at node i, pjp ;
represents the power input at node i, and b;; is the susceptance
of the transmission line between nodes i and j.

Shifts towards greater integration of renewable energy
sources introduce variability in the system’s inertia. This
variability is attributed to the varying ratios of power gener-
ation from renewables (and their associated power electronic
converters) and conventional generators across different times
of the day. We use [14] to model these new dynamics as
a switched affine hybrid system to capture the time-variance
of the system and put the frequency dynamics in (1) in the
compact vector form:

6o 1_[ O 1 (1) 0
|:a)(t) ] - |:—1V[_1 L-M! D:| |:a)(t):| + |:Mq_(;):|pin(t)7 2)
———  —— u(®)

q(1) q(®)
X(t) Aq(;) x(1)

By

where 6(f) € R" and w(r) € R”" respectively denote the
angle and frequency deviations from their nominal values at
all nodes at time t, x € R corresponds to the stacked
state vector of angle and frequency deviations at all nodes
at time ¢, u = p;p(t) € R”" is the control action at time ¢,
D = diag(d;) € R™" is a diagonal matrix containing the
droop/damping coefficients at all nodes, and L € R"™" is
the Laplacian of the grid. Further, M, represents the inertia
matrix in mode ¢ € {1,...,p} and each M, = diag(m; ;) €
R™" is a diagonal matrix with m; , denoting inertia constant
at node i. Each operational mode ¢ in (2) corresponds to a
specific inertia value h; (in seconds), based on the mix of
online generators and converters at time ¢. In particular, inertia
of < 2 s represents a renewable-dominated node, 2 — 4 s
represents a hydroelectric generation-dominated node, and 4 —
10 s represents a thermal generation-dominated node [2]. The
inertia coefficients are calculated as mg,,; = M where
ws = 50 Hz and S,4q,; is the net power rating at node i. Note
that x, u, and g are all time-dependent variables; we omit the
t in their notation for brevity.

B. Training Set Generation

To train a policy that minimizes frequency deviations and
control costs, we generate a training set for the learning-based
controller with the following finite-horizon LQR:

T
min / (xTQx + uTRu>dt, (3a)
X Ji=0
st. x=Ax+Byu Viel0,T], (3b)
x(0) = x©, (3c)

where x© is the initial state, states x and control actions
u are the decision variables. The objective function includes
quadratic costs for frequency deviation and control action over
the optimization time horizon, where Q > 0 and R > 0O
can be tuned according to the desired control objectives. The
finite-horizon LQR has complete knowledge of the dynamics,
including the modes, over the entire time horizon. Problem (3)
is a Quadratic Programming problem solvable with CVX [31].
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[1l. METHODOLOGY

In this section, we begin by deriving a Lyapunov function
for the swing dynamics with time-varying inertia described
in (2). Then, we derive the stability condition under this
Lyapunov function and present our proposed controller.
Finally, we introduce the training method for the proposed
algorithm. Figure 1 shows a diagram of the proposed policy.

A. Candidate Lyapunov Function for the Switched
System

The first-stage objective is to find a Lyapunov function
for the switched affine hybrid system. We Tpropose to jointly
identify a Lyapunov function V(x) = x' Px and a linear
feedback controller # = Kx that can stabilize all the modes. In
the next part, we will show how to improve the performance
of the linear controller via a neural network residual policy
while maintaining the stability guarantee.

Formally, we aim to find a controller u = Kx and a
common Lyapunov function V(x) = x'Px, P > 0 such that
the following Lyapunov stability condition is satisfied,

(Ag +ByK) P +P(Ag+BgK) <0, Yge{l,2,....p} (4)

Given that the Lyapunov function V(x) = x'Px is positive
definite since P > 0 and satisfies the Lie derivative condi-
tion (4), the linear feedback controller u = Kx guarantees the
stability of the switched affine hybrid system.

