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Abstract

Verification and validation of AI systems, particularly
learning-enabled systems, is hard because they often lack for-
mal specifications and rely instead on incomplete data and
human subjective feedback. Aligning the behavior of such
systems with the intended objectives and values of human
designers and stakeholders is very challenging, and deploy-
ing AI systems that are misaligned can be risky. We propose
to use both existing and new forms of explanations to im-
prove the verification and validation of AI systems. Toward
that goal, we present a framework, in which the agent ex-
plains its behavior and a critic signals whether the behavior
and the explanation are acceptable. In cases where either of
them is not accepted, the agent gathers feedback about the be-
havior and the explanation, which is then used to improve the
system’s alignment. This approach represents a shift from tra-
ditional AI methods, where feedback typically focuses solely
on behavior without considering the underlying explanations.
We discuss examples of this approach that proved to be effec-
tive, and how to extend the scope of explanations and mini-
mize human effort involved in this process.

The Alignment Problem
Value alignment is aimed at creating AI agents whose behav-
iors and goals align with the intended objectives and values
of human designers and stakeholders. Developing verifica-
tion methods for value alignment is critical as AI systems
become prevalent in complex domains (Zilberstein 2015;
Dietterich 2017). What complicates value alignment is that
AI systems often optimize an unspecified set of competing
objectives, which it must balance based on limited amount
of data. The data captures the true objectives only implicitly
and can be noisy. For example, inverse reinforcement learn-
ing (IRL) (Sutton and Barto 1998)—a common approach for
learning from demonstrations (LfD) (Argall et al. 2009)—is
designed to retrieve a reward function that motivates some
observed behavior, allowing agents to generalize observed
behavior to unseen situations.

Assuring reward alignment is difficult, particularly when
the reward function is acquired from sample trajectories. For
example, consider situations where the reward function is
learned from ranked sub-optimal trajectories, and the trajec-
tory dataset only covers a subset of states. Moreover, the
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dataset may contain spurious state feature correlations, caus-
ing the agent to learn a misaligned reward. This can occur,
for example, when training an autonomous vehicle (AV) us-
ing data collected at a particular geo-location and then de-
ploying it in areas with different characteristics.

Techniques for improving value alignment include ef-
forts to avoid negative side effects of AI systems (Saisub-
ramanian, Kamar, and Zilberstein 2022), the inverse reward
design approach (Hadfield-Menell et al. 2017), and value
alignment verification (VAV) with a minimum number of
queries (Brown, Schneider, and Niekum 2021). Our ap-
proach adds important capabilities, most notably using ex-
planations (e.g., rankings of reward explanations) as feed-
back, the ability to correct misaligned reward and to verify
performance in novel situations.

We propose a novel approach called explanations for
value alignment, where an agent not only explains its be-
havior and objectives but also collects feedback on both its
behavior and the explanations themselves. This represents
a significant shift from traditional AI methods, which typi-
cally focus only on gathering feedback about behavior. The
types of explanations that can be utilized in this framework
range from feature attributions to natural language explana-
tions. A critic—whether human or an automated function—
can evaluate these explanations either quantitatively, using
similarity metrics, or qualitatively through more abstract
reasoning, providing valuable feedback.

Rich forms of explanations can be used in conjunction
with this approach, particularly the commonly used explana-
tions that rely on feature attribution to uncover the relation-
ship between input features and output decisions. Examples
include LIME (Ribeiro, Singh, and Guestrin 2016), Gradi-
ent as Explanation (GaE) (Tayyub, Sarmad, and Schönborn
2022), and saliency maps (Simonyan, Vedaldi, and Zisser-
man 2014). Beyond feature attribution, other automated ex-
planation generation methods exist, such as model recon-
ciliation (Chakraborti et al. 2017) and policy summariza-
tion (Amir, Doshi-Velez, and Sarne 2019). Although some
of these methods have been used for value alignment ver-
ification (Huang et al. 2018; Tabrez, Agrawal, and Hayes
2020), none have been employed to actively improve align-
ment. Moreover, natural language explanations could har-
ness rapid advancements in language-based abstraction to
further improve value alignment through this framework.