However, a notable challenge is that the constraint (4) is
nonconvex in the decision variables K and P due to the
products of bi-linear terms. Thus, we adopt a change of
variables following [32, Ch. 7]. Defining X = P~! and ¥ =
KX, we formulate the joint Lyapunov function and stable
control identification feasibility problem as follows,

r}l&l;l C, (5a)

st. AgX +XA, +B,Y+Y'B; <0,Yg € {l,....p}, (5b)
X0, (5¢)

where C is a constant. This problem is convex and feasible
as [15] analytically guarantees it. Suppose (X;, Yy) are solu-
tions of (5). Then the feasible control gain K; is derived as
Ky = Y¢(X;)~! and the Lyapunov function is defined as

V=xPx, P,=X,) " (6)

Therefore, no matter how many different modes the switched
affine system has, we can always find a linear controller and
a common Lyapunov function [15].

B. Proposed Controller

Having identified a stable linear controller for the hybrid
system and the corresponding Lyapunov function, we now
introduce our proposed algorithm. To guarantee stability and
improve performance, we parameterize the proposed controller
as a combination of a stabilizing linear feedback controller and
a nonlinear residual 7y (-) : R?" — R" (Fig. 1). The nonlinear
residual is parameterized as a neural network with parameter
Y, and its inputs are the current states x. We consider a
controller defined as follows:

u = Kx + 1y (x). 7

By combining the linear controller with a neural network
residual, we have a dual benefit: it can inherit the guarantee

Neural Network ;

T

55? 158
Sl

Control Action

Frequency r

Measurement

No/

Linear Feedback Kx(t) _f
Controller

{Projeclion to Guarantee Stabilityl

Fig. 1. The diagram of the proposed controller depicts a combination of
alinear controller Kx() and a neural network residual 7 (-), constrained
to actions that satisfy the Lyapunov stability conditions specified in (10).

of the linear control while gaining additional flexibility for
performance optimization with a neural network.

To ensure the stability of the closed-loop system we define
Acq = Ay + ByK and we utilize the Lyapunov function
from (6) to derive the algebraic stability constraint, Vx # 0:

V=x (AT

P ¥ PAd,q)x +2x PBymy (1) < 0. (8)

We introduce short-handed notations Vij(x,q) =
xTA] P+ PAcgx and g(x, q) = 2B, Px. Thus, (8) can be
compactly written as,

Viin(x, @) + g (x, )7y (x) < 0,¥x # 0. €))

The switching system is asymptotically stable with the
proposed policy if (9) holds for all time . We summarize the
main result as the following Theorem.

Theorem 1: Consider a controller defined as uy (x) = Kx+
[y (x)], where u = Kx is a linear controller that can stabilize
the switching system (2), and my(x) is a neural network
controller parameterized by . For all x # 0, define the
projection operation IT[my (x)] as follows (10),

+
o g (x, q)ﬂ;_a(x)+Vun(x, Q+el (108)
g (x, gk, q)

N[ry ()] = 7y (x) — A*g(x, g),

where € > 0 is a sufficiently small constant. For x = 0, the
projection is I1[my (0)] = 0. Then the closed-loop system (2)
is asymptotically stable with respect to the origin for arbitrary
switching signal g(t) : R* — {1,...,p}.

Proof: Consider the following convex programming,

(10b)

1 )
H[yw (x)] = argming §||§ — 1y (017, (11a)

st Vin(x, @) +g' (x, 9)& < —e. (11b)

Given that K is a stable linear controller for the system,
with the common Lyapunov function V = x'Px, thus for
any g € {1,...,p} VLin(x,q) < 0,Vx # 0. Therefore, the
project problem (11) is always feasible with a solution & = 0.
Consider the Lagrangian of (11)

1
L& 2) = 511§ =7y @I+ 2(Vein(. ) + &7 (v )8 +¢).

The optimal primal and dual solutions (£*,A*) satisfy the
Karush-Kuhn-Tucker (KKT) conditions,

Vel = £ — 7y () + A" g(x, ¢) = 0, (12a)
3 (Vin(r @) +8T (6" +¢) =0, (12b)
Vin(x, @) +g'(x, @& < —e, 1% > 0. (12¢)
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Thus, (10b) is a direct result from (12a). Substituting (10b)
in (12b) gives (10a). As a result, (10) provides an optimal
solution of (11). This solution guarantees that Vpi,(x, q) +
g (x, 9Ty (x)] < 0,Vx # 0 holds for all time #, which
leads to asymptotic stability with respect to the origin. |
Therefore, the final designed policy reads as follows,
Uy (x) = Kx + M7y (0], (13)
where I[my (x)] is given by (10).
Remark 1: To analyze the impact of linearization error on
stability, consider the following nonlinear dynamics,

X = Agx + Byu + n(x),

where n(x) is the linearization error depending on state. With
the same Lyapunov function V = x ' Px, the stability condition
for the nonlinear dynamics reads as follows,

V=x' (AT

cgP T PAcl>q>x + ZXTPBq”w () +2x " Pp(x).

Viin(x,q9) +¢7 (x,9)5<—¢

Therefore, our stability constraint in (11b) guarantees stability
of the nonlinear dynamics in a local region around the origin
when the linearization error is small.

C. Stability-Constrained Learning for Frequency
Regulation

In Section III-A, we introduced feasible solutions for the
feedback control gain K and the Lyapunov function obtained
by solving (5). However, the direct solution of (5) often
leads to suboptimal outcomes. Indeed, it has been observed
in previous studies [24] that neural network-based controllers
can reduce the control cost by 30% and shorten the frequency
recovery time by a third compared to a linear control policy. To
address this, we propose an iterative approach in this section to
jointly optimize the neural network residual controller, the
linear feedback control gain, and the Lyapunov function. The
proposed training method bypasses the need for hand-tuning,
as for the BMI algorithm [15] or the feature selection required
for a regression-based linear controller [14].

With the training set (xjq, ujqr) generated through finite-
horizon LQR by solving (3), we optimize the proposed
controller to mimic the behavior of the LQR controller.
Considering the distinct parameterization of the linear con-
troller and the neural network, we decompose the optimization
of the proposed controller into two sub-problems: (1) optimiz-
ing the nonlinear residual 7y (x) and (2) optimizing the linear
feedback controller Kx and the Lyapunov stability certificate
V(x). The optimization problem for v is

n}/}n 21// = ||u1// (xlqr) - ulqr”’ (14)
where uy, is defined in (13) and ||| is the Frobenius norm.

Then, we fix ¢ and optimize the linear controller and
Lyapunov function. This sub-problem is formulated as an
optimization problem with Lyapunov stability constraints. We
use the Cholesky decomposition [33] of P to enforce the
positive definiteness of the Lyapunov function, i.e., P =
QQ", where Q is a lower triangular matrix with positive
diagonal entries. The stability constraint (4) is formulated as
a soft penalty and verified post-training. We parameterize the

Algorithm 1 Stability-Constrained Learning

Ensure: NN 7y (x); K, Q; dataset (Xigr Uigr); feasible solution Ky, Pg; epoch
number Nep, batch number Nj,, batch size Nj, training step for linear
controller Nj; constants c1, ¢, ¢3, learning rates 1y, 1.

1: Initialize K, Q with Kj, Py;
2: for i =0 to Nep do
3: for j =0 to Nj do

4 Randomly sample Ny pairs from (xjgp, Ujgr);

5 Update ¥ by ¥ = ¢ — 31 Vy £y in (14);

6: for step =0 to N; do

7: Update: K = K—ny Vg £k, 0), @ = Q—m VoL, in (15).
8 end for

9 end for

10: end for

Cholesky decomposition matrix Q and the linear controller
gain matrix K as the learnable parameters.

r[I(liél S(K,Q) = c1IK|l + c2[|Kxigr|l + iy (xlqr) — ujgr||

2n
ey Y max(o, eigi(A P+ PAL.L,,)),
i=0 ¢
(15a)
(15b)

P=00Q", Qis lower triangular,
0ieR,0;>0Vie{l,...,n}

where V is fixed, only K and Q are optimized. The coefficients
c1, ¢2, c3 are objective weights. The second row for £k g) is
a summation of all positive eigenvalues of A;E’ P+ PAygy <
0,Vq € {1, ..., p} to penalize violations of the iyapunov sta-
bility constraint (4). We deploy a warm start using the feasible
solution of (5) for K and Q, where Q is decomposed from Py,
such that we start with a stabilizing but suboptimal solution,
improving learning efficiency. We minimize the norm of the
control gain ||K|| and the linear control action || Kx;,|| to avoid
the large overshoot observed in the feasible solution. With
my (x) = 0, the same procedure solely optimizes the linear
controller with its Lyapunov function, termed Linear-opt.