Figure 1 offers a simple example of the proposed ap-
proach in which an AV approaches a pedestrian walking

AAAI Fall Symposium Series (FSS-24)

76



Ranked Trajectories
 

 
Feedback

  Learn reward
 

Verify reward
  "Explain reward at 

state " 

 Generate explanations

Reward functions consistent
with the demonstration:

State : car approaching a
pedestrian walking two dogs

 Evaluate explanations

    Ranked explanations
  

  Execute task
 with 

Pass

  Explain candidate 
  reward functions 

Fail

: car approaching a dog
accompanied by human

Updated 

:stop for pedestrians
:stop for pedestrians  dogs
:stop for pedestrians  dogs
:stop for all objects

Example: 

Ped
Ped +dogs

Dogs
Object

Ped
Dogs

Object

Ped +dogs

Ped
Dogs

Object

Ped +dogs

Figure 1: An example of reward verification and learning using explanations.

two dogs. Suppose that the training data includes trajec-
tories in which the driver always stops when a human is
crossing the street with dogs. Since dogs are often accom-
panied by humans, the rare case of encountering dogs alone
might be missing from the dataset. Consider four differ-
ent reward functions consistent with the trajectory dataset,
(Ri, 1≤ i≤ 4), each with the same negative reward for not
stopping in this case. R1 does not account for dogs, R2 re-
wards stopping for pedestrians with dogs, R3 rewards stop-
ping for pedestrians or dogs, and R4 rewards stopping for all
objects, including leaves or a plastic bag on the road. With-
out additional information, the AV may randomly learn one
of these reward functions (say R2), however, R3 represents
the intended reward. When operating based on R2, the AV
may not stop for dogs unaccompanied by humans. This ex-
ample illustrates the reward ambiguity stemming from the
incomplete trajectory dataset and the danger of using mis-
aligned rewards. While increasing the diversity of the tra-
jectories in the dataset may help to some extent, it is often
impractical or risky to demonstrate certain trajectories.

Our framework can utilize verification tests in the form
of a query: “explain the reward at state s,” and explana-
tions in the form of feature attribution. The verification
test may be “explain the reward when the AV encounters
a dog accompanied by humans,” to which the agent may
respond with its reward value and feature attributions (for
R2) indicating a low weight for the ‘dogs’ feature, such
as “R(s) = −0.1; Feature attributions: pedestrian=0.25,
dogs=0.15, pedestrian&dogs=0.5, object=0.1”. This reveals
a potential weakness of the model in the counterfactual sce-
nario in which the dog is not accompanied by a human
(missing from the dataset). When this verification test fails,
the agent explains another candidate reward function (for
example, R3). The critic then selects an explanation that is
similar to the explanation that their intended reward would
generate (R3 in this case), indicating that R3 is ranked over
R2 and the desired behavior is to stop for pedestrians or
dogs. This example highlights two key advantages of our
approach: (1) it exposes wrong reward estimation in novel
situations that do not appear in the dataset, and (2) it im-
proves the alignment of the reward function offline without
requiring additional trajectory samples containing the novel
situation, and before the agent encounters that situation.

This approach to value alignment departs from the more
common prediction of competency (e.g., based on accuracy
or F1 score) that can often hide important shortcomings in
agent behavior. The assessment can be both qualitative—
how good the explanations are, and quantitative—how sim-
ilar the explanations are using some metric (Mahmud et al.
2023). Explanation-based assessments are simple and effec-
tive for non-expert users to evaluate agent alignment, unlike
the expertise required for generating formal specifications.
This form of verification is not only useful for identifying
misalignment, but also for building trust with humans and
helping them to identify the system’s strengths and weak-
nesses, or acquiring competence models (Basich et al. 2023).

Case Study: REVEALE
We present a case study called REVEALE that demonstrates
the application of explanations for human-assisted align-
ment verification, while simultaneously guiding the learner
to improve alignment using feedback on those explanations.

Problem Formulation
REVEALE is designed for sequential decision problems
modeled as a Markov decision process (MDP) M , repre-
sented by a tuple M = (S,A, T,R, S0, γ), where S is a set
of states, A is a set of actions, T : S × A × S → [0, 1] is
the transition function, R : S → R is the reward function
(bounded by Rmax), S0 is the initial state distribution, and
γ ∈ [0, 1) is the discount factor. A policy π : S → A maps
states to actions. The state values of a policy π are defined
as V π(s) = E[

∑∞
t=0 γ

tR(st) | s0, π], ∀s ∈ S. The optimal
values are denoted by V ∗(s) = maxπ V

π(s).
REVEALE addresses settings in which the reward func-

tion R is not known a priori and must be inferred offline from
a dataset before policy optimization. The dataset includes a
limited number of pairwise rankings of sub-optimal trajec-
tories, D = {(τ11 ≻ τ21 ), . . . , (τ

1
n ≻ τ2n)}, similar to (Brown

et al. 2019). Here, τ1i and τ2i denote two different trajecto-
ries, where τ1i ≻ τ2i indicates that τ1i is preferred over τ2i .
The learned reward is later used to solve different instances
of the domain. The quality of the retrieved reward depends
on the composition of the dataset, which, in turn, depends on
the source of the dataset. Increasing the size of the training
data does not guarantee learning the intended reward, as the
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additional trajectories generated from the same source may
not provide novel information critical for learning an aligned
reward. Furthermore, it is practically infeasible to foresee
and construct a dataset that contains information pertaining
to novel states that the agent will encounter when deployed.

REVEALE does not make any assumptions about the
composition or the source of the trajectory dataset and uti-
lizes explanations and a critic for evaluation of explana-
tions. The critic is assumed to be an entity capable of rea-
soning about reward estimation (e.g., identifying a feature
that makes a state good or bad). The critic is not required
to be aware of all possible novel scenarios missing from the
dataset a priori. Instead, REVEALE exposes wrong reward
estimation in novel states using explanations of states that
appear in the dataset. An alternative to REVEALE would
be to train and deploy the agent using the unverified reward
function and collect additional data about undesirable be-
havior. However, in real-world scenarios, this approach can
be unsafe, prohibitively costly, and time-consuming.

Method
REVEALE uses explanations to verify and improve reward
alignment. Explaining the learned model reveals not only
what the agent knows but also potential errors in its reason-
ing. Initially, the posterior over the reward function is cal-
culated from the trajectory dataset D using a Bayesian IRL
method (Brown et al. 2020). Specifically, REVEALE uses
Bayes’ rule to calculate P(R|D) ∝ P(D|R)P(R). Then
REVEALE uses the Bradley-Terry model to define P(D|R):

P(D|R) =
∏

(τ1
i ≻τ2

i )∈D

eβR(τ1
i )

eβR(τ1
i ) + eβR(τ2

i )
(1)

where R(τ) =
∑

s∈τ R(s) and β ∈ [0,∞). In the veri-
fication phase, the critic verifies the maximum a posteriori
(MAP) reward function using verification tests in the form
of queries to the agent. The agent responds by explaining its
reward, and the critic signals whether the explanation passes
the verification test. If it fails, the agent presents additional
explanations from an alternative sample of the current pos-
terior. The critic provides feedback by selecting the expla-
nation that most closely matches the correct reasoning. This
is followed by the improvement phase, in which the agent
updates its posterior based on the additional feedback.

The input to REVEALE consists of a set of ranked trajec-
tories D and the verification test states SV . The test states
can be selected randomly from D or by a human critic, who
possesses a broader scope of knowledge and can identify
critical states that affect performance. The algorithm begins
by initializing an empty set of feedback C and retrieves the
initial reward function Rm using Equation 1. Then the algo-
rithm alternates between the verification and improvement
phases until a reward function is found that passes all the
verification tests. Figure 2 summarizes this process.