The nonlinear and linear policies are updated iteratively
using gradient descent until convergence or the maximum step
limit is reached, as outlined in Algorithm 1. It’s worth noting
that while this iterative algorithm does not guarantee global
optimality, the numerical experiments show that the trained
controller (13) achieves performance comparable to the LQR
controller with stability guarantees.

IV. SIMULATIONS

In this section, we demonstrate the effectiveness of the
proposed algorithm via numerical experiments. We compare
against the LQR, the linear controller, i.e., (Linear), and the
optimized linear controller, i.e., (Linear-opt).

A. Experimental Setup

We implement the proposed controller in the modified
Kundur 12-bus 3-region network [34] (cf. Fig. 2), with
discretized network dynamics using zero-order hold.

The inverter-based generation resources are deployed for
frequency control. We consider 9 inertia modes, with the
inertia in each mode h; € {0.5,1,1.5,2,2.5,3,3.5,5,9} s.
For simplicity, we assume the same normalized inertia coef-
ficient for all nodes in a given mode ¢, i.e., my; = my =
hq, Vi. The droop coefficient is 0.5 at all nodes and the
control frequency is 1 kHz. We solve the finite-horizon LQR
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Fig. 2. 230kV/100 MVA Kundur 12-bus 3-area test network with 0.0001
+ 0.001 p.u. line impedance.

TABLE |
PERFORMANCE OF LQR, BASE CASE (LINEAR), OPTIMIZED
LINEAR (LINEAR-OPT), AND PROPOSED CONTROLLER
ACROSS 100 SCENARIOS

Settling time (ms)  Overshoot (Hz) Avg Cost
Method Mean Std Mean Std Mean Std
LQR 122.8 717.1 0.097  0.033 99.0 76.18
Proposed | 147.7 84.8 0.096  0.035 107.1 82.39
Linear 554.8 24.2 0269 0.021 44974 1305
Linear-opt | 605.2 48.8 0.083  0.034 2447 9297

problem (3) using Q = diag(0, 5¢*I) and R = I and collect
200 trajectories, assuming both frequency and actions in per
unit (p.u.). The nonlinear residual is modeled using a three-
layer fully connected neural network with 300 and 400 hidden
units, respectively. The network takes the state x as input and
outputs the control actions (real power set-points).

Online inertia modes are estimated by a neural network
pre-trained with the collected trajectories and used by (10)
for the projection, where the input to the neural network is
two consecutive frequency observations w(f), w(t + 1) and
the corresponding action u(f). The estimator achieves 90.64%
accuracy for inertia mode classification. We optimize the
proposed controller by Algorithm 1 with ¢; = 0.1,¢; =
0.01,c3 = 500,71 = 0.001,n2, = 0.0L,Nyp, = Np =
300, Ny = 256, N; = 5, and compare its performance against
LQR, Linear and Linear-opt in 100 distinct frequency devia-
tion scenarios, each with a time horizon of 1 s (1000 steps) and
a random initial frequency deviation at each bus sampled from
a uniform distribution U4 _¢ 3,0.3) Hz. The scenarios commence
in random operational modes ¢g(0) € {1, ..., 9}. Subsequently,
based on a uniform distribution, the inertia of the system either
remains constant, increases or decreases every 0.1 s.

We utilize three key metrics to evaluate our controller:
(i) settling time, defined as the average duration for the
controller to reduce frequency deviations to under 0.01 Hz; (ii)
overshoot, which is the average maximum frequency deviation
observed in each scenario; and (iii) average cost (Avg Cost)

1 N=100 T=1000 _T T
N Yoo im0 X Ox;i+u; Ru;.

B. Results

In 100 scenarios (cf. Table I), the proposed controller
matches LQR’s performance and outperforms Linear and
Linear-opt in settling time and control cost due to the flexi-
bility of the nonlinear residual.