Verification phase In this phase, for each verification test
state sV ∈ SV , the reward value Rm(sV ) and the corre-
sponding explanation XRm

(sV ) are shown to the critic for
approval. If approved, then XRm

(sV ) is added to C as an
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Figure 2: Overview of the REVEALE Framework

Oracle explanation. If disapproved, additional feedback is
requested from the critic. When possible, the critic can pro-
vide the correct explanation, i.e., XO(sV ). Otherwise, the
agent generates an alternative explanation XR′(sV ) and col-
lects the critic’s ranking over XRm(sV ) and XR′(sV ). Here,
R′ is a different reward function sampled from the posterior.
Finally, all the feedback is added to C. Note that if the critic
fails to distinguish between the two explanations, additional
alternative explanations can be generated to help the critic. If
the agent does not pass all the tests, the algorithm proceeds
to the improvement phase.

Improvement phase In the improvement phase, a new
posterior distribution over the reward function is calculated
by combining D and C using Equation 2,

P (R|D, C) ∝ P (C|D, R)P (D|R)P (R). (2)

Since explanations only depend on the reward function,
P (C|D, R) = P (C|R). Based on this posterior distribution,
a new MAP reward Rm is calculated. Then the algorithm
goes back to the verification phase. Thus, our algorithm iter-
atively guides the reward alignment using explanations.

We now discuss how REVEALE defines P (C|R) for
linear reward models1, which are described by a lin-
ear weighted combination of features describing the state,
R(s) = wTϕ(s), w ∈ Rn.

REVEALE considers three forms of feature-attribution
based explanations, namely LIME (LM), Gradient-as-
Explanation (GaE), and saliency maps (SM). GaE is de-
fined as the gradient of the reward function with respect
to the input state features, i.e., ∂R(s)/∂ϕ(s), and SM as
|∂R(s)/∂ϕ(s)|. Here, |·| indicates the absolute value. LIME
approximates the local behavior of a complex model by fit-
ting a simpler, interpretable model to the predictions in the
vicinity of the input instance, however, it yields the same
formula in the linear case as GaE.

Now, given an oracle feedback explanation XO(si) for
state si and a distance measurement D(·) (e.g., L2, cosine
similarity), the learned reward function R must satisfy the
following constraint:

D(XO(si),XR(si)) = 0, (3)

so that the learned reward function produces the same expla-
nation as the Oracle. Similarly, given the ranking over two

1In this scenario REVEALE implicitly assumes that the in-
tended reward function can be represented with a vector in Rn.
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explanations XR1(si) ≻ XR2(si), the learned reward func-
tion R must satisfy the following constraint:

D(XR1
(si),XR(si)) < D(XR2

(si),XR(si)). (4)

This constraint causes the explanation generated by the
learned reward function to look more similar to the higher-
ranked explanation. We henceforth use C to denote the set
of all such constraints constructed from Equations 3-4 using
the feedback. Since an aligned reward function will satisfy
all the constraints, we can define P (C|R) as:

P (C|R) =
1

Z
I(C, R), (5)

with, I(C, R) = 1 when R satisfies all the constraints in
C and 0 otherwise. When using P (C|R) from Equation 5
in Equation 2, the posterior probability of all the reward
functions that do not produce the correct explanations is
evaluated to 0 in the improvement phase. The posterior
probability of all the reward functions that do produce cor-
rect explanations remains proportional to the original prob-
ability derived by BREX (Brown et al. 2020). Intuitively,
the key role of REVEALE is to eliminate deceptive re-
ward functions—those that accurately estimate rewards for
the training dataset and therefore are selected by BREX,
but would fail to produce correct estimates in novel situ-
ations. It is worth noting that REVEALE also provides a
gradient-based solution for non-linear R by converting this
constraint-satisfying 0,1 distribution to a softer constraint
optimization distribution. We refer to Mahmud, Saisubrama-
nian, and Zilberstein (2023) for more details.

Findings and Discussion
In (Mahmud, Saisubramanian, and Zilberstein 2023), the au-
thors provide several theoretical insights for the linear re-
ward case. It is shown that REVEALE can correctly return
a solution from the solution set, R ∈ ∆(D)∩∆(XSV ). The
explanation-consistent reward set, denoted ∆(XSV ), is a set
of reward functions whose corresponding explanations are
approved by the critic:

∆(XSV )={R ∈ R | FA(XR(sV )) = 1, ∀sV ∈ SV }. (6)

The data-consistent reward set, denoted ∆(D), is a set of
reward functions under which the higher ranked trajectories
have a higher reward than the lower ranked trajectories:

∆(D)={R ∈ R | R(τ1i ) > R(τ2i ), ∀(τ1i ≻ τ2i )∈D}. (7)

It is also shown that a single Oracle-generated GaE expla-
nation feedback is sufficient to produce the optimal intended
reward. Proposition 3 indicates that to reduce reward func-
tion ambiguity by x%, it suffices to have ranked feedback
over k = log2(1/(1−x/100)) randomly generated GaE ex-
planation pairs. The analysis also implies that GaE can be
more effective than SM in reducing reward ambiguity under
certain conditions.

The effectiveness of learning aligned linear and non-linear
rewards with REVEALE was evaluated using three explana-
tion generation techniques: gradient as explanations, LIME,
and saliency map. To test this, five proof-of-concept domains
were used, with training data generated by sub-optimally

solving a set of training instances, and the learned reward
evaluated on test instances that differ in start state distribu-
tion and risky region locations. Reward learning is challeng-
ing due to the limited state coverage in trajectories and spu-
rious feature correlations. Metrics for evaluation include ac-
curacy in predicting trajectory ranking in test instances, re-
ward estimation quality in unseen states, and average reward
achieved by executing a policy computed using the learned
reward in test instances. The performance of our approach
is compared with the true reward function policy (Optimal)
and recent IRL algorithms: BREX (for linear rewards) and
TREX (for non-linear rewards).

The results show that REVEALE significantly improves
prediction accuracy in novel states by utilizing explanation
feedback. While traditional IRL methods like REX often
suffer from spurious correlations and inaccurate reward es-
timation in test scenarios, explanation-guided alignment in
REVEALE provides more accurate and safer reward func-
tions. The accuracy of ranking prediction improves with
GaE explanations, especially when feedback is incorpo-
rated. In terms of avoiding risky states, GaE and LIME-
based methods produce safer trajectories in most domains,
with REVEALE outperforming REX and other methods in
avoiding penalties from risky regions. Overall, our results
demonstrate that REVEALE, with explanation-guided feed-
back, can learn reward functions that align better with true
rewards, resulting in safer and more effective policies.

Conclusion
The verification and validation of AI systems, particularly
those that are learning-enabled, present significant chal-
lenges. The proposed framework leverages explanations for
value alignment and offers several distinct advantages. By
utilizing a critic to assess the agent’s explanations and iter-
atively refining the reward functions based on feedback, the
approach ensures better alignment of AI behavior with hu-
man values and objectives.

The REVEALE case study underscores the critical role
of explanations in identifying and correcting misaligned re-
wards, thereby improving the safety and reliability of AI
systems in novel situations. The case study demonstrates
the practical application of this framework, showcasing its
effectiveness in various domains through empirical evalu-
ations. Explanation-guided reward alignment not only en-
hances the transparency and trustworthiness of AI systems
but also minimizes the need for extensive trajectory data,
which is often impractical or risky to obtain.

In future work, we plan to explore new types of expla-
nations, particularly explanations in natural language that
are more comprehensible and intuitive for users. By lever-
aging the significant advancements in natural language pro-
cessing through large language models (LLMs), we aim to
enhance value alignment using language-based abstraction.
Additionally, we intend to develop mechanisms to improve
the sample efficiency of verification tests by incorporating
more informative examples. Lastly, we seek to create meth-
ods that offer formal guarantees for explanation-guided ver-
ification, accounting for different assumptions regarding the
accuracy of the critic.
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