Figures 3 and 4 illustrate state and control trajectories for
one inertia switching scenario, where bus 9 has an initial
frequency deviation of —0.3 Hz and other buses have random
deviations. From Figure 3, all controllers stabilize bus 9
despite the inertia change. Specifically, Linear induces a

[ nertiah, (15) (2] (28) |

[
B

Z d-in Vi
0.3 s omeio View 1.00

Zoomed-in View

~N \ 0.75
L 02 000 ] || =
c g 0.50
{=}
S 01 p=
® -0.05 c 025
5 0 01 026 0.
7 = B — — ]
& oo g 0.00
o) — LQR B -0.25 — LQR
c -0.1 5
o Proposed c Proposed
> i S —0.50 I
T 02 —— Linear o —— Linear
i —— Linear-opt S0s —— Linear-opt
-0.3 -1.00
0 02 04 06 08 1.0 0 02 04 06 08 10
Time [s] Time [s]

Fig. 3. State and control trajectories for LQR, the proposed controller,
Linear, and Linear-opt at bus 9 with a zoomed-in view for 0-0.2 s. The
background color represents the inertia modes.

[ metia h, (18] (2] (28 [3) (38 }

0.3 oT Zoomed-in View 1.00 o5 Zoomed-in View
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E 0.2 0.0 - 0.0 \&
c adl 3 050
S o1l / 2
g =G 3 b .E 0.25 -os3 o
8 oo E 0.00 —_
E’ o1 S -0.25
o €
> S —0.50 ‘
o O
g-02 ~0.75

-0.3 -1.00

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Time [s] Time [s]
Fig. 4. State and control trajectories of all buses with the proposed

controller with a zoomed-in view for 0-0.1 s.

TABLE Il
PERFORMANCE OF LQR (LQR-C) AND PROPOSED CONTROLLER
(PROPOSED-C) WITH HARDWARE CONSTRAINTS

Settling time (ms)  Overshoot (Hz) Avg Cost
Method Mean Std Mean Std Mean Std
LQR-C 143.7 84.7 0.114  0.039 106.2 81.1
Proposed-C | 152.2 79.1 0.124  0.043 141.7 1123

relatively large overshoot and large control actions, while
Linear-opt reduces these but has a longer frequency restoration
time (&1 s). Moreover, the control action of both linear
controllers might fail to converge to the optimal solution once
the frequency is restored. The proposed controller, similar to
LQR, achieves fast frequency recovery within 0.1 s and low
cost across all buses (cf. Figures 3 and 4), demonstrating the
efficiency of our algorithm.

C. Controller Constraints

We explore hardware constraints and nonlinear power
flow dynamics’ impact. Integrating action constraints, u <
u < u, into both LQR formulation and projection (10),
we train the controller with LQR solutions that incorporate
these constraints. Table II outlines the constrained controller’s
performance, where |u;| < 0.5 p.u. for all i € A. Despite a
slight increase in control cost and settling time compared to
LQR, our controller still achieves fast frequency recovery.

V. CONCLUSION

We propose a stability-constrained data-driven controller for
frequency regulation with time-varying inertia. Our method
integrates a linear controller with a neural network-based
nonlinear residual, where the linear controller can stabilize
the switching system with a joint Lyapunov function. During
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training, the linear controller, the corresponding Lyapunov
function, and the nonlinear residual are optimized iteratively in
an end-to-end manner. The stability of the closed-loop system
is further enforced by projecting the nonlinear residual to
guarantee the Lyapunov condition. Thanks to the nonlinear
residual, the policy can approximate the LQR solution and
achieve a comparable performance. Although we successfully
identified a valid Lyapunov function and a linear feedback
controller, jointly optimizing these with stability and optimal-
ity guarantees remains challenging and is a key area for future
research. Future work includes adaptation to nonlinear inverter
dynamics, delay-aware controller design, decentralizing the
controller to reduce communication needs, and improving
robustness to parameter measurement errors and variability.
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